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Abstract 

 

Based on time series data on inflation rates in Nigeria from 1960 to 2016, we model and forecast 

inflation using ARMA, ARIMA and GARCH models. Our diagnostic tests such as the ADF tests 

indicate that NINF time series data is essentially I (1), although it is generally I (0) at 10% level 

of significance. Based on the minimum Theil’s U forecast evaluation statistic, the study presents 

the ARMA (1, 0, 2) model, the ARIMA (1, 1, 1) model and the AR (3) – GARCH (1, 1) model; of 

which the ARMA (1, 0, 2) model is clearly the best optimal model. Our diagnostic tests also 

indicate that the presented models are stable and hence reliable. The results of the study reveal 

that inflation in Nigeria is likely to rise to about 17% per annum by end of 2021 and is likely to 

exceed that level by 2027. In order to address the problem of inflation in Nigeria, three main 

policy prescriptions have been suggested and are envisioned to assist policy makers in stabilizing 

the Nigerian economy.  
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I. INTRODUCTION 

Inflation can be defined as the persistent and continuous rise in the general prices of 

commodities in an economy (Nyoni & Bonga, 2018a). In today’s world, the knowledge of what 

helps forecast inflation is important (Duncan & Martínez-García, 2018). Policy makers can get 

prior indication about possible future inflation through inflation forecasting (Nyoni, 2018k). It is 

possible to attribute the high rate of inflation in Nigeria to factors such as, low output growth 

rate, high prices of imported products, depreciation in the exchange rate and probably external 

factors like crude oil price. Since, price stability is one of the key objectives of monetary policy 

(Hadrat et al, 2015), while another is to maintain a persistent economic growth along with low 
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inflation (Islam, 2017), it is up to the policymakers to be forward – looking. Good forecasting 

ability is germane to achieve this objective (Hadrat et al, 2015). Inflation forecasting is not only 

a useful guide for policy discussion, it also plays a dominant role in a situation where a country 

is practicing an inflation targeting regime as it can alert policymakers to take drastic decision 

when inflation deviates from its target (Iftikhar & Iftikhar-ul-amin, 2013; Hadrat et al, 2015). 

Again, because monetary policy is associated with lags which are significant, it is ideal for 

policy to be designed in a forward – looking manner, this further stresses the importance of 

obtaining accurate forecasts for inflation (Mandalinci, 2017; Nyoni, 2018k). These and many 

other reasons make inflation modeling and forecasting sacrosanct for the monetary authority.  

The history of high inflation rate in Nigeria could be traced to the Udoji Commission of 1974 

that proposed an enhanced salary structure for civil servants, the so-called “Udoji Award”; 

without considering the aftermath, as well as, the unfortunate civil war of 1967 to 1970. Inflation 

has been one of the most persistent economic challenges in the world, especially in developing 

countries (Jere & Siyanga, 2016). Nigeria has been facing this challenge for so many years now. 

The monetary authorities in Nigeria are confronting two challenges- maintaining stable inflation 

and ensuring high growth in the economy. As a result of the political upheaval in the country, the 

inflation rate surged to 57.16% in 1993. It further increased to 72.83% in 1995.  However, in 

1997, it reduced by 64.33% to 8.5%. It remained on a single digit from 1997 to 2000. Having 

achieved a single digit inflation, the Nigerian government and the monetary authority couldn’t 
sustain the trend as inflation increased to 19% in 2002. Between 2003 and 2009, the inflation rate 

averaged 11.42%. The country recorded its lowest inflation rate (5.38%) in 2007. The inflation 

rate was 8.47%, 8.05%, 9.01% and 15.69% in 2013, 2014, 2015 and 2016 respectively (WDI, 

2017). As of December 2017, the inflation rate had dropped to 15.37% (National Bureau of 

Statistics, 2017).  

Recent developments in the world such as globalization, changes in policies (inflation targeting), 

among other factors have made forecasting of inflation to be difficult (Duncan & Martínez-

García, 2018). Due to the importance of inflation forecasting in a modern economy, many 

researchers; for example, Aron & Muellbauer, 2012; Ogunc et al, 2013; Chen et al, 2014; 

Balcilar et al, 2015; Pincheira & Medel 2015; Medel et al, 2016; Altug & Cakmakli 2016 as well 

as Mandalinci 2017 have extended their studies to cover two or more countries. The difficulty of 

controlling inflation and the time lag of monetary policy suggest the need to maintain stable 

inflation. Most studies that tried to forecast inflation in Nigeria either used ARIMA (Adebiyi et 

al., 2010; Olajide et al, 2012; Uko & Nkoro 2012; Etuk et al, 2012; Okafor & Shaibu 2013; 

Kelikume & Salami 2014; Mustapha & Kubalu 2016; Popoola et al., 2017), SARIMA (Doguwa 

& Alade, 2013) or a combination of both (Otu et al., 2014; John & Patrick, 2016).  

This study is among the very few studies that used the ARMA, ARIMA and GARCH approaches 

to model annual inflation rate volatility in Nigeria. The rest of the paper is organized as follows. 

Section II is concerned with literature review. In Section III we show the methodology and 

models used in the study. We report and discuss the results of our findings in section IV. Finally, 

in Section V, we conclude and suggest relevant policy recommendations. 

II. LITERATURE REVIEW 

Theoretical Literature Review 
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One key role of monetary policy in any given economy is to ensure price stability and provide 

the environment for adequate credit expansion which will, in turn, promote growth and 

development. There are quite a number of theories of inflation. Some of these theories are the 

Monetarist theory, the Keynesian theory and the Neo – Keynesian theory among others. There is 

still no consensus among these theories on the root causes of inflation and how it should be 

controlled.  

The Monetarist attributed the cause of long-run inflation to a growth in money supply which is 

not matched with output growth (Friedman 1956, 1960, 1971). The Keynesians did not agree 

with the postulation of the monetarist. To them, money creation has no direct impact on 

aggregate demand. The impact of money on aggregate demand can only be felt through interest 

rates. The interest rate on its own has a minimal impact on aggregate demand (Samuelson, 1971). 

According to the Keynesians, the velocity of money is not as stable as postulated by the 

monetarists. The Neo-Keynesians are basically divided inflation into three: Demand-pull, Cost-

push and Structural inflation theorists. Demand-pull inflation occurs when there is an excess of 

demand over supply. When this excess occurs, there will be an inflationary gap. Cost-push 

theories attributed the increase in factor inputs and production costs in general as causes of 

inflation (Kavila & Roux, 2017). According to them, inflation is not a function of an increase in 

money supply as the monetarists claim. The Structuralist believed that structural rigidities, 

market imperfections and social tensions are the causes of inflation (Thirwell, 1974; Aghevei & 

Khan, 1977). They placed more emphasis on the supply side of the economy (Bernanke, 2005). 

Khan & Schimmelpfennig (2006) further considered food prices, administered prices, wages and 

import prices, as additional factors that drive inflation. 

Empirical Literature Review 

Lots of researches have been conducted on this theme over several decades. Given the specific 

focus of our paper on modelling and forecasting inflation in Nigeria, Table 1 below provides a 
fair sample of studies undertaken more recently: 

Literature Summary on Modelling and Forecasting Inflation 

Table 1 
Author(s)/ Year Country Period Methodology Major Finding(s) 

Yusif et al, (2015) Ghana 1991:01 - 2010:12 Artificial Neural 

Network Model 

Approach, AR 

and VAR 

Out-of-sample forecast 

error of Artificial 

Neural Network Model 

Approach is lower 

than other techniques. 

Iftikhar & Iftikhar-

ul-amin (2013) 

Pakistan 1961 – 2012  ARIMA  ARIMA was found to 

be the most 

appropriate model 

Mustapha & 

Kubalu (2016) 

Nigeria January 1995 to 

December 2013 

ARIMA ARIMA was the best-

fitted model for 

explaining the 

relationship between 

past and current 

inflation rate. 

Kabukcuoglu &  

Martnez-Garca 

14 advanced 

countries. 

1984:Q1-2015:Q1 Workhorse 

open-economy 

Cross-country 

interactions yield 
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(2018) New Keynesian 

framework 

significantly more 

accurate forecasts of 

local inflation 

Pincheira & Gatty 

(2016) 

18 Latin 

American 

countries and 

30 OECD 

countries 

January 1994 to 

March 2013 

FASARIMA, 

ARIMA, 

SARIMA and 

FASARIMAX 

International factors 

help in forecasting 

Chilean inflation 

Nyoni (2018k) Zimbabwe July 2009 to July 

2018 

GARCH The AR (1) – 

IGARCH (1, 1) model 

is appropriate and the 

best for forecasting 

inflation in Zimbabwe. 

Fwaga et al.,  

(2017)  

 

Kenya January 1990 – 

December 2015   

EGARCH  and 

GARCH  

 

The inflation rate in 

Kenya can best be 

forecast with 

EGARCH.  

Banerjee (2017) 

 

41 countries 

comprising 

both 

developed and 

developing 

countries. 

January 1958 – 

February 2016 

GARCH Developing countries 

have an inflation rate 

that is about 3.5% 

greater than that of 

developed countries. 

Lidiema (2017) Kenya November 2011 to 

October 2016 

SARIMA and 

Holt-Winters 

Triple 

Exponential 

Smoothing 

SARIMA Model was a 

better model for 

forecasting inflation in 

Kenya than the Holt-

winters triple 

exponential 

smoothing. 

Otu et al., (2014) Nigeria November 2003 to 

October 2013 

ARIMA and 

SARIMA 

SARIMA was a better 

model for forecasting 

inflation in Nigeria. 

Ingabire & 

Mung’atu (2016) 

Rwanda 2000Q1 to 2015Q1 ARIMA and 

VAR 

ARIMA (3, 1, 4) 

model was better than 

the VAR model in 

predicting inflation in 

Rwanda. 

Jere & Siyanga 

(2016)  

Zambia May 2010 to May 

2014. 

Holts 

exponential 

smoothing and 

ARIMA model 

ARIMA ((12), 1, 0) 

model performed 

better than the Holts 

exponential 

smoothing. 

Uwilingiyimana, et 

al. (2015) 

Kenya Monthly data from 

2000 to 2014. 

ARIMA and 

GARCH 

The combination of 

both models, ARIMA 

(1, 1, 12) and GARCH 

(1, 2) provide the best 

result. 

Udom & 

Phumchusri (2014) 

Thailand January 2004 and 

December 2012. 

ARIMA 

method, Moving 

average method 

and Holt’s and 

Winter 

exponential 

method. 

ARIMA model was a 

better model when 

compared with other 

methods 
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Molebatsi & 

Raboloko (2016). 

Botswana January 2005 to 

December 2014 

GARCH and 

ARIMA  

Volatility for 

Botswana’s CPI is 

low. 

John & Patrick 

(2016) 

Nigeria Monthly data from 

2000 to 2015 

ARIMA and 

SARIMA 

Inflation rates in 

Nigeria are seasonal 

and follow a seasonal 

ARIMA Model 

Islam (2017) Bangladesh 1971 – 2015  ARIMA ARIMA model (1, 0, 

0) was most 

appropriate for 

forecasting inflation in 

Bangladesh 

Duncan & 

Martínez-García 

(2018). 

14 emerging 

market 

economies 

1980Q1 - 2016Q4   Bayesian VAR. 

Random-walk 

Model. 

The random walk 

model tends to 

produce a lower root 

mean square prediction 

error than its 

competitors. 

Ngailo et al, 

(2014). 

Tanzania January 1997 to 

December 2010 

GARCH GARCH(1,1) model is 

found to be the best 

model for forecasting 

inflation in Tanzania 

Okafor & Shaibu 

(2013). 

Nigeria 1981 – 2010  ARIMA ARIMA (2,2,3) was 

the best model for 

forecasting. 

Kelikume & Salami 

(2014). 

Nigeria Monthly data from 

2003 to 2012 

ARIMA and 

VAR 

The VAR model was 

preferred to the 

ARIMA model 

because of smaller 

minimum square error. 

Inam (2017) Nigeria 1970 – 2012  VAR Fiscal deficit, money 

supply, and output are 

not significant 

determinants of 

inflation in Nigeria. 

Popoola et al., 

(2017) 

Nigeria 2006 – 2016 ARIMA Discovered ARIMA 

(0,1,1) as the best 

model for forecasting 

inflation in Nigeria. 

Source: Authors’ computation from literature 

III. MATERIALS & METHODS 

The Moving Average (MA) model 

Given: NINFt = α0μt + α1μt−1 +⋯+ αqμt−q……………………………………………………………… .……………… [1] 
where μt is  a purely random process with mean zero and varience σ2

. We say that equation [1] is 

a Moving Average (MA) process of order q, commonly denoted as MA (q). NINF is the annual 

inflation rate in Nigeria at time t, ɑ0 … ɑq are estimation parameters, μt is the current error term 

while μt-1 … μt-q are previous error terms. Thus: NINFt = α0μt + α1μt−1……………………………………………………………………………………………… . . [2] 
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is an MA process of order one, commonly denoted as MA (1). Owing to the fact that previous 

error terms are unobserved variables, we then scale them so that ɑ0=1. Since: E(μt) = 0∀ t }……………………………………………………………………… . . ………………… .……………….    [3] 
Therefore, it implies that: E(NINFt) = 0……………………………………………………………………… .………… . . …………………… . . [4] 
and: 

Var(NINFt) ≅ (∑αt2q
i=0 )σ2………………………………………………………………………………… .……… . . [5] 

where μt is independent with a common varience σ2
. Thus, we can now re – specify equation [1] 

as follows: NINFt = μt + α1μt−1 +⋯+ αqμt−q………………………………………………………… . . …………………… [6] 
Equation [6] can be re – written as: 

NINFt =∑αiμt−i + μtq
i=1 ………………………………………… .…………………………………………………… . [7] 

We can also write equation [7] as follows: 

NINFt =∑αiLiμt + μtq
i=1 ……………………………………………………………………………………………… . . [8] 

where L is the lag operator. 

or as: NINFt = α(L)μt……………………………………………………………………………………………………… . . [9] 
where: 

ɑ(L)=θ(L)1
 ………………………….……………………………………..……………….………………….. [10] 

The Autoregressive (AR) model 

Given: NINFt = β1NINFt−1 +⋯+ βpNINFt−p + μt…………………………… . .…………………… .……………… . . [11] 
Where β1 … βp are estimation parameters, CPIt-1 … CPIt-p are previous period values of the CPI 

series and μt is as previously defined. Equation [11] is an Autoregressive (AR) process of order 

p, and is commonly denoted as AR (p); and can also be written as: 

                                                           
1
 defined as in equation [22]. 
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NINFt =∑βiNINFt−1 + μtp
i=1 …………………………………………………… .………………… . . ………………[12] 

Equation [12] can be re – written as: 

NINFt =∑βiLiNINFt + μtp
i=1 …………………… .……………………………………………………………………[13] 

or as: β(L)NINFt = μt……………………………………………………………………………………………………… . [14] 
where: 

β(L)=ɸ(L)
2
 ………………………………………………………..………...………………………………… [15] 

or as: NINFt = (β1L + ⋯+ βpLp)NINFt + μt………………………………………………………………… . .…… . [16] 
Thus: NINFt = (β1L)NINFt + μt…………………………………………………………………………… .…………… . . [17] 
is an AR process of order one, commonly denoted as AR (1). 

The Autoregressive Moving Average (ARMA) model 

As initially postulated by Box & Jenkins (1970), an ARMA (p, q) process is simply a 

combination of AR (p) and MA (q) processes. Thus, combining equations [1] and [11]; an 

ARMA (p, q) process can be specified as follows: NINFt = β1NINFt−1 +⋯+ βpNINFt−p + μt + α1μt−1 +⋯+ αqμt−q…………………………………… .…… [18] 
or as: 

NINFt =∑βiNINFt−i +p
i=1 ∑αiμt−iq

i=1 + μt………………………………………………………………………… [19] 
by combining equations [7] and [12]. Equation [18] can also be written as: ɸ(L)NINFt = θ(L)μt…………………………………………………………………………………… .… .…… . . [20] 
where ɸ(L) and θ(L) are polynomials of orders p and q respectively, simply defined as: ɸ(L) = 1 − β1L… βpLp…………………………………………………………………………………… .…… . . [21] θ(L) = 1 + α1L + ⋯+ αqLq……………………………………………………………………………………… . [22] 
                                                           
2
 defined as in equation [23]. 
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It is essential to note that the ARMA (p, q) model, just like the AR (p) and the MA (q) models; 

can only be employed for stationary time series data; and yet in real life, many time series are 

non – stationary. For this simple reason, ARMA models are not suitable for describing non – 

stationary time series. 

The Autoregressive Integrated Moving Average (ARIMA) model 

ARIMA models are a set of models that describe the process (for example, CPIt) as a function of 

its own lags and white noise process (Box & Jenkins, 1974). Making predicting in time series 

using univariate approach is best done by employing the ARIMA models (Alnaa & Ahiakpor, 

2011). A stochastic process NINFt is referred to as an Autoregressive Integrated Moving 

Average (ARIMA) [p, d, q] process if it is integrated of order “d” [I (d)] and the “d” times 

differenced process has an ARMA (p, q) representation. If the sequence  ∆d
NINFt satisfies and 

ARMA (p, q) process; then the sequence of NINFt also satisfies the ARIMA (p, d, q) process 

such that: 

∆dNINFt =∑βi∆dNINFt−i +p
i=1 ∑αiμt−iq

i=1 + μt…………………………………………… . . ……………… .…… . [23] 
which we can also re – write as: 

∆dNINFt =∑βi∆dLiNINFtp
i=1 +∑αiLiμtq

i=1 + μt………………………… . . ……………………… .……………… [24] 
where ∆ is the difference operator, vector β ϵ Ɽp

 and ɑ ϵ Ɽq
. 

The Autoregressive Conditionally Heteroskedastic (ARCH) model 

In financial time series modelling and forecasting, it usually makes a lot of sense to take into 

account a model that describes how the varience of the errors evolves and such a model is non – 

other – than the ARCH model. The basic intuition behind ARCH family type models is that it is 

very rare that the varience of the errors will be constant over time and on such grounds, it is 

reasonable to consider models that do not assume that the varience is constant. To briefly explain 

the simple intuition behind the ARCH model, we start by defining the conditional varience of a 

random variable, μt:  σt2=var(μt│μt-1, μt-2, …)=E[μt-E(μt)
2│μt-1, μt-2, …] ……………………………….………………………….. [25] 

assuming that equation [3] also holds water in this case, such that:  σt2=var(μt│μt-1, μt-2, …)=E[μt2│μt−2, …] …………………………….…………………………………..….. [26] 

Equation [26] indicates that the conditional varience of a zero mean normally distributed random 

variable μt is equal to the conditional expected value of the square of μt. σt2=φ0+φ1μt−12  ……………………………………………………………………………………………….. [27] 

Equation [27] is called an ARCH (1) model because the conditional varience depends only on 

one lagged squared error. Equation [27] cannot be seen as a complete model just because we 

haven’t taken into account the conditional mean. The conditional mean, in this case; describes 
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how the dependent variable, NINFt; varies over time. As noted by Nyoni (2018k); there is no 

rule of thumb on how to specify the conditional mean equation; actually it takes any form 

deemed adequate by the researcher/s. Thus, the complete model consists of both the conditional 

mean equation and the ARCH specification as illustrated by Nyoni (2018k).  Equation [27] can 

be generalized to a case where the error variance depends on p lags of squared errors as follows:  σt2=φ0+φ1μt−12 +…+φpμt−p2  …………........................................................................................…………….. [28] 

Thus, equation [28] is an ARCH (p) model. 

The Generalized ARCH (GARCH) model 

The equation below: σt2=φ0+φ1μt−12 +λ1μt−12  …………................................................................................................…………….. [29] 

is the “work – horse version” and yet most important case of a GARCH process, the GARCH (1, 

1) model; where σt2 is the conditional varience, φ0 is the constant, φ1σt−12  is the information 

about the previous period volatility, and λ1σt−12  is the fitted varience from the model during the 

previous period. From equation [29], we deduce that: 

Et-1[μt2]=σt2 ……………………………..……………………………………………..……………………… [30] 

such that: σt2=φ0+(φ1+λ1)μt−12 +εt-λ1εt−12  …………………………..………………………….……………………….. [31] 

which is apparently an ARMA (1, 1) model; this simply implies that indeed, a GARCH model 

can be expressed as an ARMA process of squared residuals. In this regard: εt=μt2-Et−1[μt2] …………………………………………………..…………………………….……………… [32] 

is the stochastic term. Given equation [31], we can use inference to conclude that the stationarity 

of the GARCH (1, 1) model requires: φ1+λ1˂1 ……………………………………………………………………………………………………… [33] 

Taking the unconditional expectation of equation [29], we get: σ2=φ0+φ1σ2+λ1σ2 …………………………………………………...………………………….…………… [34] 

so that: σ2=
φ01−φ0−λ1 ……………………………    …………………………………………………………………… [35] 

For this unconditional varience to exist, equation [33] must hold water and for it to be positive, 

then: φ0˃0 …………………………………………………………….…………………………………….………. [36] 

Equation [29] can be generalized into a GARCH (p, q) model where the current conditional 

varience is parameterized to depend upon p lags of the squared error and q lags of the conditional 

varience as shown below: 
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σt2=φ0+φ1μt−12 +…+φpμt−p2 +λ1σt−12 +…+λqσt−p2  …………………………………………....….…………… [37] 

Equation [37] can also be written as follows: σ2=φ0+φ(L)μt2+λ(L)σt2 ………………………………………………………………………………………. [38] 

where φ(L) and λ(L) denote the AR and MA polynomials respectively, such that: 

φ(L)=φ1L+…+φpLp ……………………………………...………………………………………………….. [39] 

and: 

λ(L)=λ1+…+λqLp ……………………………………………………………………………………………. [40] 

or as: σt2=φ0+∑ φiμt−i2pi=1 +∑ λjσt−j2qj=1  ………………………………...……………..…………………….……….. [41] 

where condition [33] is now generalized as follows: ∑ φipi=1 +∑ λjqj=1 ˂1 ………………………………………………………………………………….…………. [42] 

Suppose all the roots of the polynomial: 

│1-λ(L)│-1
 =0 ………………………………………………………………..…………………....….………. [43] 

lie outside of the unit circle, then; we get: σt2=φ0│1-λ(L)│-1+φ(L)│1-λ(L)│-1μt2 ………………………………….………………………….………… [44] 

which is indeed an ARCH (∞) process because the conditional varience linearly depends on all 

previous squared residuals. Therefore, the unconditional varience is expressed as follows: σ2 ≡E(μt2)=
φi1−∑ φi−∑ λjqj=1pi=1  ………………………………….……………………………………..………… [45] 

Suppose: φ1+…+φp+λ1+…+λp=1 ………………………………………………….………………………….………. [46] 

then the unconditional varience will be ∞. 

Conditions [33] and [42] basically mean the same thing. In a plethora of financial time series, 

these conditions are close to unity; indicating persistant volatility. Let’s say: φ1+λ1=1 ……………………………………………..……………………………………….……………….. [47] 

or more generally: ∑ φipi=1 +∑ λjqj=1 =1 ………………………………………….…..……………………………….…………….. [48] 

or simply: 

φ(L)+λ(L)=1 ………………………………………………...…….……..…………………………………… [49] 
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what it implies is that the resulting process is not covariance stationary. Such a process gives 

birth to what is called an Integrated GARCH or IGARCH model; a model in which current 

information remains vital when forecasting the volatility for all horizons. 

Model Specification 

Strictly based on our diagnostic tests and model evaluation criterion (see tables 2 – 19), we 

specify the following models: 

ARMA (1, 0, 2) Model: NINFt = c + β1NINFt−1 + α1μt−1 + α2μt−2 + μtwhere c is the model constant } ………………………………… .… . . ……… [50] 
ARIMA (1, 1, 1) Model: ∆NINFt−1 = c + β1∆NINFt−1 + α1μt−1…………………………………… . . …………… .…… . . [51] 
AR (3) – GARCH (1, 1) model: 

The appropriate equations for the mean and varience were specified as follows: NINFt = c + ω1NINFt−1 +ω2NINFt−2 + ω3NINFt−3 + μtwhere: μt ≅ N(0; σt2) andω1… ω3 are estimation parameters;σt2 = φ0 + φ1μt−12 + λ1σt−12where: φ0 ≥ 0,φ1 ≥ 0,λ1 ≥ 0Everything else remains as previously defined }   
  
   ………………………… .……… . [52] 

The Box – Jenkins (1970) Methodology 

The first step towards model selection is to difference the series in order to achieve stationarity. 

Once this process is over, the researcher will then examine the correlogram in order to decide on 

the appropriate orders of the AR and MA components. It is important to highlight the fact that 

this procedure (of choosing the AR and MA components) is biased towards the use of personal 

judgement because there are no clear – cut rules on how to decide on the appropriate AR and 

MA components. Therefore, experience plays a pivotal role in this regard. The next step is the 

estimation of the tentative model, after which diagnostic testing shall follow. Diagnostic 

checking is usually done by generating the set of residuals and testing whether they satisfy the 

characteristics of a white noise process. If not, there would be need for model re – specification 

and repetition of the same process; this time from the second stage. The process may go on and 

on until an appropriate model is identified (Nyoni, 2018i) 

Data Collection 

This study is based on Nigerian annual inflation rate data, from 1960 to 2016. All the data used 

in this study was gathered from the World Bank.   

Diagnostic Tests and Model Evaluation 
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Stationarity Tests 

Graphical Analysis 

A time plot of the NINF series was graphically examined as shown below: 

Figure 1 

 

The above graph shows that the NINF series is likely to be stationary (when formally tested for 

stationarity) since it exhibits no particular trend. The implication is that the mean of NINF is 

generally not changing over time and hence we can safely conclude that the variance of NINF is 

basically constant over time. 

The correlogram in levels 

Figure 2 
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The figure above confirms the general stationarity of the NINF series as indicated by the 

autocorrelation coefficients, most of which are quite low at various lags.  

The ADF test 

The Augmented Dickey Fuller (ADF test) was used to check the stationarity of the NINF series. 

The general ADF test is done by running the following regression equation: 

NINFt= ct γNINFt-1+∑ ∆p−1i=1 NINFt-i+μt …………………………………………………….…...…………….. [53] 

Where ct is a deterministic function of the time index t and ∆NINFj=NINFj-NINFj-1 is the 

differenced series of NINFt. The null hypothesis H0: γ=1 is tested against the alternative 
hypothesis Ha: γ≤1. If the null hypothesis is rejected, then the time series is stationary. The 

results of the ADF tests done in this study are shown below: 

Levels: intercept 

Table 2 

Variable ADF Statistic Probability Critical Values Conclusion 

NINF -3.490778 0.0118 -3.552666 @1% Not stationary   

  -2.914517 @5% Stationary  

  -2.595 @10% Stationary  

Levels: trend & intercept 

Table 3 

Variable ADF Statistic Probability Critical Values Conclusion 

NINF -3.480478 0.0514 -4.130526 @1% Not stationary  
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  -3.492149 @5% Not stationary  

  -3.174802 @10% Stationary  

Levels: without intercept and trend & intercept 

Table 4 

Variable ADF Statistic Probability Critical Values Conclusion 

NINF -2.265742 0.0239 -2.606911 @1% Not stationary  

  -1.946764 @5% Stationary  

  -1.613062 @10% Stationary 

Table 2 indicates that the NINF series is stationary at both 5% and 10% levels of significance. 

Table 3 indicates that the NINF series is only stationary at 10% level of significance. Table 4 

shows that the NINF series is stationary at both 5% and 10% levels of significance. The most 

striking feature here is that all the tables 2 – 4 confirm and concur on the stationarity of the NINF 

series at 10% level of significance. However, we proceed to test for stationary in first differences 

because we want to achieve stationary at 1% and 5% levels of significance.  

Correlogram at first differences 

1
st
 Difference: Intercept 

Table 5 

Variable ADF Statistic Probability Critical Values Conclusion 

NINF -7.666082 0.0000 -3.557472 @1% Stationary   

  -2.916566 @5% Stationary  

  -2.596116 @10% Stationary  

1
st
 Difference: trend & intercept 

Table 6 

Variable ADF Statistic Probability Critical Values Conclusion 

NINF -7.607109 0.0000 -4.137272 @1% Stationary   

  -3.495295 @5% Stationary  

  -3.176618 @10% Stationary  

1
st
 Difference: without trend and trend & intercept 

Table 7 

Variable ADF Statistic Probability Critical Values Conclusion 

NINF -7.739240 0.0000 -2.608490 @1% Stationary   

  -1.946996 @5% Stationary  

  -612934 @10% Stationary  

Tables 5 – 7 concur on the stationarity of the NINF series at all levels of significance when tested 

for stationarity after taking first differences.  

Testing for ARCH / GARCH effects 

In this study, ARCH / GARCH effects were tested using the Langrange Multiplier (LM) test as 

briefly described here: run the mean equation given by equation [] and save the residuals. Square 

the residuals and regress then on “p” own lags to test for ARCH effects of order “p”. From this 
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procedure, obtain R2 and save it. The test statistic, TR2 (number of observations multiplied 

byR2) follows a χ2(p) distribution and the null and alternative hypotheses are: H0: γ1 = 0 and γ2 = 0 and γ3 = 0 and…and γp = 0H1: γ1 ≠ 0 or γ2 ≠ 0 or γ3 ≠ 0 or γp ≠ 0 } 
In this research paper, the ARCH / GARCH effects test was done for the AR (3) – GARCH (1, 

1) model and the results are shown below: 

Chi – square (2) = 5.94244 [0.0512409] 

The p – value of [0.0512409] indicates a significance of this LM test result at 5% level of 

significance. This implies that there are (G) ARCH effects in the chosen model and therefore it is 

appropriate to estimate a GARCH model. 

Evaluation of Various ARMA, ARIMA & GARCH Models 

It is imperative to note that there are a number of model evaluation criterion in time series 

modelling and forecasting, for example; Mean Error (ME), Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE); however, this study 

will only be restricted to the most commonly used and highly celebrated criterion, that is; the 

Akaike’s Information Criteria (AIC) and the Theil’s U in order to select the best models (in 

terms of parsimony [AIC] and forecast accuracy [Theil’s U]) to be finally presented in this study. 

A model with a lower AIC value is better than the one with a higher AIC value. Theil’s U, as 

noted by Nyoni (2018l); must lie between 0 and 1, of which the closer it is to 0, the better the 

forecast method. 

Evaluation of various ARMA models 

Table 8 

Model AIC Theil’s U ME RMSE MAE MAPE 

ARMA (1,0,1) 448.1099 0.38397 0.027754 11.454 7.7045 74.895 

ARMA (0,0,1) 449.5590 0.58733 -0.01 11.811 8.3432 97.272 

ARMA (1,0,0) 451.995 0.51166 0.11268 12.078 8.1804 93.057 

ARMA (2,0,1) 449.9029 0.36554 0.037782 11.434 7.6867 73.559 

ARMA (1,0,2) 449.4435 0.34626 0.13182 11.383 7.8496 75.16 

ARMA (2,0,2) 451.2983 0.35274 0.15007 11.368 7.8311 75.615 

ARMA (3,0,1) 451.6884 0.35945 0.060805 11.411 7.7084 72.999 

ARMA (1,0,3) 451.2705 0.35441 0.15325 11.365 7.8258 75.678 

ARMA (3,0,2) 453.8985 0.35664 0.16123 11.356 7.8448 76.076 

ARMA (3,0,3) 453.8985 0.35648 0.070692 11.221 7.9094 78.014 

ARMA (2,03) 453.1623 0.35116 0.13601 11.352 7.8288 75.989 

ARMA (4,0,1) 453.5771 0.3559 0.078415 11.399 7.7635 73.835 

ARMA (4,0,2) 455.0650 0.35901 0.17309 11.342 7.8966 77.255 

ARMA (4,0,3) 455.8612 0.35585 0.081729 11.217 7.927 78.41 

ARMA (1,0,4) 453.2130 0.35502 0.15559 11.358 7.8324 75.786 

ARMA (2,0,4) 454.2317 0.35728 0.052125 11.255 7.8698 76.427 

ARMA (3,0,4) 456.2085 0.3682 0.14226 11.253 7.8747 77.314 

As shown in the table above, the ARMA (1,0,1) model has the lowest AIC value whilst the 

ARMA (1,0,2) model has the lowest Theil’s U. In this study we finally present the ARMA (1, 0, 
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2) model due to its best forecast accuracy. From the analysis of tables 8 – 10, it is clear that the 

ARMA (1, 0, 2) model is the best in terms of forecast accuracy since has the lowest Theil’s U 

value.   

Evaluation of various ARIMA models 

Table 9 

Model AIC Theil’s U ME RMSE MAE MAPE 

ARIMA (1,1, 1) 454.7004 0.70704 0.010732 13.047 8.6452 105.03 

ARIMA (0,1,0) 453.5975 0.98253 0 13.401 8.6162 91.575 

ARIMA (1,1,0) 455.5886 0.97916 -0.0001 13.4 8.6435 92.501 

ARIMA (0,1,1) 455.5579 0.96415 -0.0006 13.396 8.7259 95.627 

As shown in the table above, the ARIMA (1,1,1) model has the lowest Theil’s U value whilst the 

ARIMA (0,1,0) (or the random walk model) has the lowest AIC value. Since these models are 

essentially the same in terms of parsimony and yet quite different in terms of forecast accuracy, 

we only consider the ARIMA (1,1,1) model which has a better forecast accuracy as shown by a 

minimum Theil’s U of 0.70704.  

Evaluation of various GARCH models 

Table 10 

Model AIC Theil’s U ME RMSE MAE MAPE 

GARCH (1, 1) AR (1) 440.1924 0.5068 0.79526 12.148 8.0997 90.264 

GARCH (2, 2) AR (1) 440.5544 0.49529 -0.11587 12.105 8.2075 94.977 

GARCH (1, 2) AR (1) 442.4653 0.50819 1.0397 12.179 8.0784 89.298 

GARCH (2, 1) AR (1) 438.7116 0.53814 0.33219 12.113 8.1209 87.956 

GARCH (1, 0) AR (1) 444.3211 0.43965 1.9019 12.649 8.1623 98.209 

GARCH (0, 1) AR (1) 440.1924 0.5068 0.79526 12.148 8.0997 90.264 

GARCH (2, 0) AR (1) 439.3446 0.48627 0.49965 12.136 8.1455 94.078 

GARCH (3, 0) AR (1) 434.1929 0.5043 0.27527 12.109 8.152 92.343 

GARCH (1, 1) AR (2) 434.2809 0.43659 0.93248 11.911 7.9768 82.308 

GARCH (1, 1) AR (3) 428.3686 0.36229 0.66428 11.698 7.8866 75.333 

GARCH (1, 1) AR (4) 422.5446 0.36775 0.7075 11.713 7.8856 72.379 

GARCH (1, 0) AR(2) 434.4141 0.41608 2.5618 12.633 8.0573 89.717 

GARCH (1, 0) AR (3) 426.8303 0.40789 1.8738 12.19 7.9493 80.2 

GARCH (1, 0) AR (4) 420.8638 0.42136 1.9267 12.267 7.944 78.27 

As shown in the table above, the AR (3) – GARCH (1,1) model has the lowest Theil’s U value 

whilst the AR (4) – GARCH (1,1) model has the lowest AIC value. While both models are quite 

good, in this study we will finally present the AR (3) – GARCH (1, 1) model due to its best 

forecast accuracy.  

Residual & Stability Tests 

ADF Test of the residuals of the ARMA (1,0,1) Model 

Levels: intercept 

Table 11 

Variable ADF Statistic Probability Critical Values Conclusion 
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V1 -7.410755 0.0000 -3.555023 @1% Stationary  

  -2.915522 @5% Stationary 

  -2.595565 @10% Stationary 

Levels: intercept and trend 

Table 12 

Variable ADF Statistic Probability Critical Values Conclusion 

V1 -7.380630 0.0000 -4.133838 @1% Stationary  

  -3.493692 @5% Stationary 

  -3.175693 @10% Stationary 

Levels: without intercept and trend & intercept 

Table 13 

Variable ADF Statistic Probability Critical Values Conclusion 

V1 -7.480299 0.0000 -2.607686 @1% Stationary  

  -1.946878 @5% Stationary 

  -1.612999 @10% Stationary 

Tables 11 , 12 and 13 indicate that the residuals of the ARMA (1, 0, 1) model are stationary and 

thus bear the features of a white – noise process.  

 Stability Test of the ARMA (1, 0, 1) Model 

Figure 3 

 

The figure above indicates that the ARMA (1, 0, 1) model is also stable since the corresponding 

inverse roots of the characteristic polynomial is in the unit circle. 

ADF Test of the residuals of the ARMA (1, 0, 2) Model 
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Levels: Intercept 

Table 14 

Variable ADF Statistic Probability Critical Values Conclusion 

V2 -6.907861 0.0000 -3.555023 @1% Stationary  

  -2.915522 @5% Stationary 

  -2.595565 @10% Stationary 

Levels: intercept and trend 

Table 15 

Variable ADF Statistic Probability Critical Values Conclusion 

V2 -6.842560 0.0000 -4.133838 @1% Stationary  

  -3.493692 @5% Stationary 

  -3.175693 @10% Stationary 

Levels: without intercept and trend & intercept 

Table 16 

Variable ADF Statistic Probability Critical Values Conclusion 

V2 -6.971262 0.0000 -2.607686 @1% Stationary  

  -1.946878 @5% Stationary 

  -1.612999 @10% Stationary 

Tables 14 , 15 and 16 indicate that the residuals of the ARMA (1, 0, 2) model are stationary and 

bear the characteristics of a white – noise process.  

Stability Test of the ARMA (1, 0, 2) Model 

Figure 4 
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The figure above shows that the ARMA (1, 0, 2) model is stable since the corresponding inverse 

roots of the characteristic polynomials are in the unit circle. 

ADF Test of the residuals of the ARMA (1,1,1) Model 

Levels: intercept 

Table 17 

Variable ADF Statistic Probability Critical Values Conclusion 

V3 -7.662356 0.0000 -3.560019 @1% Stationary  

  -2.917650 @5% Stationary 

  -2.596689 @10% Stationary 

Levels: intercept and trend 

Table 18 

Variable ADF Statistic Probability Critical Values Conclusion 

V3 -7.617701 0.0000 -4.140858 @1% Stationary  

  -3.496960 @5% Stationary 

  -3.177579 @10% Stationary 

Levels: without intercept and trend & intercept 

Table 19 

Variable ADF Statistic Probability Critical Values Conclusion 

V3 -6.895562 0.0000 -2.609324 @1% Stationary  

  -1.947119 @5% Stationary 

  -1.612867 @10% Stationary 

Tables 17 , 18 and 19 indicate that the residuals of the ARIMA (1, 1, 1) model are stationary and 

thus bear the features of a white – noise process.  

 Stability Test of the ARIMA (1, 1, 1) Model 

 Figure 5 
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The figure above shows that the ARIMA (1, 1, 1) model is not stable since the corresponding 

inverse roots of the characteristic polynomials are not all found in the unit circle. The MA 

component falls outside the unit circle, hence confirming the instability of the ARIMA (1,1,1) 

model.  

IV. RESULTS: PRESENTATION, INTERPRETATION & DISCUSSION 

Descriptive Statistics 

Table 20 

Description Statistic 

Mean 15.941 

Median 11.538 

Minimum -3.7263 

Maximum 72.836 

Standard Deviation 15.790 

Skewness 1.9037 

Excess Kurtosis 3.2084 

As shown in table above, the mean is positive. The large difference between the maximum and 

the minimum confirms the sudden rise of inflation in Nigeria in 1995 which is likely to have 

been triggered by the political and economic instabilities that characterised Nigeria during the 

Sani Abacha era. The skewness is 1.9037 and the most important feature is that it is positive, 

implying that the NINF series has a long right tail and is non – symmetric. The rule of thumb for 

kurtosis is that it should be around 3 for normally distributed variables as reiterated by Nyoni & 

Bonga (2017h) and in this study, kurtosis has been found to be 3.2084. Therefore, the NINF 

series is normally distributed. 
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Results Presentation 

Table 21 

ARMA (1, 0, 2) Model: NINFt = 15.5 + 0.779NINFt−1 + 0.0445μt−1 − 0.382μt−2…………………………………………… .…………… [54] 
P:             0.000    0.002                 0.887                0.147 

 S. E:       4.186     0.254                 0.312                0.263 

Variable Coefficient Standard Error z p – value  

Constant 15.4904 4.18598 3.701 0.0002*** 

AR (1) 0.779133 0.254036 3.067 0.0022*** 

MA (1)  0.0445126 0.312063 0.1426 0.8866 

MA (2) -0.381651 0.262942 -1.451 0.1467 

ARIMA (1, 1, 1) Model: ∆NINFt−1 = 0.189 − 0.551∆NINFt−1 + 0.743μt−1…………………………………………… .…………………… . [55] 
P:                   0.923       0.112                    0.008 

S. E:                1.955        0.346                    0.28 

Variable Coefficient Standard Error z p – value  

Constant 0.189231 1.95490 0.09680 0.9229 

AR (1) -0.550664 0.346489 -1.589 0.1120 

MA (1) 0.742954 0.279996 2.653 0.0080*** 

AR (3) – GARCH (1, 1) Model NINFt = 6.06 + 0.769NINFt−1 − 0.3308NINFt−2 + 0.162NINFt−3……………………………………………… . [56] 
P:             0.01      0.000                   0.105                     0.286 

S. E:         2.35      0.177                   0.204                     0.152 σt2 = 22.8 + 0.679εt−12 + 0.147σt−12 ……………………… . . …………………………… .…………………………… [57] 
P:       0.2       0.000          0.115 

S. E:   17.856   0.161        0.094 

Variable Coefficient Standard Error z p – value  

Constant 6.05789 2.35064 2.577 0.0100*** 

AR (1) 0.768795 0.176567 4.354 0.00000133*** 



22 

 

AR (2) -0.330778 0.204201 -1.620 0.1053 

AR (3) 0.161850 0.151803 1.066 0.2863 φ0 22.8427 17.8557 1.279 0.2008 

ARCH (φ1) 0.679485 0.160597 4.231 0.00000233*** 

GARCH (λ1) 0.147326 0.0935581 1.575 0.1153 φ1 + λ1  0.826811 

*, ** and *** indicate statistical significance levels at 10%, 5% and 1% respectively.  

Interpretation & Discussion of Results 

ARMA (1, 0, 2) model 

The AR component is positive and statistically significant at 1% level of significance. This 

implies that previous period inflation rates are quite important in explaining current inflation 

rates in Nigeria.  

ARIMA (1, 1, 1) model 

The MA component is positive and statistically significant at 1% level of significance. This 

indicates that previous period shocks to inflation are quite imperative in explaining current 

inflation rates in Nigeria.  

AR (3) – GARCH (1, 1) model 

As theoretically expected, the constant of the mean equation, the ARCH term and the GARCH 

term are positive to ensure that the conditional varience is non – negative and thus the positivity 

constraint of the GARCH model is not violated. The ARCH term is statistically significant at 1% 

level of significance, indicating that strong G/ARCH effects are apparent. Thus a 1% increase in 

previous period volatility leads to an approximately 0.68% increase in current volatility of annual 

inflation rate in Nigeria. Since: φ1 + λ1 < 1…………………………………………………………………………………………… .…………… . . [58] 
It implies the specified AR (3) – GARCH (1, 1) model is stationary. Thus the specified model is 

quite reliable in forecasting inflation volatility in Nigeria.  

Forecast Graphs 

ARMA (1, 0, 2) model 

Figure 6 
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ARIMA (1, 1, 1) model 

Figure 7 

 

AR (3) – GARCH (1, 1) model 

Figure 8 
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The figures 6 – 8 (with a forecast range of 10 years, that is; 2017 – 2027) indicate that inflation 

in Nigeria is likely to be stable (although relatively high), hovering around a general level of 

approximately 15% in the first half, that is between 2017 and 2021; after which it may likely rise 

to around 17%, of course; assuming that, in Nigeria; the current economic policy stance and 

other factors do not change significantly (or remain constant) over the forecast range. The most 

important feature of the figures 6, 7 and 8 is that they strongly concur in their forecasts; that 

inflation in Nigeria is well above 10% and may likely increase slightly [15% - 17% over the first 

half of the forecast range and probably beyond that in the second half] over the forecast range. 

Inflation that is less than 9% or generally low, is healthy for the economy and many authors, for 

example; Sergii (2009) and Marbuah (2010) have confirmed this. Therefore, in Nigeria; there is 

need to control inflation since it is quite high as shown by figures beyond 9%. Our forecasts 

justify the need for immediate policy intervention since inflation rates indicate that they may rise 

even to higher levels. Inflation has a well – known negative impact on growth, thus the need to 

control it.  

V. CONCLUSION & RECOMMENDATIONS 

Maintenance of price stability continues to be one of the main objectives of monetary policy for 

most countries in the world today and Nigeria is not an exception (Nyoni & Bonga, 2018a). The 

monetary policy of Nigeria can be more effective when it is forward – looking. This study 

envisages to enable the Central Bank of Nigeria (CBN) to have some “upper – hand” in the 

control of inflation in Nigeria by providing a reliable forecast of inflation in Nigeria. We use 

various ARMA, ARIMA and GARCH models to forecast inflation in Nigeria. The study 

prescribes the following recommendations: 

i. The CBN, in line with the prescriptions of the monetarist school of economic thought; 

should engage on proper monetary management through the use of a fixed monetary 
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growth rate rule, commensurate with GDP growth; in order to address inflation in 

Nigeria. 

ii. The CBN can also make use of contractionary fiscal and monetary policy in order to 

reduce spending and inflationary pressures in the Nigerian economy.   

iii. Policy makers in Nigeria should consider supply – side policies such as privatization and 

deregulation in order to improve long – term competitiveness, productivity and 

innovation in the country; that will in turn lower inflation.  
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