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Abstract: Abalone is a rich nutritious food resource in the many parts of the world. The 

economic value of abalone is positively correlated with its age. However, determining the age of 

abalone is a cumbersome as well as expensive process which increases the cost and limits its 

popularity. This article proposes very simple ways to determine the age of abalones using 

econometric methods to reduce the costs of producers as well as consumers.  

 

Key Words: Ordinary Least Square Model, Ordered Probit Model. 

 

Introduction: Abalone is an excellent source of iron and pantothenic acid, is a nutritious food 

resource and farming in many parts of the world. 100 grams of abalone yields more than 20% 

recommended daily intake of these nutrients. Abalones have long been a valuable food source 

for humans in every area of the world where a species is abundant. The meat of this mollusc is 

considered a delicacy in certain parts of Latin America (especially Chile), France, New Zealand, 

Southeast Asia, and East Asia (especially in China, Vietnam, Japan, and Korea). Abalone pearl 

jewelry is very popular in New Zealand and Australia, in no minor part due to the marketing and 

farming efforts of pearl companies. Unlike the Oriental Natural, the Akoya pearl, and the South 

Sea and Tahitian cultured pearls, abalone pearls are not primarily judged by their roundness. The 

inner shell of the abalone is an iridescent swirl of intense colors, ranging from deep cobalt blue 

and peacock green to purples, creams and pinks. Therefore, each pearl, natural or cultured, will 

have its own unique collage of colors. The shells of abalone are occasionally used in New Age 

smudging ceremonies to catch falling ash. They have also been used as incense burners. In the 

same way as shark fin soup or bird's nest soup, abalone is considered a luxury item, and is 
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traditionally reserved for special occasions such as weddings and other celebrations. Farming of 

abalone began in the late 1950s and early 1960s in Japan and China. Since the mid-1990s, there 

have been many increasingly successful endeavors to commercially farm abalone for the purpose 

of consumption. Overfishing and poaching have reduced wild populations to such an extent that 

farmed abalone now supplies most of the abalone meat consumed. The principal abalone farming 

regions are China, Taiwan, Japan, and Korea. Abalone is also farmed in Australia, Canada, 

Chile, France, Iceland, Ireland, Mexico, Namibia, New Zealand, South Africa, Thailand, and the 

United States.  The economic value of abalone is positively correlated with its age. Therefore, to 

detect the age of abalone accurately is important for both farmers and customers to determine its 

price. Determining the actual age of an abalone is a bit like estimating the age of a tree. Rings are 

formed in the shell of the abalone as it grows, usually at the rate of one ring per year. Getting 

access to the rings of an abalone involves cutting the shell. After polishing and staining, a lab 

technician examines a shell sample under a microscope and counts the rings. Because some rings 

are hard to make out using this method, the researchers believed adding 1.5 to the ring count is a 

reasonable approximation of the abalones age. This complex method increases the cost and limits 

its popularity.  Hence, researchers are interested in relating abalone age to variables like length, 

height and weight of the animal. If a reasonably accurate model could be found to predict the age 

of abalone, then the farmers would minimize the cost and customers would get the expected 

goods.  Our target is to find out the best indicators to forecast the rings, then the age of abalones. 

 

Literature Review: Researchers are making new ideas to determine the age of abalone using 

different techniques. For example, marine biologists are using the laboratory experiment to 

determine the age of abalone, machine learning scientists are using classification technique using 

physical characteristics of abalone to determine the age, econometricians and statisticians are 

also using physical characteristics of abalone to determine the age using different kinds of 

regression as well as clustering, and many other people are using different methods to detect the 

age of abalone.  Marine biologists Takami, H. et al. [9] developed an age determination method 

for larval and newly metamorphosed post-larval abalone Haliotis discus hannai in a laboratory 

experiment and determined the age of field caught individuals. Day, R. W. et al. [4] developed a 

method where they assessed the potential of five fluorochromes in marking shells of the abalone 
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Haliotis rubra, using an immersion technique. Such marks are required to 'time stamp' the shells 

and thus determine whether shell layers are deposited regularly enough to be used to age 

abalone. Troynikov, V. S. et al. [10] describe that abalone growth is notoriously variable, 

changing dramatically between seasons and sites. They also mention that juvenile growth does 

not fit the commonly used von Bertalanffy model and they present a modified deterministic 

Gompertz model for tagging data and three stochastic versions in which asymptotic length is a 

random parameter. They use Kullback's informative mean to discriminate between models with 

respect to the fit to data. Siddeek, M. S. M., and Johnson, D. W. [8] describe  that length-

frequency data for Omani abalone (Haliotis mariae) from two areas (Sadh and Hadbin) of the 

Dhofar coast of the Sultanate of Oman were used to fit von Bertalanffy growth curves by 

ELEFAN, MULTIFAN and Non-Linear Least Square Fitting methods. The first two methods 

were directly applied to length-frequencies whereas the last method was used on the length 

modes determined by the MIX method. The growth parameter values by sex and area were not 

significantly different. Al-Daoud, E. [1] uses neural network technique to classify the number of 

rings using physical characteristics. Using the von Bertalanffy growth equation  Bretos, M. [2] 

proposes a method to determine the age of abalone. Gurney, L. J., et al. [6] describe the stable 

oxygen isotopes procedure to determine the blacklip abalone Haliotis rubra in south-east 

Tasmania. However, Naylor, et al. [7] find that the method, variations in the ratios of carbon 

isotopes, showed no consistent patterns and unlike some mosllusc, do not appear to be useful 

predictors of reproductive status at length.  

Description of the Data: In this article, the data set Abalone, a cross sectional data, is obtained 

from UCI Machine Learning Repository developed by Dua, D. and Karra Taniskidou, E. [5]. The 

data set contains physical measurements of 4177 abalones recorded in December 1995 by 

Marine Research Laboratories Taroona, Department of Primary Industry and Fisheries, 

Tasmania, Australia. There are nine variables, namely, Sex, Length, Diameter, Height, Whole 

weight, Shucked weight, Viscera weight, Shell weight and Rings. All variables are quantitative 

but Sex.  The variable Rings is somehow related to the age of an abalone, as age equals to 

number of rings plus 1.5. This data set was used in many facets of research. For example, 

Waugh, S. [11] used this data set in his PhD thesis on titled "Extending and benchmarking 
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Cascade-Correlation", and Clark, D. et al. [3] used this data set to write an article on "A 

Quantitative Comparison of Dystal and Backpropagation", which they submitted to the  

Table 1. Raw Data Series 

Variable Variable Name Data Type Meas. Description 

sex 

 

Sex Nominal  M, F, and I 

(infant) 

length Length Continuous Mm Longest shell 

measurement 

diameter Diameter Continuous Mm Perpendicular to 

length 

height Height Continuous Mm with meat in 

shell 

wweight Whole weight Continuous Grams Whole abalone 

sweight Shucked weight Continuous Grams Weight of meat 

vweight Viscera weight Continuous Grams Gut weight(after 

bleeding) 

shweight Shell weight Continuous Grams After being dried 

rings Rings Integer  +1.5 gives the 

age in years 

 

 

Table 2. Summary of the Quantitative Variables 

Variable Obs Mean St.dev. Min Max 

length 4,177 0.524 0.120 0.075 0.815 

diameter 4,177 0.408 0.099 0.055 0.650 

height 4,177 0.140 0.042 0.000 1.130 

wweight 4,177 0.829 0.490 0.002 2.826 

sweight 4,177 0.359 0.222 0.001 1.488 

vweight 4,177 0.181 0.110 0.001 0.760 

shweight 4,177 0.239 0.139 0.002 1.005 

rings 4,177 9.934 3.224 1.000 29.000 

      

 

Australian Conference on Neural Networks. Table 1 describes the tabular form of the data. If we 

look at the summary (Table 2) of the quantitative variables we can see that the maximum number 

of rings is 29 and minimum 1, which means some of the abalones are very young and some are 
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very old. We can also see that the minimum height is 0 which does not make any sense. We have 

2 observations with zero height. May be these are typo. Class description (Table 3) indicates that 

very few observations are greater than 21, and class 1 has one observation and class 2 has 1 

observation also. It looks most of the observations are between 5 and 15. From the summary 

(Table 4) of the categorical variable sex we can see that 31.29% are female, 32.13% are infant, 

and 36.58% are male. Notice that in all variables there is no missing value. Now if we look at the 

histogram (Figure 1) of the response variable rings then we can see that the distribution does not 

look normal. 

Table 3. Class Description of Data: A=class, B=number of observations 

A 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

9 

B 1 1 1

5 

5

7 

1

1

5 

2

5

9 

3

9

1 

5

6

8 

6

8

9 

6

3

4 

4

8

7 

2

6

7 

0

3 

1

2

6 

1

0

5 

6

7 

5

8 

4

2 

3

2 

2

6 

1

4 

6 9 2 1 1 2 1 

 

Table 4. Summary of the Categorical Variable sex 

sex Freq. Percent Cum 

F 1,307 31.99 31.29 

I 1,342 32.13 63.42 

M 1,528 36.58 100.00 

 4,177 100.00  

 

Model Selection: Here we will try to predict the number of rings using two types of models, 

least square estimation model and ordered probit model. 

 

Least Square Estimation Model: Our target is to predict the number of rings on the basis of 

other observations. To do this we should visualize the relations of the other variables with the 

variable rings. One way is to see that using matrix graph (Figure 2), which shows scatter 

diagrams among the variables. From the matrix diagram we can see how the objective variable 

ring is related to the other variables. We can see there are two outliers in the scatter diagram of 

rings and height, and some other kind of outliers are visible among other variables. It looks rings 

is linearly related with length , height, and diameter. The variables wweight, sweight, vweight, 
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Figure 1. Histogram of the dependent variable rings 

 

 

and shweight have somewhat a logarithmic relations with ring. In this article we want to develop 

a model which will help the firms and consumers to identify the age of the abalones in a very 

simple way. Because of these, in this study we will ignore the variables sweight, vweight, and 

shweight since the measurement of this variables are not quite simple. To predict the number of 

rings we will try to use the variables length, diameter, height, and wweight, because these are 

very easy to measure. We did not discuss about the categorical variable sex yet. Might be sex is 

an important variable to determine the number of rings. We examine this variable also using 

three different matrix diagrams shown in Figure 3  since it has three categories female, infant, 

and male. From the matrix diagrams of three categories we can see that there is a outlier in the 

scatter diagram of rings and height in category female, one outlier in the scatter diagram of rings 

and height in category male. We can also see that the relations of rings with the variables length, 

diameter, and height looks linear in all categories but in different degrees, however, somewhat 

logarithmic with wweight in all categories in different degrees. Therefore, it looks these 

categories have different effect on rings.  

Now we will examine how the variables are correlated to each other. In other words we will see 

the covariance matrix. From the covariance matrix (Table 5, numbers without parentheses) we 

can see that rings is positively correlated with other variables which is expected, however, 

somewhat in low degrees compare to the relation among the explanatory variables. If we 



7 
 

transform the variables wweight to ln(wweight) then may be we will have stronger correlation of 

rings with other variables. We can see that the correlation (Table 5, numbers in the brackets) 

changes a little bit but not much, however the other variables are highly positively correlated 

among themselves.  

 

Figure 2. Matrix diagram of the variables 

 

 

Performing ordinary least square regression (OLS) for rings on ln(weight), height, diameter, 

length, category1 (female), and category3 (male) considering category2 (infant) as base group 

we get the estimates in column 1, Table 6 which indicate that all estimates are statistically other 

than zero at 1% level of significance using individual t-test. The R-sq=0.3822 indicates that only 
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38.22% of the variation in rings is explained by this regression model. From the result we can 

see that the estimate of the coefficient of length is negative which is unexpected. We suspect that 

we are getting this unexpected result because of high correlation among explanatory variables.  

 

Figure 3. Matrix diagram of on the basis of sex 

 

 

Since the explanatory variables are highly correlated with each other, we highly suspect that 

there is multicollinearity problem. If we test the multicollinearity of the explanatory variables 

length, diameter, height, and ln(wweight) using the above regression then we get the results in 

row 1, Table 7. The results show that the VIF of all variables are greater than 5 except the 

category variables, and height. This test indicates that there is multicollinearity problem. To get 

rid of this problem we try another OLS regression where we regress rings on ln(wweight), 



9 
 

diameter, height, category1, and category3. Doing so, we have the results in the second column 

of the Table 6. From the regression results we can see that estimates of all coefficients are 

statistically other than zero at 1% level of significance except the estimate of the coefficient of 

diameter using individual t-test. Statistically the estimate of the coefficient of diameter is not 

other than zero. And the R-sq=37.19, which indicates that 37.19% of the variation of rings is 

explained by this regression model which is little bit smaller than the previous regression. Since 

statistically the estimates of the coefficient of diameter is not other than zero, we try with another 

OLS regression where we regress rings on ln(wweight), height, category1, and category3. Doing 

so, we get the result in column 3, Table 6. The regression tells that all estimates of the 

coefficients are statistically other than zero at 1% level of significance using individual t-test. 

37.19% of the variation of rings is explained by this regression model. Now if we perform the 

VIF test to identify the multicollinearity problem then we get the following result in row 2, Table 

7. The VIF result indicates that there is no strong multicollinearity between ln(wweight) and 

 

Table 5. Covariance matrices 

 rings wweight 

[ln(wweight)] 

height diameter length 

rings 1.00     

wweight 

[ln(wweight)] 

0.54 

[0.58] 

1.00    

height 0.56 0.82 

[0.83] 

1.00   

diameter 0.57 0.93 

[0.96] 

0.83 1.00  

length 0.56 0.93 

[0.97] 

0.83 0.99 1.00 

 

height. Figure 4 represents the histogram of the residuals of the OLS regression (column 3, Table 

6) . This histogram is positively skewed which indicates that the regression model violates the 

normality assumption of the residuals. However, it doesn't look highly skewed.  Now if we do 

White’s test for heteroskedasticity of the last regression (column 3, Table 6) then we get p-value 

0.00 which indicates that there is heteroskedasticity problem. To get rid of this problem we will 

use robust estimation. Doing so, we have the OLS regression result in column 4, Table 6. We can 

see that all of the robust standard errors are greater than those in the previous OLS regression 
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(column 3, Table 6) except the standard error for the estimates of category3. These results are 

telling us that all of the estimates are statistically other than zero at 1% level of significance 

except the estimates of the coefficient of height using individual t-test. The estimate of the 

coefficient of height is not statistically other than zero at 5% level of significance. However, it is 

statistically other than zero at 6% level of significance. The 95% confidence interval, (-0.15, 

32.26), of the estimate of the coefficient of height is really wide which indicates that the 

corresponding point estimate is not so reliable. We have two zero observations of the variable 

height. Ignoring those two zero observations if we perform OLS (robust) regression using the  

 

Table 6. Regression results from different specification where rings is dependent variable 

 (1) (2) (3) (4) (5) (6) (7) 

Constant 10.02
*** 

(0.77)
 

7.23
*** 

(0.70) 

7.59
*** 

(0.28) 

7.59
*** 

(1.26) 

7.57
*** 

(1.28) 

4.05
*** 

(0.50) 

8.09
*** 

(1.39) 

lnwweight 1.76
**** 

(0.19) 

1.18
*** 

(0.18) 

1.27
*** 

(0.90) 

1.27
*** 

(0.33) 

1.27
*** 

(0.34) 

0.49
*** 

(0.12) 

1.51
*** 

(0.37) 

height 15.75
*** 

(1.74) 

15.85
*** 

(1.75) 

16.06
*** 

(1.71) 

16.06
* 

(8.26) 

16.17
* 

(8.39) 

45.12
*** 

(3.81) 

17.94
** 

(8.81) 

category1 1.00
*** 

(0.12) 

1.07
*** 

(0.12) 

1.07
*** 

(0.12) 

1.07
*** 

(0.12) 

1.08
*** 

(0.12) 

0.98
*** 

(0.11) 

 

category3 0.84
*** 

(0.11) 

0.90
*** 

(0.11) 

0.90
*** 

(0.11) 

0.90
*** 

(0.11) 

0.90
*** 

(0.11) 

0.82
*** 

(0.10) 

 

diameter 17.99
*** 

(2.56) 

0.85
* 

(1.53) 

     

length -18.06
*** 

(2.17) 

      

sqheight      -38.14
*** 

(3.01) 

 

R-sq 0.38 0.37 0.37 0.37 0.37 0.39 0.36 

N 4,177 4,177 4,177 4,177 4,175 4,177 4,177 
*
p<0.10, 

**
p<0.05, 

***
p<0.01. Standard Errors in parentheses. 
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same explanatory variables then we get result in column 5, Table 6.  This result indicates that  

there is no significant difference between the last two regressions since the estimates of the 

coefficients and the standard errors are almost identical. So it doesn't make any difference 

whether we use the full data set or ignore two zero observations from the variable height. Now if 

we summarize the predicted values using the last model (column 5, Table 6) then we get the 

variable rings covers from -0.15 to 26.14. Actually we have only one negative predicted value 

which is unexpected. Other than that our predicted values are covering almost the whole range of 

the variable rings.  

Now let’s try with adding the variable height
2
 in the model. If we regress (OLS with robust 

standard error) rings on ln(wweight), height, height
2
, category1, and category3 we get the results 

 

Table 7. VIF test results for the regression 

 length diameter lnwweight height category1 category3 

(1 ) 44.01 41.86 16.70 3.43 1.92 1.83 

(2)   3.51 3.28 1.90 1.82 

 

in column 6, Table 6. All estimates are statistically significant at 1% level of significance using 

 

Figure 4. Histogram of the residuals of the OLS model (column 3, Table 6) 

 

 

individual t-test. So the term height
2
 has an impact on rings. However, the 95% confidence 

interval for the variable height [(37.66, 52.58)], and height
2
 [(-44.03,-32.244)] look somewhat 
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wide which indicate that corresponding point estimates are kind of week.  Let's look at the 

predicted values, and histogram (Figure 5) of the residuals. Now if we summarize the predicted 

values using the above model then we get the  variable rings covers from 1.44 to 18.44. We learn 

from the classification of the variables, in Table 3, that most of the observations of the variable 

rings are between 3 and 15. And we have total two observations in class 1 and 2, and very few 

observations are greater than 21 and less than 3. So this model is considerable. The histogram of 

the residuals is still positively skewed but better than the previous one. Therefore this model 

looks better than the previous model.  

Now if we want to make it simpler even the simplest to predict the age of the abalone for the 

farmers and consumers then we can ignore the variable sex since determining sex is not so 

simple. Ignoring the variable sex if we perform OLS (robust) regression for rings on ln(wweight) 

and height then we get the estimates in column 7, Table 6. We can see that all estimates are 

statistically other than zero at 5% level of significance using individual t-test. However, the 95% 

confidence interval (0.66, 35.23) for the variable height is really wide which indicates the point 

estimate of the coefficient of height is not satisfactory. Here the range of the predicted values of 

rings using the model covers from -1.1 to 27.58. Actually here we have only  

 

Figure 5. Histogram of the residuals of the OLS model (column 6, Table 6) 

 

 

one negative predicted value which is unexpected. However, these predicted values cover almost 

the whole range of the predictor variable rings. This model will reflect very good prediction if 

someone wants to ignore the variable sex. From the histogram (Figure 6) of the residuals of the 
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last model we can see that it is positively skewed. However, it looks more skewed than the 

previous two histograms. 

 

Figure 6. Histogram of the residuals of the OLS model (column 7, Table 6) 

 

 

Actually we tried with many different combinations of the explanatory variables and their higher 

orders and logarithmic transformations to predict the variable rings. In all models we get 

heteroskedasticity problem. For this reason we always estimate robust standard errors. Now the 

question is: can we tolerate this skewness for the sake of our analysis?  

Therefore on the basis of above analysis we would like to propose the least square regression 

model (column 6, Table 6) 

rings=4.05+0.49ln(wweight)+45.12height-38.14height
2 

+0.98category1+0.82category3     (M1)                              
 

with robust standard error considering category2 (infant) as base group to predict the number of 

rings, and then the age of abalone. The intercept 4.05 has no good explanation because all 

explanatory variables will never be zero. The coefficient of ln(wweight) is telling us if whole 

weight (wweight) increases by 1% (unit of wweight is grams) then the number of rings increases 

by 0.49% holding all others constant. The coefficient of height is telling us that for each 

additional mm height the number of rings will increase by 45.12-76.28height holding all other 

constant
3
. The coefficient of the category1 (female) is telling us that female has 0.98 rings more 

                                                           
3 All observations are less than 0.5915 mm except one observation. So the variable rings increases with respect to the explanatory variable 
height with a decreasing rate holding all other variables constant. 
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than the infant(category2) holding all other constant. The coefficient of the category3 (male) is 

telling us that male has 0.82 rings more than the infant (category2) holding all other constant. 

If somebody wants to use the most simplest model ignoring the categorical variable, sex, then we 

want to propose the following least square regression model (column 7, Table 6) with robust 

standard error to predict the number of rings where ln(wweight) and height are the explanatory 

variables, and then the age of abalone. The proposed model (estimated) is  

       rings=8.09+1.51lnwweight+17.94height                                                                           (M2) 

 

Ordered Probit Model: We have proposed an ordinary least square model (M2) with robust 

standard errors ignoring the categorical variable sex where the response variable is rings and the 

explanatory variables are ln(wweight), height. However, in that model we can see that the 

confidence intervals
4
 of the estimated coefficients are not quite reliable. Now we would like to 

develop a very simple ordered probit model ignoring the categorical variable sex where the 

ordered variable is assigned as class=1 if rings is less than 9, class=2 if rings is greater than or 

equal to 9 and less than 18, and class=3 if rings is greater than 18. So we divided the variable 

rings in three classes with ordered values. For simplicity of the farmers and consumers we will 

make this model very simple by not using the variable sex. Since identifying the gender is not  

 

Table 8: Ordered probit model estimates 

 length diameter Height lnwweight /cut1 /cut2 N 

(1) -5.80
*** 

(1.15) 

7.44
*** 

(1.38) 

4.22
*** 

(0.80) 

1.09
*** 

(0.14) 

-0.41 

(0.51) 

2.56 

(0.52) 

4,177 

(2)  2.45
** 

(0.96) 

4.42
*** 

(0.80) 

0.82
*** 

(0.13) 

0.74 

(0.45) 

3.69 

(0.46) 

4,177 

*
p<0.10, 

**
p<0.05, 

***
p<0.01. Standard Errors in parentheses. 

 

 trivial and if we observe the data then we can see that the variable sex is kind of overlapped. It is 

really hard to tell how many rings are required to be an infant for an abalone. Now using the 

above class variable we have the following estimates where the response variable is rings, and 

                                                           
4  Confidence interval of height and lnwweight are (0.66, 35.23) and (0.79, 2.23) 
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the explanatory variables are length, diameter, height, and ln(wweight). From the estimates in 

row 1, Table 8, we can see that the variable length has a negative effect on rings which is 

somehow questionable even though all estimates are significant at 1% level of significance. So 

we would like to estimate another ordered probit model where we will not include the variable 

length. Doing so, we get The estimates in row 2, Table 8, indicate that the variables diameters, 

height, and ln(wweight) has positive effect on ring and all estimates are significant at 1% level of 

the significance. So we would like to propose the ordered probit model(row 2, Table 8) to predict 

the variable rings. 

 

Model Experiment: To do an experiment of the above proposed models (M1, M2 and Ordered 

probit model) we randomly select 6 observations from 3 classes. We select 2 observations from 

each class. Table 9 represents the experimental results. Since rings is an integer variable, we use 

the nearest integer values of the predicted values of rings. From the Table 9 we can see that the 

rings are estimated by OLS models, and classified by ordered probit model very well when the 

number of rings are between 3 to 14, however, when the number of rings are larger neither OLS 

models nor ordered probit model works well. We can also see that the estimated M1 and M2 are 

comparable. Using the above results we can predict the age of abalone. As we discussed before 

the age of abalone is measured by the number of rings plus 1.5. From our experimental results, 

10 rings were observed in the observation number1902. So the actual age of this abalone is 

10+1.5=11.5 years. Using our first proposed estimated model, model 1, we predict that this  

 

   Table 9: Actual and predicted number of rings using different models 

Obs# actual # of rings M1 M2 ordered-probit 

306 4 5 4 1 

1902 10 10 11 2 

2202 25 13 12 2 

2356 13 10 10 2 

2363 18 13 12 2 

3720 7 7 8 1 

 

abalone has 10 rings, hence the predicted age is 10+1.5=11.5 years, which is predicted exactly 

the same as the  actual age, however, by the second estimated model, model 2, the age is 

predicted 12.5 years. Ordered probit model has classified this abalone in the class 2, which is the 
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actual class of this abalone. On the other hand from the observation number 2202 we can see that 

the actual number of rings is 25, however, it was predicted by the OLS models as 13 by the first 

model, 12 by the second model, and classified as class 2 by the ordered probit model. For this 

sample the prediction is far away from the actual value. Similarly we can predict the age of the 

all observed abalones from the Table 9. Actually our proposed models work fine if the rings of 

the abalone is between 3 to 14. It seems for larger number of rings the proposed models are not 

working well. 

 

Conclusion: The economic value of abalone is positively correlated with its age. Estimating the 

age of abalone accurately is important for both farmers and customers to determine its price. On 

the basis of this analysis it seems the proposed OLS regression models, M1, M2, and ordered 

probit model (row 2, Table 8) work well to predict or classify the variable rings while number of 

rings lies between 3 to 14. We have proposed the first model (M1) if somebody wants to take 

care of the variable sex, otherwise second model (M2) or ordered probit model. However, in this 

analysis ordered probit model is not so accurate since we have only three classes. On the basis of 

the shape of the histogram of the residuals, M1 where the categorical variable sex is included 

work better than the M2, where the categorical variable sex is not included. However, these two 

models are comparable on the basis of our experimental results. This analysis indicates that we 

do not need to count the number of rings using microscopic experiment. In other words, we do 

not need any laboratory experiment to predict the age of abalones. We can predict the age and 

price of abalone using the very simple physical characteristics like weight, height, diameter, and 

length.  
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