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Abstract  

 

In this study, we shed light into the carbon pass-through rate mechanism to wholesale prices in the 

Greek electric market. For this reason, we utilize a rich micro-level panel, including hourly data 

for 23 power plants spanning the period January 2014 to December 2017. In order to study the 

pass-through of emissions costs to wholesale electricity prices, we used an instrumental variable 

methodology. Our findings survived several robustness checks, accounting for logged linear and 

non-linear econometric specifications. Moreover, they are in alignment with the relevant recent 

literature, indicating the existence of an almost complete pass-through rate mechanism. This means 

that electricity firms almost fully internalize the cost of CO2 permits, incurring important policy 

implications to policy makers and government officials.    
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1. Introduction  

The cost pass-through mechanism, namely the change in prices resulting from an input cost 

shock, has been puzzled economists and policy makers during the last twenty years. The topic has 

increasingly become important to economists in a number of fields including Industrial 

Organization, Macroeconomics and Public Finance, which, helped spawn a large theoretical and 

empirical literature (see for example Goldberg and Knetter, 1997; Nakamura, 2008; Verboven and 

van Dijk, 2009; Gopinath et al, 2010; Nakamura and Zerom, 2010; Aguirre et al., 2010; Marion 

and Muehlegger, 2011; Richards et al, 2012; Jaffe and Weyl, 2013; Weyl and Fabinger, 2013; 

Goldberg and Hellerstein, 2013; Fabra and Reguant, 2014).   

Most of these studies consent that the exchange rate pass-through is incomplete ranging 

about 50-60% (Goldberg and Knetter, 1997; Hellerstein, 2008, Nakamura, 2008; Nakamura and 

Zerom, 2010; Duso and Szücs, 2017). One possible explanation for such asymmetric pass-through 

is that firms adjust their markups to accommodate the local market environment (see for example 

Krugman, 1986; Helpman and Krugman, 1987). The study of Feenstra, (1989), sheds some light 

on the explanation of the incomplete pass-through by linking the latter to the presence of imperfect 

competition. This study uses a log-linear model and quarterly data over the period 1974:1 to 1987:1 

for the U.S. imports of Japanese cars, compact trucks and heavy motorcycles to find that there is a 

symmetric response of import prices to changes in the bilateral exchange rate and an import tariff.  

Moreover, recent theoretical contributions have suggested a number of potentially important 

factors explaining the existence of an incomplete exchange rate pass-through, including inter alia 

the existence of local costs and the importance of significant barriers that hinder price adjustment 

mechanism (i.e menu costs). In an influential study, Nakamura and Zerom (2010), study a structural 

oligopoly model that nests three potential factors (i.e markup adjustment, local costs, menu costs) 

in order to estimate and decompose the degree of price pass-through in a commodity market (coffee 
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industry at the  wholesale and retail market segment). The empirical findings suggest an incomplete 

pass-through elasticity of coffee prices of 25%. In a similar study, Goldberg and Hellerstein (2013) 

argue that only 5% of an exchange rate change is transmitted to final beer prices. In an interesting 

study, Bonnet et al, (2013), use a structural oligopoly framework to assess the role of vertical 

restraints (i.e nonlinear pricing contracts, resale price maintenance-RPM) in affecting the price 

pass-through to input cost shocks. They argue that vertical restraints such as RPM increase the 

degree of the pass-through rate compared to linear pricing.  

It is worth emphasizing that the incomplete pass-through rate mechanism can be attributed 

into four main reasons: a) Mark-up adjustment as a result of an input cost shock, b) The existence 

of non-traded costs that remain unaffected by the observed cost shocks (see Goldberg and 

Hellerstein, 2008), c) The presence of nominal price rigidities due to the characteristics of the 

industry (e.g scale economies, barriers to entry, market concentration, etc) that hinder the exact 

price adjustment mechanism to responses to cost shocks (Nakamura and Zerom, 2010; Goldberg 

and Hellerstein, 2013 ) and finally d) The mismatch between observed cost shocks and firms’ actual 

or opportunity costs (Fabra and Reguant, 2014).  

Contrary to the existing literature on pass-through rate mechanism, a recent study (see Fabra 

and Reguant, 2014) argues that the average pass-through in the wholesale Spanish electricity 

market segment is almost complete (above 80%). It is also highlighted that firms in the electricity 

industry are more able to pass-through costs in peak hours rather than the low-demand hours (off-

peak) with the relevant estimate of the pass-through rate to reach almost 100%. This means that a 

one euro increase in the price of carbon permits (e.g emissions costs) leads, on average, into a one 

euro increase in the level of wholesale electricity prices (i.e system marginal price). The almost-

complete pass-through mechanism might be attributed to certain characteristics of the electricity 

industry (i.e high-frequency auctions, highly inelastic demand, etc). These structural elements, 
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justify that electricity firms have weak incentives to adjust markups after a cost shock. Moreover, 

this study argues that the costs of price adjustment are relatively small, mitigating the rigidity of 

pass-through rate mechanism.  On the contrary, in an earlier study, about price pass-through in the 

wholesale electricity industry in Germany, Zachmann and Von Hirschhausen (2008) claim that 

cost pass-through between EU emissions allowances and electricity future prices is incomplete and 

asymmetric. In other words, they argue that positive (negative) cost shocks are transmitted more 

(less) strongly to the electricity retail prices. In a more recent study, Duso and Szücs, (2017), 

investigate how the wholesale electricity prices are transmitted to retail tariffs in Germany over the 

2007–2014 period. Similarly to the majority of the price pass-through literature, they find that the 

average pass-through is incomplete at around 60%, exhibiting however a large degree of 

heterogeneity between competitive and non-competitive segments of the market.   

Although there is a growing interest by policy makers and practitioners on the impact of 

supply and demand shocks on energy markets (Barsky and Kilian, 2002; Hamilton, 2003; Kilian 

2008a, Kilian 2008b; Kilian, 2009a; Kilian, 2009b; Apergis and Polemis, 2018 among others) little 

attention has been paid on the examination of the microeconomic consequences of cost pass-

through rate mechanism in a highly volatile commodity industry such as electricity. This study 

aims to fill this gap in the literature by estimating the degree of carbon cost pass-through (i.e 

complete, incomplete) in the electricity industry. The main reason for focusing solely on the 

wholesale rather than the retail electricity industry in Greece stems from the fact that electricity 

retail prices although deregulated, are not fully responsive to wholesale prices and therefore 

invariant, at least in the short-run, to changes in the production costs (IEA, 2018; Fabra and 

Reguant, 2014). The empirical findings indicate the existence of an almost complete pass-through 

rate mechanism prevailing in the Greek wholesale electricity market segment.  

This study contributes in many fronts. First and foremost, it is the first study that estimates 
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the degree of the pass-through rate mechanism in a highly volatile commodity market. Given that 

the Greek electricity industry is comprised of competitive (i.e generation and supply of electricity) 

and regulated (e.g power transmission and distribution) market segments, carbon pass-through 

constitutes a substantially important cost element both for the firm and the regulator. In this sense, 

we attempt to shed light on the mechanism of input cost shocks and how these shocks have changed 

over time or under different demand characteristics. Second, it goes beyond the existing literature 

in that it uses a particularly long and updated panel of 23 power plants on an intra-day basis over 

the period January 2014-December 2017. The reason for limiting our sample to this specific time 

span, stems from the fact that the sample period concerns a period with the same regulatory 

framework on wholesale price formation as well as a period belonging in the third and more mature 

phase (2013-2020) of the European cap-and-trade program for carbon, known as the European 

Union's Emissions Trading System (ETS). Under this regime, European Emission Allowances 

(EUA) are traded in the liquid European Energy Exchange (EEX) platform. Moreover, this capacity 

mix in this period has been almost stable, as the rapid evolution of renewables lasted up to year 

2013, while commissioning of new thermal units did not take place. Lastly, our empirical findings 

raises some important implications to policy makers and government officials.       

The rest of this paper proceeds as follows. Section 2 offers a detailed description of the 

Greek electricity industry. Section 3 presents the theoretical framework prevailing under different 

demand functions in order to explain the pass-through rate mechanism. Section 4 describes the 

context and data of the analysis along with the empirical modelling. In Section 5, we present the 

findings of the empirical analysis and the necessary robustness cheeks. Finally, Section 6 concludes 

the paper.   
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2.  The Greek electricity industry  

The Greek wholesale electricity industry has not yet implemented the European “target 

model”, namely the establishment of a forward, day-ahead, intra-day and balancing market, 

enabling also the existence of bilateral contracts among producers and final consumers of demand 

aggregators. It still runs as a mandatory pool, where all producers, traders and retailers are obliged 

to participate in the wholesale market, consisting of a day-ahead market, co-optimizing energy and 

ancillary services, and an imbalance market, clearing deviations among schedule and actual 

volumes. In other words, each power plant participates in the wholesale market through the 

submission of energy supply offer, supplemented by techno-economic declarations that 

incorporates technical and economic characteristics of each unit.  

Figure 1 portrays the energy supply offer for a thermal unit, compared to its differential 

cost and its minimum variable cost, for different power outputs, among unit's technical minimum 

(Pmin) and technical maximum (Pmax). The relevant figure also shows that each power unit can 

submit an energy supply offer (red curve) for its whole capacity in up to ten steps, considering that 

they lower from a regulated upper value (CAP variable) and higher than the minimum average 

variable cost (green curve) of each power unit. The latter curve derives from the submitted techno-

economic characteristics that create the differential cost curve (black curve) and allows the 

estimation of the minimum average variable cost curve, which has a flat value.  

<Insert Figure 1 about here> 

As it is evident all the relevant curves have a stepwise and not linear form. Specifically, the 

steps of the energy supply offer are not symmetrical, as usually the first step concerns the technical 

minimum of a power unit, where unit aims to guarantee a realistic technical scheduling, while the 

rest steps concern the strategy adopted by each power producer. The bidding strategy is formulated 

considering the regulatory constraint of not allowing bidding lower from the Minimum Average 
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Variable Cost (MAVC) of each power plant. Moreover, this strategy depends on the portfolio of 

each producer, the competitiveness of each power unit, the share of vertical utilities in retail market 

compared to the share in electroproduction in the wholesale market. Independent Power Producers 

(IPPs) usually adopt a scarcity pricing approach to maximize their revenues from their 

electroproduction assets, while Public Power Corporation (PPC) usually adopts a minimum 

variable cost strategy, as it aims at lower system marginal prices (SMP) in the wholesale market.  

Figure 1 also presents the regulatory provision, known as the “30% rule”, which allows a 

deviation from bidding below the MAVC. We have to mention though that the latter regulatory 

mechanism, which was abolished by the regulator in 1/1/2014, thermal units were allowed to 

submit their first step (red line with number 1), which was set at 30% of their technical maximum 

capacity, at a cost lower than their MAVC (green line). Practically, all units submitted a zero price 

for this step, which practically led thermal units to operate at their technical minimum. However, 

the rule was considered as a distortion in the market, as it did not depict the actual system marginal 

price, leading to its abolishment with decision 338/2013 of the Regulatory Authority of Energy 

(RAE). This reason has led us to select the period 2014-2017 as the examined period, so as to have 

the same regulatory environment for the wholesale price formation. 

In the Greek electricity industry, there are 24 thermal power plants subject to emissions 

control, 14 of which are lignite plants, 9 are new combined cycle gas plants, and one is traditional 

oil and gas plant (see Table 1). The emissions rate of each plant depends, not only on the energy 

content of each fuel, but also on the operating level of the power plant, as operation close to the 

nominal capacity has a lower emissions rate than operation in the technical minimum. The average 

emissions rate of lignite plants is about 1.5 tons/MWh. It is worth mentioning that combined cycle 

natural gas units (CCGTs) have much lower emissions rates, averaging about 0.4 tons/MWh with 

little dispersion across plants. Since lignite plants typically have lower marginal costs than CCGTs 
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over the examined period with relatively low CO2 prices on average (70% versus 40% over the 

sample), they operate closer to their full potential (Fabra and Reguant, 2014). Finally, traditional 

oil fired or gas fired plants that are more inefficient than newer gas plants, only operating at almost 

0% of their capacity on average. During the sample period, the Greek wholesale electricity industry 

is dominated by one vertically integrated firm (PPC), plus a small number of IPPs. In 2016, PPC, 

accounted for 79% of the installed thermal generation capacity and for about 75% of thermal 

electricity generation. It is noteworthy that PPC’s share in the day-ahead market was approximately 

53%, while its share to the retail market segment was about 88% in 2016 (IEA, 2018).  

<Insert Table 1 about here> 

3.  Theoretical framework    

In this section, we build the structural conceptual model used to estimate the pass-through 

rate of emissions costs to wholesale electricity prices in Greece. Let the inverse demand function 

p(q) given by the following equation:  

1
( )

a
p q q

b b
                     (1)  

Let’s assume that the marginal cost c is fixed. In this industry, profit maximization requires 

the fulfillment of first (FOC) and second (SOC) order conditions, namely:  

p qp c                     (2) 

2 0p qp                      (3) 

where 0c   and 2   

Alternatively, using the elasticity of demand ed and convexity conditions, we have:   

( )

( )
d

p q
e

qp q
 


                    (4) 
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qp q

p q



 


                   (5) 

Where ρ denotes the curvature/convexity demand parameter. Combining equations 4 and 5 we 

have:  

1
d

d

ep

c e



                    (6)  

The magnitude of the pass-through rate can be calculated simply by taking the first derivative of 

price compared to cost
dp

dc

 
 
 

. According to the FOC, we have:  

p qp c  
1

2

p

c 




 
                  (7) 

In such a case, the threshold for complete (100%) pass-through or more is given as: 

1
1 0

2

p

c





 
  

 
                   (8) 

However, it is widely acknowledged by the theoretical literature (see for example Bulow 

and Pfleiderer, 1983; Weyl-Fabinger, 2013; Gopinath et al, 2010; Mrazova et al, 2015) that demand 

functions implying constant pass-through take the following form: 

 

1

( )
a

ap q a q


                    (9) 

The constant pass-through rate in this case is given as:  

p
a

c





                  (10) 

When we use the elasticity of demand formulation, Equation (7) becomes:  

 
1log 1

log 2

d

d

p

c e






 

 
                (11) 

So threshold for full (100%) or more pass-through takes the following form:  
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1log
1 0

log 2
d de ep

c





 
  

 
                (12) 

In the case of a constant elasticity of substitution CES (iso-elastic case) demand, we have 

1

( )p q q 


                         (13) 

Where the following conditions are met:  

d  , 
1

1






  and 

1

1
de





 

The exact pass-through rate mechanism (100%) is given as:  

log
1

log

p

c





                  (14) 

For the non CES demand function the pass-through rate mechanism is a function of elasticity and 

convexity conditions. Specifically, we have two distinct cases:  

a) If the pass-through exceeds unity (more than 100%), the demand is characterised as 

“superconvex” since it holds 
1d

d

e

e



              (15)     

b) If the pass-through is less than unity (<100%), the demand can be characterised as “subconvex” 

since 
1d

d

e

e



                  (16) 

According to Mrazova and Neary (2017), the demand functions implying constant proportional 

pass-through are given by the following formula:  

1 1

( )

k
k k
kp q q

q




  
  

 
               (17) 

It holds that the constant proportional pass-through rate is simply given as:  
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log

log

p
k

c





                  (18) 

Combining Eq. 10 and Eq. 17 we notice that a k .  

4.  Data and Methodology  

This section describes the data that we used in this study, while providing and analysing 

the necessary descriptive statistics for the sample variables. Moreover, we discuss and analyse the 

empirical framework and the econometric methodology applied to estimate the degree of carbon 

pass-through. 

  

4.1  Variable description  

In order to study the pass-through of emissions costs to wholesale electricity prices in the 

Greek electricity market over the period 2014-2017, we used different sources of data, concerning 

the wholesale electricity prices, the variable cost of thermal units per fuel type, the emissions cost 

and the temperature.  

The prices of the European Emission Allowances (EUA) were derived from the European 

Energy Exchange (EEX) platform. The actual values of temperature were derived from the 

Meteologica SA platform, a global weather service provider, elaborating data from observed 

temperature values in Greece. The system marginal prices of the Greek day-ahead wholesale 

market has been derived from the public available data from the responsible institution, namely the 

Hellenic Market Operator (LAGIE), which recently transferred its relevant responsibilities to the 

mid-2018 established Hellenic Energy Exchange (HELEX), towards the adoption of the new 

market according to the European “target model”.  

The Greek interconnected power system in Greece consists of fourteen lignite and nine 

combined cycle (CCGT) natural gas power stations. Those units have their own techno-economic 
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characteristics, which lead to different variable costs. The estimation of the variable cost of each 

unit over the examined period has been based on the published day-ahead scheduling by the 

Hellenic market Operator (LAGIE), considering that the marginal unit was the price setter. We 

have also considered the Ministerial decisions APEHL/C/F1/182348/24.08.2016 and 

APEHL/C/F1/178634/03.07.2017 concerning the costs of the lignite thermal units by the PPC, as 

well the cost of the public electronic auctions from the Public Gas Supplier (DEPA), which stands 

as the dominant gas supplier to electricity producers in Greece over the examined period.  

Actual values for climate data such as temperature (in oC), wind speed (in Beaufort), 

humidity (in %) and solar radiation (in daily hours) have been provided by the Hellenic National 

Meteorological Service (EMY). Those data, which have been provided for 24 climate stations 

within the Greek territory, have been used to derive average national values. Actual values of 

temperature (in oC) have been also derived from the Meteologica SA platform. The latter 

constitutes a global weather service provider, elaborating data from observed temperature values 

in Greece.  

The summary statistics of the sample variables are presented in the following table. As it is 

evident the data show significant variability in relation to the mean. Moreover, the sample variables 

do not follow the normal distribution since the mean is different from the estimated median of their 

Probability Density Function (PDF).  In addition, the relative values of the skewness and kurtosis 

measures are not equal to zero and three respectively, indicating leptokurtic and platykurtic 

distributions (see Table 2).  

<Insert Table 2 about here> 

In order to get a clear picture about the pass-through rate mechanism we illustrate the 

evolution of prices (electricity and emissions prices) over the sample period. As it can be seen from 

Figure 2, wholesale electricity prices (e.g system marginal prices) depict a significant variation 
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over the sample period. , besides the regulatory constraint not allowing bidding below the MAVC. 

This constraint offsets the possibility of very low or even negative prices, in contradiction with 

central European energy exchanges. However, this regulatory constraint does not affect the price 

formation towards high positive prices, leading to a considerable variation that can be attributed to 

external factors (shocks) generated by variations in the demand and supply conditions (Fabra and 

Reguant, 2014). Specifically, demand conditions include inter alia the level of economic activity 

and weather controls such as temperature variation and humidity. These factors, display a strong 

seasonal component since electricity demand varies during different seasons (e.g., winter-summer) 

and days within the week (e.g weekday-weekend). This volatility is fully reflected on the evolution 

of the SMP in Greece, where price hikes usually appeared in summer months (see July and August 

for the years 2014 and 2017) are followed by periods of prolonged price rigidity (autumn 2015 and 

2016).  

<Insert Figure 2 about here> 

On the other hand, supply conditions include wind speed and sunshine in order to account 

for the substantial presence of wind power capacity and growing photovoltaic penetration in Greece 

respectively. Supply conditions usually vary with the availability of Renewable Energy Sources 

(RES) such as hydro and wind and are also correlated with changes in input prices, namely lignite, 

natural gas and crude oil price (see Fabra and Reguant, 2014). However, the reliability and quality 

of electricity supply is, vulnerable to non-stochastic variations (i.e shocks, disruptions) generated 

either from external factors, such as natural disasters (e.g., draughts, floods, earthquakes, 

hurricanes, etc), or human activity including inter alia power accidents, shut down of lignite mines 

(Apergis and Polemis, 2018). We must mention thought that such types of supply shocks were not 

reported during the sample period. Lastly, despite the fact that emissions costs depict a much 
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smaller variation compared to SMPs, the level of wholesale electricity prices is being affected by 

the magnitude of the pass-through. 

4.2  Empirical Framework   

We begin our empirical modelling by considering the most common (baseline model) 

specifications employed by the pass-through rate literature (Goldberg and Campa, 2006; Nakamura 

and Zerom, 2010). The simplest of these is the Distributed Lag (DL) model, of the following form:   

1

log( ) log( )
L

jt j s l t l jt

l

SMP a EUA   



                             (19) 

where 𝑆𝑀𝑃𝑗,𝑡 is the wholesale price of electricity (i.e System Marginal Price) on each hour 

j at day t (common to all power plants). ΔSMPj,t is the change in the wholesale electricity price 

from day t-1 to day t in hour j, 𝐸𝑈𝐴𝑡 is the carbon emissions price at day t (common for every plant 

and every hour), 𝛥𝐸𝑈𝐴𝑡−𝑙 is the change in the emissions price from day t-1 to day t, 𝐿 is the number 

of lags in the emissions price, α is the intercept, 𝛽𝑗 is a set of dummy variables, and 𝛽𝑠 is a set of 

seasonal dummy variables. Finally, εi,t are zero mean i.i.d. errors.  

The coefficients γl denote the rate of change in wholesale electricity prices associated with 

a given percentage change in input cost (emissions costs) or simply the relevant short-run pass-

through elasticities (Nakamura and Zerom, 2010). The sum of these elasticities simply denote the 

long-run pass-through elasticity. We have also estimated the baseline model in its linear form in 

order to compare and critically discuss our empirical findings with other similar studies.   

We begin by estimating the baseline model with the use of the fixed effects (FE) estimator. 

In this way we allow a different intercept for every power plant. However, both FE and random 

effects (RE) estimators are inefficient in the presence of heteroskedasticity (Baltagi, 2002). To take 

into consideration heteroskedasticity and various patterns of correlation between residuals, an 
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instrumental variable (IV) approach was taken into account. Moreover, in order to address 

concerns regarding endogeneity in some variables and improve the efficiency of our estimators, 

we use lagged levels as instruments of the endogenous variable (EUAt) with standard errors robust 

to heteroskedasticity and within-cross section serial correlation. To assess instrument validity we 

report an Anderson LM statistic test under the null hypothesis that the model is underidentified 

(i.e. the matrix is not full column rank). Moreover, to test for weak instruments, we report Cragg-

Donald Wald F statistics compared to their respective critical values. 

Similarly to Fabra and Reguant (2014), we estimate the following model:  

0 1 1 2 3

COM D S

jt t t t t t jt jtSMP a a EUA b X b X b X v                 (20) 

where the dependent variable denotes the wholesale price of electricity  𝑆𝑀𝑃𝑗𝑡 on each hour j at 

day t. EUAt denotes the emissions (carbon) price at day t (common to all hours across the power 

plants), 

t

COM

t t

t

COAL

X GAS

BRENT

 
 

  
  

 is a vector of exogenous (common) control variables denoting the 

commodity prices of lignite (COAL), natural gas (GAS) and crude oil (BRENT) respectively. 

tD

t

t

TEMP
X

HUM

 
  
 

 also represents a demand vector of exogenous (common) control variables 

denoting weather conditions such as temperature (TEMP) and humidity (HUM) respectively, while 

tS

t

t

WIND
X

SUN

 
  
 

 denotes the vector of exogenous (common) control variables capturing the effect 

of climatic variations such as wind speed (WIND) and sunshine (SUN) respectively.1 The γt stands 

                                                           
1 We must mention though that wind speed and an increased level of sunshine (measured by the number of days with 

sunshine) lead to a reduction in wholesale electricity prices due to the presence of substantial renewable power 

generation in Greece (i.e wind capacity, high level of sunshine, etc).  
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for the time fixed effects and vi is a vector of fixed effects (i.e hour FE, month FE, temperature FE, 

etc) to control for differences across power plants (e.g differences in technology used in the 

production process, different level of efficiency between the thermal electricity units, different cost 

structure and fuel mix of the power plants) and for potential trends and fluctuations (i.e month of 

sample, day of the week and hour fixed effects). The inclusion of time fixed effects controls for 

changing technology and preferences over time since the last four years has been significant 

structural changes in the Greek electricity sector (e.g NOME auctions, abolishment of 30% rule, 

divestiture of two lignite power plants, etc). Finally εit is the idiosyncratic error term that is assumed 

to be i.i.d. 

 

5.  Results and discussion  

This section presents the empirical findings of the study. We have used an unbalanced 

micro-level panel comprising of Greek power plants (N=23) spanning the period January 2014 to 

December 2017. For concreteness, we have divided this section into three distinct ones depicting 

and discussing the econometric results obtained by each relevant model (Baseline, IV model) along 

with the necessary robustness checks accounting for the use of different specifications (logged, 

non-linear, etc).  

5.1  Baseline model  

Table 3 presents the empirical findings of the wholesale electricity prices generated by two 

different DL models (log and levels specifications) estimated by OLS controlling for FE. As it is 

evident, the results indicate a substantial amount of incomplete pass-through rate expressed in 

percentage terms.  

Specifically, for the logged model (see Column 1), the estimated long-run pass-through 

(elasticity) is statistically significant and equal to 0.475. This means that a 10% increase (decrease) 
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in carbon emissions price (i.e commodity cost) eventually will lead to only about a half (4.7%) of 

a percentage increase (decrease) in wholesale electricity prices. Similar findings hold for the levels 

specification DL model (see Column 2) since the long-run pass through coefficient is estimated to 

0.433. This finding, reveals that a one euro increase (decrease) in emissions costs translates, on 

average, into a fourty-three cents increase (decrease) in electricity prices.  

Table 3 also portrays that there is a substantial delay in the response of wholesale prices to 

carbon costs since for logged prices more than half of the adjustment to a change in costs occurs 

seven periods after the initial cost shock. However, the opposite is evident when we account for a 

different DL model specification (levels). In such a case, the price adjustment mechanism is more 

direct. Lastly, similar to Nakamura and Zerom, (2010) we do not find evidence that prices respond 

asymmetrically to input cost variations (e.g carbon prices).   

<Insert Table 3 about here> 

5.2  Instrumental variable model   

Estimating Equation (19) with OLS can be problematic because wholesale electricity prices 

can be endogenously affect the level of carbon emissions prices. This may happen either for 

macroeconomic (i.e common trends across the EU electricity markets) or microeconomic reasons 

(e.g general equilibrium effects of emissions prices on fuel cost and the electricity demanded by 

other sectors) as suggested by other researchers (Duso and Szücs, 2017; Fabra and Requant, 2014). 

To address this concern of reverse causality, we adopt the instrumental variable (IV) approach and 

the 2SLS, which is applied in other studies as well (Chen et al, 2018; Loy et al, 2016; Dai et al, 

2014; Fabra and Requant, 2014; Lewbel, 2012). 

Table 4 summarizes the estimates of Equation (20) using the IV approach. The 

specifications include year, month, and hour FE, demand and supply controls (e.g temperature, 

humidity, wind speed, sunshine) as well as other common controls (e.g commodity prices of oil, 
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gas and coal). Robust standard errors are reported in parentheses. Column (1) reports the baseline 

estimates with only common FE present. The coefficient of interest is that of carbon emissions 

price (EUA) and is estimated to 1.081. This means that a 10% increase (decrease) of emissions 

costs will lead to a slightly larger (10.8%) increase (decrease) in wholesale electricity prices, 

indicating an almost complete pass-through. This could be attributed either to markup adjustment 

by the power companies in tandem with the small magnitude of own price elasticity of demand, or 

to the absence of relevant price rigidities (Fabra and Reguant, 2014). All the remaining variables 

have the anticipated signs and are statistically significant.  

As it is evident, higher (lower) wind speed (WIND) is robustly correlated with lower 

(higher) wholesale electricity prices, as a one per cent increase of wind speed is associated with a 

decrease in the level of system marginal price of about 88%. This finding, which is in alignment 

with the study of Fabra and Reqant (2014) may be attributed to the existence of significant wind 

capacity in Greece, which causes the industry supply curve to shift to the right, decreasing the level 

of SMP. Similarly, we find that temperature (TEMP) is negatively correlated with electricity prices 

indicating that a 10% increase (decrease) in the temperature level will reduce (increase) the system 

marginal price by about 3% on average. This is consistent with electricity demand being higher 

during winter and in very hot summer days (Fabra and Requant, 2014). It is worth mentioning that 

the rest weather covariates (SUN and HUM) are also negatively correlated with the wholesale 

electricity prices. Their estimated coefficients range from -0.0550 to -0.240 respectively. We must 

stress though that the negative sing of the sunshine level can also be attributed to the excess supply 

of photovoltaic capacity in Greece. From the commodities included in the estimation (COAL, GAS 

and BRENT), only coal prices are negatively correlated with electricity prices (-0.0353). On the 

contrary, natural gas (GAS) and oil prices (BRENT) are positively correlated with the level of 

system marginal price (SMP) pointing that some aggregate macroeconomic effects are present. 
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<Insert Table 4 about here> 

Similarly to Fabra and Requant (2014), we include some other specifications (see Columns 

2-5) in order to introduce the effect of several additional controls to the baseline specification (e.g 

Column 1). As it is evident, all the pass-through estimates are statistically significant and robust 

across specifications, with their magnitude ranging from 0.637 to 1.112. It is important to note that, 

when we allow for the effect of temperature to have a different impact on price depending on the 

month of the year (see Column 2), the pass-through estimate is substantially lower compared to the 

rest specifications, revealing that in this case the pass-through is incomplete.2 On the other hand, 

when both sets of control are present (see Column 3), the pass-through coefficient is estimated to 

1.112, indicating that a 10% increase (decrease) of carbon price leads to a greater increase 

(decrease) by about 11.1% in wholesale electricity prices. These results provide further evidence 

that the pass-through in the electricity market is very high, particularly in those hours in which we 

would expect firms to price marginally.  

Lastly, several precautions are taken in order to avoid the problem of instrument 

proliferation. Tests reported in the bottom of Table 4 clearly show that our instruments are 

exogenous and they do not suffer from weak identification problem (Cragg-Donald Wald F 

statistic). Further, the instrumental variable technique is necessary while our model is not under-

identified (Anderson LM statistic) since in all of the specifications the null hypothesis is rejected. 

Taken together, we argue that the model is properly identified.   

5.3  Robustness checks: A logged linear approach  

In this part of the analysis we have performed several checks to sharpen the robustness of 

our results. Firstly, we attempt to conceptualize the pass-through rate mechanism by estimating the 

                                                           
2 This can be important, as a relatively warm day tends to reduce electricity consumption during the winter, but to 

increase it during the summer (Fabra and Requant, 2014).  
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econometric model in a logged-linear way. In this way we will try to directly estimate the relevant 

elasticities in order to check their magnitudes compared with the estimated coefficients drawn from 

the linear specifications. The new results are reported in Table 5 and they signify important 

similarities to those reported in Table 4. The variables included in the logged-linear model (see 

Columns 1-5) retain not only their expected theoretical signs but also their statistical significance. 

However, they turn out to be larger in most of the specifications and they do not suffer from 

downward bias and endogeneity.  

As it is evident the pass-through rate elasticity ranges from 0.639 to 1.196 (see Columns 2 

and 1 respectively). Moreover, all the weather demand and supply controls have the expected 

(negative) signs and are statistically significant, stressing the significance of RES penetration in 

the electricity price formulation. This finding incurs some important policy implications regarding 

the efficient use of electricity in the Greek energy balance. The commodity prices seem to 

statistically significant impact the SMP but in a non-uniform way. The basic model (see Column 

1) indicates that coal price elasticity is negatively correlated with the electricity prices (-0.0584), 

while the effect of the rest commodity prices (GAS and BRENT) is positive (0.0355 and 0.135 

respectively). On the contrary, when we control for the presence of specific FE (i.e hour, 

temperature, month, etc), these results are reversed. Specifically, the impact of coal price on 

electricity price formulation is positive in all of the rest specifications (see Columns 2-5) with the 

estimated price elasticities within a close range (from 0.705 to 0.882). Moreover, the effect of oil 

turns to negative with the estimated elasticities varying within a broader range (-0.0322 to -0.221).              

<Insert Table 5 about here> 

5.4  Robustness checks: A non-linear approach  

Within the last years, there is a growing strand of literature supporting the argument that input cost 

transmission mechanism follows a non-monotonic distribution (see among others Polemis and 
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Tsionas, 2017; Polemis and Tsionas, 2016; Loy et al, 2016). According to this literature, the 

employment of a linear (monotonic) methodological framework is not able to capture the exact 

form of the price pass-through relationship. In such a case, the cost pass-through processes exhibit 

a non-linear behavior which is usually modeled by a threshold-error-correction-mechanism (Loy 

et al, 2016).  

Following the above discussion posed by the relevant references, this part of the study, 

employs a simple quadratic approximation of Equation (20). Table 6 presents the empirical findings 

drawn from the non-linear specifications. As it is evident, all the coefficients are statistically 

significant and come with the expected sign, indicating strong non-linear effects. The price-pass 

through rate coefficient exceeds unity in all of the specifications (see Columns 1-4), ranging from 

1.054 to 1.091, implying that a 10% increase (decrease) in emissions costs translates, on average, 

into an increase (decrease) in wholesale electricity prices of 10.67% approximately.    

<Insert Table 6 about here> 

6.  Concluding remarks and policy implications 

This study employed both a linear and a non-linear panel cointegration modelling approach 

to shed light to the carbon price pass-through mechanism between wholesale electricity prices and 

a set of demand and supply covariates for an expanded set of 23 power plants in Greece. The 

(logged) linear parameter models document that the emissions cost estimates are on average greater 

than one, implying an almost complete price pass-through in the Greek electricity industry. 

Moreover, the non-linear parameter estimates confirm the above finding. 

It is worth mentioning that our results receive empirical support from those reported by 

Fabra and Requant (2014) in the case of the Spanish electricity industry since both studies argue 

that the carbon price pass-through is almost complete. However, the empirical findings of this study 

are different from those reported in the earlier literature on price-pass through (see Duso and Szücs, 
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2017, Goldberg and Hellerstein, 2013; Nakamura and Zerom, 2010), highlighting that an 

incomplete pass-through of carbon costs to wholesale electricity prices is the usual case rather than 

the exception in the pass-through nexus. The presence of homogeneity in the results could partly 

explain the findings due to the absence of variation across power plants. The findings remained 

robust under different econometric specifications.  

Our results have important policy implications. As of January 2013 the ETS is in its third 

and more mature phase (2013-2020) since a single, EU-wide cap on carbon emissions applies in 

the electricity industry in place of the previous system of national caps between the EU member 

states. Within this period, auctioning is the default method for allocating allowances (instead 

of grandfathering or free allocation of permits), and harmonised allocation rules apply to the 

allowances still given away for free.  

The finding of an almost complete carbon price pass-through suggests that the emissions 

cost is fully shifted on the consumers (i.e power suppliers), which in turn may be internalized by 

them across the vertical chain of electricity industry. As a consequence, we argue that the 

compulsory auctioning of tradable permits during the third period of the ETS might not trigger an 

inflationary effect on electricity prices, at least in the short run. This raises important equity 

implications and distributional effects generated by possible market interventions (i.e taxation of 

profits).  

Another important issue is that the negative correlation between weather covariates with 

the SMP calls for further market design by policy makers and practitioners toward a more efficient 

energy conservation scheme. As a result, financing RES penetration could be an important driver 

to stimulate “green” investments in Greece in order to achieve specific macroeconomic (i.e debt 

https://ec.europa.eu/clima/policies/ets/cap_en
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financing, sustainable growth, emissions reduction, etc) as well as microeconomic goals (i.e 

competitive electricity prices, consumer welfare, etc). However, a more thorough research is 

needed to reach solid conclusions in relevance to the above considerations.  
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Figures and Tables 

 

Figure 1: Graphical illustration of the Greek wholesale electricity market   

 
Notes: The red curve denotes the energy supply offer of a thermal power plant. The black curve represents the 

Differential cost of a thermal power plant, while the green curve denotes its minimum variable cost, for different power 

outputs, among unit's technical minimum (Pmin) and technical maximum (Pmax) 
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Figure 2: Evolution of EUA and wholesale electricity prices (Jan 2014-Dec 2017) 

 
Source: European Energy Exchange (EEX) platform and Hellenic Market Operator (LAGIE).  
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Table 1: Industry characteristics of the four largest power generators in Greece  

Characteristics PPC IPP1 IPP2 IPP3 

Total number of thermal units 18 2 2 2 

Average emissions rate (tCO2/MWh) 1.24 0.4 0.4 0.5 

Average thermal capacity (MW) 5,745 866 800 569 

Average lignite capacity share (%) 68.09 0.0 0.0 0.0 

Average CCGT capacity share (%) 31.91 100.0 100.0 74.17 

Average oil/gas capacity share (%) 31.91 100.0 100.0 100.0 

Source: LAGIE 

Notes: PPC, denotes the Public Power Corporation, IPP stands for the Independent Power Producer. The sample period 

covers January 2014 to December 2017, including all thermal units in the Greek wholesale electricity industry that are 

active. The average measures are based on hourly values during the sample period. 

 

 

 

 

 

 

Table 2: Summary statistics  
Variables Observations Mean Median Min Max Standard 

deviation  

Skewness Kurtosis 

         

SMP 804,860 51.71 49.98 0 299 14.31 2.656 22.42 

EUA 804,860 6.217 6.040 0 8.680 1.206 0.265 1.917 

COAL 793,820 50.36 52.67 33.77 66.08 9.170 -0.154 1.813 

GAS 804,860 3.114 2.920 1.490 8.150 0.884 1.234 6.039 

BRENT 804,860 62.09 53.98 0 115.2 23.62 1.031 2.847 

TEMP 675,554 16.7 16.3 -3.9 38.8 7.6 0.078 2.284 

WIND 804,860 6.363 6.063 1.959 17.24 2.164 0.886 4.241 

HUM 804,860 66.74 66.57 39.85 88.29 9.634 -0.0443 2.154 

SUN 804,860 7.397 7.900 0 13.90 4.244 -0.384 1.939 

         
Notes: SMP stands for the wholesale electricity price measured in euro/MWh, EUA denotes the carbon emissions price 

expressed in euro/tone, COAL denotes the NYMEX coal futures near-month contract final settlement price expressed 

in USD dollars per tone, GAS is the natural gas spot price expressed in USD dollars per Million Btu, BRENT denotes 

the Brent spot price FOB measured in USD dollars per Barrel, TEMP stands for the average daily temperature 

measured in Celsius degrees (oC), WIND represents the average daily wind speed expressed in Beaufort scale, HUM 

stands for the average daily humidity rate (%) and finally SUN is the average daily solar radiation (sunshine) measured 

in daily hours. The sample period covers January 2014 to December 2017.  
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Table 3: Pass-through regression results (Baseline model) 

Variable (1)  

logged  

specification 

(2)  

levels  

specification 

Δ Emissions price (t)  -0.0625* 

(0.0337) 

0.624** 

(0.280) 

Δ Emissions price (t-1)  0.0448 

(0.0337) 

-1.019*** 

(0.280) 

Δ Emissions price (t-2)  -0.0428 

(0.0337) 

-2.469*** 

(0.281) 

Δ Emissions price (t-3)  0.153*** 

(0.0337) 

-0.176 

(0.281) 

Δ Emissions price (t-4)  0.0573* 

(0.0337) 

0.364 

(0.281) 

Δ Emissions price (t-5)  -0.0351 

(0.0337) 

0.185 

(0.281) 

Δ Emissions price (t-6)  -0.0160 

(0.0337) 

0.426 

(0.281) 

Δ Emissions price (t-7)  0.205*** 

(0.0337) 

2.498*** 

(0.281) 

Δ Emissions price (t-8)  0.171*** 

(0.0337) 

- 

Long run pass-through  0.475*** 

(0.0236) 

0.433*** 

(0.0396) 

Observations 802,804 804,852 

F-test 10.47*** 

[0.000] 

22.96*** 

[0.000] 
Notes: The sample period covers January 2014 to December 2017. The number of lags has been selected by using the 

AIC in such a way that adding extra lags will not change the magnitude of the estimated long-run pass-through 

coefficient. The numbers in square brackets denote P-values. Clustered standard errors in parentheses. *** p<0.01.   
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Table 4: IV pass-through regression results (linear model) 

Variable (1) (2) (3) (4) (5) 

EUA 1.081*** 

(0.0203) 
0.637*** 

(0.0214) 
1.112*** 

(0.0263) 
1.054*** 

(0.0263) 
1.082*** 

(0.0269) 

WIND -0.880*** 

(0.00831) 

-0.759*** 

(0.00823) 

-0.826*** 

(0.00889) 

-0.805*** 

(0.00805) 

-0.834*** 

(0.00827) 

SUN -0.240*** 

(0.00580) 

-0.262*** 

(0.00564) 

-0.295*** 

(0.00610) 

-0.183*** 

(0.00557) 

-0.192*** 

(0.00566) 

TEMP -0.298*** 

(0.00548) 

0.206*** 

(0.00407) 

0.746*** 

(0.0132) 

-0.0616*** 

(0.00530) 

0.557*** 

(0.0128) 

HUM -0.0550*** 

(0.00281) 

-0.0753*** 

(0.00275) 

-0.135*** 

(0.00323) 

-0.0852*** 

(0.00274) 

-0.0697*** 

(0.00310) 

COAL -0.0353*** 

(0.00487) 

1.331*** 

(0.00830) 

1.269*** 

(0.00934) 

1.129*** 

(0.00852) 

1.178*** 

(0.00863) 

GAS 1.735*** 

(0.0547) 

1.411*** 

(0.0876) 

1.438*** 

(0.0956) 

1.533*** 

(0.0880) 

1.846*** 

(0.0893) 

BRENT 0.103*** 

(0.00252) 

-0.223*** 

(0.00293) 

-0.0937*** 

(0.00392) 

-0.0646*** 

(0.00344) 

-0.00397 

(0.00377) 

Diagnostics  

Observations 669,482 669,482 669,482 669,482 669,482 

R-squared 0.236 0.282 0.182 0.312 0.312 

F-test 7,450.57*** 

[0.000] 

7,545.96***  

[0.000] 

5,332.35*** 

[0.000] 

1,498.76*** 

[0.000] 

1,471.54*** 

[0.000] 

Anderson LM statistic 1.3e+04*** 

[0.000] 

1.2e+04*** 

[0.000] 

8,787.748*** 

[0.000] 

7,388.289*** 

[0.000] 

7,124.139*

** 

[0.000] 

Cragg-Donald Wald F statistic 1.4e+04*** 

[0.000] 

1.2e+04*** 

[0.000] 

8,903.945*** 

[0.000] 

7,467.446*** 

[0.000] 

7,197.475*

** 

[0.000] 

Fixed Effects (FE) 

Base FE YES YES YES YES YES 

Month X Year FE NO YES YES YES YES 

Month X Temp FE NO NO YES NO YES 

Month X Hour FE NO NO NO YES YES 
Notes: SMP stands for the wholesale electricity price measured in euro/MWh, EUA denotes the carbon emissions price 

expressed in euro/tone, COAL denotes the NYMEX coal futures near-month contract final settlement price expressed 

in USD dollars per tone, GAS is the natural gas spot price expressed in USD dollars per Million Btu, BRENT denotes 

the Brent spot price FOB measured in USD dollars per Barrel, TEMP stands for the average daily temperature 

measured in Celsius degrees (oC), WIND represents the average daily wind speed expressed in Beaufort scale, HUM 

stands for the average daily humidity rate (%) and finally SUN is the average daily solar radiation (sunshine) measured 

in daily hours. The sample period covers January 2014 to December 2017. Anderson LM statistic and Cragg-Donald 

Wald F statistic denote the under identification and weak identification tests respectively where rejection of the null 

hypothesis indicates that the model is properly identified. The numbers in square brackets denote P-values. Standard 

errors in parentheses. *** p<0.01.   
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Table 5: IV pass-through regression results (log-linear model) 

Variable (1) (2) (3) (4) (5) 

log(EUA) 1.196*** 

(0.0183) 
0.639** 

(0.0249) 
1.146*** 

(0.0289) 
1.137*** 

(0.0279) 
1.139*** 

(0.0280) 

log(WIND) -0.0646*** 

(0.000512) 

-0.0590*** 

(0.000488) 

-0.0583*** 

(0.000495) 

-0.0595*** 

(0.000439) 

-0.0590*** 

(0.000454) 

log(SUN) -0.0235*** 

(0.000406) 

-0.0223*** 

(0.000380) 

-0.0215*** 

(0.000386) 

-0.0173*** 

(0.000348) 

-0.0160*** 

(0.000350) 

log(TEMP) -0.0124*** 

(0.000436) 

0.00754*** 

(0.000367) 

0.000954** 

(0.000487) 

-0.00693*** 

(0.000373) 

0.00346*** 

(0.000456) 

log(HUM) -0.141*** 

(0.00352) 

-0.168*** 

(0.00322) 

-0.158*** 

(0.00352) 

-0.151*** 

(0.00298) 

-0.103*** 

(0.00332) 

log(COAL) -0.0584*** 

(0.00434) 

0.882*** 

(0.00823) 

0.861*** 

(0.00891) 

0.705*** 

(0.00796) 

0.716*** 

(0.00810) 

log(GAS) 0.0355*** 

(0.00304) 

0.0470*** 

(0.00473) 

0.0226*** 

(0.00481) 

0.0491*** 

(0.00435) 

0.0361*** 

(0.00439) 

log(BRENT) 0.135*** 

(0.00296) 

-0.216*** 

(0.00409) 

-0.221*** 

(0.00503) 

-0.0645*** 

(0.00435) 

-0.0322*** 

(0.00467) 

Diagnostics  

Observations 618,712 618,712 618,712 618,712 618,712 

R-squared 0.190 0.306 0.309 0.435 0.439 

F-test 6,358.51*** 

[0.000] 

6685.071*** 

[0.000] 

5,367.47*** 

[0.000] 

1,621.94*** 

[0.000] 

1,593.55*** 

[0.000] 

Anderson LM statistic 1.6e+04*** 

[0.000] 

7,885.542*** 

[0.000] 

5,896.517*** 

[0.000] 

5,181.641*** 

[0.000] 

5,118.718*** 

[0.000] 

Cragg-Donald Wald F statistic 1.7e+04*** 

[0.000] 

7,986.816*** 

[0.000] 

5,952.755*** 

[0.000] 

5,222.914*** 

[0.000] 

5,158.869*** 

[0.000] 

Fixed Effects (FE) 

Base FE YES YES YES YES YES 

Month X Year FE NO YES YES YES YES 

Month X Temp FE NO NO YES NO YES 

Month X Hour FE NO NO NO YES YES 
Notes: SMP stands for the wholesale electricity price measured in euro/MWh, EUA denotes the carbon emissions price 

expressed in euro/tone, COAL denotes the NYMEX coal futures near-month contract final settlement price expressed 

in USD dollars per tone, GAS is the natural gas spot price expressed in USD dollars per Million Btu, BRENT denotes 

the Brent spot price FOB measured in USD dollars per Barrel, TEMP stands for the average daily temperature 

measured in Celsius degrees (oC), WIND represents the average daily wind speed expressed in Beaufort scale, HUM 

stands for the average daily humidity rate (%) and finally SUN is the average daily solar radiation (sunshine) measured 

in daily hours. The sample period covers January 2014 to December 2017. Anderson LM statistic and Cragg-Donald 

Wald F statistic denote the under identification and weak identification tests respectively where rejection of the null 

hypothesis indicates that the model is properly identified. The numbers in square brackets denote P-values. Standard 

errors in parentheses. *** p<0.01, ** p<0.05.   
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Table 6: IV pass-through regression results (non-linear model)  
Variable (1) (2) (3) (4) 

EUA 1.092*** 

(0.00643) 
1.058*** 

(0.00639) 
1.065*** 

(0.0124) 
1.054*** 

(0.00709) 

WIND -0.629*** 

(0.00879) 

-0.626*** 

(0.00868) 

-0.215*** 

(0.0379) 

-0.655*** 

(0.0336) 

SUN -0.285*** 

(0.00616) 

-0.214*** 

(0.00612) 

-0.212*** 

(0.00685) 

-0.215*** 

(0.00616) 

TEMP -0.0542*** 

(0.00305) 

-0.970*** 

(0.00952) 

-0.774*** 

(0.0112) 

-0.978*** 

(0.00955) 

HUM -0.0508*** 

(0.00280) 

0.0420*** 

(0.00292) 

-0.0206*** 

(0.00344) 

0.0415*** 

(0.00294) 

COAL -2.960*** 

(0.0326) 

-2.826*** 

(0.0323) 

-3.846*** 

(0.0400) 

-2.780*** 

(0.0326) 

GAS 2.175*** 

(0.295) 

-0.653** 

(0.292) 

-6.953*** 

(0.345) 

-1.191*** 

(0.294) 

BRENT 0.191*** 

(0.00680) 

0.257*** 

(0.00675) 

0.200*** 

(0.00762) 

0.302*** 

(0.00733) 

WIND2 - - -0.0270*** 

(0.00249) 

-0.108*** 

(0.0258) 

WIND X Trend - - - 5.31e-06*** 

(1.26e-06) 

TEMP2 - 0.0280*** 

(0.000274) 

0.0244*** 

(0.000313) 

0.0282*** 

(0.000275) 

COAL2 0.0328*** 

(0.000323) 

0.0314*** 

(0.000320) 

0.0424*** 

(0.000402) 

0.0309*** 

(0.000325) 

GAS2 0.761*** 

(0.0506) 

1.042*** 

(0.0500) 

2.342*** 

(0.0602) 

1.119*** 

(0.0503) 

BRENT2 -0.00308*** 

(5.66e-05) 

-0.00320*** 

(5.58e-05) 

-0.00411*** 

(6.44e-05) 

-0.00349*** 

(5.96e-05) 

Base FE YES YES YES YES 

Diagnostics 

Observations 669,482 669,482 669,482 665,202 

R-squared 0.088 0.111 0.115 0.1138 

F-test 13,524.10*** 

[0.000] 

13,908.07*** 

[0.000] 

9,960.60 

[0.000] 

11,977.03*** 

[0.000] 

Anderson LM statistic 1.2e+05*** 

[0.000] 

1.2e+05*** 

[0.000] 

4.0e+04*** 

[0.000] 

1.0e+05*** 

[0.000] 

Cragg-Donald Wald F statistic 1.5e+05*** 

[0.000] 

1.5e+05*** 

[0.000] 

4.2e+04*** 

[0.000] 

1.2e+05*** 

[0.000] 
Notes: SMP stands for the wholesale electricity price measured in euro/MWh, EUA denotes the carbon emissions price expressed 

in euro/tone, COAL denotes the NYMEX coal futures near-month contract final settlement price expressed in USD dollars per 

tonne, GAS is the natural gas spot price expressed in USD dollars per Million Btu, BRENT denotes the Brent spot price FOB 

measured in USD dollars per Barrel, TEMP stands for the average daily temperature measured in Celsius degrees (oC), WIND 

represents the average daily wind speed expressed in Beaufort scale, HUM stands for the average daily humidity rate (%) and finally 

SUN is the average daily solar radiation (sunshine) measured in daily hours. Trend denotes a linear time trend to capture 

technological spillovers. The sample period covers January 2014 to December 2017. Anderson LM statistic and Cragg-Donald 

Wald F statistic denote the under identification and weak identification tests respectively where rejection of the null hypothesis 

indicates that the model is properly identified. The numbers in square brackets denote P-values. Standard errors in parentheses. *** 

p<0.01.   


