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Abstract

I study recurrent strategic interaction between two responsive behavioural rules in generic

bi-matrix weakly acyclic games. The two individuals that play the game in a particular

period choose their strategy by responding to a sample of strategies used by the co-players

in the recent history of play. The response of a player is determined by his behavioural

rule. I show that the game reaches a convention whenever the behavioural rule of each

player is ‘weakly responsive’ to the manner in which strategies were chosen in the past by

the co-players, and stays locked into the convention if the behavioural rules are ‘mildly

responsive’. Furthermore, amongst ‘mildly responsive’ behavioural rules, individuals de-

scribed by the behavioural rule of ‘extreme optimism’ perform the best in the sense that

their most preferred convention is always in the stochastically stable set; under an ad-

ditional mild restriction that differentiates the behavioural rule of the other player from

extreme optimism, the convention referred to above is the unique stochastically stable

state.
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Keywords: evolution of conventions; behavioural rules; weakly responsive; mildly respon-

sive; optimism
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1 Introduction

This paper explores the evolution of outcomes in a recurrent strategic game. There are two

distinct population of individuals, and in each period, one individual is randomly chosen from

each population to play the game (for example, a bargaining game between share-croppers

and landowners). It is often observed that conventions, or norms of behaviour, evolve in such

situations – for instance, even though the process of bargaining between share-croppers and

landowners may be represented by a bargaining game, it may be customary for share-croppers

to receive half of the produce. In this paper, I answer two questions: firstly, positing that the

recent history of the game influences current behaviour, what is the most general condition

that can be made on how individuals in each population choose their strategy such that a

convention evolves in the long-run, and that the behavioural rule of each individual further

reinforces the established convention? Secondly, in situations where conventions do evolve in

the long-run, and there are multiple conventions that may potentially evolve, is it possible to

identify a behavioural rule that performs the best in the sense of obtaining its most preferred

convention as the long-run outcome?

I analyse the questions posed above in a framework similar to adaptive play (Young (1993a)).

There are two finite populations, and in each period, one individual is chosen from each pop-

ulation to play the game. The two populations have fixed roles in the strategic game: for

example, randomly chosen individuals from population A always assume the role of the row

player while randomly chosen individuals from population B assume the role of the column

player. In order to choose a strategy in a particular period, the randomly chosen individual

obtains information about (individuals of) the other population by drawing a sample from

the finite history of strategies used by the latter in the previous periods, and then responds to

the sample thus obtained. I associate this correspondence from the space of feasible samples

to the strategies that are chosen with positive probability with a ‘behavioural rule’, and each

population is characterised by a behavioural rule.

Restricting attention to generic weakly acyclic games (defined later), I show that a con-

vention is established in the long-run (Proposition 1) and persists thereafter (Proposition 2)

under very general conditions; in particular, this holds whenever, the behavioural rule is

‘weakly responsive’ and ‘mildly responsive’ to the information contained in the randomly

drawn sample respectively. I argue (see Section 2) that conditional on individuals choosing

a strategy by responding to the history of the game, it is reasonable to impose that any

behavioural rule should satisfy ‘weakly responsiveness’ and ‘mildly responsiveness’.

Following this, I ask, amongst the class of all ‘mildly responsive’ behavioural rules, is it

possible to identify the behavioural rule that outperforms any other behavioural rule? For

this purpose, I focus on one particular behavioural rule, namely ‘extreme optimism’. The

distinguishing feature of extremely optimistic individuals is that corresponding to any sample
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that may be drawn from the other population’s previous period’s strategies, they assume that

amongst all strategies in the sample, their randomly chosen co-player will play the strategy

that will make it possible for them to attain the most preferred outcome. Then, adding per-

turbation to the choice-making process of individuals (due to mistakes or experimentations),

I show that the stochastically stable set always contains the most preferred convention of the

population of extremely optimistic individuals. Furthermore, under an additional restriction

on the behaviour of the other population that results in this other population being ‘mildly

different’ from the population of extremely optimistic individuals, I show that the most pre-

ferred convention of the population of extremely optimistic individuals is the stochastically

stable outcome.

If this strategic interaction between two populations is interpreted as a ‘competition’

between two behavioural rules, then this paper suggests that the behavioural rule of extreme

optimism performs better than ‘almost any other’ behavioural rule. Depending on the nature

of the game, the effect of extreme optimism on the other population may be beneficial or

adversarial. I show that in strategic situations such as bargaining games, or Battle-of-the-

sexes type coordination games, where there is a conflict of preferences, in the long-run, the

other population is constrained to its least preferred convention. However, in games such as

the minimum effort game, or Stag-hunt type coordination games, where the preferences are

perfectly aligned, the other population also enjoys the benefits of obtaining its most preferred

convention.

This paper contributes to the literature on how conventions may arise, and which conven-

tions are more likely to emerge, in a decentralised environment where individuals myopically

pursue their own interest. I build on the framework introduced in Young (1993a), where in-

dividuals best-respond to past information in an adaptive play model. Under a best-response

dynamic, Young (1993a) shows that play converges almost surely to a convention, and then

uses Foster and Young’s (1990) concept of stochastic stability to analyse which conventions

are more likely to be observed in the long-run. Kandori, Mailtah and Rob (1993) also study

the stochastically stable outcome in coordination games with a best-response dynamic. Ex-

amples of other behavioural rules for which long-run outcomes of specific games have been

studied include satisficing and aspirational play (Karandikar, Mookherjee, Ray and Vega-

Redondo (1998) for 2×2 games) and imitation (Robson and Vega-Redondo (1996), Josephson

and Matros (2004), Bergin and Bernhardt (2009)) However, in the afore-mentioned papers, all

players share a particular behavioural rule. While Kaniovski, Kryazhimskii and Young (2000),

Jospehson (2009) and Juang (2002) study heterogeneous behavioural rules, the heterogeneity

is not across individuals but rather models the fact that the same individual may use different

rules (for example, he may probabilistically best-respond or imitate); moreover, the scope of

the analysis is restricted to specific games (for eg. 2× 2 co-ordination games). In this paper,
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I look at a broad class of games with the intention of analysing which particular behavioural

does better when it interacts with individuals of another behavioural rule. Relatedly, Axel-

rod (1984) studies the success of various strategies in the repeated Prisoner’s Dilemma. While

my paper shares the similarity of comparing the success of various rules/strategies, the focus

here is on recurrent interaction in a broad class of games and I abstract away from repeated

game considerations in order to isolate the effect of behavioural rules.

2 Model and Results

Let G represent a bi-matrix game. There are two finite populations, denoted by A and B.

Time is discrete and in each time period, one individual from each population is randomly

chosen, and these two individuals play that game in that period. Each individual of each

population has positive probability of being chosen in any particular period. I denote the

randomly chosen individual in population A and B in period t as A(t) and B(t) respectively.

XA and XB denote the finite time-invariant strategy set of individuals belonging to popula-

tion A and population B respectively. The strategy played by the randomly chosen individual

from population J in period t is denoted by xJ(t) ∈ XJ , where J = A,B; the strategy chosen

by the randomly chosen individual from the other population is denoted by x−J(t) ∈ X−J .

Thus, the period t outcome is x(t) = (xA(t), xB(t)), and X = XA × XB is the space of

outcomes. I emphasise that the situation is one of recurrent interaction, and I abstract away

from any consideration that may arise out of repeated interactions. �A and �B, each defined

over X, is the binary rational preference relation of each individual in population A and

population B respectively; for any two outcomes x, y ∈ X,x �J y implies that outcome x

is at least as good as outcome y for individuals in population J . �J and ∼J are the strict

preference relation and indifference relation induced by �J .1

The state of the game at the beginning of period t + 1 (when each individual is yet to

decide on his strategy) is given by the finite M period history of strategies i.e. ω(t + 1) =

(x(t), x(t − 1), . . . , x(t −M + 1)) = ((xA(t), xB(t)), (xA(t − 1), xB(t − 1)), . . . , (xA(t −M +

1), xB(t − M + 1))); ωA(t + 1) = (xA(t), xA(t − 1), . . . , xA(t − M + 1)) and ωB(t + 1) =

(xB(t), xB(t − 1), . . . , xB(t − M + 1)) denote the strategies used by the randomly chosen

individuals in population A and population B respectively in the preceding M periods. The

state space is denoted by Ω = (XA×XB)M . In the beginning of period t+1, individual J(t+1)

from population J draws a random sample (without replacement) of strategies of exogenously

fixed size S from ω−J(t), and I assume that every feasible sample has positive probability of

being drawn. Let sJ(t + 1) denote the sample drawn by J(t + 1) in period t + 1, and

supp(sJ(t + 1)) = {x : x ∈ sJ(t + 1)} be the support of sample sJ(t + 1). Individuals

1That is, for any two outcomes x, y ∈ X,x �J y ⇔ x �J y and not y �J x, while x ∼J y ⇔ x �J y and
y �J x.
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in population J are associated with a time-invariant behavioural rule, or a time-invariant

response correspondence, RJ : XS
−J ⇒ P (XJ) that goes from the space of feasible samples to

the power set of the strategy set XJ that contains all the non-empty subsets of XJ . If sJ(t+1)

is the sample drawn by individual J(t+1), then each element of the response set RJ(sJ(t+1))

has strictly positive probability of being played by him in the current period t+ 1.

Now, for any y ∈ XB, I define CA(y) = {x ∈ XA : (x, y) �A (z, y), ∀z ∈ XA}, i.e. assuming

that the co-player of the population A individual plays strategy y, the set CA(y) comprises

of all those strategies that lead to outcomes that are not strictly dominated by an outcome

that arises from playing a strategy outside this set CA(y) for the population A individuals.

Similarly, for any x ∈ XA, CB(x) = {y ∈ XB : (x, y) �B (x, z), ∀z ∈ XB}.
I restrict attention to the class of generic bi-matrix games G′ that are weakly acyclic. I

define a bi-matrix game to be generic if for any two disparate outcomes (x, y) ∈ XA × XB

and (x′, y′) ∈ XA×XB, with x 6= x′ or y 6= y′ (or both), either (x, y) �J (x′, y′) or (x′, y′) �J

(x, y) for any J ∈ {A,B}. Next, in order to define a weakly acyclic game (in the sense of

Young (1993a)), I first introduce the concepts of an improving path and a sink. An improving

path exists between two outcomes x′ = (x′A, x
′
B) and x′′ = (x′′A, x

′′
B) if either (i) x′A = x′′A,

x′B 6= x′′B, and x′′B ∈ CB(x′A), so that (x′′A, x
′′
B) �B (x′A, x

′
B), or (ii) x′A 6= x′′A, x′B = x′′B, and

x′′A ∈ CA(x′B), so that (x′′A, x
′′
B) �A (x′A, x

′
B); I represent this improving path by x′ → x′′.

An outcome is defined to be a sink if there does not exist an improving path from it. Then,

a game is weakly acyclic if every outcome in X is either a sink, or there exists a sequence

of improving paths x0 = (x0
A, x

0
B) → . . . → xn = (xnA, x

n
B) from every outcome x0 that is

not a sink to an outcome xn that is a sink, and where x0, . . . , xn ∈ X.2 Some prominent

examples of weakly acyclic games include the (Nash) bargaining game, co-ordination games,

the Stag-Hunt game and the minimum effort game.

The behavioural rule of population J , RJ , is weakly responsive if supp(sJ(t+ 1)) = {x} ∈
X−J implies CJ(x) ∩ RJ(sJ(t + 1)) 6= ∅. That is, whenever a weakly responsive individ-

ual draws a sample of the other population’s strategies that only consists of one particular

strategy x, then at least one strategy that leads to an outcome that is at least as good as

any other outcome (given that the other player chooses x) is always in his response set.

Weak responsiveness does not impose CJ(x) ⊂ RJ(sJ(t+ 1)), or CJ(x) = RJ(sJ(t+ 1)) when

sJ(t+1) = {x}, for some x ∈ X−J i.e. not all strategies in CJ(x) need appear in RJ(sJ(t+1)),

and RJ(sJ(t + 1)) may contain strategies other than the strategies in CJ(x). Neither does

weak responsiveness place any restriction on the behaviour of any individual for any other

sample apart from the ones which are comprised of only one particular strategy.

I argue that this is the weakest condition that must be satisfied by any behavioural rule

2As an example, consider a game where the strategies xA and xB are dominated by the strategies x′A and
x′B for population A and population B individuals, and that (x′A, x

′
B) is a sink outcome. Then, one example

of an improving path from (xA, xB) to (x′A, x
′
B) is (xA, xB)→ (x′A, xB)→ (x′A, x

′
B).
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that responds to past information; after all, conditional on individual’s response depending on

the obtained sample, the situation where a sample comprises of only one particular strategy is

the simplest decision making situation for an individual; if the above condition does not hold

for a particular behavioural rule, i.e. if CJ(x)∩RJ(sJ(t+ 1)) = ∅ for some supp(sJ(t+ 1)) =

{x} ⊂ X−J , then the behavioural rule is not responsive to the information contained in the

sample even in the simplest possible case. It is in this sense that I term weak responsiveness

as the weakest or most general condition on responsive behavioural rules.

This strategic situation, where the two randomly chosen individuals from each population

play the game by choosing a strategy from their respective response sets that is generated

by their behavioural rule, can be described by a Markov process Q on the state space Ω. A

convention is a state ω ∈ Ω if the same outcome, say (x̄, ȳ), has been realised in all the past M

periods, and in addition, the outcome (x̄, ȳ) is a sink; this particular convention is denoted by

ωx̄,ȳ. Co(G′) denotes the set of conventions of the game G′, and Co(G′)J = {ωx,y ∈ Co(G′)
such that (x, y) �J (x′, y′),∀ωx′,y′ ∈ Co(G′)} is the set of conventions that are not strictly

dominated by other conventions according to the preference relation of population J . Since

I restrict attention to generic games, Co(G′)J is a singleton and I refer to it as the most

preferred convention for individuals of population J . The game is said to reach a convention

almost surely if the probability of a transition to a convention from any initial state is strictly

positive; the game is said to converge almost surely to a convention if the game reaches a

convention almost surely and then stays in the convention thereafter. Then Proposition 1

follows.

Proposition 1. Suppose that the sampling is sufficiently incomplete, and the behavioural

rule of each population is weakly responsive. Then any bi-matrix game weakly acyclic game

reaches a convention almost surely.

Proof. Let ω(t + 1) denote the state at the beginning of time period t + 1. Then, the

following events occur with positive probability:

(i) In all time periods t+ 1, . . . , t+S, the randomly chosen individual from either population

draws the strategies played by individuals of the other population in the periods t−S+1, . . . , t;

since the same sample is drawn by individuals of a particular population, the population A

individuals play the same strategy x̄A while the population B individuals play the same

strategy x̄B in all these periods. Hence, the outcome (x̄A, x̄B) obtains in all the time periods

t+ 1, . . . , t+ S.

(ii) Now, suppose that the outcome (x̄A, x̄B) is a sink. Then, in each time period from t+S+1

onwards, individuals from either population draw a sample that comprises of the strategies of

the preceding S periods. So, the sample drawn by a population A (similarly, population B)

individual comprises only of x̄B (similarly, x̄A); as (x̄A, x̄B) is a sink outcome, population A

(similarly, population B) individuals continue to play x̄A (similarly, x̄B), so that in all time
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periods from t+ 1, . . . , t+M , the history of strategies is made up of population A (similarly,

population B) individuals playing x̄A (similarly, x̄B). In any period that follows, any sample

drawn by a population A (similarly, population B) individual comprises only of x̄B (similarly,

x̄A), and so, these individuals choose x̄A and x̄B. A convention is thus reached almost surely.

(iii) Suppose, on the other hand, that the outcome (x̄A, x̄B) is not a sink. Since the game is

weakly acyclic, there exists a sequence of improving paths from this outcome to a sink. Let

x0 → . . . → xn be such a sequence of improving paths, where xi is the outcome (xiA, x
i
B)

for i = {0, . . . , n}, x0 = (x̄A, x̄B), and the outcome xn is a sink. Without loss of general-

ity, the improving path x0 → x1 involves outcome x1 such that x0
A 6= x1

A, x0
B = x1

B, and

(x1
A, x

0
B) �A (x0

A, x
0
B). Now, with positive probability, in the time periods t+S+1, . . . , t+2S,

the population A individuals’ sample comprises of the strategies (xB(t + 1), . . . , xB(t +

S)) = (x̄B, . . . , x̄B) while the population B individuals’ sample comprises of the strategies

(xB(t−S+1), . . . , xB(t)). As a result, with positive probability, the population A individuals

play x1
A and the population B individuals play x0

B in all the time periods t+S+1, . . . , t+2S,

due to which, at the end of period t + 2S, the S-period history comprises only of the out-

comes x1 = (x1
A, x

0
B). If this outcome is a sink, then (ii) above applies; if not, then using

the argument outlined above, it can be show that in all of the next S periods, the outcome

corresponds to outcome x2 of the sequence of improving paths; with positive probability, the

process proceeds in this manner till the there is a S-period run of the sink outcome xn, at

which point (ii) above applies. Hence, again, a convention is reached almost surely. �

The proposition above shows that for the game to converge almost surely to a convention, the

only requirement is that each behavioural rule is weakly responsive. However, weak respon-

siveness is not sufficient for the persistence of an established convention – weak responsiveness

in generic games implies that if supp(sJ(t + 1)) = {x}, then CJ(x) ∩ RJ(sJ(t + 1)) 6= ∅. So,

if RJ(sJ(t + 1)) \ CJ(x) is non-empty, then a weakly responsive individual responds with a

strategy in the set RJ(sJ(t+1))\CJ(x) with positive probability, causing a transition from the

convention. Now, I define the behavioural rule RJ to be mildly responsive if supp(sJ) = {x}
implies RJ(sJ(t+ 1)) = CJ(x) for any x ∈ X−J . Hence, when a mildly responsive individual

draws a sample that comprises only of a particular x, his response set is equivalent to CJ(x);

however, mild responsiveness places no other restriction on the behaviour of an individual

when other samples are drawn. Then, because a population of mildly responsive individuals

is also weakly responsive, Proposition 2 below follows directly from Proposition 1 and the

definition of mild responsiveness, and hence, is stated without proof. Further, for the rest of

the paper, I assume that the behavioural rule of either population is mildly responsive.

Proposition 2. Suppose that the sampling is sufficiently incomplete, and the behavioural

rule of each population is mildly responsive. Then any generic weakly acyclic game converges

almost surely to a convention.
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In order to capture the feature that conventions, at times, may be borne out of exogenous

shocks or historical accidents, I now introduce the possibility of mistakes or experimentation

in the decision-making process of an individual. With independent probability ε > 0, the

randomly chosen individual from population J makes a mistake, or experiments, by playing

a strategy xJ(t + 1) /∈ RJ(sJ(t + 1)) in time period t + 1 for any feasible sample sJ(t + 1)

that can be drawn from ω−J(t + 1), i.e. an individual plays a strategy that is not dictated

by the behavioural rule of his parent population. Due to experimentations/mistakes, it is

now possible to transit from one convention to another. This perturbed Markov process,

represented by Q(ε), is ergodic; for each ε > 0, there exists a unique stationary distribution

µ(ε) given by µ(ε)Q(ε) = µ(ε). The stochastically stable set – see Foster and Young (1990),

Kandori, Mailath and Rob (1993) and Young (1993a) for details– is the set of states that

receive positive weight in the limiting stationary distribution µ∗ = limε↓0µ(ε). For the pur-

pose of this paper, the identification of this set is determined by the relative difficulty/ease of

transition from one set of conventions to the complementary set of conventions. According to

Theorem 3 in Ellison (2000), if it is possible to transit into a particular convention from any

other convention with a single experimentation, then the said convention is in the stochasti-

cally stable set; if, in addition, a transition from the particular convention needs strictly more

than one experimentation, then it is the unique stochastically stable state.

I now focus on one particular behavioural rule, namely ‘extreme optimism’. The in-

dividuals in population J are said to be extremely optimistic if any individual from the

population assesses, on drawing a sample sJ(t + 1) in any time period t + 1, that his ran-

domly chosen co-player from the other population will choose a strategy from the assessment

set AS(sJ(t + 1)) = {x ∈ sJ(t + 1) : ∃y ∈ XJ such that (y, x) �J (y′, x′),∀y′ ∈ XJ and

∀x′ ∈ sJ(t+ 1)}; consequently, in period t+ 1, he plays a strategy in the set CJ(x), for some

x ∈ AS(sJ(t + 1)). Thus, a extremely optimistic individual believes that he is going to face

only the most favourable of circumstances – amongst all the strategies in the drawn sample,

his co-player will play a strategy that will lead to the most favourable outcome for him – and

he acts accordingly. The next proposition shows the long-run advantage of this behavioural

trait.

Proposition 3. Suppose that individuals of a particular population are extremely optimistic,

and all individuals of the other population are mildly responsive. If sampling is sufficiently

incomplete, then in any generic weakly acyclic game, the most preferred convention of the

extremely optimistic population is always in the stochastically stable set.

Proof. Without loss of generality, let population A individuals be extremely optimistic.

Consider a convention ωx,y ∈ Co(G′)A; since it is a sink outcome, at least one experimentation

is needed to transit from (the basin of attraction) of ωx,y. (That is, the radius of ωx,y is at

least equal to one.) So, in order to prove the proposition, it is sufficient to show that a
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transition to a convention ωx,y from any other convention ωx′,y′ ∈ Co(G′) is possible with a

single mistake/experimentation (Theorem 3, Ellison (2000).)

Suppose that the initial convention in period t is ωx′,y′ , and that in period t, the randomly

chosen individual in population B experiments, or makes a mistake, by playing the strategy y.

Then in all periods t+1 to t+M , with positive probability, the population A individual draws

a sample that contains this strategy y; extreme optimism implies y ∈ AS(sA(t + k)), for all

k = 1, . . . ,M . Since ωx,y ∈ Co(G′)A, x ∈ RA(sA(t + 1)) whenever y ∈ A(sA(t + 1)), and

so, xA(t + k) = x, for all k = 1, . . . ,M . Also, with positive probability, in all time periods

t+S+ 1 to t+M , the randomly chosen individual from population B draws the sample from

the previous S periods; this sample comprises only of x, and because the outcome (x, y) is

a sink, the population B individual plays y in all these periods. Thus, the outcome in all

the S periods from t + S + 1 to t + M is given by (x, y). Then, in all the M − S periods

from t+M + 1 to t+ 2M −S, the randomly chosen individuals from either population (with

positive probability) draw a sample from the previous S periods – these samples comprise

only of x for population B individuals , and y for population A individual. As a result, the

strategies x and y are played in all these periods by the population A and population B

individuals respectively. It follows that at the end of period t+2M−S, the M period history

comprises only of the outcomes (x, y). The game converges to the convention ωx,y, and the

transition to this convention from any other convention has been shown to be possible by a

single experimentation, thus proving the proposition. �

While the above proposition hints at the long-run advantage that extreme optimism may

confer, it does not exclude the possibility that conventions that are least preferred by the

extremely optimistic population are also in the stochastically stable set. I now argue that

generic weakly acyclic games, if the other population’s behavioural rule is mildly different from

extreme optimism, then the most preferred convention of the extremely optimistic population

is the unique stochastically stable outcome. For this purpose, I now define what it means

for the other population to be mildly different from the extremely optimistic population.

Without loss of generality, I assume that the behavioural rule of population A is given by

extreme optimism. Let T = {x ∈ XA : ∃y ∈ XB such that ωx,y ∈ Co(G′A)} be the set of

strategies for population A so that for every strategy in this set, there exists a strategy y for

population B such that ωx,y belongs to the set of most preferred conventions for population A

individuals. Population B is said to be mildly different from population A population if the

following condition holds: whenever a population B individual draws the specific sample s

that comprises of S − 1 occurrences of a particular strategy x ∈ T and a single occurrence of

any other strategy, then RB(s) = CB(x). Here, I stress on the fact that the proportion with

which the ‘other’ strategy occurs in the sample can be arbitrarily small, as the S (the size of

the sample) can be arbitrarily large – it is in this sense that population B is mildly different
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from extremely optimistic population. I now show that the most preferred convention of the

extremely optimistic population is the unique stochastically stable outcome.

Proposition 4. Suppose that the response correspondence of population A exhibits extreme

optimism, and population B’s response correspondence is mildly different from it. If sampling

is sufficiently incomplete, then the convention that is most preferred by the population of

extremely optimistic individuals is the uniquely stochastically stable state of any generic weakly

acyclic game.

Proof. Let population A’s most preferred convention be denoted by ωx,y. Proposition 3

shows that ωx,y is always in the stochastically stable set because a transition into it from

any other convention is possible with a single experimentation/mistake. So, to complete the

proof, it is sufficient to show that a transition out of ωx,y is not possible by a single experi-

mentation/mistake.

Suppose that the current convention is ωx,y, and in a particular time period t, either an in-

dividual in population A experiments/makes a mistake by playing x′ 6= x, or an individual

in population B experiments/makes a mistake, by playing y′ 6= y. In either case, any sample

that a population A can draw in any of the succeeding time periods comprises of at least S−1

instances of strategy y and at most one occurrence of strategy y′; similarly, any sample that

a population B can draw in any of the succeeding time periods comprises of at least S − 1

instances of strategy x and at most one occurrence of strategy x′. Since the individuals in

population A are extremely optimistic, the response to any sample that they can draw in any

time period in the future is x; because population B is mildly different from population A,

the response of any population B individual to any sample that they can draw in any time

period in the future is y. As a result, the only outcome in any time period in the future

that arises from the population A and population B individuals choosing a strategy by their

behavioural rule is (x, y), and so, after M time periods following the time period when the

mistake/experimentation appears, the convention ωx,y is re-established. Hence, it is not pos-

sible to transit from ωx,y with one experimentation/mistake. �

Example. Consider the bi-matrix coordination game, with the payoff matrix below, where

individuals from population A assume the role of the row player and individuals from pop-

ulation B assume the role of the column player. XA = {U,D} and XB = {L,R}. I assume

a > e, g > c, b > d and h > f . Thus, (U,L) and (D,R) are the sink outcomes (and the Nash

equilibria). Suppose without loss of generality that a > g; then population A, whose response

correspondence displays extreme optimism, prefers the outcome (U,L) over (D,R). This is

representative of coordination games, such as the Stag-hunt game (a necessary condition for

this b > h – here the individuals have the same preferences over the two sink outcomes) or

Battle of the Sexes (this occurs when h > b – here the two individuals differ in their preference
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over the two sink outcomes).

In this game, extreme optimism implies that if an individual from population A draws a

sample that contains at least one instance of strategy L being played, then he assesses that

his randomly matched co-player will play L; consequently, he plays U . Population B is said

to be mildly different from population A population if for the specific sample comprising of

S−1 occurrences of strategy U and a single occurrence of strategy D, the response set of any

individual in the population B does not contain the strategy R. Then, Proposition 4 implies

that the unique stochastically stable state is the convention ωU,L. The general message of this

example extends to N×N coordination games (i.e. coordination games where each population

has N strategies): in case of Stag-Hunt type co-ordination games, where the preferences of

individuals of either population are perfectly aligned, the commonly preferred outcome is the

uniquely stable outcome in the long-run; however, in the case of Battle of the Sexes type

coordination games, where preferences over the conventions are oppositely aligned, the other

population is constrained to its least preferred outcome.

L R
U a, b c, d
D e, f g, h

�

3 Conclusion

In this paper, I analyse the long-run stochastically stable outcome when individuals belonging

to two different populations play a game with/against each other in a recurrent framework.

In each period of this recurrent game, an individual is randomly chosen from each population

and these two individuals play the game in that period. In order to choose a strategy,

individuals randomly draw a sample from the finite history of strategies used by individuals

of the other population, and respond to this sample in a manner dictated by the behavioural

rule of their parent population. A convention is established whenever the behavioural rule of

either population satisfies a very general condition, namely weak responsiveness, and a mild

strengthening of weak responsiveness, namely mild responsiveness, ensures that the game

stays locked into that established convention.

The next objective is examine the relative success of various mildly responsive behavioural

rules by looking at the outcomes obtained in the stochastically stable set. Here, I firstly show

that if a population exhibits extreme optimism, then the convention that is most preferred by

it is always in the stochastically stable set. Next, I show that under a reasonable restriction on

the behavioural rule of the other population that differentiates it from a population exhibiting

extreme optimism, the convention that is most preferred by the latter is unique stochastically

stable state. Thus, extreme optimism imposes an ‘externality’ on the other behavioural rules,
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and depending on the nature of the game, the ‘externality’ might benefit or constrain the

other population. In games where the interests of the two populations are oppositely aligned

– for example, fixed-sum games such as the bargaining game, or Battle of the Sexes type of co-

ordination games – the other population is constrained to the worst possible outcome; in this

case, one might say that extreme optimism outperforms any other behavioural rule. However,

in games where there is no conflict of interest - for example, Stag-hunt games or minimum

effort games – the other population shares the spoils of the most preferred convention of the

population displaying extreme optimism emerging as the only stable outcome in the long-run.
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