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Abstract

We consider an infinitely repeated prisoner’s dilemma under costly
observation. If a player observes his opponent, then he pays an observa-
tion cost and knows the action chosen by his opponent. If a player does
not observe his opponent, he cannot obtain any information about his
opponent’s action. Furthermore, no player can statistically identify the
observational decision of his opponent. We prove an efficiency without
any signals. Next, we consider a kind of delayed observations. Players
decide their actions and observation decisions in the same period, but
they choose observation decisions after they choose their actions. We in-
troduce an interim public randomization instead of public randomization
just before observation decision. We present a folk theorem with an in-
terim public randomization device for a sufficiently small observation cost
when players are sufficiently patient.

Keywords B to B business · Costly observation · Efficiency · Folk
theorem · Prisoner’s dilemma
JEL Classification: C72; C73; D82

1 Introduction

It is well known that prisoner’s dilemma is a primitive model to represent the
form of team production. In prisoner’s dilemma, each player has two choices;
exert a high effort for the team (cooperation) or do not exert a high effort
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for the team (noncooperation). To understand cooperative behavior in team
production, the long-run relationship is also crucial.

One of the important factors in the long-run relationship is the monitoring
structure. If a player wants to receive cooperation from the other player, he
needs to monitor the other player and choose a cooperative action as a reward
in the case where the other player cooperates with him. In reality, information
is not free. We need time to collect information. We analyze what happens if
monitoring is costly. More specifically, we consider whether efficiency or folk
theorem holds or not.

In our model, we consider costly observation as a monitoring structure. Each
player chooses his action and observational decision. If a player chooses to
observe his opponent, then he can observe the action chosen by the opponent.
The observational decision itself is unobservable. The player cannot obtain any
information about his opponent in that period if he chooses not to observe that
player. This means that the marginal distribution of private signals does not
satisfy the full support condition.

Furthermore, no player can statistically identify the observational decision of
his opponent. That is, our monitoring structure is neither almost-public private
monitoring (Hörner and Olszewski (2009); Mailath and Morris (2002, 2006);
Mailath and Olszewski (2011)) nor almost perfect private monitoring (Bhaskar
and Obara (2002); Chen (2010); Ely and Välimäki (2002); Ely et al. (2005);
Hörner and Olszewski (2006); Sekiguchi (1997); Piccione (2002); Yamamoto
(2007, 2009))1.

One of the application of this game is B to B business. Let us consider a
price competition in in B to B business. In reality, the price of each products
tends to be private. If the price of some company is public, the competitor will
choose the price slightly lower than the competitor and obtain the client. If the
company wants to know the price strategy of the competitor, the company needs
to investigate with time and financial cost. This situation is costly observation.

We present two results. First, we show that a symmetric Pareto efficient
payoff vector can be approximated by a sequential equilibrium without any
signals under some assumptions regarding the payoff matrix when players are
patient and the observation cost is small (efficiency). The second result is a
type of folk theorem. We introduce an interim public randomization device. The
public randomization device is realized just after the players choose their actions,
and players can see the public randomization device before their observational
decision. We present a folk theorem with an interim public randomization device
under some assumptions regarding the payoff matrix when players are patient
and the observation cost is small. The first result shows that a cartel is possible
without any signal and communication in B to B business. The second result
implies that companies need coordination device to archive asymmetric cartel

1Yamamoto (2012) shows some tractable subset of Nash equilibria under conditional inde-
pendence and Sugaya (2011) modifies the equilibrium construction of Yamamoto (2012) and
show the tractable subset of Nash equilibria without conditional independence. It is difficult
to compare our result to their result because they assume the full support condition in their
analysis, whereas costly monitoring does not satisfy the full support condition.
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in B to B business.
The nature of our strategy is close to the keep-them-guessing strategies in

Chen (2010). In our strategy, each player chooses Ci with certainty at the
cooperative state, but randomizes the observational decision. Depending on the
observation result, players change their actions from the next period on. If the
player plays Ci and observes Cj , he remains in a cooperation state. However, in
other cases (for example, the player does not observe his opponent), the player
moves out of the cooperation state. From the perspective of his opponent, the
player plays the game as if he randomizes Ci and Di although he chooses pure
actions in each state. Such randomized observations create uncertainty about
the opponents’ state in each period and gives the incentive to observe.

As with Chen (2010), our analysis is tractable. By construction, the concern
of each player at each period is only whether his opponent is in a cooperation
state or not. It is sufficient to keep track of this belief, which is the probability
that the opponent is in a cooperation state.

Our main contribution is the efficiency result and folk theorem in infinitely
repeated primitive prisoner’s dilemma. Some previous literature shows that
efficiency results hold if some tools to share information are available. For
example, some literature assumes that communication is available. Another
literature assumes that some information is available even if players do not
observe the opponent. We will show these tools and discuss previous literature in
Section 2. Our result shows that players can construct a cooperative relationship
without any tools.

Another contribution is showing another approach to construct a sequen-
tial equilibrium. We consider the randomization of monitoring, whereas previ-
ous literature confines its attention to the randomization of actions. In costly
monitoring model, the observational decision is supposed to be unobservable.
Therefore, even if a player observes the opponent, he cannot know whether the
opponent observes him or not. If the continuation strategy of the opponent
depends on the observational decision in the previous period, the opponent
randomizes actions from the perspective of the player although the opponent
chooses pure actions in each history. This new approach enables us to construct
a sequential equilibrium.

The rest of this paper is organized as follows. Section 3 introduces a model
of repeated prisoner’s dilemma with costly observation. We present our results
in Section 5. We show an efficiency result with a small observation cost. We
show a folk theorem with an interim public randomization device in Section 6.
We will discuss asymmetric prisoner’s dilemma in Section 7. Section 8 provides
concluding remarks.

2 Literature Review

The previous literature shows efficiency results or folk theorems with some tools
or assumptions. In this section, we explain these related literature on costly
monitoring.
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One of the biggest difficulty in costly monitoring is monitoring the monitor-
ing activity of the opponent because the observational behaviors in the costly
monitoring are assumed to be unobservable. Each player has to check these
unobservable activity to motivate the other player to observe. One of the solu-
tion to this difficulty is assuming that the observational decision is observable.
Kandori and Obara (2004); Lehrer and Solan (2018) assume that players can
observe the other players’ observational decision themselves.

Another approach is communication. Ben-Porath and Kahneman (2003)
analyze an information acquisition model with communication. They show that
players can share their information through explicit communication and present
a folk theorem for any level of observation cost. Ben-Porath and Kahneman
(2003) consider a strategy given which players randomize actions on the path.
In their strategy, players report their observations each other. Then, each player
can distinguish whether the other player observes him or not by the reports.
Therefore, players can check observation activities of the other players.

An implicit communication has been shown in Miyagawa et al. (2008). Miya-
gawa et al. (2008) assume that communication is not allowed however players
can obtain imperfect private signals about the other player’s action even when
they do not observe their opponent. They show that players can communicate
with each other implicitly through the information and a folk theorem holds for
any level of observation cost.

If these assumptions do not hold, that is, no costless information is available,
then cooperation is difficult. There are two results which show folk theorems
without costless information. Miyagawa et al. (2003) considers the same moni-
toring structure as used in this paper and presents a folk theorem with a small
observation cost. Flesch and Perea (2009) also consider similar monitoring struc-
tures to our structure. In their model, players can obtain information about the
other player if and only if they observe the other player. Furthermore, they
assume that players can observe the actions chosen in the past if the players
pay an additional cost. Flesch and Perea (2009) show a folk theorem for an
arbitrary observation cost when each player can choose at least three actions.
The above two studies consider an implicit communication using mixed actions.
However, to use implicit communication by mixed action, the above two result
needs more than two actions for each player. It means that their result does not
hold in the infinitely repeated primitive prisoner’s dilemma. We will discuss the
implicit communications in Miyagawa et al. (2003); Flesch and Perea (2009) in
Section 4 after we define our model in Section 3.

3 Model

The base game is a symmetric prisoner’s dilemma. Each player i (i = 1, 2)
chooses an action, Ci or Di. Let Ai ≡ {Ci, Di} be the set of actions for player i.
Given an action profile (a1, a2), the base game payoff for player i, ui(a1, a2), is
displayed in Table 1.

We make the usual assumptions about the above payoff matrix.
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Player 2
C2 D2

Player 1
C1 1 , 1 −ℓ , 1 + g
D1 1 + g, −ℓ 0 , 0

Table 1: Prisoner’s dilemma

Assumption 1. (i) g > 0 and ℓ > 0; (ii) g − ℓ < 1.

The first condition implies that action Ci is dominated by action Di for each
player i, and the second condition ensures that the payoff vector of action pro-
file (C1, C2) is Pareto efficient. We impose an additional assumption.

Assumption 2. g − ℓ > 0.

Assumption 2 is the same as Assumption 1 in Chen (2010).
The stage game is simultaneous form. Each player i chooses an action ai and

the observational decision simultaneously. Let mi represent the observational
decision for player i. Let Mi ≡ {0, 1} be the set of observational decisions
for player i, where mi = 1 represents “to observe the opponent,” and mi = 0
represents “not to observe the opponent.” If player i observes the opponent, he
incurs an observation cost λ > 0, and he receives complete information about
the action chosen by the opponent at the end of the stage game. If player i does
not observe the opponent, he does not incur any observation cost and obtains
no information about his opponent’s action. We assume that the observational
decision for a player is unobservable.

A stage behavior for player i is the pair of base game actions ai for player i
and observational decision mi for player i and denoted by bi = (ai,mi). An
outcome of the stage game is the pair of b1 and b2. Let Bi ≡ Ai ×Mi be the
set of stage behaviors for player i, and let B ≡ B1 ×B2 be the set of outcomes
of the stage game. Given an outcome b ∈ B, the stage game payoff πi(b) for
player i is given by

πi(b) ≡ ui(a1, a2)−miλ.

For any observation cost λ > 0, the stage game has a unique stage game Nash
equilibrium outcome, b∗ = ((D1, 0), (D2, 0)).

Let δ ∈ (0, 1) be a common discount factor. Players maximize their expected
average discounted stage game payoffs. Given a sequence of outcomes of the
stage games (bt)∞t=1, player i’s average discounted stage game payoff is given by

(1− δ)

∞∑
t=1

δt−1πi(b
t).

By the assumption of no free signals regarding player actions, a player re-
ceives no information about the action chosen by his opponent when he does not
observe the opponent. This implies that each player does not receive the base
game payoffs in the course of play. As in Miyagawa et al. (2003), we interpret
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the discount factor as the probability with which the repeated game continues,
and it is assumed that each player receives the sum of the payoffs when the re-
peated game ends. Then, the assumption of no free signal regarding the actions
is less problematic.

Let oi ∈ Aj ∪ {ϕi} be an observation result for player i. Observation re-
sult oi = aj ∈ Aj implies that player i chose observational decision mi = 1, and
observed aj . Observation result oi = ϕi implies that player i chose mi = 0, that
is, he obtained no information about the action chosen by the opponent.

Let hti be a (private) history of player i at the beginning of period t ≥ 2: hti =
(aki , o

k
i )

t−1
k=1. It is a sequence of his own actions and his observation results up to

period t − 1. We omit the observational decisions from hti because observation
result oki implies the observational decision mk

i for any k. Let Ht
i denote the set

of all the histories for player i at the beginning of period t ≥ 1, where H1
i is an

arbitrary singleton set.
A (behavior) strategy for player i of the repeated game is a function of a

history of player i to a probability distribution over the set ∆(Bi) of his stage
behavior; σi :

∪∞
t=1H

t
i → ∆(Bi).

A belief ψt
i of player i in period t is a function of the history hti of player i

in period t obtained from a probability distribution over the set of histories for
player j in period t. Let ψi ≡ (ψt

i)
∞
t=1 be a belief for player i, and ψ = (ψ1, ψ2)

denote a system of beliefs.
A strategy profile σ is a pair of strategies σ1 and σ2. Given a strategy

profile σ, a sequence of completely mixed behavior strategy profiles (σn)∞n=1

that converges to σ is called a tremble. Each completely mixed behavior strategy
profile σn induces a unique system of beliefs ψn.

The solution concept is a sequential equilibrium. We say that a system of
beliefs ψ is consistent with σ if there exists a tremble (σn)∞n=1 such that the
corresponding sequence of system of beliefs (ψn)∞n=1 converges to ψ. Given the
system of beliefs ψ, strategy profile σ is sequentially rational if, for each player i,
the continuation strategy from each history is optimal given his belief of the
history, and the opponent’s strategy. It is defined that a strategy profile σ is a
sequential equilibrium if there exists a consistent system of beliefs ψ for which
σ is sequentially rational.

4 Cooperation failure in prisoner’s dilemma (Miya-
gawa et al. (2003))

Let us explain some constraints in prisoner’s dilemma. Table 2 below is the
bilateral trade game with moral hazard in Bhaskar and van Damme (2002)
simplified by Miyagawa et al. (2003).
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Player 2
C2 D2 E2

Player 1
C1 1 , 1 −1 , 2 −1 , −1
D1 2 , −1 0 , 0 −1 , −1
E1 −1 , −1 −1 , −1 0 , 0

Table 2: Extended Prisoner’s Dilemma

Miyagawa et al. (2003) consider the following keep keep-them-guessing strate-
gies to approximate payoff vector (1, 1). There are three state: cooperation
state, punishment state, and defection state. In the defection state, both player i
choose Ei and the state remains the same. In the punishment state, both player i
choose Ei for some periods and the state moves back to cooperation state. In
both punishment state and defection state, players do not observe the oppo-
nent. In the cooperation state, each player chooses Ci with sufficiently high
probability and chooses Di with the remaining probability. Players observe the
opponent in the cooperation state. If players observe (C1, C2) or (D1, D2), the
state remains the same. The state moves to defection state if player i chooses
Ei or observes Ej . When (C1, D2) or (D1, C2) is realized, the state moves to
punishment state.

Players have an incentive to observe the opponent because the opponent ran-
domizes actions Cj and Dj in the cooperation state. If player does not observe
the opponent, player cannot know the state of the opponent in the next period.
If the state of the opponent is cooperation state, then action Ei is suboptimal
action because the opponent never chooses action Ej . That is, action Ei has
some opportunity cost because the state of the opponent is cooperation state
with a high probability. However, if the state of the opponent is defection state,
then Ei is unique optimal action. Action Ci and Di also have some opportunity
cost because the state of the opponent is defection state with a positive prob-
ability. Therefore, players have an inventive to observe in order to avoid these
opportunity costs.

These ideas do not hold in two-action game. Let us consider primitive pris-
oner’s dilemma as an example. If players randomize Ci and Di in the coopera-
tion state, it means that players best response action always includes action Di

irrespective of the state of the opponent. For example, player can save observa-
tion cost in the cooperation state if he does not observe in the current period
and chooses Di and observe in the next period.

In addition, players can distinguish cooperation state and other states by
the observation in extended prisoner’s dilemma. Actions Cj and Dj mean that
the state of the opponent is cooperation state. Action Ej is defection state.
That is, player can convey some information by actions. This communication
is also limited in a two-action game. 2

In reality, players sometimes can choose only two types of actions (coop-
eration and non-cooperation). It means that there is no additional action for
communication (e.g., action Ei in the extended prisoner’s dilemma). Our results

2For further sophisticated application, see Flesch and Perea (2009)
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give some understandings of cooperation in these primitive model to describe a
reality.

5 No public randomization

In this section, we show our efficiency result without any randomization device.
The following proposition shows that the symmetric efficient outcome is approx-
imated by a sequential equilibrium if the observation cost λ is small and the
discount factor δ is moderately low.

Proposition 1. Suppose that Assumptions 1 and 2 are satisfied. For any ε > 0,

there exist δ ∈
(

g
1+g , 1

)
, δ ∈ (δ, 1), and λ > 0 such that for any discount

factor δ ∈ [δ, δ] and for any observation cost λ ∈ (0, λ), there exists a symmetric
sequential equilibrium whose payoff vector (v∗1 , v

∗
2) satisfies v∗i ≥ 1 − ε for each

i = 1, 2.

Proof. See Appendix A.

An illustration

While the proof in Appendix A provides the detailed construction of an equi-
librium that approximates Pareto-efficient payoff vector, we here give its main
idea.

Let us consider the following three four automaton: Initial state ω1
i , cooper-

ation states (ωt
i)

∞
t=2, transition state ωE

i , defection state ωD
i . In initial state ωD

i ,
player i randomizes three stage behavior: (Ci, 1), (Ci, 0), and (Di, 0). Player i
chooses (Ci, 1) with sufficiently high probability. In cooperation state ωt

i(t ≥ 2),
player i chooses Ci and randomizes observation decision. Player i chooses (Ci, 1)
with sufficiently high probability. In transition state and defection state ωD

i ,
player i chooses (Di, 0).

The state transition is described in Figure 1.
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ω1
i ω2

i ω3
i ωt

i

(a1i , o
1
i ) = (Ci, Cj)

. . .

(ati, o
t
i) = (Ci, Cj)

. . .

ωE
i

(ai, oi) = (Ci, ϕi)

oi = ϕi

ωD
i

ai = Di

or
oi = Dj

ai = Di

or
oi = Dj

If (ati, o
t
i) = (Ci, Cj)

at ωE
i in period t,

the state in pe-
riod t + 1 is ωt+1

i

Figure 1: The state-transition rule

That is, player remains cooperation state only when he chooses Ci and observes
Cj . Player i moves defection state if he chooses Di or observes Dj . If player i
does not observe the opponent in the cooperation state, he moves to transi-
tion state. Although, the stage-behavior in the transition state is the same
with that in the defection state, the transition function differs from defection
state. Player i moves back to cooperation state from the transition state if he
observes (Ci, Cj), which is the event off the equilibrium path.

Another property of this strategy is that players never randomizes actions
in cooperation state, whereas players randomizes action in cooperation state
to induce the incentive to observe tn the previous literature. Furthermore, we
will show in the Appendix that player i strictly prefers action Ci in cooperation
state. However, from the perspective of the opponent, player i plays the game
as if he randomizes Ci and Di although he chooses pure actions in each state.
It induces an incentive for the other player to observe.

Let us consider the sequential rationality in each state. The sequential ratio-
nality in the defection state is obvious. The state is defection state only when
player i chose Di or observed Dj . It implies that both player are sure that the
opponent is also in the defection state. Hence player i does not have incentive
to choose Ci nor mi = 1 on the equilibrium path.

Next, let us consider off the equilibrium path. The defection state is the
unique state off the path. Hence, a sufficient condition for the sequential ra-
tionality off the equilibrium path is that player i is certain that the state of
the opponent is defection state. To this end, we consider the same belief with
one in Miyagawa et al. (2008). That is, we consider a sequence of behavioral
strategy profile (σ̂n)∞n=1 such that each strategy profile puts a positive probabil-
ity to every move but puts far smaller weights on the trembles with respect to
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the observational decisions than those with respect to actions3. This trembles
induce a consistent system of beliefs that player i at any defection state is sure
that the state of the opponent is defection state.

Let us discuss the sequential rationality in the cooperation state. We choose
the randomization probability of observation decisions in the cooperation state
so that player i is indifferent between mi = 1 and mi = 0 in the initial state and
the cooperation state. Furthermore, this definition ensures that player i strictly
prefers action Ci. Suppose that player i weakly prefers action Di in the next
cooperation state. Then, one of the best response action is Di irrespective of his
observation. It means that player i strictly prefers mi = 0 because he can save
the observation cost by choosing (Ci, 0) in the current period and (Di, 1) in the
next period. Therefore, the sequential rationality is satisfied in the cooperation
state.

Next, let us consider the transition state. We show that why payer i prefers
action Di in the transition state. In transition state, there are two kinds of
situations. The situation A is situations where player i is in cooperation state
if he observed the opponent in the previous period. The other situation B is
situations where player i is in defection state if he observed the opponent in the
previous period. Of course, player i cannot distinguish these two situations be-
cause he did not observe the opponent. To understand the sequential rationality
in the transition state, let us assume that the monitoring cost is almost zero. It
means that the deviation payoff to (Di, 0) in the cooperation state is sufficiently
close to the continuation payoff from the cooperation state. Otherwise, player i
strictly prefers to observe in the cooperation state to avoid choosing action Di

in the situation A. Therefore, player i is almost indifferent between choosing Ci

and Di in the situation A, whereas player i strictly prefers action Di in situation
B. Hence, player i strictly prefers action Di when observation cost is sufficiently
small because both situations are realized with a positive probability.

Third, let us consider initial state. The indifference condition between Ci

and Di is ensured by the randomization probability between (Ci, 1) and (Ci, 0)
in the initial state. If the monitoring probability is high enough, then player i
is willing to choose action Ci. The indifference condition between (Ci, 1) and
(Ci, 0) in the initial state is ensured by the randomization probability between
(Ci, 1) and (Ci, 0) in the initial state in period 2. There is no incentive to choose
(Di, 1) because the state of the opponent in the next period is not cooperation
state for sure irrespective of the observation.

Lastly, let us consider the payoff. It is obvious that the equilibrium payoff
vector is close to 1 if the probabilities of (Ci, 1) in the initial state and cooper-
ation state are close to 1 and the observation cost is close to 1. In Appendix A,
we will show that the equilibrium payoff vector is close to 1 when discount factor
is close to g

1+g . Another remaining issue is whether our strategy is well-defined
or not. It will be proved by solving difference equation when Assumption 2 is
satisfied.

We extend Proposition 1 by using Lemma 1.

3See Miyagawa et al. (2008) for further discussion.
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Lemma 1. Fix any payoff vector v and any ε > 0. Suppose that there exist

δ ∈
(

g
1+g , 1

)
, δ ∈ (δ, 1) such that for any discount factor δ ∈ [δ, δ], there exists a

sequential equilibrium whose payoff vector (v∗1 , v
∗
2) satisfies |v∗i −vi| ≥ ε for each

i = 1, 2. Then, there exist δ∗ ∈ (g/1+g, 1) such that for any discount factor δ ∈
[δ∗, 1), there exists a sequential equilibrium whose payoff vector (v∗1 , v

∗
2) satisfies

|v∗i − vi| ≥ ε for each i = 1, 2.

Proof of Lemma 1 . We define δ∗ ≡ δ/δ. Choose any discount factor δ ∈ (δ∗, 1).
Then, we choose some integer n∗ that satisfies δn

∗ ∈ [δ, δ]. We divide the
repeated game into n∗ distinct repeated games. The first repeated game is
played in period 1, n∗ + 1, 2n∗ + 1 . . . , the second repeated game is played in
period 2, n∗+1, 2n∗+2 . . . , and so on. As each repeated game can be regarded
as a repeated game with discount factor δn

∗
, strategy σ∗ is a sequential rational

in each game. Thus, this strategy is a sequential equilibrium. As the equilibrium
payoff vector of the original game satisfies |v∗i − vi| ≥ ε for each i = 1, 2, the
equilibrium payoff of this strategy also satisfies |v∗i −vi| ≥ ε for each i = 1, 2.

We obtain an efficiency result for a sufficiently high discount factor.

Proposition 2. Suppose that the base game satisfies Assumptions 1 and 2.
For any ε > 0, there exist δ∗ ∈ (0, 1) and λ > 0 such that for any discount
factor δ ∈ (δ∗, 1) and any λ ∈ (0, λ), there exists a sequential equilibrium whose
payoff vector (v∗1 , v

∗
2) satisfies v

∗
i ≥ 1− ε for each i = 1, 2.

Proof of Proposition 2 . Apply Lemma 1 to Proposition 1.

Remark 1. Proposition 2 shows a kind of monotonicity of the efficiency result
on the discount factor. If an efficiency result holds given ε, observation cost λ
and discount factor δ, then an efficiency result holds given a sufficiently large
discount factor δ′ > δ.

Theorem 1 (Necessary and sufficient condition). Suppose that Assumption 1
is satisfied. Then, the strategy σ∗ is a sequential equilibrium for a sufficiently
large discount factor and a sufficiently small observation cost if and only if
Assumption 2 is satisfied.

Proof of Theorem 1 . See Corollary 1.3 in Appendix A.

6 Public randomization

In this section, we assume that an interim public randomization device is avail-
able. We assume that player i chooses an observational decision after he chooses
his action and an interim public randomization device (sunspot) is realized.
The distribution of the public signal is independent of the action profile chosen.
Public signal x is uniformly distributed over [0, 1) and each player observes the
public signal without any cost.

The purpose of this section is to prove a folk theorem. To prove Theorem 2
(folk theorem), we present the proposition below first.
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Proposition 3. Suppose that an interim public randomization device is avail-
able, and the base game satisfies Assumptions 1 and 2. For any ε > 0, there exist

δ ∈
(

g
1+g , 1

)
, δ ∈ (δ, 1), and λ > 0 such that for any discount factor δ ∈ [δ, δ]

and for any observation cost λ ∈ (0, λ), there exists a sequential equilibrium
whose payoff vector (v∗1 , v

∗
2) satisfies v

∗
1 = 0 and v∗2 ≥ 1+g+ℓ

1+ℓ − ε.

Proof of Proposition 3 . See Appendix B.

An illustration

We will give the proof in Appendix B and provides the detailed construction
of an equilibrium that approximates asymmetric Pareto-efficient payoff vec-
tor (0, 1+ℓ+g

1+ℓ ). We show its main idea in this section.
A rough idea of our idea is that players play (C1, D2) in the first period, and

then players play the strategy in the proof of Proposition 1 from period 2 on.
Applying the strategy in Section 5, let us consider the following strategy. In
period 1, players play (C1, D2). If players did not play (C1, D2) in period 1, then
players are in a defection state in period 2 onwards. If players did play (C1, D2)
in period 1, players play a sequential equilibrium whose payoff vector is suffi-
ciently close to (1, 1), which is similar to the one in Section 5. We show that a
similar strategy to the above strategy is a sequential equilibrium.

Let us describe the strategy in detailed. In the first period, player 1 ran-
domizes C1 and D1, and does not observe the opponent. The state remains the
same if the realized sunspot x is greater than x̂. Player 1 moves to cooperation
state if he chooses C1 and x ≤ x̂. He moves to defection state if he chooses D1

and x ≤ x̂. Player 2 randomizes the observational decision when the realized
sunspot is not greater than x̂. Otherwise, player 2 does not observe. Player 2
moves to cooperation state if he observes C1, he moves to defection state if
he observes D1, and he moves to transition state if he does not observe the
opponent.

The behavior and the transition function of player 1 in cooperation state in
period 2 differ from the one in the proof of Proposition 1. Player 1 in cooperation
state in period 2 plays the game as if he is in the “initial state” in the proof
of Proposition 1. That is, player 1 randomizes (C1, 1), (C1, 0), and (D1, 0). If
player 1 observes (C1, C2), the state remains the same. The state moves to
defection state if player 1 chooses D1 or observes D2. The state is transition
state if player 1 chooses (C1, 0).

The other construction of the strategy (e.g., defection state in period 2,
strategy of player 2 in period 2, and the strategy from period 3 on ward) is the
same with the one in the proof of Proposition 1.

Let us consider sequential rationalities of players. The sequential rationality
in defection state both on and off the equilibrium path holds in the same man-
ner in the Section 5. The sequential rationality in the cooperation state from
period 3 on holds as well.

Let us consider the sequential rationality of player 1 in the cooperation state
in period 2. Player 1 cannot distinguish whether the state of the opponent is

12



cooperation state or not because the observational decision is unobservable. If
player 2 observes in the previous period, he chooses C2. Otherwise, player 2
chooses D2. Therefore, from the viewpoint of player 1, player 2 randomizes
three stage-behavior: (C2, 1), (C2, 0), and (D2, 0) like the initial state in the
proof of Proposition 1. Hence, if player 2 chooses appropriate randomization
probability of (C2, 1), (C2, 0), and (D2, 0), then player 1 is indifferent between
(C1, 1), (C1, 0), and (D1, 0). Next, let us consider the sequential rationality of
player 2 in the cooperation state in period 2. As player 1 randomizes (C1, 1),
(C1, 0), and (D1, 0), it is easily satisfied when player 1 chooses appropriate
randomization probability.

Let us consider the sequential rationality in period 1. As Assumption 2 is
satisfied, the deviation to action Di is more profitable in terms of the stage
game payoff when the opponent chooses Dj than when the opponent chooses
Cj . The incentive for player 1 to choose C1 is higher than the one in the proof
of Proposition 1. Therefore, we use an interim public randomization device to
decrease the incentive to choose action C1. The sequential rationality of player 2
holds as well because player 1 randomizes C1 and D1 with moderate probability.
Therefore, the strategy will be a sequential equilibrium.

The last issue is the equilibrium payoff. Given this strategy, we have to
consider the effect of interim public randomization device to the equilibrium
payoff. Let Vi be the payoff for player i for each i = 1, 2. In the proof of
Proposition 1, we have shown that Pareto efficient payoff vector (1, 1) can be
approximated by a sequential equilibrium when the discount factor is close to
g

1+g . Therefore, the continuation payoff when player 1 moves to cooperation
state in period 2 is close to 1. The value of x̂ is given as the solution of the
following equation.

−(1− δ)ℓ+ δx̂ · 1 + δ(1− x̂)V1 = (1− δ) · 0 + δx̂ · 0 + δ(1− x̂)V1

The left-hand side is the payoff when player 1 chooses C1, and the right-hand
side is the one when he chooses D1. Therefore, we have x̂ = 1−δ

δ ℓ. Then, the
payoff V2 of player 2 can be approximated by the following equation.

V2 =(1− δ)(1 + g) + δx̂ · 1 + δ(1− x̂)V2

=
(1− δ)(1 + g) + δx̂ · 1

1− δ + δx̂

=
1 + g + ℓ

1 + ℓ

We have obtained the desired result.

Corollary 3.1. Suppose that an interim public randomization device is avail-
able, and the base game satisfies Assumptions 1 and 2. For any ε > 0, there

exist δ ∈
(

g
1+g , 1

)
and λ > 0 such that for any discount factor δ ∈ [δ, 1) and

for any observation cost λ ∈ (0, λ), there exists a sequential equilibrium whose
payoff vector (v∗1 , v

∗
2) satisfies v

∗
1 = 0 and v∗2 ≥ 1+g+ℓ

1+ℓ − ε.
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Proof of Corollary 3.1 . Use Lemma 1.

Hence, we have shown that two kinds of payoff vector can be approximated
by sequential equilibria (Proposition 1 and Proposition 3) when the discount
factor is sufficiently large and the observation cost is sufficiently small.

By utilizing interim public randomization again, we obtain the folk theorem
below.

Theorem 2. Suppose that an interim public randomization is available, and
Assumptions 1 and 2 are satisfied. Fix any interior point v = (v1, v2) of F∗.

There exist a discount factor δ ∈
(

g
1+g , 1

)
and observation cost λ > 0 such that

for any δ ∈ [δ, 1) and λ ∈ (0, λ), there exists a sequential equilibrium whose
payoff vector is v.

Proof of Theorem 2. Without loss of generality, let us assume that v1 ≤ v2. By
Corollary 3.1, there exists a sequential equilibrium whose payoff vector v∗ =

(v∗1 , v
∗
2) is sufficiently close to

(
0, 1+g+ℓ

1+ℓ

)
and satisfies δv∗1 > v1 when discount

factor δ is sufficiently large. We can also find a sequential equilibrium whose
payoff vector v∗∗ = (v∗∗1 , v∗∗2 ) is sufficiently close to (1, 1) and satisfies δv∗∗2 > v2
by Proposition 2.

The desired payoff vector v can be expressed uniquely as a convex combina-
tion of δv∗, δv∗∗ and (0, 0) as below.

v = α1δv
∗ + α2δv

∗∗ + (1− α1 − α2) · 0.

(1, 1)

(−ℓ, 1 + g)

(1 + g,−ℓ)

(0, 0)

(
0, 1+g+ℓ

1+ℓ

)

(
1+g+ℓ
1+ℓ , 0

)v v∗

v∗∗

Figure 2: v, v∗, v∗∗

Let us consider the following strategy. In period 1, each player chooses
(Di, 0). If the realized interim public randomization device is smaller than α1,
players play a sequential equilibrium strategy whose payoff vector is v∗ from
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period 2 onwards. If the realized interim public randomization device is not
smaller than α1 but smaller than α1 +α2, players play a sequential equilibrium
strategy whose payoff vector is v∗∗ from period 2 on. Otherwise, players play a
repetition of the stage game Nash equilibrium every period. This strategy is a
sequential equilibrium and its payoff vector is exactly v.

Remark 2. Our result holds under the monitoring structure of Flesch and
Perea (2009) if an interim public randomization device is available. Our result
is a variant of the grim trigger strategy. Therefore, each player does not have
an incentive to acquire information about the action chosen in the past.

7 Discussion

We have proved efficiency results and folk theorem in repeated symmetric pris-
oner’s dilemma. In this section, we discuss what happens if the prisoner’s
dilemma is asymmetric as in Table 3.

Player 2
C2 D2

Player 1
C1 1 , 1 −ℓ1 , 1 + g2
D1 1 + g1, −ℓ2 0 , 0

Table 3: Asymmetric prisoner’s dilemma

In the proofs of any propositions and theorems, we require that the discount
factor δ is sufficiently close to g

1+g . This condition is required to approximate
an Pareto-efficient payoff vector. If g1 ̸= g2, it is impossible to satisfy that the
discount factor δ is sufficiently close to both g1

1+g1
and g2

1+g2
. Therefore, we have

to confine our attention to the case of g1 = g2 = g.
Let us consider Propositions 1 and 2. In the construction of the strategy,

the randomization probability of player i is defined based on the incentive con-
straint of the opponent only. In other words, the randomization probability is
determined independently of the payoffs of player i. It means that the random-
ization probability of player i is determined based on δ, g, ℓj and independent of
ℓi. Therefore, we can discuss the randomization probabilities of player 1 and 2
independently. Hence, if g1 = g2 and Assumptions 1 and 2 for each ℓi (i = 1, 2)
hold, our efficiency result and our folk theorem under small observation cost.

8 Concluding Remarks

The ways of cooperation in a two-player, two-action prisoner’s dilemma is most
limited even though it is a meaningful model. First, the number of actions is lim-
ited. This means that players cannot communicate by using a variety of actions.
Second, the number of players is limited. If there are three players A,B,C, it is
easy to check the observation deviation of the opponents. Player A can monitor
the observation decisions of players B and C by comparing the actions of B and
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C. If players B and C choose inconsistent actions toward each other, player
A finds that players B or C do not observe some player. Third, there is no
free-cost informative signal. Players have to observe to obtain the information
about the action chosen by their opponents.

Originally, the prisoner’s dilemma has these constraints. Despite the above
limitation, we have shown an efficiency result without any randomization de-
vice. Our paper is the first result that shows an efficiency holds without public
randomization under infinitely repeated prisoner’s dilemma with costly moni-
toring, although it is the simplest model among those with costly monitoring
considered in the previous literature (e.g.,Miyagawa et al. (2003) and Flesch and
Perea (2009)).

We considered interim public randomization device and obtained a folk theo-
rem. It is worth mentioning that our folk theorem holds in asymmetric prisoner’s
dilemma. Our results might be applied to more general games.

A Proofs of Proposition 1 and its corollaries

Proof. We prove Proposition 1 and its corollaries.

Strategy

We define a grim trigger strategy σ∗, and then we define a consistent system
of beliefs ψ∗. Strategy σ∗ is represented by an automaton that has four kind
of states: initial state ω1

i , cooperation state (ωt
i)

∞
t=2, transition state ωE

i and
defection state ωD

i . For any period t ≥ 2, there is a unique cooperation state.
Let ωt

i be the cooperation state in period t ≥ 2.
At initial state ω1

i , each player i chooses (Ci, 1) with probability (1−β1)(1−
β2), chooses (Ci, 0) with probability (1−β1)β2, and chooses (Di, 0) with proba-
bility β1. We call (ai, oi) an action–observation pair. The state moves from the
initial state to cooperation state ω2

i if the action–observation pair in period 1
is (Ci, Cj). The state moves to transition state ωE

i in period 2 when (a1i , o
1
i ) is

(Ci, ϕi) realized in period 1. Otherwise, the state moves to a defection state in
period 2.

At cooperation state ωt
i , each player i chooses (Ci, 1) with probability 1−βt+1

and (Ci, 0) with probability βt+1. That is, the randomization probability βt+1

depends on calendar time t. The state moves to the next cooperation state ωt+1
i

if the action–observation pair in period t is (Ci, Cj). The state moves to tran-
sition state ωE

i in period t + 1 when (ati, o
t
i) is (Ci, ϕi) realized in period t.

Otherwise, the state moves to a defection state in period t+ 1.
At transition state ωE

i in period t, each player i chooses (Di, 0) with certainty.
The state moves to defection state ωD

i in period t+1 when ati = Di or o
t
i = Dj is

realized. If player i chooses (Ci, 0), the state remains the same. When player i
chooses Ci and observes Cj in period t, the state in period t + 1 moves to
cooperation state ωt+1

i .
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Players choose (Di, 0) and the state remains the same ωD
i at defection

state ωD
i irrespective of the action–observation pair.

The state-transition rule is summarized in Figure 1. Let strategy σ∗ be the
strategy represented by the above automaton.

We define a system of beliefs consistent with strategy σ∗ by the same trem-
ble as the one in Miyagawa et al. (2008). That is, we consider a sequence of
behavioral strategy profile (σ̂n)∞n=1 such that each strategy profile puts a posi-
tive probability to every move but puts far smaller weights on the trembles with
respect to the observational decisions than those with respect to actions4. Each
behavioral strategy profile σ̂n induces a the system of belief ψn and we define
the consistent system of beliefs ψ∗ as the limit of limn→∞ ψn.

Selection of discount factor and observation cost

Fix any ε > 0. We define ε, δ, δ and λ as follows

ε ≡ ℓ2

54(1 + g + ℓ)3
ε

1 + ε
,

δ ≡ g

1 + g
+ ε,

δ ≡ g

1 + g
+ 2ε,

λ ≡ 1

16

g

1 + g

1

1 + g + ℓ
ε2.

We fix an arbitrary discount factor δ ∈ [δ, δ] and an arbitrary observation
cost λ ∈ (0, λ). We will show that there exists a sequential equilibrium whose
payoff vector (v∗1 , v

∗
2) satisfies v

∗
i ≥ 1− ε for each i = 1, 2.

Specification of strategy

Let us define ε′ ≡ δ − g
1+g . We set β1 = 1+g+ℓ

g+ℓ ε′. Given β1, we define β2 as

the solution of the following indifference condition between (Ci, 0) and (Di, 0)
in period 1.

(1− β1) · 1− β1 · ℓ+ δ(1− β1)(1− β2)(1 + g) =(1− β1)(1 + g). (1)

Next, we define (βt)
∞
t=3. We choose βt+2 so that player j at state ω

t
i is indifferent

between choosing (Ci, 1) and choosing (Ci, 0).
To define βt(t ≥ 3), let Wt (t ≥ 1) be the sum of the stage game payoffs

from state ωt
i . That is, payoff Wt is given by

Wt =

[ ∞∑
s=1

δs−1ui(a
t+s−1)

∣∣∣∣∣σ∗, ψ∗, hti

]
,

4See Miyagawa et al. (2008) for further information.
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where hti is a history associated with cooperation state ωt
i . In cooperation

state ωt
i(t ≥ 2), player i weakly prefers to play (Ci, 0). Therefore, the payoff Wt

is given by

Wt = (1− βt) · 1− βtℓ+ δ(1− βt)(1− βt+1)(1 + g), ∀ t ≥ 2. (2)

Then, β3 is given by

W1 =(1− β1) · 1− β1ℓ− λ+ δ(1− β1)W2. (3)

Note that W2 is a function of β3 by (2).
Next, let us consider the indifference condition between (Ci, 1) and (Ci, 0)

at cooperation state ωt
i(t ≥ 2). Let us consider the belief for each player i at

cooperation state ωt
i in period t. Assume that βt ∈ (0, 1) for any t ∈ N, which

will be proved later. Then, we show by mathematical induction that, for any
period t ≥ 2, player i at cooperation state ωt

i in period t believes that the state
of his opponent is a cooperation state with positive probability 1 − βt. The
state moves to cooperation state ω2

i in period 2 only when player i has observed
the action–observation pair (a1i , o

1
i ) = (Ci, Cj) in period 1. Therefore, player i

believes that the state of his opponent is a cooperation state with positive prob-
ability 1 − β2 by Bayes’ rule. Thus, the statement is true in period 2. Next,
suppose that the statement is true until period t and consider a player i at co-
operation state ωt+1

i . This means that player i has observed action–observation
pair (ati, o

t
i) = (Ci, Cj) in period t. Player i believes that the state of his oppo-

nent in period t was a cooperation state with certainty. Therefore, he believes
that the state of his opponent in period t+1 is a cooperation state with positive
probability 1− βt by Bayes’ rule. Hence, the statement is true.

Taking the belief at cooperation state ωt
i(t ≥ 2) into account, βt+2 is defined

as the solution of the equation below.

Wt =(1− βt) · 1− βtℓ− λ+ δ(1− βt)Wt+1. (4)

Note that Wt+1 is a function of βt+2 by (2).
Specifically, (βt)

∞
t=2 is determined by the following equations.

β2 =
(1− β1) {δ(1 + g)− g} − β1ℓ

δ(1− β1)(1 + g)

=
g + g2 − ℓ2 − (1 + g + ℓ)ε′

(g + ℓ) {g + (1 + g)ε′}
(
1− 1+g+ℓ

g+ℓ ε′
)ε′

βt+2 =
(1− βt+1) {δ(1 + g)− g} − βt+1ℓ+

λ
δ(1−βt)

δ(1− βt+1)(1 + g)
, ∀ t ∈N.

Before we proceed to the proof, we will show that (βt)
∞
t=1 is well defined. To

prove it, we will show that ℓ
2g < −βt+2−βt+1

βt+1−βt
< 1 for any t ∈ N because βt+2 can
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be expressed by using βt, βt+1, and −βt+2−βt+1

βt+1−βt
as follows.

βt+2 =βt + (βt+1 − βt) + (βt+2 − βt+1)

=βt + (βt+1 − βt)

{
1−

(
−βt+2 − βt+1

βt+1 − βt

)}
=

(
−βt+2 − βt+1

βt+1 − βt

)
βt +

{
1−

(
−βt+2 − βt+1

βt+1 − βt

)}
βt+1.

Therefore, if βt, βt+1 ∈ [0, 1], and ℓ
2g < −βt+2−βt+1

βt+1−βt
< 1 hold, we obtain βt+2 ∈

(min{βt, βt+1},max{βt, βt+1}) because βt+2 is a convex combination of βt and
βt+1.

Lemma 2. Suppose that Assumptions 1 and 2 are satisfied. Fix any discount
factor δ ∈ [δ, δ] and observation cost λ ∈ (0, λ). Then, for any t ∈ N, it holds
that

0 <
ℓ

2g
<− βt+2 − βt+1

βt+1 − βt
<
g + ℓ

2g
< 1.

Proof of Lemma 2. First, let us derive −β3−β2

β2−β1
. By (1), we have

0 = −(1− β1)g − β1ℓ+ δ(1 + g)(1− β1)(1− β2). (5)

Furthermore, by (2) and (3), we have

λ

δ(1− β1)
= −(1− β2)g − β2ℓ+ δ(1 + g)(1− β2)(1− β3) (6)

By (5) and (6), we obtain

(β2 − β1)(g − ℓ)− δ(1 + g)(1− β2) {(β3 − β2) + (β2 − β1)} =
λ

δ(1− β1)
.

The definition of ε ensures

1

2

1 + g − ℓ

g + ℓ
ε′ < β2 <

1 + g

g + ℓ
ε′.

As β2 <
1+g
g+ℓ ε

′ < β1, we can divide both sides by β2 − β1, and obtain −β3−β2

β2−β1
.

−β3 − β2
β2 − β1

=
ℓ+ δ(1 + g)(1− β2)− g + λ

δ(1−β1)(β2−β1)

δ(1 + g)(1− β2)
.

As Assumption 2, β1, β2 < 1, and β2 −β1 < 0 holds, we find an upper bound of
−β3−β2

β2−β1
.

−β3 − β2
β2 − β1

≤
δ(1 + g)(1− β2) +

λ
δ(1−β1)(β2−β1)

δ(1 + g)(1− β2)
< 1.
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Taking β1 = 1+g+ℓ
g+ℓ ε′, β2 <

1+g
g+ℓ ε

′, and −(β2 − β1) >
ℓ

g+ℓε
′ into account, we

have a lower bound of −β3−β2

β2−β1
as follows.

−β3 − β2
β2 − β1

>

(
g

1+g + ε′
)
(1 + g)

(
1− 1+ℓ

2ℓ ε
′)− g + ℓ− ℓ

( g
1+g+ε′)(1− 1+g+ℓ

g+ℓ ε′)
λ
ε′(

g
1+g + ε′

)
(1 + g)

>
ℓ

2g
.

The last inequality is ensured by ε′ < 2ε and λ < λ. Therefore, we have obtained
ℓ
2g < −β3−β2

β2−β1
< 1 and β3 ∈ (β2, β2). That is, β3 − β2 > 0.

Next, let us derive −βt+3−βt+2

βt+2−βt+1
inductively. Suppose that ℓ

2g < −βs+2−βs+1

βs+1−βs
<

1 and βs+2 ∈ (min {βs, βs+1} ,max {βs, βs+1}) holds for period s = 1, 2, 3 . . . , t.
We have shown that this supposition holds for t = 1. We will show that ℓ

2g <

−βt+3−βt+2

βt+2−βt+1
< 1 and βt+3 ∈ (min {βt+1, βt+2} ,max {βt+1, βt+2}) holds.

By (2), (3), and (4), for any t ∈ N, we have{
λ

δ(1−βt)
= −(1− βt+1)g − βt+1ℓ+ δ(1− βt+1)(1− βt+2)(1 + g)

λ
δ(1−βt+1)

= −(1− βt+2)g − βt+2ℓ+ δ(1− βt+2)(1− βt+3)(1 + g),

or, equivalently,

− βt+1 − βt
δ(1− βt)(1− βt+1)

λ

=(βt+2 − βt+1)(g − ℓ)− δ(1− βt+2) {(βt+3 − βt+2) + (βt+2 − βt+1)} (1 + g).

The suppositions ensure βt+2−βt+1 ̸= 0. Divide both sides of the above equation
by βt+2 − βt+1. Then, we obtain

−βt+3 − βt+2

βt+2 − βt+1
=

ℓ+ δ(1− βt+2)(1 + g)− g − 1

δ(1−βt)(1−βt+1)
βt+2−βt+1
βt+1−βt

λ

δ(1 + g)(1− βt+2)
.

By Assumption 2, βt, βt+1 < 1, and βt+2−βt+1

βt+1−βt
< 0 hold, −βt+3−βt+2

βt+2−βt+1
is

bounded above by

−βt+3 − βt+2

βt+2 − βt+1
≤
δ(1 + g)(1− βt+2) +

1

δ(1−βt)(1−βt+1)
βt+2−βt+1
βt+1−βt

λ

δ(1 + g)(1− βt+2)
< 1.

Taking 0 < βt+1, βt+2 <
1+g+ℓ
g+ℓ ε′ = β1, and

ℓ
2g < −βt+2−βt+1

βt+1−βt
< 1 into account,

we find the following lower bound of −βt+3−βt+2

βt+2−βt+1
.

−βt+3 − βt+2

βt+2 − βt+1
>

ℓ+
(

g
1+g + ε′

)
(1 + g)

(
1− 2+g

2ℓ ε
′)− g − 1

( g
1+g+ε′)(1− 2+g

2ℓ ε′)
2 2g

ℓ

λ(
g

1+g + ε′
)
(1 + g)

>
ℓ

2g
.
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Therefore, we obtained ℓ
2g < −βt+3−βt+2

βt+2−βt+1
< 1 and βt+3 ∈ (min {βt+1, βt+2} ,max {βt+1, βt+2}).

Corollary 1.2 (Corollary of Lemma 2). Suppose that Assumptions 1 and 2
are satisfied. Fix any discount factor δ ∈ [δ, δ] and observation cost λ ∈ (0, λ).
Then, it holds that

1

2

1 + g − ℓ

g + ℓ
ε′ < β2 < β4 < β6 · · · < β5 < β3 < β1 =

1 + g + ℓ

g + ℓ
ε′.

Proof of Corollary 1.2. Let us compare β1, β2, and β3. As we have already

shown, β1 is greater than β2 >
(

1
2
1+g−ℓ
g+ℓ ε′

)
. Furthermore, we have β2 < β3 < β1

because β3 is a convex combination of β1 and β2. Next, let us compare β2, β3,
and β4. As we know, β2 is smaller than β3. Therefore, we have β2 < β4 < β3
because β4 is a convex combination of β2 and β3. Similarly, for any s ∈ N, it
holds that (β2s <)β2s+1 < β2s−1, and β2s < β2s+2(< β2s+1).

Lastly, let us consider what happens if Assumption 2 is not satisfied.

Corollary 1.3 (Corollary of Lemma 2). Suppose that Assumption 1 is satisfied,
but 2 is not satisfied. Then, (βt)

∞
t=1 is not well defined for small observation

cost λ.

Proof of Corollary 1.3 . We have

−βt+3 − βt+2

βt+2 − βt+1
=1− g − ℓ

δ(1− βt+2)(1 + g)
− 1

δ2(1− βt)(1− βt+1)(1− βt+1)
βt+2−βt+1

βt+1−βt

λ.

Therefore, if g − ℓ ≤ 0 and λ is small, then −βt+3−βt+2

βt+2−βt+1
> 1, and |βt| goes to

infinity as t goes to infinity. That is, we have obtained a necessary condition for
the efficiency result.

Now, let us show that the grim trigger strategy σ∗ is a sequential equilibrium.

Sequential rationality at the initial state

At the initial state, the indifference condition between (Ci, 0) and (Di, 0) is
ensured by the construction of β2. The indifference condition between (Ci, 1)
and (Ci, 0) is ensured by the construction of β3. Furthermore, if player i chooses
action Di, then his opponent chooses action Dj with certainty from the next
period on, irrespective of his observation result. Thus, player i has no incentive
to choose (Di, 1). Therefore, it is optimal for player i to follow strategy σ∗ at
the initial state.
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Sequential rationality in the cooperation state

Next, consider a history associated with a cooperation state in period t (≥ 2).
Then, strategy σ∗ prescribes to randomize (Ci, 1) and (Ci, 0). The definition
of βt+2 ensures that (Ci, 1) and (Ci, 0) are indifferent for player i in period t.
When player i chooses (Di, 0) or (Di, 1), then the continuation payoff is bounded
above by (1− βt)(1 + g). The equation (4) implies that, for any t ∈ N, it holds
that

Wt+1 = (1− βt+1)(1 + g) +
λ

δ(1− βt)
. (7)

The above equality ensures that, for any period t ≥ 1, (1 − βt+1)(1 + g) is
strictly smaller than Wt+1, which is the payoff when player i chooses (Ci, 1) in
period t+1. Thus, both (Di, 0) and (Di, 1) are suboptimal in any period t ≥ 2.
Therefore, it is optimal for player i to follow strategy σ∗ in a cooperation state.

Sequential rationality at the defection state

Consider any history associated with a defection state. Then, σ∗ prescribes
(Di, 0). Player i is certain that the state of his opponent is a defection state,
and player i’s action in that period does not affect the continuation play of his
opponent. Furthermore, player i believes that player j chooses action Dj with
certainty and has no incentive to observe his opponent. Therefore, it is optimal
for player i to follow strategy σ∗ in a defection state.

Sequential rationality in the transition state

We consider any history in period t (≥ 2) associated with a transition state.
Strategy σ∗ prescribes (Di, 0) in a transition state.

Let us consider a continuation payoff when player i chooses action Ci in
period t. Let p be the belief of player i in the transition state in period t
that his opponent is in a cooperation state. If player i observes his opponent,
then (ati, o

t
i) = (Ci, Cj) is realized with probability p and the state moves to

cooperation state (ωt+1
i ). The continuation payoff in the cooperation state in

period t+1 is bounded above by Wt+1. This is because Wt+1 is a continuation
payoff when player i chooses action Ci from ωt+1

i , and Wt+1 is strictly greater
than payoff (1 − βt+1)(1 + g), which is the upper bound of the payoff when
player i chooses action Di at ωt+1

i . Therefore, the upper bound of the payoff
when player i chooses action Ci in period t is given by

p− (1− p)ℓ+ δpWt+1.

The payoff when player i chooses Di is bounded above by p(1 + g). Therefore,
action Di is profitable if the following value is negative.

p− (1− p)ℓ+ δpWt+1 − p(1 + g).
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We can rewrite the above value as follows.

p− (1− p)ℓ+ δpWt+1 − p(1 + g)

=(1− βt)− βtℓ− λ+ δ(1− βt)Wt+1 − (1− βt)(1 + g)

+ λ+ {p− (1− βt)} {1 + ℓ+ δWt+1 − (1 + g)}
=Wt − (1− βt)(1 + g) + λ+ {p− (1− βt)} {δWt+1 − (g − ℓ)}

=
λ

δ(1− βt−1)
+ λ+ {p− (1− βt)} {δWt+1 − (g − ℓ)} . (8)

The second equality follows from equation (4) in period t. The last equality is
ensured by (7) in period t− 1.

Using equation (7), we obtain the lower bound of δWt+1− (g− ℓ) as follows.

δWt+1 − (g − ℓ) ≥δ(1− βt+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}
(
1− 1 + g + ℓ

g + ℓ
ε′
)
− (g − ℓ)

≥ ℓ

2
. (9)

The second inequality follows from βt ≤ 1+g+ℓ
g+ℓ ε′. The last inequality is ensured

by ε′ ≤ 2ε. The maximum value of p is (1 − βt−1)(1 − βt). Taking (9) into
account, we show that (8) is negative as follows.

λ

δ(1− βt−1)
+ λ− {(1− βt)− p} {δWt+1 − (g − ℓ)}

≤ λ

δ(1− βt−1)
+ λ− (1− βt)βt−1

ℓ

2

≤1 + g

g

1

1− 1+g+ℓ
g+ℓ ε′

λ+ λ−
(
1− 1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

g + ℓ
ε′
ℓ

2

<0.

The second inequality is ensured by δ ∈ [δ, δ] and βt, βt−1 ∈
[
1
2
1+g−ℓ
g+ℓ ε′, 1+g+ℓ

g+ℓ ε′
]
.

Therefore, player i prefers Di to Ci. Hence, it has been proved that it is optimal
for player i to follow strategy σ∗. The strategy σ∗ is a sequential equilibrium.

The payoff

Finally, we show that the sequential equilibrium payoff v∗i is strictly greater
than 1 − ε. Player i chooses (Di, 0) in period 1 at the initial state. Therefore,
the equilibrium payoff v∗i is given by

v∗i = (1− δ)(1− β1)(1 + g) = {1− (1 + g)ε′}
(
1− 1 + g + ℓ

g + ℓ
ε′
)
> 1− ε.

Therefore, Proposition 1 has been proved.
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B Proof of Proposition 3

Proof. Fix any ε > 0. We define ε, δ, δ and λ as follows:

ε ≡ ℓ2

54(1 + g + ℓ)2
ε

1 + ε
,

δ ≡ g

1 + g
+ ε,

δ ≡ g

1 + g
+ 2ε,

λ ≡ 1

16

g

1 + g

1

1 + g + ℓ
ε2.

Fix any δ ∈
[
δ, δ

]
and λ ∈ (0, λ). We will show a sequential equilibrium whose

payoff vector (v∗1 , v
∗
2) satisfies v

∗
1 = 0 and v∗2 ≥ 1+g+ℓ

1+ℓ − ε.
We define a grim trigger strategy σ̃. Strategy σ̃ is represented by an au-

tomaton that has four kinds of state: initial state ω̃1
i , cooperation state (ω̃t

i)
∞
t=2,

transition state ωE
i , and defection state ωD

i . Players use the sunspot only at
the initial state.

At initial state ω̃1
1 , player 1 chooses C1 with probability 1 − β1,1, and

chooses D1 with probability β1,1. Player 1 does not observe player 2 irrespective
of his action. The transition state depends on a realized sunspot. If the realized
sunspot is greater than x̂, the state remains the same. If the realized sunspot
is not greater than x̂ and player 1 chooses C1, then the state in the next period
moves to cooperation state ω̃2

1 . If the realized sunspot is not greater than x̂
where player 1 chooses D1, then the state in the next period moves to defection
state ωD

1 .
At initial state ω̃1

2 , player 2 chooses D2. Player 2’s observational decision
depends on the sunspot. If the realized sunspot is greater than x̂, player 2
does not observe his opponent. If the realized sunspot is not greater than
x̂, player 2 randomizes his observational decision. Irrespective of his action,
player 2 observes player 1 with probability 1 − β2,2 and does not observe him
with probability β2,2. The transition state also depends on the realized sunspot.
If the realized sunspot is greater than x̂, the state remains the same. Suppose
that the realized sunspot is not greater than x̂. If player 2 observes C1, then the
state in the next period moves to cooperation state ω̃2

2 . If player 2 observes D1,
then the state in the next period is defection state ωD

2 . If player 2 does not
observe his opponent in period 1, then the state in the next period is transition
state ωE

2 .
At cooperation state ω̃2

1 , player 1 chooses action C1 with probability 1−β1,2.
When player 1 chooses action C1, he observes the opponent with probabil-
ity 1− β1,3. When player 1 chooses action D1, he does not observe. If player 1
chooses action D1, he does not observe his opponent. If player 1 chooses C1

and observes C2, then the state in the next period is cooperation state ω̃3
1 . If

player 1 chooses D1 or observes D2, then the state in the next period is defection
state ωD

1 . If player 1 chooses C1 but does not observe, then the state in the
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next period is transition state ωE
1 .

At cooperation state ω̃t
1(t ≥ 3), player 1 chooses action C1. Player 1 observes

his opponent with probability 1−β1,t+1. If player 1 chooses C1 and observes C2,
then the state in the next period is cooperation state ω̃t+1

1 . If player 1 chooses
D1 or observes D2, then the state in the next period is defection state ωD

1 . If
player 1 chooses C1 but does not observe, then the state in the next period is
transition state ωE

1 .
At cooperation state (ω̃t

2)
∞
t=2, player 2 chooses action C2. He observes

player 1 with probability 1 − β2,t+1. If player 2 chooses C2 and observes C1,
then the state in the next period is cooperation state ω̃t+1

2 . If player 2 chooses
D2 or observes D1, then the state in the next period is defection state ωD

2 . If
player 2 chooses C2 but does not observe, then the state in the next period is
transition state ωE

2 .
The output function and transition function at the transition state and the

defection state is defined in the same manner as in the previous section. At
transition state ωE

i in period t, each player i chooses Di and does not observe
irrespective of his action. The state moves to defection state ωD

i in period t+1
when ati = Di or o

t
i = Dj is realized. If player i chooses (Ci, 0), the state remains

the same. When player i chooses Ci and observes Cj in period t, the state in
period t+ 1 moves to cooperation state ω̃t+1

i . At defection state ωD
i , the state

remains the same; defection state ωD
i , irrespective of the action–observation

pair.
The belief ψ∗

i for player i is determined in the same manner in Section 5.
We consider a tremble that puts far less weight on the deviations with respect
to observation at any history hit than those with respect to action for any i and
any t ∈ N. The above tremble induces the unique belief ψ∗

j for player j for each
j. We denote by ψ∗ the system of beliefs (ψ∗

1 , ψ
∗
2). The belief ψ∗ has a similar

property to the one in Section 5. That is, given ϕ∗, player i is certain that the
state of his opponent is a defection state when player i chose Di or observed Dj

in the past.
We define (β1,t)

∞
t=1 and (β2,t)

∞
t=2. First, let us define β1,1 and β1,2. We

define ε′ ≡ (1 + g)δ − g. It is obvious that ε′ ∈ [ε, 2ε] We set β1,1 = 1+g+ℓ
g+ℓ ε′.

We define β1,2 as follows.

β1,2 =
(1− β1,1) {δ(1 + g)− g} − β1,1ℓ

δ(1− β1,1)(1 + g)
.

LetWi,t(t ≥ 2) be the continuation payoff from cooperation state ωt
i for player i.

At any cooperation state ωt+1
2 (t ∈ N), player 2 believes that the state of his

opponent is cooperation state ωt+1
1 with probability 1 − β1,t+1, and with the

remaining probability β1,t+1, the state is either ωE
1 or ωD

1 . Therefore, W2,t+1 is
given by

W2,t+1 =(1− β1,t+1)− β1,t+1ℓ+ δ(1− β1,t+1)(1− β1,t+2)(1 + g).

At the initial state and any cooperation state, player 2 is indifferent between
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m2 = 1 and m2 = 0. Therefore, for any t ∈ N, β1,t+2 is given by

λ

δ(1− β1,1)
=W2,2 − (1− β1,2)(1 + g).

Note that W2,2 is a function of β1,3.
At any cooperation state, player 2 is indifferent betweenm2 = 1 andm2 = 0.

Therefore, for any t ∈ N, β1,t+2 is given by

λ

δ(1− β1,t)
=W2,t+1 − (1− β1,t+1)(1 + g). (10)

Note that W2,t+1 is a function of β1,t+2.
Next, we define (β2,t)

∞
t=2. We define β2,2 so that player 1 is indifferent

between choosing (C1, 0) and choosing (D1, 0) at the initial state. That is, β2,2
is given by the equation below.

−ℓ+ x̂δ(1− β2,2)(1 + g) = 0.

Player 1 randomizes (C1, 0) and (D1, 0) at cooperation state ω̃2
1 . Hence, β2,3 is

given by the following equation.

(1− β2,2)− β2,2ℓ+ δ(1− β2,2)(1− β2,3)(1 + g) = (1− β2,2)(1 + g).

In cooperation state ω̃t
1 (t ≥ 2), player 1 believes that the state of his oppo-

nent is a cooperation state with probability 1 − β2,t. Therefore, W1,t(t ≥ 2) is
given by

W1,t =(1− β2,t)− β2,tℓ+ δ(1− β2,t)(1− β2,t+1)(1 + g).

Furthermore, player 1 randomizes (C1, 1) and (C1, 0) at cooperation state ω̃2
1 .

At cooperation state ω̃2
1 , player 1 believes that the state of player 2 is ω̃2

2 with
probability 1−β2,2. Therefore, β2,4 is determined as the solution of the following
equation.

λ

δ(1− β2,2)
=W1,3 − (1− β2,3)(1 + g).

Note that W1,3 is a function of β2,4.
In addition, player 1 randomizes (C1, 1) and (C1, 0) at cooperation state ω̃t

1 (t ≥
3). At cooperation state ω̃t

1 (t ≥ 3), player 1 believes that the state of player 2
is ω̃t

2 with probability 1−β2,t. We choose β2,t+1 as the solution of the equation
below so that player 1 is indifferent between choosing (C1, 1) and (C1, 0).

λ

δ(1− β2,t)
=W1,t+1 − (1− β2,t+1)(1 + g). (11)

Note that W1,t+1 is a function of β2,t+2.
Taking into account the definition of δ, (β1,t)

∞
t=2 and (β2,t)

∞
t=2 are chosen as

follows.
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β1,1 =
1 + g + ℓ

g + ℓ
ε′

β1,2 =
(1− β1,1) {δ(1 + g)− g} − β1,1ℓ

δ(1− β1,1)(1 + g)

β1,t+2 =
(1− β1,t+1) {δ(1 + g)− g} − β1,t+1ℓ− λ

δ(1−β1,t)

δ(1 + g)(1− β1,t+1)
, ∀ t ≥ 1.

β2,2 =
x̂δ(1 + g)− ℓ

x̂δ(1 + g)

β2,3 =
(1− β2,2) {δ(1 + g)− g} − β2,2ℓ

δ(1 + g)(1− β2,2)

β2,t+2 =
(1− β2,t+1) {δ(1 + g)− g} − β2,t+1ℓ− λ

δ(1−β2,t)

δ(1 + g)(1− β2,t+1)
, ∀ t ≥ 2.

Therefore, the sunspot x̂ has an effect on β2,2 only.
Finally, we choose x̂. We define x̂ as the solution below.

x̂δ(1 + g)− ℓ

x̂δ(1 + g)
=

1 + g + ℓ

g + ℓ
ε′.

When x̂ = ℓ
g , the left-hand side is greater than the right-hand side.

ℓ
g (1 + g)ε′

ℓ
g δ(1 + g)

=
1

δ
ε′ >

1 + g + ℓ

g + ℓ
ε′.

Furthermore, if x̂ = ℓ
δ(1+g) , then the left-hand side is smaller than the right-hand

side. Therefore, x̂ ∈
(

ℓ
δ(1+g) ,

ℓ
g

)
is well defined.

The above definition ensures that β1,t = β2,t+1 for any t ∈ N. In addition,
β1,t is equal to βt in Section 5. Therefore, by Corollary 1.2, we have

1

2

1 + g − ℓ

g + ℓ
ε′ < β1,t <

1 + g + ℓ

g + ℓ
ε′, ∀t ∈ N, and

1

2

1 + g − ℓ

g + ℓ
ε′ < β2,t+1 <

1 + g + ℓ

g + ℓ
ε′, ∀t ∈ N.

As the same with the proof of Proposition 1, we show the sequential ratio-
nality and show that the equilibrium payoff vector (v∗1 , v

∗
2) satisfies v

∗
1 = 0 and

v∗2 ≥ 1+g+ℓ
1+ℓ − ε.

Sequential rationality at the defection state

Let us confine our attention to show sequential rationality. At the defection
state, player i is certain that the state of his opponent is a defection state, and
the opponent chooses (Dj , 0) with certainty from the current period onwards.
Player i has no incentive to choose Ci or mi = 1. Therefore, it is optimal for
player i to choose (Di, 0).
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Sequential rationality at the initial state and the coopera-
tion state

Let us consider cooperation state ω̃t
i(t ≥ 2). Once player i chooses Di, the

strategy σ∗ prescribesDi every period irrespective of his observation. Therefore,
at any cooperation state, each player i has no incentive to choose (Di, 1).

First, let us consider player 1’s sequential rationality at initial state ω̃1
1 . The

definition of β2,2 ensures that player 1 is indifferent between (C1, 0) and (D1, 0).
It is obvious that player 1 has no incentive to observe player 2 because player 2
chooses action D2 with certainty.

Next, let us consider the decision of player 1 at cooperation states. At coop-
eration state ω̃2

1 , the stage behaviors (C1, 1), (C1, 0) and (D1, 0) are indifferent
by the definitions of β2,3 and β2,4. At cooperation state ω̃t+2

1 (t ≥ 1), the defi-
nition of β2,t+4 ensures that (C1, 1) and (C1, 0) are indifferent. In addition, the
equation (11) in period t + 1 implies that the payoff W1,t+2 for choosing ac-
tion C1 is greater than the payoff (1−β2,t+2)(1+g) when he chooses action D2.
It is optimal for player 1 to follow the strategy σ∗ at cooperation state (ω̃1,t)

∞
t=2.

Lastly, let us consider player 2’s choice at initial state ω̃1
2 . By the definition

of β1,3, player 2 is indifferent between choosing (C2, 1) and choosing (C2, 0).
Player 2 does not prefer action D2 because player 1 never observes him. Next,
let us confine our attention to player 2’s choice at cooperation state ω̃t

2 (t ≥ 2).
By the definition of β1,t+2, player 2 is indifferent between choosing (C2, 1) and
choosing (C2, 0). If player 2 chooses (D2, 0), his payoff is (1− β1,t)(1 + g). The
inequality (10) in period t − 1 ensures that the payoff W2,t for choosing C1 is
greater than (1− β1,t)(1 + g). That is, action D2 is suboptimal.

Thus, it is optimal for both players to follow strategy σ∗ in a cooperation
state.

Sequential rationality in the transition state

We consider sequential rationality at any period t (≥ 2) associated with a tran-
sition state.

First, let us consider the transition state for player 1 in period t (t ≥ 3). Let
p be the probability with which player 1 believes that the state of his opponent
is a cooperation state. Therefore, the upper bound of the payoff when player 1
chooses action C1 in period t is given by

p− (1− p)ℓ+ δpW1,t+1.

Furthermore, the payoff for (D1, 0) is bounded above by p(1 + g). Therefore,
(D1, 0) is profitable if the following value is negative.

p− (1− p)ℓ+ δpW1,t+1 − p(1 + g).
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Using (11), we can rewrite the above value as follows.

p− (1− p)ℓ+ δpW1,t+1 − p(1 + g)

=(1− β2,t)− β2,tℓ− λ+ δ(1− β2,t)W1,t+1 − (1− β2,t)(1 + g)

+ λ+ {p− (1− β2,t)} {1 + ℓ+ δW1,t+1 − (1 + g)}

=
λ

δ(1− β2,t−1)
+ λ− {(1− β2,t)− p} {δW1,t+1 − (g − ℓ)} . (12)

The second equality follows from equation (11) for t− 1.
Furthermore, the payoff δW1,t+1 is greater than the payoff for choosing

(D1, 0). Therefore, the payoff δW1,t+1 is bounded below by

δW1,t+1 − (g − ℓ) ≥δ(1− β2,t+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}
(
1− 1 + g + ℓ

g + ℓ
ε′
)
− (g − ℓ)

≥ ℓ

2
. (13)

The second inequality follows from δ = g
1+g + ε′ and β2,t+1 ≤ 1+g+ℓ

g+ℓ ε′.

The maximum value of p in period t (t ≥ 3) is (1− β2,t−1)(1− β2,t). Taking
(13) into account, the value of (12) has the following upper bound.

λ

δ(1− β2,t−1)
+ λ− {(1− β2,t)− p} δW1,t+1

<
1 + g

g

λ

1− β2,t−1
+ λ− (1− β2,t−1)β2,t

ℓ

2

<
1 + g

g

λ

1− 1+g+ℓ
g+ℓ ε′

+ λ−
(
1− 1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

1 + g + ℓ
ε′
ℓ

2

<0.

The second inequality follows from 1
2
1+g−ℓ
1+g+ℓε

′ < β2,t−1, β2,t <
1+g+ℓ
g+ℓ ε′. There-

fore, choosing (D1, 0) is optimal at transition state ωE
1 .

Next, let us consider the transition state for player 2 in period 2. Then,
player 2 believes that the state of his opponent is cooperation state ω̃2

1 with
probability 1− β1,1. If player 2 chooses C2, the continuation payoff is bounded
above by

(1− β1,1)W2,2 − β1,1ℓ.

However, the payoff of choosing (D2, 0) is given by (1 − β1,1)(1 − β1,2)(1 + g).
Therefore, it is optimal for player 2 to choose (D2, 0) if the following value is
negative.

(1− β1,1)W2,2 − β1,1ℓ− (1− β1,1)(1− β1,2)(1 + g).
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Or, equivalently

(1− β1,1) {W2,2 − (1− β1,2)(1 + g)} − β1,1ℓ

=(1− β1,1)
λ

δ(1− β1,1)
− β1,1ℓ

=
λ

δ
− β1,1ℓ < 0.

Therefore, it is optimal for player 2 to choose (D2, 0).
Finally, let us consider the transition state for player 2 in period t (t ≥ 3).

Let us denote by p the probability with which player 2 believes that the state of
his opponent is a cooperation state. Then, the upper bound of the payoff when
player 2 chooses action C2 in period t is given by

p− (1− p)ℓ+ δpW2,t+1.

The payoff for (D2, 0) is given by p(1+ g). Therefore, (D2, 0) is profitable if the
following value is negative.

p− (1− p)ℓ+ δpW2,t+1 − p(1 + g).

We can rewrite the above value as follows.

p− (1− p)ℓ+ δpW2,t+1 − p(1 + g)

=(1− β1,t)− β1,tℓ− λ+ δ(1− β1,t)W2,t+1 − (1− β1,t)(1 + g)

+ λ+ {p− (1− β1,t)} {1 + ℓ+ δW2,t+1 − (1 + g)}
=W2,t − (1− β1,t)(1 + g) + λ+ {p− (1− β1,t)} {δW2,t+1 − (g − ℓ)}

=
λ

δ(1− β1,t−1)
+ λ− {(1− β1,t)− p} {δW2,t+1 − (g − ℓ)} . (14)

The third equality follows from equation (10) for t− 1.
Furthermore, δW2,t+1 is bounded below by

δW2,t+1 − (g − ℓ) ≥δ(1− β1,t+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}
(
1− 1 + g + ℓ

g + ℓ
ε′
)
− (g − ℓ)

≥ ℓ

2
.

The second inequality follows from δ = g
1+g + ε′ and β1,t+1 ≤ 1+g+ℓ

g+ℓ ε′.

The maximum value of p in period t is (1 − β1,t−1)(1 − β1,t). Taking (13)
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into account, we can show that (14) is negative as follows.

λ

δ(1− β1,t−1)
+ λ− {(1− β1,t)− p} δW2,t+1

≤ λ

δ(1− β1,t−1)
+ λ− (1− β1,t)β1,t−1

ℓ

2

≤1 + g

g

1

1− 1+2g
2g ε′

λ+ λ−
(
1− 1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

1 + g + ℓ
ε′
ℓ

2

<0.

The second inequality is ensured by β1,t, β1,t−1 ∈
(

1
2
1+g−ℓ
1+g+ℓε

′, 1+g+ℓ
g+ℓ ε′

)
. There-

fore, player 2 prefers D2 to C2 at the transition state.
Hence, it has been proved that it is optimal for both players to follow strat-

egy σ∗. The strategy σ∗ is a sequential equilibrium.

The payoff

Finally, let us consider the equilibrium payoff. The equilibrium payoff for
player 1 is 0 because player 1 weakly prefers (D1, 0) in period 1.

Similarly, player 2 weakly prefers (D2, 0) in period 2. Thus, his equilibrium
payoff v∗2 is given by

v∗2 =(1− δ)(1− β1,1) {(1 + g) + x̂δ(1− β1,2)(1 + g)}+ (1− x̂)δv∗2

=
(1− δ)(1− β1,1) {(1 + g) + x̂δ(1− β1,2)(1 + g)}

1− (1− x̂)δ

=
(1− β1,1) {1 + x̂δ(1− β1,2)}

1 + x̂ δ
1−δ

(1 + g).

Taking x̂ ∈
(

ℓ
δ(1+g) ,

ℓ
g

)
into consideration, we obtain a lower bound of v∗2 below.

v∗2 >
(1− β1,1)

{
1 + ℓ

1+g (1− β1,2)
}

1 + ℓ
g

δ
1−δ

(1 + g)

>

(
1− 1+g+ℓ

g+ℓ ε′
)(

1 + g + ℓ− 1+g+ℓ
g+ℓ ε′ℓ

)
1 + ℓ

g
g+ε′

1−(1+g)ε′

>
1 + g + ℓ

1 + ℓ
− ε.

The second inequality follows from the upper bound of β1,1 and β1,2. Therefore,
Proposition 3 has been proved.
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