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DOES MORAL PLAY EQUILIBRATE?

Immanuel Bomze∗, Werner Schachinger†and Jörgen Weibull‡

October 16, 2018

Abstract. Some finite and symmetric two-player games have no (pure or

mixed) symmetric Nash equilibrium when played by partly morally motivated

players. The reason is that the "right thing to do" may be not to randomize.

We analyze this issue both under complete information between equally moral

players and under incomplete information between arbitrarily moral players.

We provide necessary and sufficient conditions for the existence of equilibrium

and illustrate the results with examples and counter-examples.

JEL codes: C72, D01, D64, D82, D91.

Keywords: Nash equilibrium, morality, homo moralis, social preferences,

incomplete information.

1. Introduction

In economics and non-cooperative game theory, economic agents and players are

usually assumed to be pure consequentialists, that is, to evaluate their alternative

courses of action (consumption or production plans, strategies) exclusively in terms

of the consequence for themselves and perhaps also for others. However, people may

to some extent also be driven by deontological motivations, such as a wish to "do the

right thing" in the given situation. Such a partly morally motivated participant in a

public goods game may, for example, contribute the amount that would maximize the

group’s welfare if everybody would do likewise. An individual who acts accordingly,

even when expecting others not to follow suit, is not necessarily irrational, or prey to

"magical thinking". Such a person may simply have a goal function that gives some

weight to Immanuel Kant’s (1785) categorical imperative, to “act only on the maxim

that you would at the same time will to be a universal law”.

In standard public goods games such partly morally motivated individuals may

be behaviorally indistinguishable from altruists, individuals who are pure consequen-

tialists but who attach a positive value to other’s well-being. However, in other
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interactions, a Kantian moralist may behave quite differently from an altruist. Take

a 2× 2 coordination game, where both players obtain payoff 1 if both use their first
pure strategy, 2 if both use their second pure strategy, and otherwise zero. An al-

truist who expects the opponent to play the first pure strategy will do likewise. By

contrast, a Kantian moralist may instead use the second pure strategy. This will

result in material payoff zero to both, but the moralist may obtain psychological

utility from behaving in a way he wishes all would in such interactions. If two stern

moralists would play the coordination game, they would do just fine. However, in

some games moralists of intermediate degree, known by both, may not even have a

Nash equilibrium, and this may also be the case when player’s degree of morality is

their private information.

We here explore exactly these questions, more precisely whether symmetric Nash

equilibria exist in symmetric and finite games played by partly morally motivated

players. As a formal representation of such players we use the Homo moralis prefer-

ences that Alger and Weibull (2013) showed are evolutionarily stable in populations

under assortative random matching.1 We establish the existence of symmetric Nash

equilibria for certain game classes, when played by such players, and we also give

examples of simple games with no such equilibria. Our main results, Theorems 1 and

2, establish necessary and sufficient conditions for the existence of symmetric Nash

equilibrium between partly morally motivated players under incomplete information

about others’ degree of morality.

2. Definitions and preliminaries

In this note we consider finite and symmetric games. Let  = {1 } be the set
of pure strategies, and let ∆ be the associated unit simplex of mixed strategies,

∆ =

(
 ∈ R

+ : 
 =

X
=1

 = 1

)


Here  =
P

=1 , where  is the :th unity (column) vector, and the superscript 

denotes transpose. We write  for the zero vector (origin).

Let  be an ×-matrix with "material" payoffs, let  ∈ [0 1] be a player type,
and consider the associated payoff function  : ∆

2 → R, defined by

 ( ) = (1− ) +  ·  (1)

where  and  are (column) vectors in∆. The parameter  is the degree of morality of

Homo moralis, with  = 0 representing pure self-interest, or Homo oeconomicus, and

1The idea that moral values may have been formed by evolutionary forces can be traced back

to at least Darwin (1871). More recent informal treatments include, to mention a few, Alexander

(1987) and de Waal (2006).
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 = 1 representing pure (Kantian) morality, or Homo kantiensis (Alger and Weibull,

2013). Thus  ( ) is the payoff (or utility) to a player with degree of morality 

when using strategy  against an opponent using strategy  in a symmetric game

with (material) payoff matrix . Both player positions have the same set  of pure

strategies,  is the matrix of material payoffs to the row player, and  =  of those

to the column player.

For a given matrix  and degree of morality  ∈ [0 1], let  : ∆ ⇒ ∆ be the

best-reply correspondence of Homo moralis of degree :

 () = argmax
∈∆

 ( ) ∀ ∈ ∆ 

Hence, a rational player with Homo moralis preferences of type  will use some

strategy  in the subset  () if expecting the other player to use mixed strategy

 ∈ ∆. By Weierstrass’ maximum theorem,  () is a non-empty and compact set

for every  ∈ [0 1] and  ∈ ∆. However, as will be seen shortly, this set is not always

convex. We will study the existence and nature of fixed points under , that is points

 ∈ ∆ such that  ∈  (). These are then the symmetric Nash equilibria when two

Homines morales of the same degree of morality meet.

By Berge’s maximum theorem,  is upper hemi-continuous. For  = 0 the

correspondence 0 is convex-valued. In fact, all its values are then sub-simplices,

non-empty subsets of ∆ spanned by finitely many vertices. This is the standard

setting of non-cooperative game theory, and as is well known, there exists at least

one fixed point whenever  = 0.

3. Games between equally moral players

The analysis in this section generalizes results for symmetric 2×2 games in Section 4
of Alger and Weibull (2013). We here consider strategic interactions under complete

information between two equally moral players who play a symmetric  × game

in material payoffs, for any  ∈ N. We begin by a 2×2 example that illustrates that
the correspondence  need not be convex-valued for positive degrees of morality.

Example 1. Consider

 =

µ
 0

0 

¶
for    0. For  = 0, there are three fixed points; the two unit vectors, 1 and 2,

and the mixed strategy

∗ =

µ
 (+ )

 (+ )

¶


Note that  = 21 + 22 for all  ∈ R2. Hence, this term is strictly convex in 

and so is ( ), for any given   0 and  ∈ ∆. Therefore, () ⊆ {1 2}. It is
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immediate that 1 ∈ (1) iff  ≥ , and 2 ∈ (2) iff  ≥ . So both 1 and 2
are fixed points for 0 ≤  ≤ 0 := min{ }, and there is only one fixed point for
every   0. For  = 0, one of (1) and (2) is a binary set. For all other values

of , both (1) and (2) are singletons. Next observe that for arbitrary   0,

(
∗) ⊆ {1 2} is a singleton when  6= , but (

∗) = {1 2}, a non-convex set,
if  = .

Since  =  is the payoff matrix of the column player,

 () = 
¡
+

¢
 = 2

is welfare, defined as the sum of the two players’ material payoffs when both use

strategy  ∈ ∆. This defines the welfare function  : ∆ → R. Accordingly, the
payoff function of a Homo moralis with degree of morality  can be written in the

form

 ( ) = (1− ) +


2
· () 

Hence, if  is concave, then  ( ) is concave in  ∈ ∆, for every  ∈ ∆, so

existence of Nash equilibrium then follows immediately from Kakutani’s fixed point

theorem.

Proposition 1. The set of fixed points is non-empty and compact if  = 0. The

same is true for every   0 if  is concave.

We note beforehand that a sufficient condition for  to be concave is that the

symmetric matrix  +  is negative-semidefinite. See Proposition 4 below for a

more general result.

Example 2. The payoff matrix

 =

µ
0 

 0

¶
for    0 makes +  indefinite: 

¡
+

¢
 = 2(+ )12 for any  ∈ R2.

However,  is concave on ∆: there  () = 2 (+ )1(1− 1). Hence, there exists

at least one fixed point. From strict concavity of  we know that the sets () are

singletons for all  ∈ ∆ and   0. Using first-order conditions, expressed in 1 only

(with 2 = 1− 1), we conclude

1 ∈ () ⇐⇒


1
 ( )|=1 ≥ 0 ⇐⇒  ∈ ∆1 
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where ∆1 = { ∈ ∆ : (1− ) [− (+ )1] ≥ (+ )}, and likewise

2 ∈ () ⇐⇒


1
 ( )|=2 ≤ 0 ⇐⇒  ∈ ∆2 

where ∆2 = { ∈ ∆ : (1 − ) [− (+ )1] ≤ −( + )}. Finally, for all  ∈
∆ \ (∆1 ∪∆2), we have () = {}, where

1 =
1

2
+
1− 

2

− (+ )1

+ 
∈ (0 1)  (2)

Since 1 6∈ ∆1 and 2 6∈ ∆2 for all  ∈ [0 1], neither 1 nor 2 can be fixed points for
any . All fixed points (and we know at least one exists) are thus found by solving

1 = 1 with 1 given by the necessary first-order condition (2). This leads to exactly

one fixed point for every  ∈ (0 1], namely

 =

µ
+ 

(1 + )(+ )


+ 

(1 + )(+ )

¶

In particular, 1 = (+ ) and 2 = ( + ) define the unique fixed point when

 = 0.

A game-theoretically important class of games in which  +  is negative-

semidefinite are all constant-sum games (then + is the a matrix with identical

entries), with zero-sum games as the most prominent special case.

Proposition 2. Let  be the payoff matrix of a symmetric constant-sum game. For

any   1, the set of fixed points is identical with the non-empty set of fixed points

when  = 0, while every  ∈ ∆ is a fixed point when  = 1.

In other words, all Homines morales, except Homo kantiensis, behave like Homo

oeconomicus in all (finite and symmetric two-player) constant-sum games.

The remaining situation to investigate is thus when   0 and  is not concave.

We begin with an example.

Example 3. Consider the generalized Rock-Scissors-Paper (RSP) game matrix

 =
³

1 2+ 0
0 1 2+
2+ 0 1

´
for any   −1. We note that this is a constant-sum game if and only if  = 0.

For  = 0, the unique symmetric Nash equilibrium strategy is the barycenter . As

is well-known, this unique equilibrium is unstable in the replicator dynamic for all
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  0 and asymptotically stable for all   0.2 The function  is strictly concave if

  0 and strictly convex if   0, because for any  ∈ ∆:

 () = 2 +  · ¡1− kk2¢ 
Henceforth, assume   0, fix 0    1 and observe that ∅ 6= () ⊆ {1 2 3}
for all  ∈ ∆. Moreover, ( ) = 1 for all  ∈  while

(1 2) = (2 3) = (3 1) = (1− ) (2 + ) +  

Hence, (1 2)  ( ) iff (1− ) (1 + )  0, so for −1    0, no vertex

 is a fixed point for any  ∈ (0 1). Consequently, there exist no fixed point for
0    1 in generalized RSP-games with values of  in this interval. In other words,

if this game is played by two Homines morales of intermediate degree of morality,

then there exists no pure or mixed strategy  that they could both play and thereby

obtain a Nash equilibrium.

Proposition 1 ensures existence of at least one fixed point if the welfare function

 is concave on ∆. If the welfare function instead is strictly convex, then fixed

points may not exist. The next result provides necessary and sufficient conditions for

existence in the latter case.

Proposition 3. If  is strictly convex on ∆, then () ⊆ {1  } for all  ∈ ∆

and   0, and  is a fixed point under  if and only if

 ≥  + (1− )  ∀ ∈  

Proof. If is strictly convex, so is ( ) in , and hence the first claim follows.

The second claim is then obvious from ( ) =  + (1− ) .

The usefulness of both Propositions 1 and 3 depends on how easy or hard it is

to verify that the welfare function is either concave or strictly convex on the unit

simplex. Here are necessary and sufficient conditions for each of these properties.

Proposition 4. Let  be the expansion of the (− 1)× (− 1) identity matrix to
an (− 1) ×-matrix obtained by appending the column (−1    −1) ∈ R−1.
Then  is concave (strictly convex) over ∆ if and only if the symmetric (− 1) ×
(− 1) matrix

 = (+ )

is negative-semidefinite (positive-definite).

2See e.g. Section 3.1.5 in Weibull (1995), and references therein, and see also Benaïm, Hofbauer

and Hopkins (2009) for a classification of finite symmetric games into "stable" and "unstable" games.
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Proof. First observe that for any 0    1 and any two { } ⊂ ∆, we have

 () + (1− ) ()− (+ (1− )) = 2(1− )

with  = −  ⊥ . Writing  = (1     −1) ∈ R−1, we have for  ∈ ⊥ ⊂ R

that  = , and  6=  if and only if  6= . Hence 2 = , and the result

follows.

In some applications the payoff matrix  is symmetric;  = . In such potential

or partnership (or doubly symmetric) games, it is well-known that average payoff

increases along all solution trajectories to the replicator dynamic (see e.g. Section

3.6 in Weibull, 1995). For such games and any positive degree of morality, any

global welfare maximizer is a fixed point, and every fixed point is a local maximizer.

Formally:

Proposition 5. Suppose  = , and let   0. Then

(a)  ∈ argmax
∈∆

 () =⇒  ∈  (),

(b)  ∈  () =⇒  ∈ arg max
∈∆∩

 () for some neighborhood  of 

Proof. Define  : ∆ → R by () = ( ). If  ∈ argmax
∈∆

 () then

 () ≥  () for all  ∈ ∆, and the directional derivative of  in the direction of

− , evaluated at , is not positive,

4(− ) ≤ 0 for all  ∈ ∆ 

implying  ≤ , and therefore ( ) ≤ ( ) for all  ∈ ∆, i.e.,  ∈ ().

Next assume  ∈ (). Then  is a global maximizer of  over ∆. In particular

the directional derivative of  in the direction of −, evaluated at , is not positive,
(1 + )(− ) ≤ 0 for all  ∈ ∆ 

In case that (− ) = 0 for some , also the second directional derivative of 
in the direction of − , evaluated at , is not positive,

2(− )(− ) ≤ 0 for all  ∈ ∆ such that (− ) = 0 

Now the two displayed inequalities are sufficient for  to be a local maximizer of  ,

as those inequalities are also statements about first and second directional derivatives

of  .

In case of symmetric  there may indeed be fixed points  ∈ () that are local,

but not global, maximizers of  subject to  ∈ ∆. This happens in Example 1

for small  ≥ 0. If  is not symmetric, neither (a) nor (b) needs to hold. Example 3
shows that (a) can be violated, and violation of both (a) and (b) for 0 ≤   1 is

demonstrated by Example 2 when  6= .
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Remark 1. When applied to 2 × 2-games, the above analysis (in agreement with
Alger and Weibull, 2013) establishes that at least one symmetric Nash equilibrium

always exist between equally moral players.

4. Incomplete information about others’ morality

We now consider strategic interactions between two Homines morales who only know

their own degree of morality, not that of the opponent. We will call an individual’s

degree of morality the individual’s type and use the canonical notation Θ = [0 1]

for the type space. We endow Θ with its Euclidean topology and let  be a Borel

probability measure on Θ, representing the type distribution in the population from

which the players are drawn independently at random3.

A strategy is a Borel-measurable function  : Θ → ∆, assigning to each type

 ∈ Θ a mixed strategy () ∈ ∆. A Nash equilibrium under incomplete information

is a strategy  that is a best reply to itself. A strategy  is optimal against a mixed

strategy  ∈ ∆ if

 () ∈ argmax
∈∆

 ( ) ∀ ∈ Θ.

It follows from standard measurable-selection theory à la Kuratowski-Ryll-Nardzewski

(see e.g. 18.3 and 18.4 in Aliprantis and Border, 2006, or 14.29 and 14.37 in Rock-

afellar and Wets, 2009) that such an optimal strategy  : Θ → ∆ exists for each

 ∈ ∆. A strategy  : Θ → ∆ is a best reply to itself, or constitutes a symmetric

Nash equilibrium, if the following condition holds for all  ∈ Θ:

 () ∈ argmax
∈∆

Z
Θ

 ( ())  ()  (3)

By linearity of the payoff function with respect to ,Z
Θ

 ( ())  () = 
¡
 ̄
¢

where

̄ = E [ ()] =
Z
Θ

() () 

is the representative agent ’s mixed strategy. In other words, in order to be a best

reply to itself, a strategy  : Θ→ ∆ has to be optimal against its own representative

agent’s mixed strategy.

Existence is non-trivial. However one may characterize Nash equilibrium by way

of first- and second-order optimality conditions. In order to state these, for each type

3The analysis in the preceding section thus concerns the special case when  is a unit probability

mass on one type ;  = , see Subsection 4.1 below.
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 ∈ Θ let () =  · (+ ), the Hessian matrix of (· ), for any  ∈ ∆. For any

strategy  : Θ→ ∆, let

() =  · (+ ) () + (1− ) ·̄ 
This is the gradient of the payoff ( ̄) with respect to  ∈ ∆, evaluated at  = ().

For each pure strategy  ∈ , let

() = 
 () + () − ()()

The matrix () is a symmetric rank-two update of the Hessian  (), using the

gradient () ∈ R and the :th unit vector  ∈ ∆. Finally, for any strategy , each

type  ∈ Θ and every pure strategy  ∈ , we define the following polyhedral cone

Γ() = { ∈ ⊥ : () − () ≥ 0 for all  ∈ }
where ⊥ ⊂ R is the (− 1)-dimensional tangent space of the unit simplex ∆ (that

is, all vectors orthogonal to  ∈ R).

The result to follow establishes that, given any type distribution , a strategy

 : Θ → ∆ constitutes a Nash equilibrium under incomplete information if and

only if three conditions are met: a first-order (Lagrangian) condition, a complemen-

tary slackness condition, and a second-order (curvature) condition. The reason why

a second-order condition is sufficient is that all types’ payoff functions are linear-

quadratic in their own strategy choice (in the underlying game). To ease reading,

we split the result in two separate statements and provide a joint proof of them only

after stating both.

Theorem 1. For any Borel probability measure  on ∆, a strategy  : Θ → ∆ is a

best reply to itself if and only if there are Borel-measurable functions 0 : Θ → R
and  : Θ→ R+ for all  ∈  such that, for all pure strategies  and for all types :

[()()] + (1− )[̄] + 0() + () = 0  (4)

()() = 0  (5)

() ≥ 0 for all  ∈ Γ()  if ()  0  (6)

We say that a strategy  : Θ → ∆ is a better reply than  : Θ → ∆ for type 

with ()  0 if ( ()  ̄)  (() ̄).

Proposition 6. If (6) is violated for some pure strategy  and type , then there

exists a better reply for this type , namely, the strategy  : Θ→ ∆ that agrees with

 for all types  6=  but has

 () = ()− ()


·  
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Proof. The assertions in Theorem 1 follow from (Bomze 2016, Thm.2.3), formu-

lated for minimizing the negative −(· ̄) there; note that as ∆ is compact, we can

ignore the index  = 0 dealing with unbounded feasible rays there. The case of ∆

has been dealt already in the previous papers (Bomze 1997a,1997b) where also the

arguments for Proposition 6 can be found.

We saw in Section 3 an example of a game that has no equilibrium for equally

moral players, irrespective of their common degree of morality, as long as it is positive.

In terms of the machinery in the present section, the observation can be recast as

the statement that this game has no Nash equilibrium under incomplete information

when the type distribution  places unit probability mass on some type   0. The

following subsection deals with this case by providing conditions which simplify those

of Theorem 1.

4.1. A homogeneous population. Suppose now that  places unit probability

on some  ∈ Θ. Applying the above general machinery, we search for a fixed point

of the best-reply correspondence , i.e. a strategy ̄ ∈ ∆ which coincides with both

() and ̄ by virtue of the special nature of  = . We use the notation  for

a principal submatrix of  = []()∈× and of a subvector  of  ∈ R, both

referring to a (non-empty) index set  ⊆ :

 = []()∈× and  = []∈ 

We consider the × matrix

() := +  

in order to state the characterization for a homogeneous population:

Theorem 2. A point ̄ ∈ ∆ with support  = { : ̄  0} is a fixed point of the
correspondence  if and only if conditions (a)—(c) are satisfied for some  ∈ R:
(a) (̄ ) ∈ R+1 satisfies the linear equation system⎧⎪⎨⎪⎩

()̄ −  = 

̄ = 0 for all  ∈  \ 
 ̄ = 1 

(b) (̄ ) ∈ R+1 satisfies the linear inequalities(
− ()̄ ≥ 

̄ ≥ 0 for all  ∈  

(c) For all  ∈ , the matrix () is Γ()-copositive, i.e.,

() ≥ 0 for all  ∈ Γ() 
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Proof. We apply Theorem 1. First observe that () = ̄ = ̄ implies ()() +

(1 − )̄ = ()̄. Further, (5) implies () = 0 for all  ∈ , so that, with

 = −0(), we get via (4)
[()̄ ] = [()̄] = [()() + (1− )̄] =  for all  ∈  

Finally, condition (c) is exactly condition (6) in Theorem 1.

Note that by construction () = ()̄ ≤ 0 for all  ∈ Γ() and all  ∈ 

as  ≥ 0 holds for all  ∈  \ . Hence condition (c) is ensured if ( +  ) is

negative-semidefinite, as  ∈ Γ() implies also  ≤ 0 and since
() = 2( 

()− ̄
) 

On the other hand, already local optimality of ̄ for the function ( ̄) implies

for   0 that [ +  ] is negative-semidefinite on [ ]
⊥, a linear subspace of co-

dimension one in R . This necessary condition can be viewed as a localized version

(relative to the face of the simplex that contains ̄ in its relative interior) of the

sufficient existence criterion in Proposition 1; see Proposition 4.

Remark 2. In Example 3 we noted that no symmetric Nash equilibrium exists under

complete information in a game between equally moral players when −1   

0 and 0    1. Formally, such a situation can be represented as incomplete

information with a Dirac measure placed on that particular type . Consider instead

any continuous type distribution  on Θ = [0 1]. We may then divide the type space

into three disjoint intervals  with () = 13, for  = 1 2 3. If all types in  play

pure strategy , then all types  ∈ Θ best respond to ̄ = , the barycenter of the

strategy simplex. Hence, the non-existence of symmetric equilibrium under complete

information and equally moral players may be non-robust to arbitrarily small degrees

of incomplete information about morality, as measured in the 1-norm.

Acknowledgments: We thank Erik Mohlin and Ron Peretz for helpful discus-

sions.
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