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Credit limits and heterogeneity in general
equilibrium models with a finite number of agents

Ngoc-Sang PHAM∗

Montpellier Business School, France

August 29, 2018

Abstract

We introduce two-period general equilibrium models with heterogeneous pro-
ducers and financial frictions. Any agent can borrow to realize their productive
project but the debt repayment does not exceed a fraction (so-called credit limit)
of the project’s value. Our framework allows us to investigate the aggregate and
distributional effects of credit limits and heterogeneity of agents. The connection
between credit limits, welfare and efficiency is also explored.

JEL Classifications: D3, D5, E44, G10, G28.
Keywords: General equilibrium, credit limits, welfare, efficiency, wealth distri-
bution.

1 Introduction

The great recession reminds that financial frictions play a key role in economic fluc-
tuations. This issue has received much attention during the last three decades (see
Bernanke and Gertler (1989), Kiyotaki and Moore (1997)). Among others, credit
constraints are an important kind of financial frictions. Many papers (see Kiyotaki
and Moore (1997), Geanakoplos and Zame (2002) for instance) investigate the roles of
collateral constraints in general equilibrium contexts.1 However, finding robust equi-
librium properties or/and equilibrium computation is a challenge, especially when we
work in multi-period and/or stochastic models (see Brumm, Kubler and Scheidegger
(2017) for an excellent survey). There are two main difficulties: (1) agents are het-
erogeneous in many dimensions, and (2) credit constraints may occasionally bind (and
hence, solutions may be on the boundary). Because of these difficulties, most of the
existing literature has focused on balanced-growth equilibria or recursive equilibria or
around steady-state analyses. In general equilibrium models, figuring out all possible

∗Emails: ns.pham@montpellier-bs.com, pns.pham@gmail.com. Tel.: +33 (0)4 67 10 28 14. Ad-
dress: 2300 Avenue des Moulins, 34080 Montpellier, France.

1See also Gottardi and Kubler (2015), Guerrieria and Iacoviello (2017).
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equilibria and their implications is far from trivial. Motivated by this point, we in-
troduce a tractable many-agent, two-period general equilibrium model with financial
frictions in order to figure out the whole set of equilibria and, thanks to this, be able
to see the general picture. We investigate the aggregate and distributional effects of
different parameters, including credit limits.

Our model has a finite number m of agents who differ in three dimensions: initial
wealth, production function, and credit limit (see infra). They have two ways of
investing: buying capital (to realize their production project) or buying a financial
asset. Agents can borrow and then pay back in the next period. However, the debtor
is required to put her project as collateral in order to borrow: in case that she does not
repay, the creditor can seize the collateral. Due to the lack of commitment, the creditor
can only obtain a fraction of the value of the project. Anticipating the possibility of
default, the creditor limits the amount of credit so that the debt repayment of agent
i will not exceed a fraction fi of the debtor’s project value. This fraction can be
interpreted as the credit limit of this agent and is different across agents.2 Our setup
is in line with Kiyotaki and Moore (1997), Kiyotaki (1998).

In our economy, any agent can become a borrower (entrepreneur) or lender. Thanks
to the simplicity of our model, we can categorize all possible equilibria and then explore
properties of equilibrium outcomes. We identify who become entrepreneurs and lenders
and provide a necessary and sufficient condition (based on fundamentals) under which
there are n lenders and m − n borrowers. This condition and hence the number of
entrepreneurs depend not only on agents’ productivities but also on the distribution of
initial wealth and credit limit of agents. We also prove that the equilibrium interest rate
increases when wealth or/and productivity or/and credit limit of borrowers increase.

After determining all possible equilibria, we investigate the effects of fundamentals,
including credit limits.

First, our model indicates that an increase of productivity of an entrepreneur will
increase the consumption of this agent and of all lenders. However, it makes decrease
the consumption of other borrowers. Therefore, the inequality level (defined by the
Gini coefficient) may increase or decrease when productivities increase.

Interestingly, there is a regime where an increase in an entrepreneur’s productivity
may have a negative impact on the aggregate output. This happens if this agent is
the least productive entrepreneur. Indeed, in such a case, when this entrepreneur’s
productivity increases, she absorbs more capital and produces more. However, other
producers (who are more productive than this agent) get less capital and they produce
less. The net effect depends on the level of productivities. To sum up, increasing
productivity of an agent does not necessarily have a positive effect on the economic
growth.

Second, we focus on the distributional and aggregate effects of credit limits.
We point out that increasing credit limits of different borrowers (or producers) may

have opposite effects on the agents’ consumption. Indeed, when the credit limit of a
borrower is relaxed, the interest rate increases, and hence makes the profit of other
borrowers decrease but of lenders increase. However, the consumption of this borrower
may be decreasing in her credit limit. This happens if her repayment increases faster

2This assumption is supported by the Enterprise Surveys (2018) panel datasets.
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than her production value. As a result, the consumption of this borrower may display
an inverted U-shape as a function of her credit limit.

One can imagine that relaxing credit limits would have positive impact on the ag-
gregate output.However, the story is more complicated. Indeed, in our framework,
we show that increasing credit limit of the most productive agent will increase the
aggregate output but an increase of credit limit of an entrepreneur who is not the most
productive agent, may decrease the aggregate output. The intuition is the following.
When credit limit of a less productive entrepreneur increases, this agent can borrow
more. However, the aggregate fund is finite. By consequence, more productive agents
can get less fund. Therefore, the aggregate output may decrease. Although the aggre-
gate output is not necessarily monotone in credit limits, it does not exceed that in the
frictionless economy. It should be noticed that the non-monotone impact of financial
development on economic growth is supported by Arcand et al. (2015). Our paper
helps us to better understand the relationship between finance and growth because
it shows a big picture by providing conditions under which the aggregate output is
increasing or decreasing in credit limit which is one of the measures of the financial
development of the economy.

To sum up, the effects of credit limits on individual consumptions and the aggregate
output as well as are neither monotone nor linear. Our findings suggest that financial
regulations (i.e., setting (fi)i in our model) should take into account the actual struc-
ture of the economy, precisely the distribution of initial wealth and of productivities
of agents.

Our last avenue of contribution concerns the equilibrium efficiency. Thanks to the
tractability of the model, we can provide a necessary and sufficient condition under
which an equilibrium is efficient. Given a distribution of productivity, the economy is
more likely to be efficient if credit limit and/or initial wealth of the most productive
agents are sufficiently high. Two points should be mentioned: (1) an equilibrium with
binding borrowing constraints may be efficient or inefficient, and (2) a credit limit may
lead to an efficient equilibrium but does not necessarily maximize the social welfare.

Our finding on the efficiency of equilibrium outcomes has a link with results in Sec-
tion 3.1 in Gottardi and Kubler (2015) who consider stochastic exchange economies
and provide a necessary and sufficient condition for the existence3 of a Pareto-efficient
equilibrium in two cases: (i) there is no aggregate uncertainty and (ii) consumers have
identical CRRA utility. Although our model is deterministic, we introduce heteroge-
neous producers (any agent can produce by using their technology). However, in their
results, the collateral requirements play no role while the credit limit in our setting role
plays a crucial role on the equilibrium efficiency. It should be noticed that we can, fur-
thermore, fully characterize all economies where efficient or inefficient equilibria arise.

Other related literature. Our paper is related to several strands of literature.
The present paper concerns the literature on the welfare effects of financial con-

straints. Jappelli and Pagano (1994, 1999) consider overlapping generations models
with liquidity constraints and households living for three periods and argue that liq-
uidity constraints may increase or decrease welfares. The central point in Jappelli and

3Gottardi and Kubler (2015) say that Pareto-efficient equilibria exist for an economy if there are
initial distributions for which the competitive equilibrium is Pareto efficient.
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Pagano (1994, 1999) is that liquidity constraints have two opposite effects on welfare:
”they force the consumption of young below the unconstrained level but raise their
permanent income by fostering capital accumulation”. Obiols-Homs (2011) considers
a general equilibrium with heterogeneous households (who borrowing is bounded by
an exogenous limit) and a representative firms. He argues that the borrowing limit
has a negative on the welfare of borrower if its quantity effect dominates its price ef-
fect. However, as in Jappelli and Pagano (1994, 1999), the mechanism of Obiols-Homs
(2011) relies on the role of supply of credit to households who need to smooth their
consumption while our mechanism focuses on credit to firms who need credit to finance
their productive investment.

Catherine et al. (2017) build a dynamic general equilibrium model with heteroge-
neous firms and collateral constraints. They focus on the steady state and provide
estimates suggesting that lifting financial frictions (modeled by collateral constraints)
would increase aggregate welfare by 9.4% and aggregate output by 11%. Our paper
differs from Catherine et al. (2017) in two aspects. First, although we also find that
the aggregate output in the frictionless economy is higher than that in the economy
with financial frictions, it is not a monotone function of the degree of financial friction.
Second, both individual and social welfares may not monotone in the degree of finan-
cial friction. Interestingly, lifting credit constraint may decrease the welfare of some
agent.

Our paper is also related to a growing literature on general equilibrium models
with heterogeneous producers and financial frictions.4 Let us mention some of them.
Midrigan and Xu (2014) consider a two-sector model with a collateral constraint that
requires the debt of producer does not exceed a fraction of its capital stock. They focus
on balanced growth equilibrium to study the role of collateral constraint in determining
TFP. Their parameterizations consistent with the data imply fairly small losses from
misallocation, but potentially sizable losses from inefficiently low levels of entry and
technology adoption. Khan and Thomas (2013) develop a dynamic stochastic general
equilibrium with a representative household and heterogeneous firms facing a borrow-
ing constraint (slightly different from ours) and focus on recursive equilibrium. They
find that a negative shock to borrowing conditions can generate a large and persistent
recession through disruptions to the distribution of capital. Buera and Shin (2013)
develop a model with individual-specific technologies and collateral constraints to in-
vestigate the role of the misallocation and reallocation of resources in macroeconomic
transitions. Buera and Shin (2013) find that collateral constraints have a large impact
along the transition to the steady state. Moll (2014) studies the effect of collateral
constraints on capital misallocation and aggregate productivity in a general equilib-
rium with a continuum of heterogeneous firms and financial frictions (modeled by a
collateral constraint). Proposition 1 in Moll (2014) shows that the aggregate TFP is
increasing in the leverage ratio which is the common across firms.5

4The reader is referred to Matsuyama (2007), Quadrini (2011), Brunnermeier, Eisenbach and
Sannikov (2013) for more complete reviews on the macroeconomic effects of financial frictions and to
Buera et al. (2015) for the relationship between entrepreneurship and financial frictions.

5In both Buera and Shin (2013), Moll (2014), the collateral constraint, which is slightly different
from ours, states that the capital of a firm does not exceed a leverage ratio of its financial wealth.
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Our contribution with respect to this literature is to point out that the aggregate
TFP and the aggregate output in our model may not be monotone functions of the
credit limits which are different across agents. One can also prove that when we set
the same credit limit for every agent, the aggregate output and the aggregate TFP are
increasing functions of this common credit limit.

The present paper differs from the existing literature in that the credit limit is
individualized in our model while all credit variables in the above studies are common
across firms. As we have just discussed, this credit heterogeneity plays an important
role in the distribution of capital and of income as well as the in the aggregate output.

Our paper has a link with the literature on financial friction and economic inequality
(Demirg-Kunt and Levine, 2009; Allub and Erosa, 2016; de Haan and Sturm, 2017). As
mentioned in de Haan and Sturm (2017), the Gini coefficient is widely used in many
empirical studies as a proxy of the inequality level. Our analyses on distributional
effects of credit limits help us to identify winners and losers when credit limits are
relaxed. An implication of our analyses, illustrated by numerical simulations, is that
the Gini coefficient may not be a monotone function of credit limits. Whether relaxing
credit limit increases or decreases the Gini coefficient depends on the economy’s initial
distribution of resources.

In terms of methodology, our contribution is to point out that the equilibrium
outcomes of two-agent and more than two agents models are significantly different. In
other words, the number of agents matters for the general equilibrium analysis. Let us
mention two differences.

• First, relaxing credit limit in our two-agent model always increases the aggregate
output. However, as we have mentioned, it can have a negative impact on the
output if there are more than two agents.

• Second, as we have mentioned, the effects of productivities may not be monotone
in the many-agent model while they are monotone in the two-agent model.

While we focus on firm heterogeneity, there is a growing literature studying the roles
of household heterogeneity in macroeconomics. The reader is refereed to Kaplan and
Violante (2018) for an excellent review.

The rest of this paper is organized as follows. Section 2 presents our framework. In
Sections 3 and 4, we compute equilibria and then explore comparative statics. Section
5 studies the equilibrium efficiency. Section 6 compares outcomes of two models:
one with credit constraints and another with exogenous borrowing limits. Section
7 concludes. Technical proofs are gathered in Appendices.

2 Framework

We consider a deterministic two-period economy with a finite number of heterogeneous
agents. There is a single good (numéraire) which can be consumed or used to produce.

Each agent i has exogenous initial wealth (Si units of good) at the initial date.
To keep the model as simple as possible, we assume that agents just maximize their
consumption in the second period.
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Agents decide how much good for production and investment in the financial mar-
ket. On the one hand, if agent i wants to realize her productive project, she buys ki
units of physical capital at the initial date to produce F (ki) units of good at the second
date, where Fi is her production function.

On the other hand, she can invest in a financial asset with real return r. Denote
ai the amount that the agent i invests in the financial asset. She can also borrow
and then pay back rai in the next period. However, the debtor is required to put her
project as collateral in order to borrow: If she does not repay, the creditor can seize
the collateral. Due to the lack of commitment (or just because the debtor is not willing
to help the creditor take the whole value of the debtor’s project), the creditor can only
obtain a fraction fi of the total value of the project. Anticipating the possibility of
default, the creditor limits the amount of credit so that the debt repayment will not
exceed a fraction fi of the debtor’s project value (see Kiyotaki (1998)).

To sum up, the maximization problem of agent i can be described as follows:

(Pi) : πi = max
(ki,ai)

[Fi(ki)− rai] (1a)

subject to: 0 ≤ ki ≤ Si + ai (1b)

rai ≤ fiFi(ki). (1c)

The better the commitment, the higher value of fi, the larger the set of feasible alloca-
tions of the agent i. Kiyotaki (1998) interprets fi as the collateral value of investment.
In our paper, we call fi credit limit and condition (1c) credit constraint or borrowing
constraint of agent i.

The following table from the Enterprise Surveys panel datasets suggests that col-
lateral constraints matter for the development of firms.6

According to Enterprise Surveys (2018), in the average level, 53.6% of firms need a
loan and 79.1% of loans require collateral. Hence, it is natural to make the following
assumption.

Assumption 1. fi ∈ [0, 1) ∀i.

Notice that the value of collateral needed for a loan (% of the loan amount) corre-
sponds to Fi(ki)/rai (= 1/fi if credit constraint is binding).

6The Enterprise Surveys (2018) panel datasets are conducted by the World Bank and its partners,
and provide a database of firms in 139 countries.
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Let us compare our formulation of borrowing constraint with those in the literature.
Matsuyama (2007) (Section 2) considers a model with heterogeneous agents, which
corresponds to our model with ki = 1, Si = w, ai = 1−w. However, different from our
setup, investment projects in Matsuyama (2007) are non-divisible.

It should be noticed that constraint (1c) is different from condition (3) in Kiyotaki
and Moore (1997). Indeed, Kiyotaki and Moore (1997) assume that the borrower’s
repayment does not exceed the market value of her land quantity while we assume
that the repayment does not exceed the market value of the borrower’s project.

Some authors (Buera and Shin, 2013; Moll, 2014) set ki ≤ θwi, where wi ≥ 0 is
the agent i’s wealth and interpret that θ measures the degree of credit frictions (credit
markets are perfect if θ = ∞ while θ = 1 corresponds to financial autarky, where all
capital must be self-financed by entrepreneurs). In our framework, Si plays a similar
role of wealth wi in Buera and Shin (2013), Moll (2014). Another way to introduce
credit constraint is to set ai ≤ θki. This corresponds to constraint (3) in Midrigan and
Xu (2014). Other authors (Kocherlakota, 1992; Obiols-Homs, 2011) consider exogenous
borrowing limits by imposing a short sales constraint: ai ≤ B for any i. Under these
three settings, the asset holding ai is bounded from above by an upper bound which
does not depend on the interest rate r.

In Section 6, we present a model with exogenous borrowing limits

Definition 1. Let us consider the economy E, characterized by a list of fundamentals:

E ≡ (Fi, fi, Si)i=1,...,m.

A list (r, (ai, ki)i) is an equilibrium if the following conditions are satisfied:

1. Agents’ optimality: for each i, given r, (ai, ki) is a solution of the problem (Pi).

2. Financial market clearing:
∑

i ai = 0.

Under standard specifications, the existence of equilibrium is guaranteed (see, for
instance, Bosi, Le Van and Pham (2018)).

Remark 1 (Asset price vs interest rate). Denote q = 1/r, bi = −rai. The problem
(Pi) is equivalent to the following problem.

(Bi) πi = max
(ki,bi)

[Fi(ki) + bi] (2a)

subject to : 0 ≤ ki + qbi ≤ Si (2b)

bi + fiFi(ki) ≥ 0. (2c)

In this setup, at initial date agent can buy bi units of the asset with price q, which will
deliver bi units of the consumption good at date 1. Note that the relation between the
asset price and the interest rate is represented by q = 1/r.

In this setup, if we impose ki ≥ κbi, then this constraint can be interpreted as a
collateral constraint in Kubler and Schmedders (2003), Gottardi and Kubler (2015):
Agent i can borrow but for each unit of the asset sold short by this agent, she is required
to hold κ units of capital.
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3 Linear technologies

In this section, we provide equilibrium analysis under the following assumption.

Assumption 2. Assume that Fi(K) = AiK ∀i and A1 < . . . < Am.

This specification allows us to have a tractable model without losing main economic
insights. The case with general concave technologies will be considered in Section 4.

3.1 Partial equilibrium

Before computing equilibrium, we study the individual problem where the interest rate
is taken as given. At optimal, we have ki = Si + ai ≥ 0. So, the problem of agent i is
equivalent to

πi = max
(ai)

[AiSi + ai(A− r)]

subject to: ai ≥ −Si, ai(r − fiAi) ≤ fiAiSi

If r ≤ fiAi (which implies that r < Ai because fi < 1), then there is no solution.
Indeed, in this case then the constraint (1c) is always satisfied for any ai ≥ 0. Conse-
quently, the agent i may choose ai = +∞ and ki = +∞ and have πi = +∞. Therefore,
we only consider the case where r > fiAi. The solution of the agent i’s problem is
characterized by the following result.

Lemma 1 (Individual problem). Assume that Fi(K) = AiK. Let r > 0 be given. The
solution for agent i’s maximization problem is described as follows.

1. If Ai > r > fiAi, then agent i borrows from the financial market and the borrow-
ing constraint is binding.

ki =
r

r − fiAi
Si, ai =

fiAi
r − fiAi

Si

πi = Aiki − rai =
r(1− fi)
r − fiAi

AiSi

2. If Ai = r, then the solutions for the agent’s problem include all sets (ki, ai) such
that −Si ≤ ai ≤ fi

1−fiSi and ki = ai + Si.

3. If Ai < r, then agent i does not produce goods and invest all her initial wealth in
the financial market: ki = 0, ai = −Si.

In Lemma 1 we draw the relationship between productivity and identification of
the borrower/lender: An agent borrows from the financial market if and only if her
productivity is high enough, in the sense that Ai > r. Moreover, she borrows the
maximum level imposed on her, i.e, the borrowing constraint is binding.

Notice that, in the case r > fiAi we have

ai ≤
fiAiSi
r − fiAi

, πi =
r(1− fi)
r − fiAi

AiSi. (3)
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Corollary 1. Assume that Ai > r > fiAi. At optimum we have

∂ki
∂fi

> 0,
∂ai
∂fi

> 0,
∂πi
∂fi

> 0

∂2ki
∂2fi

< 0,
∂2ai
∂2fi

< 0,
∂2πi
∂2fi

< 0

3.2 Determining general equilibrium

To compute equilibrium, we have to find determine the interest rate (then Lemma 1
allows us to compute agents’ allocations). In general equilibrium, the interest rate is
endogenous and depends on fundamentals. The key point is to identify agents whose
credit constraints are binding. Since A1 < A2 < · · · < Am, if credit constraint of agent
n is binding, then so does that of agent n+1. Moreover, we notice that r > maxi(fiAi).
Hence, we have that:

Lemma 2. Assume that A1 < A2 < · · · < Am. If maxi(fiAi) ≥ An and there exists
an equilibrium, then r > An.

Figuring out all possible equilibria requires several steps. First, we need to in-
vestigate the properties of equilibrium interest rate. To simplify the exposition, we
introduce additional notations.

M ≡ max
i

(fiAi), dn ≡
m∑
i=n

AnSi
An − fiAi

∀n ≥ 1, bn ≡
m∑

i=n+1

AnSi
An − fiAi

∀n ≥ 1. (4)

where we denote, by convention,
∑m

i=n xi = 0 if n > m. We observe that

Sm
1− fm

= dm < · · · < dn+1 < bn < dn < bn−1 < · · · < b1 =
m∑
i=2

A1Si
A1 − fiAi

. (5)

bn is higher than the aggregate capital demand if the interest rate is higher than An
while dn is lower than the aggregate capital demand if the interest rate is lower than
An. By comparing bn, dn with the aggregate capital supply S =

∑m
i=1 Si, we obtain

the following result.

Lemma 3. Assume that A1 < A2 < · · · < Am. Denote S ≡
∑m

i=1 Si the aggregate
capital. Consider an equilibrium.

1. If An > M and r > An, then bn > S. Consequently, if An > M and bn ≤ S,
then r ≤ An.

2. If An > M and r < An, then S > dn. Consequently, if An > M and S ≤ dn,
then r ≥ An.

3. If r ∈ (An, An+1), then An+1 > M and r = rn (hence rn ∈ (An, An+1)), where rn
is the greatest solution of the equation

m∑
i=n+1

fiAi
r − fiAi

Si︸ ︷︷ ︸
Asset demand

=
n∑
i=1

Si︸ ︷︷ ︸
Asset supply

or equivalently
m∑

i=n+1

rSi
r − fiAi︸ ︷︷ ︸

Capital demand

= S︸︷︷︸
Capital supply

(6)
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Proof. See Appendix A.1.

It should be noticed that the aggregate demand function f(x) ≡
∑m

i=n+1
xSi

x−fiAi is
not continuous at fiAi with i ≥ n+ 1. However, it is continuous and decreasing on the
interval (maxi≥n+1(fiAi),∞). Then, the equation f(x) = S has a unique solution, rn,
on such interval.

Point 3 of Lemma 3 also indicates that the equilibrium interest rate must be in the
set {A1, . . . , Am, r1, . . . , rm−1} in the interval [A1, Am]. We now identify the necessary
and sufficient conditions under which r = An or r = rn.

Interest rate r0
•

A1

•
Am
•

An
•

rn
•

An+1

•

Regime An: r = An Regime Rn: r = rn

The following result provides a necessary and sufficient condition under which the
interest rate equals the TFP of agent n.

Lemma 4. r = An if and only if An > M and bn ≤ S ≤ dn.

Proof. See Appendix A.1.

We need condition An > maxi(fiAi) because that r > maxi(fiAi). Condition∑m
i=n+1

AnSi
An−fiAi ≤ S ensures that r ≤ An while condition S ≤

∑m
i=n

AnSi
An−fiAi ensures

that r ≥ An.

Lemma 5. r = rn 6= An if and only if one of the following conditions is satisfied:

1. M < An < rn < An+1, or equivalently M < An and dn+1 < S < bn

2. An ≤M < rn < An+1, or equivalently An ≤M < rn and dn+1 < S.

In any case, we have that rn ∈ [An, An+1).

Proof. See Appendix A.1.

We can now categorize all possible structures of the economy. Let us denote f ≡
(fi)i,A ≡ (Ai)i,S ≡ (Si)i. Then, an economy is characterized by a list (f ,A,S), and
E denotes the set of all economies (f ,A,S).

Definition 2 (Categorization of economy). Consider the economy with linear tech-
nologies E ≡ (Ai, fi, Si)i=1,...,m.

For each n ∈ {1, . . . ,m}, the regime An is the set of all economies such that
conditions in Lemma 4 is satisfied.

For each n ∈ {1, . . . ,m − 1}, the regime Rn is the set of all economies such that
one of the two conditions in Lemma 5 is satisfied.

Our main result in this section can be stated as follows.
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Theorem 1 (Existence, uniqueness and computation of general equilibrium). We have
that {A1, . . . ,Am,R1, . . . ,Rm−1} is a partition of E in the sense that

E = ∪mi=1Ai ∪ ∪m−1
i=1 Ri (7a)

X ∩ Y = ∅ ∀X, Y ∈ {A1, . . . ,Am,R1, . . . ,Rm−1} and X 6= Y. (7b)

Consequently, there exists a unique equilibrium. Moreover, the equilibrium interest rate
is determined by the following:

r =

{
Ai in the regime Ai.
ri in the regime Ri.

(8)

Proof. See Appendix A.2.

The equilibrium existence is guarantied by condition (7a) while the uniqueness is
ensured by (7a). According to Lemma 1 and Theorem 1, we can compute equilibrium
outcomes:

• In the regime An where r = An, allocations of all agents are given by

ki = 0, ai = Si, πi = Aiki − rai = rAi = AnSi ∀i ≤ n− 1

kn =
n∑
i=1

Si −
m∑

i=n+1

fiAiSi
An − fiAi

, πn = AnSn

ki =
rSi

r − fiAi
, ai =

fiAiSi
r − fiAi

, πi =
An(1− fi)
An − fiAi

AiSi ∀i ≥ n+ 1

while the aggregate output is

Y = An

n∑
i=1

Si +
m∑

i=n+1

An(1− fi)
An − fiAi

AiSi. (9)

• In the regime Rn, agents 1, . . . , n are lenders and agents n + 1, . . . ,m are bor-
rowers. Moreover, we have ki = 0, ai = −Si, πi = rSi ∀i = 1, . . . , n and

ki =
r

r − fiAi
Si, ai =

fiAi
r − fiAi

Si, πi =
Air(1− fi)
r − fiAi

Si ∀i ≥ n+ 1 (10a)

Y =
m∑

i=n+1

AiSi
r

r − fiAi
. (10b)

Theorem 1 shows how distributions of fundamentals such as initial wealth, produc-
tivity and credit limit matter for the equilibrium outcomes. Before exploring equilib-
rium properties in the general case, let us provide some implications of Theorem 1.
Theorem 1 allows us to identify who are borrowers and who are lenders. In model with
two agents, there are one borrower and one lender (see Appendix C). In the general
case, the number of borrowers (lenders) is endogenously determined. The most produc-
tive agent borrows and the least productive agent lends. However, a middle-productive
agent becomes a borrower or not depends on other fundamentals, including credit limit.
By the way, our findings have an implication in international macroeconomics as we
show in the following example.
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Example 1 (Implication: capital flows and the role of credit limits). Assume that
there are three agents and A1 < A2 < A3. This economy can be viewed as a globalized
economy with three countries i = 1, 2, 3. In this case, country 3 is borrower (capital
inflows) and country 1 is lender (capital outflows). Country 2 attracts capital inflows
(i.e. a2 ≥ 0) if and only if A2 ≥ f3A3(1+S3/S1) (it means that country 2 is sufficiently
productive and/or country 3 is not very productive and/or country 3’s credit limit is
not sufficiently high and/or country 1’s initial wealth (S1) is sufficiently high).

Proof. Agent 2 is borrower if and only if r ≤ A2 and a2 ≥ 0. According to our
computation in Appendix C, r ≤ A2 if and only if A2 > maxi(f3A3) and S1 ≥ f3A3

A2−f3A3
−

S2. Moreover, in the regime A2 where r = A2, we have a2 = S1 − f3A3

A2−f3A3
. Therefore,

agent 2 borrows if and only if A2 > maxi(f3A3) and S1 ≥ f3A3

A2−f3A3
, or equivalently

(A2 − f3A3)S1 ≥ f3A3S3 (because A2 > maxi(f3A3)⇔ A2 > f3A3).

Remark 2 (Number of borrowers). Given A1 < . . . < Am, the number of agents
whose credit constraints are binding in the economy depends on fundamentals (Si, fi)i.
The higher level of initial wealth and credit limit s of less productive agents, the higher
number of these entrepreneurs in the economy.

Remark 3 (Economy without credit constraints). Consider an economy without credit
constraints (in the sense that constraint (1c) is removed). Under Assumptions 1, 2,
there exists a unique equilibrium determined by

k∗i = 0, a∗i = −Si, π∗i = AmSi ∀i < m

k∗m = Sm, a
∗
m = 0, π∗m = AmSm.

The aggregate output is Y ∗ = Am
∑

i Si.

3.3 Equilibrium analysis

This subsection aims to explore equilibrium analysis. There are two main kinds of
regime: (i) the regime An where the equilibrium outcomes depend neither on (Ai)i≤n−1

nor (fi)i≤n and (ii) the regime Rn where the equilibrium outcomes do not depend on
(Ai, fi)i≤n. We will present our analysis in each regime.

It is useful to understand the behavior of the interest rate. First, the interest rate
is continuous in each parameter. Second, we observe that r > maxi(fiAi). Third, the
interest rate has different properties in different regimes. In the regime An, we have
r = An.

The more interesting case is in the regime Rn where r = rn–the greatest solution
of equation (6). In this case, for lenders (i ≤ n), the interest rate r decreases if Si
increases. However, for borrowers (i ≥ n+1), the interest rate r increases if Si increases.
Indeed, agents i with i ≤ n are lenders, so if their initial wealths increase, they lend
more and hence the equilibrium interest rate decreases. By contrast, if borrowers’
initial wealths increases, their credit limit will be relaxed and they can borrow more
which makes the interest rate increase. We also see that, when fi increases, then r
increases. Hence

∑
j≥n+1,j 6=i

fjAjSj
r−fjAj decreases which implies that fiAiSi

r−fiAi (the borrowing

amount of agent i) increases, hence, r
fiAi

decreases. To sum up, we have the following
result.
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Lemma 6 (Equilibrium interest rate).

1. In the regime An, we have r = An.

2. In the regime Rn, we have

(a) Lenders (i ≤ n): ∂r
∂Si

< 0.

(b) Borrowers (i > n): ∂r
∂Si

> 0, ∂r
∂fi

> 0, ∂r
∂Ai

> 0.

Moreover, from the equation (6) determining the interest rate, we can compute, for
j = n+ 1, . . . ,m,

∂r

∂fj
=

rAjSj
(r−fjAj)2∑m

i=n+1
fiAiSi

(r−fiAi)2
> 0, and

m∑
j=n+1

∂r

∂fj

fj
r

= 1

∂r

∂Aj
=

rfjSj
(r−fjAj)2∑m

i=n+1
fiAiSi

(r−fiAi)2
> 0 and

m∑
j=n+1

∂r

∂Aj

Aj
r

= 1.

Consequently, the elasticity of the interest rate with respect to productivity and credit
limit is less than 1.

3.3.1 Effects of productivity

The following result is a direct consequence of our equilibrium computation.

Proposition 1 (Distributional and aggregate effects of productivity).

1. In the regime An, the equilibrium outcomes do not depend on (Ai)i≤n−1 and we
have that:

(a) Lenders (i < n) and agent n: ∂πi
∂An

> 0 ∀i ≤ n

(b) Borrowers (i > n): ∂πi
∂Ai

> 0 > ∂πi
∂An

; ∂πi
∂Aj

= 0 ∀j > n and j 6= i

(c) Aggregate output : ∂Y
∂Aj

> 0 ∀j > n, but ∂Y
∂An

=
∑n

i=1 Si−
∑m

i=n+1
(1−fi)fiA2

iSi
(An−fiAi)2

may have any sign.

2. In the regime Rn, the equilibrium outcomes do not depend on (Ai)i≤n and we
have that:

(a) Lenders (i ≤ n): ∂πi
∂Aj

> 0 ∀j > n.

(b) Borrowers (i > n): ∂πi
∂Ai

> 0; ∂πi
∂Aj

< 0 ∀j > n and j 6= i.

(c) Aggregate output : ∂Yn
∂Aj

> 0 ∀j > n.

Comments. At the individual level, the effects of an increase of the TFP Aj
(j ≥ n) on agents’ income depend on the type of agents. Indeed, an increase of a TFP
of any entrepreneur has a positive impact on its income and the income of all lenders.
However, it will decrease the income of other borrowers (entrepreneurs) because they
can get less capital.
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At the aggregate level, point (2c) of Proposition 1 shows that the output is an
increasing function of productivities in the regime Rn. Indeed, if Ai (with i > n)

increases, then r increases, so
∑

j≥n+1,j 6=i
fjAjSj
r−fjAj decreases which implies that fiAiSi

r−fiAi
increases, hence, r

fiAi
decreases. Therefore, the aggregate output Y is increasing in Ai.

This is in line with the existing literature on the impact of productivity on economic
growth.

However, an interesting point, following (1c), is that ∂Y /∂An may be negative in
the regime An (i.e. when An > maxi(fiAi) and

∑m
i=n+1

fiAiSi
An−fiAi ≤

∑n
i=1 Si ≤

Sn
1−fn +∑m

i=n+1
fiAiSi
An−fiAi ). The intuition is the following. Any agent i < n does not produce.

When An increases, agent n absorbs more capital and produces more. However, other
producers (who are more productive than agent n) get less capital and they produce
less (the capital amount of other producers is

∑m
i=n+1

AnSi
An−fiAi which is decreasing in

An). The net effect depends on the level of An. Notice that ∂Y /∂An is increasing
in An. So, when if An is high enough, the output is more likely to increase when An
increase.

Example 2. To illustrate our insight, let us consider an economy having three agents
with parameters S1 = 10, S2 = S3 = 5, f1 = f2 = f3 = 0.4, A1 = 1, A3 = 2. The
economy is in the regime A2 if and only if 3.2/3 ≤ A2 ≤ 1.4. We can compute that

Y = 5(3A2 +
1.2A2

A2 − 0.8
),

∂Y

∂A2

= 15− 4.8

(A2 − 0.8)2

In this regime, ∂Y
∂A2
≤ 0 if A2 ∈ [3.2/3, 1.366], and ∂Y

∂A2
≥ 0 if A2 ∈ [1.366, 1.4] .

Figure 1: The effect of medium productivity A2 on the output.

Summing up, increasing productivity of an agent does not necessarily have a pos-
itive effect on the economic growth in the short-run if the capital supply is fixed.
Our finding complements the literature on the impact of productivity on the economic
growth.

Entrepreneurs are important actors in modern economies, specially in developing
countries (see Buera et al. (2015) for a review). In terms of implications, our result sug-
gests that if the developing of some firms does not necessarily have a positive impact on
the aggregate output. We would be careful with the development of entrepreneurship.
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3.3.2 Distributional effects of credit limits

This subsection theoretically studies the distributional effects of credit limits on indi-
vidual allocations. Numerical simulations will be presented in subsection 3.4.

Proposition 2 (Distributional effects of credit limits).

1. In the regime An, the equilibrium outcomes do not depend on (f1, . . . , fn) but
depend on (fn+1, . . . , fm). We also have

(a) Lenders (i < n) and agent n (i = n): ∂πi
∂fj

= 0 ∀j > n.

(b) Borrowers (i > n): ∂πi
∂fi

> 0, ∂πi
∂fj

= 0 ∀j 6= i.

2. In the regime Rn, the equilibrium outcomes do not depend on (f1, . . . , fn) but
depend on (fn+1, . . . , fm).

(a) Lenders (i ≤ n): ∂πi
∂fj

> 0 ∀j > n.

(b) Borrowers (i ≥ n+ 1):

∂kj
∂fi

< 0,
∂aj
∂fi

< 0,
∂πj
∂fi

< 0 ∀j > n and j 6= i (12a)

∂ki
∂fi

> 0,
∂ai
∂fi

> 0, and (12b)

∂πi
∂fi

> 0⇐⇒ Ai − r − (1− fi)Ai
fiAiSi

(r−fiAi)2∑m
i=n+1

fiAiSi
(r−fiAi)2

> 0. (12c)

Proof. See Appendix A.3.

Interpretations. In the regime An, the interest rate r = An does not depend on
credit limits. So, an increase of credit limit of a borrower fj (j > n) does not have any
effect on the consumption of other agents. However, it increases the income of this
borrower because she can borrow more and get more capital in order to produce more
and make more profit.

In the regime Rn, an increase of credit limit of a borrower fj (j > n) have positive
effects on the lenders’ consumption (point 2.a) but negative effects on other borrowers’
consumption (see (12a)).

The surprising point is that the consumption of an borrower does not necessarily
increase when her credit limit is relaxed, i.e. ∂πi

∂fi
may have any sign in the regime

Rn (this is different from the regime An). To see the point, by using the fact that
∂ki
∂fi

= ∂ai
∂fi

, we obtain the following decomposions

∂πi
∂fi

= Ai
∂ki
∂fi︸ ︷︷ ︸

Added production

− (r
∂ai
∂fi

+ ai
∂r

∂fi
)︸ ︷︷ ︸

Added repayment

(13a)

= (Ai − r)
∂ki
∂fi︸ ︷︷ ︸

Expansion effect

− ai
∂r

∂fi︸ ︷︷ ︸
Interest effect

. (13b)
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When agent i’s credit limit is relaxed, this agent can borrow more and hence get more
physical capital to produce more (see (12b)). So, both production and repayment of
this agent will increase. By consequence, the profit πi of this agent will increase if her
production increases faster than the repayment (this argument is formalized by (13a)).

The decomposition (13b) provides another interpretation. A change in the credit
limit of agent i creates two effects. The first one, so-called expansion effect, represents
the added profit of this entrepreneur given the interest rate (which is lower than the
marginal productivity Ai) because agent i can get more capital. The second one, so-
called interest effect, represents the added repayment created by the increasing of the
interest rate. Consequently, the profit πi increases in the credit limit fi if the expansion
effect domines the interest effect. This second interpretation is closely related to Obiols-
Homs (2011) where he decomposes the effect of an exogenous borrowing limit on the
welfare of consumers into quantity effect and price effect which correspond to expansion
effect and interest effect respectively.

The interesting question now is to understand whether πi is increasing in fi. Since
fiAiSi

(r−fiAi)2∑m
i=n+1

fiAiSi
(r−fiAi)2

is increasing in the threshold n, condition (12c) implies that ∂πi
∂fi

is

more likely to be positive when n is low (or equivalently the number of borrowers is
high). Let us consider a particular case when n + 1 = m. In such a case, we see that
Am − r − (1− fm)Am = fmAm − r < 0. Combining with (12c), we have the following
result.

Corollary 2. In the regime Rm−1 (i.e., n+ 1 = m), we have ∂πm/∂fm < 0.

In the regime Rm−1, it is easy to find that the interest rate r = rm−1 = fmAm
(
1 +

Sm∑m−1
i=1 Si

)
and km = S. The aggregate output equals AmS and the consumption of agent

m is πm = Amkm − ram = Am(1− fm)S, which is decreasing in her credit limit fm.
In the regime Rm−1, the most productive agent borrows all wealths of the less pro-

ductive ones, and then her production level (Amkm = AmS) cannot increase any more.
By contrast, the repayment ram always increases in the credit limit once the credit
constraint binds. Therefore, the most productive agent’s consumption is decreasing in
her credit limit in this regime.

3.3.3 Effects of credit limits on the aggregate output

A meaningful question is whether developing financial market has positive effects on
the economic growth. In our model, relaxing credit limit (i.e., increasing fi) can be
interpreted as reduction of financial friction or improvement of the financial sector.

In our model, we manage to investigate the effects of credit limits on the aggregate
production, which help us to understand better the relationship between finance and
economic growth.

Proposition 3 (Effects of credit limits on the aggregate output).

1. In this regime An, we have ∂Y
∂fi

= −(An−fiAi)+(1−fi)Ai
(An−fiAi)2 > 0 ∀i ≥ n+ 1.
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2. In the regime Rn, we have

∂Yn
∂fi

=
∂r

∂fi

(
Ai

m∑
j=n+1

fjAjSj
(r − fjAj)2

−
m∑

j=n+1

fjSjA
2
j

(r − fjAj)2

)
. (14)

Proof. See Appendix A.4.

From this and the fact that An+1 < · · · < Am, we obtain the following result.

Corollary 3. In the regime Rn, we have ∂Yn
∂fn+1

≤ 0 ≤ ∂Yn
∂fm

. Consequently, if n+1 = m,

then ∂Yn
∂fm

= 0. Moreover, if m > n+ 1, then ∂Yn
∂fn+1

< 0 < ∂Yn
∂fm

.

Our above results lead to several implications which we will discuss as follows.

Non-monotone effects of credit limits

One can imagine that relaxing credit limits would have positive impact on the aggregate
output as shown in Khan and Thomas (2013) (section VI. C), Midrigan and Xu (2014)
(section II.B), Moll (2014) (Proposition 1), and Catherine et al. (2017). However, the
story is more complicated.

1. In the regime An, relaxing credit limit of any borrower has a positive impact on
the aggregate output.

2. The more interesting case is found in the regime Rn. Indeed, the property
∂Yn/∂fn+1 < 0 if m > n+ 1 in Corollary 3 means that an increase in credit limit
of a borrower may have a negative impact on the aggregate output. The intuition
is the following. Agent n+ 1 is the least productive borrower. When credit limit
of this agent increases, she will borrow more and hence more productive agents
can get less funds (see (12a) in Proposition 2). By consequence, the aggregate
output is decreasing in fn+1.

3. By contrast the aggregate output increases in the most productive agent’s credit
limit ( ∂Yn

∂fm
≥ 0). It should be recalled, however, that if fm increases, consumptions

of any other borrowers will decrease (see (12a) in Proposition 2).

Our article is related to the literature on the relationship between entrepreneurship
and financial frictions (see Buera et al. (2015) for a review). The entrepreneurs play a
crucial role on economic growth. However, many of them face difficulty when finding
credit. Indeed, according to Enterprise Surveys (2018), in the average level, 53.6% of
firms need a loan and 79.1% of loans require collateral. Improving access to credit
of entrepreneurs is expected to boost economic growth. However, our result above
suggests that relaxing credit limits of less productive entrepreneurs may have a negative
impact on the economic growth.

We can also compare the aggregate outputs in economies with and without credit
constraints.
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Proposition 4 (With versus without financial frictions). Consider the economy E with
credit constraints. We have Y ≤ Y ∗ ≡ Am

∑
i Si. Moreover, Y = Y ∗ if and only if

fmAm ≥ Am−1(1− Sm/S).

Proof. See Appendix A.5

Propositions 4 indicates that the aggregate output in the economy with frictions
does not exceed than that in the economy without frictions (this is consistent with
Midrigan and Xu (2014), Catherine et al. (2017)). However, as we have discussed, the
effects of financial frictions are neither monotone nor linear. They depend not only
on the distribution of resources in the economy but also on the credit limits of all
agents. Notice that the non-monotonicity effect of financial depth on economic growth
is supported by Arcand et al. (2015) where they empirically show that financial depth
starts having a negative effect on output growth when credit to the private sector
reaches 100% of GDP. Our contribution is to provide a general picture to understand
whether relaxing credit limit has a positive/negative effect on the aggregate output.

Remark 4 (The aggregate TFP). Since the aggregate capital is S and the technology
of agents is linear, we can define the aggregate TFP, denoted by A, by the following
equation Y = AS. In the frictionless economy, the aggregate TFP equals Am the
highest TFP of agents. We see that A ≤ Am. This is consistent with the result in
Catherine et al. (2017).

Since the aggregate output Y is endogenous, the aggregate TFP is endogenously
determined and depends on the distribution of resources as well as the credit limits of
agents. Proposition 1 in Moll (2014) shows that, for given wealth shares, the aggregate
TFP is always increasing in the leverage ratio of capital to wealth (an index of the
quality of credit markets). We complement his results by providing conditions under
which the TFP is non monotone in the maximum ratio of debt over the value of the
collateral (another index of the quality of credit markets)

Remark 5 (Heterogeneous vs homogeneous credit limits). We now assume that fi = f
∀i and let f vary. Intuitively, producers can get more capital.7 Hence, the aggregate
output is an increasing function of the homogeneous credit limit f , and so does the
aggregate TFP. This result still holds in the general technology case (see Remark 11).
This finding is consistent with those in Buera and Shin (2013), Khan and Thomas
(2013), Midrigan and Xu (2014), Moll (2014), Catherine et al. (2017).

This observation indicates that the heterogeneity of credit limit matters for the
equilibrium outcome.

Remark 6 (Number of agents matters). When there are two agents, we have
m = n + 1. Consequently, ∂Y1/∂f2 = 0. By combining with point 1 of Proposition 3,
we see that ∂Y /∂f2 ≥ 0, i.e., the output is an increasing function of credit limits of
both agents.

7Indeed, one can prove that ∂Y /∂f > 0 in the regime An. The intuition is that borrowers can
borrow more from the least productive entrepreneur (agent n) who is indifferent between two choices:
producing or investing (because the interest rate equals her marginal productivity. We can also prove
that ∂Yn/∂f = 0 in the in the regime Rn. The intuition is that when f increases, every borrower
can borrow more given the interest rate but the interest rate will also increase. The net effect is zero
because the elasticity of the interest rate with respect to the credit limit is one.
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When m > n+ 1, there are at least two borrowers. In this case, Corollary 3 shows
that ∂Yn

∂fn+1
< 0 < ∂Yn

∂fm
. This means that increasing credit limit of different borrowers

may have opposite effects on the aggregate output.
Our results suggests that the number of agents matters when we want to observe

the impacts of credit limits (fi)i in general equilibrium models.

3.4 Numerical simulations

In this subsection, we illustrate our analytical analyses by providing numerical simu-
lations. To get explicit solutions, let us consider an economy with three agents and we
focus on the case A1 ≥ maxi(fiAi) so that the interest rate may have any value in the
interval [A1, A3]. Detailed computations are presented in Appendix C.

Effects of credit limit f3 and TFP A3

Figure 2 shows the effects of the most productive agent’s credit limit f3 and produc-
tivity A3. Several points related to the effects of f3 deserve mentions:

Figure 2: Effects of credit limit f3 and productivity A3.

• An increase in f3 may make the consumption of agent 1 increase but that of agent
2 decrease and then increase. When r ≥ A2 (this happens if and only if S1 ≤
f2S2

1−f2 + f3A3S3

A2−f3A3
), they will have the same level of consumption rS1 = rS2. The

consumption of agent 3 firstly increases, secondly decreases, thirdly increases,
fourthly decreases and lastly is unchanged in f3.

• An increase in f3 in our competitive market structure decreases income
inequality between agents 1 and 2. Moreover, it can increase the sum of con-
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sumptions of these two agents as well as the aggregate output (this illustrates
our theoretical results in Proposition 3 and Corollary 3).

We now look at the effects of the most productive agent’s productivity A3. While
agents 1 and 3’s consumption is increasing in A3, agent 2’s consumption is not. Indeed,
as shown in Figure 2, the consumption of agent 2 decreases when the most productive
agent’s productivity A3 increases so that the interest rate r passes from A1 = 1 to
A2 = 1.2.

Effects of the middle-productive agent’s credit limit f2

Figure 3 shows the effects of the agent 2’s credit limit f2 on the equilibrium interest
rate, on her consumption, and on the aggregate output. In this example, we set S1 = 4,
S2 = 4, S3 = 3, f1 = 0.2, f3 = 0.2, A1 = 1, A2 = 1.2, A3 = 1.5 and we let f2 vary.

When f2 varies from 0.1 to 0.6, the interest rate varies from A1 = 1 to A2 = 1.2.
The agent 2’s consumption and the aggregate output are not monotone functions of f2.
Precisely, they are are increasing in f2 in the regime A1 (i.e., r = A1) but decreasing
in f2 in the regime R1 (i.e., r = r1). These simulations complement our findings in
Proposition 3 and Corollary 3.

Figure 3: Effects of credit limit f2.

Gini coefficient

We complement our distributional analyses in subsection 3.3.2 by showing some prop-
erties of the Gini coefficient. To see the main point, let us consider a particular case
where all agents has the same initial wealth S1 = S2 = S3 = 4 but different productiv-
ity A1 = 1, A2 = 1.2, A3 = 1.4. Assume that f1 = f2 = 0.2. Figure 4 shows that when
f3 varies from 0.2 to 0.7, the Gini coefficient is not necessarily a monotone function of
credit limit f3.
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Let us look at the curve of the Gini coefficient. The first part corresponds to
the regime A1 (i.e., r = A1); the Gini coefficient increases in f3. The second part
corresponds to the regime R1 (i.e., r = r1); the Gini coefficient decreases. The third
part corresponds to the regime A2 (i.e., r = A2); the Gini coefficient increases. The
fourth part corresponds to the regime R2 (i.e., r = r2); the Gini coefficient decreases.
The last part corresponds to the regime A3 (i.e., r = A3); the Gini coefficient is
constant.

Let us provide the intuition. In the regime An(n = 1, 2) , the interest rate equals
An. By consequence, when the credit limit f3 of agent 3 increases, only consumption of
this agent increases while that of other agents rests unchanged. So, the Gini coefficient
increases in these regimes. However, in the regime A3, the equilibrium outcomes do
not depend on f3, so the Gini coefficient is constant. In the regime Rn(n = 1, 2), the
interest rate equals rn which is increasing in f3. Since the interest rate increases in
f3, an increase of f3 benefit lenders (point 2.a of Proposition 2) who are the poorest
people. Hence, the Gini coefficient decreases in these regimes.

Figure 4: Gini coefficient (model with the same initial wealth).

Figure 5: Gini coefficient (when the most productive agent is ex ante the poorest).

When the most productive agent has a very low initial wealth, an increase in her
credit limit f3 would decrease the Gini coefficient. Indeed, consider parameters as in
the above example except that S1 = 2, S2 = 6, S3 = 1. It means that the middle-
productive agent is ex ante the richest and the most productive agent is the poorest at
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the beginning. In this case, relaxing the credit limit of agent 3 (the most productive
entrepreuneur) reduces the Gini coefficient. This is illustrated in Figure 5.

4 General concave technologies

This part focuses on the general case where technologies are concave. Given interest
rate r, the problem of agent i is the following.

(Pi) π = max
ki,ai

[Fi(ki)− rai] (15a)

subject to : 0 ≤ ki ≤ Si + ai (15b)

rai ≤ fiFi(ki) (15c)

We make standard conditions on Fi. Different from the linear technology case,
Inada condition F ′i (0) =∞ is required.

Assumption 3. We assume that Fi is in C1, concave and strictly increasing, Fi(0) =
0, Fi(∞) =∞, F ′i (0) =∞, F ′i (∞) = 0.

4.1 Partial equilibrium

Given the interest rate r, this subsection studies the optimal allocations of agents.
Denote x(Fi, ri) the solution of F ′i (x) = r. To simplify, when there is no confusion,

we write x(ri) instead of x(Fi, ri). By definition of x(ri), we have F ′′i (x)x′(ri) = 1.
Denote Gi(k) ≡ k

Fi(k)
− Si

Fi(k)
. It is easy to prove that Gi(k) is strictly increasing in

k. Since Fi(0) = 0, we have Gi(0) = −∞. Given r, fi, Fi, Si, denote k(Fi, Si, fi, r) the
unique solution of the equation rGi(k) = fi.

We summarize properties of x(Fi, ri) and k(Fi, Si, fi, r) which will be useful for our
analyses.

Lemma 7. We have the following properties.

1. x(Fi, r) is decreasing in r.

2. k(Fi, Si, fi, r) is increasing in fi, Si and decreasing in r.

3. For A > 0, we have that x(AFi, r) = x(Fi,
r
A

) and k(AFi, Si, fi, r) = k(Fi, Si, fi,
r
A

)
are increasing in A.

The following result provides a characterization of the solution of problem (Pi).

Lemma 8. Let Assumption 3 be satisfied and consider the problem (Pi).

1. If rGi(x(Fi, r)) ≥ fi, then credit constraint is binding and k = k(Fi, Si, fi, r).
Moreover, k = k(Fi, Si, fi, r) ≤ x(Fi, r).

2. If rGi(x(Fi, r)) < fi, then credit constraint is not binding and k = x(Fi, r). In
this case, we have x(Fi, r) = k < k(Fi, Si, fi, r).
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Agent i borrows if and only if x(Fi, r) > Si or equivalently F ′i (Si) > r. This happens
when her initial wealth is low and/or interest rate is low and/or her productivity is
high.

Proof. See Appendix B.1.

Remark 7. 1. When Fi(k) = Akα, then Hi(r) ≡ rGi(x(Fi, r)) = α
(

1−
(

r
αAiS

α−1
i

) 1
1−α
)

is decreasing in r and Hi(0) = α in this case.

2. If Hi(r) ≡ rGi(x(Fi, r)) is decreasing in r and Hi(0) < fi, then borrowing con-
straint is not binding. So, under Cobb-Douglas production function Fi(k) =
Aik

αi, if αi < fi, then borrowing constraint is not binding.

In the following, we work under the following assumptions.

Assumption 4. For any i, the function rGi(x(Fi, r)) is decreasing in r.

Under these assumptions, rGi(x(Fi, r)) ≥ fi is equivalent to r ≤ R(Fi, fi, Si) where
R(Fi, fi, Si) is a positive function. It means that credit constraint is binding if and
only if r ≤ R(Fi, fi, Si). The level R(Fi, fi, Si) is the subjective interest rate of agent
below which agent borrows so that borrowing constraint is binding. It is natural to
assume that R(Fi, fi, Si) is decreasing in fi and in Si, and increasing in productivity
(in the sense that R(AFi, fi, Si) < R(BFi, fi, Si) for any A > B). To sum up, the
credit constraint of agent i is more likely to bind if the interest rate, her initial wealth
and credit limit are low, and/or her productivity is high.

Remark 8. 1. With Cobb-Douglas technology Fi(ki) = Aik
α
i , with α > fi, we have

R(Fi, fi, Si) = αAiS
α−1
i

(
1− fi

α

)1−α
.

2. With AK technology Fi(ki) = Aiki, we have R(Fi, fi, Si) = Ai.

4.2 Determining general equilibrium

In this subsection, we will determine equilibrium. The key point is to identify all agents
whose credit constraints are binding because agents whose credit constraints are not
binding have similar behavior. Recall that borrowing constraint of agent i is binding
if and only if r ≤ R(Fi, fi, Si). Hence, we have to rank R(Fi, fi, Si).

Assumption 5. Assume that R1 < R2 < · · · < Rm where

Ri ≡ R(Fi, Si, fi). (16)

Remark 9. By definition, we have riGi(x(Fi, Ri)) = fi and x(Fi, Ri) = k(Fi, Si, fi, Ri).

With this ranking, we have an important property: if agent i’s credit constraint is
binding, then so does that of agent i + 1. One can interpret that agent i + 1 needs
credit more than agent i.
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In a particular case where fi = f , Si = S, Fi = AiF ∀i with A1 < A2 . . . < Am,
agent i+ 1 needs credit mores than agent i because she is more productive than agent
i. However, in general case, it should be noticed that Ri > Rj does not necessarily
mean that agent i is more productive than agent j.

Since there is at least one agent whose credit constraint is not binding, we have
r > R1. So the equilibrium interest rate must be either in the interval (Rn, Rn+1]
for some index n < m or higher than rm. We will find conditions under which such
property is satisfied.

Interest rate r0
•

R1

•
Rm

•
Rn

•
r
•

Rn+1

•

Equilibrium interest rate

To simplify our exposition, we introduce additional notations:

Bn(d) ≡

{∑n
i=1 x(Fi, d) +

∑m
i=n+1 k(Fi, Si, fi, d) if n ≤ m− 1∑m

i=1 x(Fi, d) if n = m.

Remark 10. Bn(Rn) > Bn+1(Rn+1) = Bn(Rn+1).8

It should be noticed that Bn(Rn) is the aggregate capital demand when the interest
rate equals Rn. We next introduce some notations of the economy without credit
constraints.

Definition 3 (Economy without credit constraints). The unique equilibrium interest
rate, denoted by r∗, of the economy without credit constraints is determined by∑

i

x(Fi, r
∗) = S ≡

∑
i

Si. (17)

In such case, the capital of agent i is k∗i = x(Fi, r
∗) and asset holding a∗i = x(Fi, r

∗)−Si.
The aggregate output is Y ∗ =

∑
i Fi(k

∗
i ).

By the construction of (Ri) and function Bn(·), we obtain a result similar to Lemma
3, which is useful to characterize all possible equilibria.

Lemma 9. Let Assumptions 3, 4, 5 be satisfied. Consider an equilibrium ((ki, ai)i, r)
and an index n ∈ {1, . . . ,m− 1}.

8Indeed, since Rn < Rn+1, we notice that

Bn(Rn) ≡
n∑

i=1

x(Fi, Rn) +

m∑
i=n+1

k(Fi, Si, fi, Rn)

> Bn(Rn+1) =

n∑
i=1

x(Fi, Rn+1) +

m∑
i=n+1

k(Fi, Si, fi, Rn+1) =

n+1∑
i=1

x(Fi, Rn+1) +

m∑
i=n+2

k(Fi, Si, fi, Rn+1)

where the last equality follows k(Fn+1, Sn+1, fn+1, Rn+1) = x(Fn+1, Rn+1). Therefore, Bn(Rn) >
Bn+1(Rn+1) = Bn(Rn+1) ∀n.
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1. If r > Rm, Lemma 8 implies that credit constraint of any agent is not binding.
So, the equilibrium coincides to that of the economy without credit constraints.
Therefore, we have r = r∗ > Rm.

2. If r > Rn, then credit constraint of any agent i ≤ n is not binding. Hence ki =
x(Fi, r) < x(Fi, Rn) ∀i ≤ n. Condition r > Rn also implies that k(Fi, Si, fi, r) <
k(Fi, Si, fi, Rn). Therefore, we have∑

i

Si < Bn(Rn).

3. If r ≤ Rn+1, then credit constraint of any agent i ≥ n + 1 is binding, and
hence ki = k(Fi, Si, fi, r) ≥ k(Fi, Si, fi, Rn+1) ∀i ≥ n + 1. Moreover, we have
ki ≥ x(Fi, r) ≥ x(Fi, Rn+1) Therefore, we have∑

i

Si ≥ Bn(Rn+1).

To avoid a taxonomical exposition, let us focus on Lemma 9’s point 2. It indicates
that if the interest rate r is higher than the threshold Rn, then the aggregate capital
demand associated to the equilibrium interest rate Rn is higher than the aggregate
capital supply.

We are now ready to figure out all possible structures of the economy, which will
be essential to identify the whole set of equilibria.

Definition 4 (Categorization of economy). Consider the economy with linear tech-
nologies. The regime Rm is the set of all economies such that Bm(Rm) > S (⇐⇒∑m

i=1 x(Fi, Rm) > S ⇐⇒ r∗ > Rm).
For each n ∈ {1, . . . ,m− 1}, the regime Rn is the set of all economies such that

Bn(Rn) > S ≥ Bn+1(Rn+1).

Our main result is stated as follows.

Theorem 2 (Existence, uniqueness, and computation of general equilibrium). Let
Assumptions 3, 4, 5 be satisfied. {R1, . . . ,Rm} is a partition of E in the sense that

E = ∪mi=1Ri and X ∩ Y = ∅ ∀X, Y ∈ {R1, . . . ,Rm} with X 6= Y.

All possible cases are described as follows.

1. In the regime Rm, credit constraint of any agent is not binding. In this case, the
equilibrium coincides to that of the economy without credit constraints. Agent i
borrows (ki ≥ Si) if and only if F ′i (Si) ≤ r∗.

2. In the regime Rn (with 1 ≤ n ≤ m− 1), the equilibrium interest rate, denoted by
rn, and agents’ capital are determined by

n∑
i=1

x(Fi, rn) +
m∑

i=n+1

k(Fi, Si, fi, rn) = S ≡
∑
i

Si (18a)

ki =

{
x(Fi, rn) if i ≤ n

k(Fi, Si, fi, rn) if i ≥ n+ 1.
(18b)
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Notice that Rn < rn ≤ Rn+1 in this case.

Any agent i(i ≥ n + 1) borrows and her credit constraint is binding. The credit
constraint ofany agent i ≤ n is not binding. Moreover, agent i(i ≤ n) borrows if
and only if F ′i (Si) ≤ rn.

Proof. See Appendix B.2.

Since {R1, . . . ,Rm} is a partition of E, the existence and the uniqueness of equi-
librium are ensured. This is consistent with Theorem 1 for the linear technology case

The equilibrium interest rate is determined by the following:

r =

{
r∗ in the regime Rm

ri in the regime Ri ∀i = 1, . . . ,m− 1.
(19)

Notice that the equilibrium interest rate is lower that in the frictionless economy, i.e.,
rn ≤ r∗ ∀n.

4.3 Equilibrium analysis

In this subsection, we investigate the effects of credit limits (fi). We focus on the
regime Rn with n ≤ m − 1. Notice that in this regime, the equilibrium outcomes do
not depend on (fi)

n
i=1.

Conventional notation: The equilibrium in this regime is denoted (rn, (k
n
i , a

n
i )i).

Recall that kni = k(Fi, Si, fi, rn) ∀i ≥ n and kni = x(Fi, rn) ∀i ≥ n. When there is no
confusion, we write xi(·) and ki(·) instead of x(Fi, ·) and k(Fi, Si, ·, ·) respectively.

We present useful properties of the equilibrium interest rate r. It is easy to obtain
the first-order conditions.

F ′i (k
n
i ) = rn∀i ≤ n (20a)

λni = (1 + µni fi)F
′
i (k

n
i ) (20b)

λni = (1 + µni )rn (20c)

µni ≥ 0, and fiFi(k
n
i )− rnani = 0. (20d)

where λni and µni are respectively the multiplier associated to constraints (15b) and
(15c). Since fi < 1, we obtain that F ′i (k

n
i ) ≥ rn > fiF

′
i (k

n
i ).

According to equation (18a), we obtain the following result which is similar to
Lemma 6.

Lemma 10. Consider the regime Rn with n ≤ m − 1. Then we have that rn is
increasing in fj ∀j > n and

0 =
n∑
i=1

x′i(rn)
∂rn
∂fj

+
m∑

i=n+1

∂ki
∂rn

∂rn
∂fj

+
∂kj
∂fj

, i.e.,
∂rn
∂fj

=

∂kj
∂fj

−
n∑
i=1

x′i(rn)−
m∑

i=n+1

∂ki
∂rn

(21)

where ∂kj/∂fj > 0, x′i(rn) < 0 and ∂ki/∂rn < 0 (following Lemma 7).
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4.3.1 Individual allocations

The following result, which is corresponding to Proposition 2 in Section 3, shows the
effects of credit limits on agents’ consumption.

Proposition 5 (Effects of credit limits on individual allocations). Assume that we are
in the regime Rn. In this case, the equilibrium outcomes do not depend on (f1, . . . , fn)
but depend on (fn+1, . . . , fm). Let us consider fi with i ≥ n+ 1.

1. For agents (j ≤ n) whose credit constraints are not binding, we have that:

fi ↑ =⇒ knj ≡ x(Fj, rn) ↓, anj ↓ (22a)

∂πnj
∂fi

= −anj (22b)

Consequently, ∂πnj /∂fi ≥ 0 if and only if agent j is lender (anj ≤ 0).

2. For agents (j > n) whose credit constraints are binding, we have that:

∀j > n, j 6= i: fi ↑ =⇒ knj ≡ k(Fj, Sj, fj, rn) ↓, anj ↓, and πnj ↓ (23a)

Agent i:

{
∂kni
∂fi

> 0,
∂ani
∂fi

> 0
∂πi
∂fi

may have any sign.
(23b)

Proof. See Appendix B.3.

Interpretations. When fi increases, both kni and ani increases. So, agent i’s
consumption πni = Fi(k

n
i )− rnani may increase or decrease in fi. When the production

Fi(k
n
i ) increases faster than the repayment rna

n
i , agent i’s consumption is increasing

in fi. Our argument is formalized by the following decompositions which follow from
definition of πi and noticing that

∂kni
∂fi

=
∂ani
∂fi

∂πni
∂fi

= F ′i
(
ki(Fi, Si, fi, rn)

∂kni
∂fi︸ ︷︷ ︸

Added production

−
(
rn
∂ani
∂fi

+ ani
∂rn
∂fi

)
︸ ︷︷ ︸

Added repayment

(24a)

=
(
F ′i
(
ki(Fi, Si, fi, rn)− rn

)∂kni
∂fi︸ ︷︷ ︸

Expansion effect

− ani
∂rn
∂fi︸ ︷︷ ︸

Interest effect

(24b)

When F ′i
(
ki(Fi, Si, fi, rn) = rn, the expansion effect is vanished. So, the net effect is

negative, i.e., ∂πni /∂fi ≤ 0

4.3.2 Aggregate output

The aggregate output equals

Yn =
m∑
i=1

Fi(ki) =
n∑
i=1

Fi(x(Fi, rn)) +
m∑

i=n+1

Fi(k(Fi, Si, fi, rn)).
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We firstly look at the effects of credit limits (fi)i. In the regimeRn, the equilibrium
outcomes do not depend on (fi)i≤n. For j > n, we have

∂Yn
∂fj

=F ′j(k(Fj, Sj, fj, rn))
(∂kj
∂rn

∂rn
∂fj

+
∂kj
∂fj

)
︸ ︷︷ ︸

Added production of agent j

(25)

+
n∑
i=1

F ′i (xi(rn))x′i(rn)︸ ︷︷ ︸
< 0

∂rn
∂fj

+
m∑

i≥n+1,i 6=j

F ′i (k(Fi, Si, fi, rn))
∂ki
∂rn︸︷︷︸
< 0

∂rn
∂fj︸ ︷︷ ︸

Production losses of other agents

When fj increases, the interest rate increases. By consequence, k(Fj, Sj, fj, rn) will
increase while k(Fi, Si, fi, rn) with i 6= j and x(Fi, rn) with i ≤ n will decrease.

The first term represents the marginal added production of agent j when her credit
limit fj is relaxed while the two last terms represent the marginal production loss
of other agents. The aggregate output increases in fj if the marginal added produc-
tion exceeds the marginal production loss. This happens under the conditions in the
following result which is consistent with Corollary 3.

Corollary 4. Consider the regime Rn. Denote In = arg maxi>n{F ′j(kj)}. The, we
have ∂Yn/∂fj ≥ 0 ∀j ∈ In. In particular, if there are two agents, then the aggregate
output is increasing in f2.

The first statement can be easily proved by using Lemma 10 and noticing that
F ′i (xi(rn))) = rn ≤ Fj(kj) ∀j > n. Our result indicates that relaxing credit limit
of agents having the highest marginal productivity, will have a positive effect on the
aggregate output.

Remark 11 (Homogeneous credit limit). As in Remark 5, if we set fi = f ∀i and
let f vary, we can prove that the aggregate output is an increasing function of f .
The intuition is very simple: all credit-constrained firms, who have higher marginal
productivity, can borrow more from other agents who have lower marginal productivity.
A formal proof is presented in Appendix B.4.

The effects of productivities

Let Fj(·) = AjZj(·), where Zj(·) is a strictly increasing, concave production function,
we investigate the effects of Aj. To simplify the notations and without loss of generality,
we can assume that Zj = F ∀j.

According to Lemma 7, we have x(AjF, r) = x(F, r
Aj

) and k(AjF, S, f, r) = k(F, S, f, r
Aj

).

So, we write xj(
r
Aj

), kj(
r
Aj

) instead of x(F, r
Aj

), k(F, Sj, fj,
r
Aj

). With these notations,
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we can compute, for each j ≤ n,

∂Yn
∂Aj

=F
(
x
( rn
Aj

))
+ AjF

′
(
xj
( rn
Aj

))
x′j
( rn
Aj

)
︸ ︷︷ ︸

< 0

∂rn
∂Aj

Aj − rn
A2
j

(26)

+
∑

i=1≤n,i 6=j

F ′i (xi(rn))x′i(rn)︸ ︷︷ ︸
< 0

∂rn
∂Aj

+
m∑

i≥n+1

F ′i (k(Fi, Si, fi, rn))
∂ki
∂rn︸︷︷︸
< 0

∂rn
∂Aj

.

It is easy to prove that ∂rn
∂Aj

> 0. So, the above decomposition suggests that ∂Yn
∂Aj

may have any sign.

With versus without financial frictions

With general technologies, we can also compare the equilibrium outcomes of our model
with that of the frictionless framework.

Proposition 6 (With versus without financial frictions). Consider the economy E with
credit constraints. We have Y ≤ Y ∗. Moreover, Y = Y ∗ if and only if r∗ ≥ Rm.

Proof. See Appendix B.5.

5 Efficiency and welfare analysis

This section aims to explore the efficiency of equilibrium by providing a necessary and
sufficient condition under which the equilibrium is efficient. First, following Malinvaud
(1953), Alvarez and Jermann (2000), Becker, Dubey and Mitra (2014) we introduce
some notions of efficiency.

Definition 5. Consider an economy characterized by production functions and wealths
(Fi, Si)i=1,...,m.

1. (Efficient production plan) A plan (ki)i is said to be efficient if (1) it is feasible
in the sense that

∑
i ki ≤

∑
i Si and (2) there does not exist another feasible

production plan (k′i)i such that
∑

i Fi(k
′
i) >

∑
i Fi(ki).

2. (Efficient allocation). An allocation (ci)i is said to be efficient if (1) it is feasible
in the sense that

∑
i ci ≤

∑
i Fi(ki) with some feasible plan (ki) and (2) there

does not exist another feasible allocation (c′i)i which dominates (ci)i in the sense
of Pareto.

3. (Constrained efficient allocation). An allocation (ci)i is said to be constrained
efficient if (1) it is efficient and (2) πi ≥ AiSi ∀i = 1, 2.

Let us consider equilibrium of our economy E = (Fi, fi, Si) with credit constraints.
One can prove that (ki)i is an efficient production plan if and only if it is a solution of
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the following problem

(PP ) : F (S) ≡ max
(ki)≥0

∑
i

Fi(ki) (27a)

subject to :
∑
i

ki ≤ S ≡
∑
i

Si. (27b)

The consumption allocation (πi)i is efficient if and only if
∑

i πi = F (S). It is
constrained efficient if and only if

∑
i πi = F (S) and πi ≥ AiSi ∀i.

The simplicity of our framework allows us to easily characterize the efficient pro-
duction plans and Pareto efficient allocations of equilibrium.

Proposition 7 (Efficiency). Consider the economy with credit constraints and linear
technology (resp., concave technology). Let Assumptions 1, 2 (resp., Assumptions 1,
3, 4, 5) be satisfied. The following statements are equivalent:

1. The production plan of equilibrium is efficient.

2. The consumption allocation of equilibrium is efficient

3. The consumption allocation of equilibrium is constrained efficient.

4. Y = AmS, or equivalently fmAm ≥ Am−1(1− Sm/S)

(resp., r∗ ≥ maxi ri = rm, i.e., Y = Y ∗).

Proof. This is a consequence of Proposition 4 (resp., Proposition 6).

Corollary 5. Assume that there are two agents having Cobb-Douglas technology:
Fi(k) = Aik

α
i with α > fi ∀i. Then, we have

r∗ = r̄ ≡
α
(
A

1
1−α
1 + A

1
1−α
2

)1−α

(S1 + S2)1−α , ri ≡ αAiS
α−1
i

(
1− fi

α

)1−α
.

By consequence, the equilibrium is efficient if and only if r∗ ≥ maxi ri, i.e.,

A
1

1−α
1 + A

1
1−α
2

A
1

1−α
i

Si
S1 + S2

+
fi
α
≥ 1 ∀i. (28)

Intuitions. In the linear technology case, the main insight is clear: the equilibrium
is efficient if and only if the TFP and/or credit limit and/or initial wealth of the most
productive agent are sufficiently high. It should be noticed that even fm = 1 (the
highest level), the equilibrium efficiency still requires conditions on productivity and
initial wealth Am ≥ Am−1(1− Sm/S).

In the general concave technology case, let us provide the intuition of the condition
r∗ ≥ maxi ri = rm. Since rm = maxi ri, agent m needs credit more than any other
agents: her credit constraint is binding for any interest rate lower than rm. Condition
r∗ ≥ rm ensures that agent m’s credit constraint is not binding, and so do credit
constraints of any other agents. By consequence, the equilibrium is efficient. The
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inverse is also true: when credit constraint of some agent is binding, the efficiency
fails.

Since r∗ does not depend on credit limits (fi)i, and rm is decreasing in fm, the higher
the credit limit fm, the bigger room for the equilibrium efficiency. This is illustrated
by condition (28) in the two-agent economy.

An interesting feature of our model is that when the equilibrium is inefficient (i.e.,
when r∗ < rm), the level of the efficiency, defined by the difference between the output
of this equilibrium and that of frictionless economy Y − Y ∗, is not monotone in credit
limits.

Our result is related to Gottardi and Kubler (2015) who consider an exchange
economy with complete markets and collateral constraints. Section 3.1 in Gottardi
and Kubler (2015) provides a necessary and sufficient condition for the existence of
a Pareto-efficient equilibrium in two cases: (i) there is no aggregate uncertainty and
(ii) consumers have identical CRRA utility. Their conditions are based on agents’
endowments and Gottardi and Kubler (2015) require the Lucas tree’s dividend in
every state to be sufficiently large so that collateral constraints never bind.

Several differences between Gottardi and Kubler (2015) and the present paper
should be mentioned.

1. In terms of setting, our model is deterministic and has exogenous wealths while
Gottardi and Kubler (2015)’s model has uncertainty and endogenous wealths.
However, Gottardi and Kubler (2015) considers an exchange economy while in
our paper we focus on heterogeneous producers (any agent can produce by using
their own technology).

2. Second, our necessary and sufficient condition is based on all parameters including
credit limits and productivities while in results in Section 3.1 of Gottardi and
Kubler (2015) credit limits play no role.

3. Third, Theorem 2 in Gottardi and Kubler (2015) only considers the existence of
a Pareto-efficient equilibrium while our Proposition 7 characterizes all economies
where efficient and/or inefficient equilibria arise.

6 Models with exogenous borrowing limits

This section compares models with credit constraints and with exogenous borrowing
limits. We now consider borrowing constraint ai ≤ āi instead of constraint (1c). The
problem of agent i now becomes

(Qi) πi = max
(ki,ai)

[Fi(ki)− rai] (29a)

subject to : 0 ≤ ki ≤ Si + ai (29b)

ai ≤ āi. (29c)

Remark 12. If we replace ai ≤ āi by condition ai ≤ θiki which corresponds to con-
straint (3) in Midrigan and Xu (2014). Then, at optimal, we must have Si +ai = ki ≥
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ai
θi

, so ai ≤ b̄i ≡ ξiSi where ξi ≡ 1
1
θi
−1

, the problem (Qi) becomes

(Qi1) πi = max
(ki,ai)

[Fi(ki)− rai] (30a)

subject to : 0 ≤ ki ≤ Si + ai (30b)

ai ≤ b̄i. (30c)

If we replace ai ≤ āi by condition ai ≤ θiSi. Then, the problem (Qi) becomes

(Qi2) πi = max
(ki,ai)

[Fi(ki)− rai] (31a)

subject to : 0 ≤ ki ≤ Si + ai (31b)

ai ≤ d̄i ≡ θiSi. (31c)

We observe that with both setting ai ≤ θiSi and ai ≤ θiki, agent i has exogenous
borrowing limit. So, we can apply our results in this section.

Proposition 8 (General equilibrium: Finite agent case). Assume that there are m
agents with production function Fi(k) = Aiki and A1 < A2 < · · · < Am.

1. If S1 −
∑m

i=2 āi > 0, then r = A1.

2. ām >
∑m−1

i=1 Si, then r = Am.

3. For 2 ≤ n ≤ m− 1:

(a) If
∑

i≥n āi >
∑

i≤n−1 Si and
∑

i≤n Si >
∑

i≥n+1 āi, then r = An.

(b) If
∑

i≤n−1 Si =
∑

i≥n āi, then any r ∈ [An−1, An] is an equilibrium interest
rate.

Proof. See Appendix D.

Proposition 8 computes the equilibrium interest rate in all economies. From this,
we can find the whole set of equilibria (see Appendix D for more details). Some points
deserve to mention:

1. Different from the model with credit constraint, our model with exogenous bor-
rowing limit may have multiple equilibria (point 3.b). In this case, the aggregate
output does not depend on the interest rate r but the distribution of consump-
tions does. The consumption of lenders (resp., borrowers) is increasing (resp.,
decreasing) in the interest rate r. Since there are multiple equilibrium interest
rate, there are multiple equilibrium consumption distributions, including the Gini
coefficient.

2. In any case, the aggregate output the aggregate output is increasing in borrowing
limits and productivities. This is different from our model with credit constraint.
The reason is that the asset holding ai in the problem (Qi) is bounded from above
by an exogenous limit while the upper bound of ai in the model with credit limit
is endogenous and depends on the interest rate r.

3. Any economy such that ām ≥
∑m−1

i=1 Si is efficient (in the sense in Definition 5).
Notice that when ām =

∑m−1
i=1 Si, the economy is efficient but multiple equilibria

arise (point 3.b).
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7 Concluding remarks

In our model, we have fully characterized the whole set of equilibria and provided
comparative statics. The distributional and aggregate effects of both productivity and
credit limit are neither monotone nor linear.

Our paper suggests that the number of agents and the credit heterogeneity in
general equilibrium models matter for the equilibrium implications, especially when
analyzing the effects of productivities and credit limits on the production and the
income distribution.

It would be interesting to extend our analysis in a dynamic framework and inves-
tigate the effects of credit limits and the distribution of productivity on the evolution
of the distributions of important variables (income, wealth, ...).

Appendices

A Proofs: linear technology case

A.1 Proof of Lemmas 3, 4, 5

Proof of Lemma 3. We present proofs of points 1 and 2. Point 3 is a direct consequence
of points 1 and 2, and the fact that r > maxi(fiAi).

1. Since r > Ai for any i = 1, . . . , n, Lemma 1 implies that ki = 0, ai = −Si ∀i = 1, . . . , n.
Hence, we have, by using market clearing condition,

n∑
i=1

Si = −
n∑
i=1

ai =
m∑

i=n+1

ai ≤
m∑

i=n+1

fiAi
r − fiAi

Si <
m∑

i=n+1

fiAi
An − fiAi

Si (A.1)

where the first inequality follows (3) while the last inequality follows r > An >
maxi(fiAi) and the fact that the function H(r) ≡

∑m
i=n+1

fiAi
r−fiAiSi is decreasing in

(maxi(fiAi),+∞). Notice that this function is not decreasing in the interval (0,∞).

2. Since r < An, again Lemma 1 implies that

ki =
r

r − fiAi
Si, ai =

fiAi
r − fiAi

Si ∀i ≥ n. (A.2)

We have

m∑
i=n

AnSi
An − fiAi

S <

m∑
i=n

rSi
r − fiAi

=

m∑
i=n

ki ≤
m∑
i=1

Si = S (A.3)

where the first inequality follows An > r > maxi(fiAi).

Proof of Lemma 4. If r = An, we have

ki = 0 ∀i ≤ n− 1 (A.4)

ki =
rSi

r − fiAi
∀i ≥ n+ 1. (A.5)
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This implies that An = r > maxi(fiAi). Since 0 ≤ kn ≤ rSi
r−fnAn , we have

m∑
i=n+1

rSi
r − fiAi

≤
∑
i

ki =
m∑
i=n

ki ≤
m∑
i=n

rSi
r − fiAi

=
∑
i=n

AnSi
An − fiAi

(A.6)

By converse, suppose that An > maxi(fiAi) and
∑m

i=n+1
AnSi

An−fiAi ≤ S ≤
∑m

i=n
AnSi

An−fiAi .
Applying points 1 and 2, we have r ≥ An and r ≤ An. Hence r = An.

Proof of Lemma 5. Part 1. Assume that r = rn 6= An. By definition of r and rn, we
have

∑m
i=n+1

rSi
r−fiAi = S, and rn > maxi(fiAi).

We will prove that r = rn ∈ (An, An+1).
If r ≤ An, then r < An+1, and hence ki = rSi

r−fiAi ∀i ≥ n+ 1. Since
∑m

i=n+1
rSi

r−fiAi = S =∑
i ki. We have ki = 0 ∀i ≤ n, and hence kn = 0. This implies that r ≥ An. Therefore, we

have r = An, a contradiction. Thus, we have r > An.
If r ≥ An+1, we have ki = 0 ∀i ≤ n. Hence S =

∑
i ki ≤

∑m
i=n+1

rSi
r−fiAi . Since∑m

i=n+1
rSi

r−fiAi = S, we have ki = rSi
r−fiAi ∀i ≥ n + 1. Hence An+1 ≥ r. So, r = An+1.

We have just proved that r ≤ An+1. By definition of r, we get that An+1 > maxi(fiAi).
If rn = An+1, then applying Lemma 4, we have

∑m
i=n+2

An+1Si
An+1−fiAi = bn+1 ≤ S. However,

by definition of rn, we have
∑m

i=n+1
An+1Si

An+1−fiAi = S, contradiction. Therefore, we obtain
rn < An+1.

We have just proved that rn ∈ (An, An+1). Applying point 2 of Lemma 3, we have
S > dn+1. There are two cases:

1. maxi(fiAi) ≥ An. In this case, we have An ≤ maxi(fiAi) < rn < An+1.

2. maxi(fiAi) < An. We get maxi(fiAi) < An < rn < An+1. Notice that, in this case,
rn ∈ (An, An+1) is equivalent to dn+1 < S < bn.

Part 2. Conversely, assume that (i) An ≤ maxi(fiAi) < rn < An+1 or (ii) maxi(fiAi) <
An < rn < An+1.

1. If An ≤ maxi(fiAi) < rn < An+1. Condition An ≤ maxi(fiAi) implies that r > An.
Then ki = 0 ∀i ≤ n, and hence S =

∑m
i=n+1 ki ≤

∑m
i=n+1

rSi
r−fiAi

By definition rn, we have S =
∑m

i=n+1
rnSi

rn−fiAi

Since the function f(X) ≡
∑m

i=n+1
XSi

X−fiAi is decreasing on the interval (maxi≥n+1(fiAi),∞)
and r, rn > maxi(fiAi), we have r ≤ rn. This implies that r ∈ (An, An+1). Therefore,
point 3 of Lemma 3 implies that r = rn.

2. If maxi(fiAi) < An and dn+1 < S < bn. We have S < dn because dn > bn. According
to point 2 of Lemma 3, we have r ≥ An.

Condition S > dn+1 implies that S > bn+1 because dn+1 > bn+1. According to point 1
of Lemma 3, we have r ≤ An+1.

If r = An+1, then Lemma 4 implies that S ≤ dn+1. This is a contradiction because
S > dd+1.

If r = An, Lemma 4 implies that S ∈ [bn, dn]. However, S ≤ bn. Thus, we have
S = bn =

∑m
i=n+1

AnSi
An−fiAi . Since An > maxi(fiAi), then An = rn, a contradiction.

Summing up, we have r ∈ (An, An+1). By applying point 3 of Lemma 3, we have
r = rn.
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A.2 Proof of Theorem 1

Equation (8) is a consequence of Lemma 4 and Lemma 5. Let us prove (7a) and (7b).
Denote M ≡ maxi(fiAi). According to Definition 2, we see that:

1. The economy E ≡ (Fi, fi, Si)i=1,...,m ∈ A1 if and only if A1 > M and S > b1.

2. E ∈ Am if and only if S ≤ dm.

3. E ∈ An with n ∈ {2, . . . ,m− 1} if and only if An > M and bn ≤ S ≤ dn.

4. E ∈ Rn ≡ Rn,1 ∪Rn,2 with n ∈ {1, . . . ,m− 1} where

(a) Rn,1 is the set of economies such that An > M and dn+1 < S < bn.

(b) Rn,2 is the set of economies such that An+1 > M ≥ An and dn+1 < S.

Equilibrium Existence–Proof of (7a). In order to prove (7a), we verify that E ⊂
∪mi=1Ai ∪ ∪

m−1
i=1 Ri. Let us consider an economy E . There are only two cases.

1. M < A1. In this case, we have M < An ∀n. Therefore, it is easy to see that E ∈
∪mi=1Ai ∪ ∪

m−1
i=1 Ri,1 ⊂ ∪mi=1Ai ∪ ∪

m−1
i=1 Ri.

2. There exists n ∈ {1, . . . ,m− 1} such that An+1 > M ≥ An. There are two sub-cases.

(a) S > dn+1. In this case, E ∈ Rn+1,2.

(b) S ≤ dn+1. Recall that M < An+1. In this case, we will prove that E ∈ ∪mi=n+1Ai∪
∪m−1
i=n+1Ri. Indeed, since S ≤ dn+1, there are 2(m− n)− 1 cases.

i. If there exists i ∈ {n+1,m−1} such that bi ≤ S ≤ di. Then E ∈ Ai (because
Ai > M).

ii. If there exists i ∈ {n + 1,m − 1} such that di+1 ≤ S ≤ bi. Then E ∈ Ri,1
(because Ai > M).

iii. Last, if S ≤ dm, then E ∈ Rm.

Equilibrium Uniqueness–Proof of (7b). There exists a unique equilibrium interest
rate if and only if (7b) holds. We have to prove that:

An ∩ Ah = ∅ ∀n 6= h (A.7a)

An ∩Rh,1 = ∅ ∀n, h (A.7b)

An ∩Rh,2 = ∅ ∀n, h (A.7c)

Rn ∩Rh = ∅ ∀n 6= h. (A.7d)

Following (5), it is easy to see that the two firsts equalities hold.
We now prove that An ∩ Rh,2 = ∅ ∀n, h. Suppose that there exists E ∈ An ∩ Rh,2. It

means that (1) An > M and bn ≤ S ≤ dn, and (ii) Ah+1 > M ≥ Ah and dh+1 < S. From
these conditions we get An > Ah, and hence n ≥ h+ 1. Thus, we obtain S > dh+1 ≥ dn ≥ S,
a contradiction. Therefore, we have An ∩Rh,2 = ∅ ∀n, h.

Last, we prove Rn ∩ Rh = ∅, or equivalently Rn,i ∩ Rh,j = ∅ ∀i, j ∈ {1, 2}, ∀n 6= h.
Without loss of generality, we can assume that n < h. It is easy to see that Rn,1 ∩Rh,1 = ∅
and Rn,2 ∩Rh,2 = ∅. We now prove that Rn,1 ∩Rh,2 = ∅ and Rn,2 ∩Rh,1 = ∅.

1. Suppose that there exists E ∈ Rn,1 ∩ Rh,2. It means that An > M ; dn+1 < S < bn;
Ah+1 > M ≥ Ah; dh+1 < S. Since h > n, then Ah > An > M . This is a contradiction
because M ≥ Ah. So, we have Rn,1 ∩Rh,2 = ∅.
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2. Suppose that there exists E ∈ Rn,2 ∩ Rh,1. It means that An+1 > M ≥ An; dn+1 <
S;Ah > M ; dh+1 < S < bh.

Since h ≥ n+ 1, we have bh ≤ bn+1 < dn+1 < S < bh, a contradiction.

Another presentation of equilibrium computation. According to Theorem 1, we
obtain the following results.

Lemma 11. Assume that max(fiAi) < A1 < A2 < · · · < Am. Then r ∈ [A1, Am] and there
are (2m− 1) different cases determined by the following.

1. If fmSm
1−fm ≥

∑m−1
i=1 Si or equivalently Sm

1−fm ≥ S, then r = Am.

2. For all 1 < n < m: If
∑m

i=n+1
fiAiSi
An−fiAi ≤

∑n
i=1 Si ≤

Sn
1−fn +

∑m
i=n+1

fiAiSi
An−fiAi , or

equivalently
∑m

i=n+1
AnSi

An−fiAi ≤ S ≤
∑m

i=n
AnSi

An−fiAi , then r = An.

3. For all 1 < n < m: If
∑m

i=n+1
fiAiSi

An+1−fiAi <
∑n

i=1 Si <
∑m

i=n+1
fiAiSi
An−fiAi , or equivalently∑m

i=n+1
An+1Si

An+1−fiAi < S <
∑m

i=n+1
AnSi

An−fiAi then r = rn, and r ∈ (An, An+1).

4. If
∑m

i=2
fiAiSi
A1−fiAi ≤ S1, or equivalently

∑m
i=2

AiSi
A1−fiAi ≤ S, then r = A1.

Lemma 12. Assume that there exists n0 ∈ {1, . . . ,m−1} such that maxi(fiAi) ∈ [An0 , An0+1).
Then r ∈ (An0 , Am] and there are 2(m− n0) possible cases determined by the following.

1. If fmSm
1−fm ≥

∑m−1
i=1 Si or equivalently Sm

1−fm ≥ S, then r = Am.

2. For all n0 + 1 ≤ n < m: If
∑m

i=n+1
fiAiSi
An−fiAi ≤

∑n
i=1 Si ≤

Sn
1−fn +

∑m
i=n+1

fiAiSi
An−fiAi or

equivalently
∑m

i=n+1
AnSi

An−fiAi ≤
∑m

i=1 Si ≤
∑m

i=n
AnSi

An−fiAi , then r = An.

3. For all n0 + 1 ≤ n < m: If
∑m

i=n+1
fiAiSi

An+1−fiAi <
∑n

i=1 Si <
∑m

i=n+1
fiAiSi
An−fiAi , or

equivalently
∑m

i=n+1
An+1Si

An+1−fiAi < S =
∑m

i=1 Si <
∑m

i=n+1
AnSi

An−fiAi , then r = rn, and

r ∈ (An, An+1).

4. If
∑m

i=n0+1
fiAiSi

An0+1−fiAi <
∑n0

i=1 Si, or equivalently
∑m

i=n0+1
An0+1Si

An0+1−fiAi < S, then r <

An0+1, and hence An0 ≤ maxi(fiAi) < r < An0+1 and r = rn0.

A.3 Proof of Proposition 2

Let i ≥ n + 1, j ≥ n + 1, and j 6= i, we can compute and see that (by noticing that r is
increasing in fi),

∂ki
∂fj

= Si
∂r

∂fj

∂
( r

r − fiAi

)
∂r

< 0

∂ai
∂fj

= − AifiSi
(r − fiAi)2

∂r

∂fj
< 0

∂πi
∂fj

= Ai(1− fi)Si
∂
( r

r − fiAi

)
∂fj

< 0.
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Since ki − ai = Si, we can compute that

∂ai
∂fi

=
∂ki
∂fi

=
Si

(r − fiAi)2

( ∂r
∂fi

(r − fiAi)− r(
∂r

∂fi
−Aj)

)
=

Si
(r − fiAi)2

Ai

(
r − fi

∂r

∂fi

)
> 0

because r − fi
∂r

∂fi
= r
(

1−
fiAiSi

(r−fiAi)2∑m
i=n+1

fiAiSi
(r−fiAi)2

)
> 0.

We now look at ∂πi
∂fi

with i ≥ n+ 1.

1

AiSi

∂πi
∂fi

=

∂
(r(1− fi)
r − fiAi

)
∂fi

=

(
(1− fi)r′(fi)− r

)
(r − fiAi)− r(1− fi)

(
r′(fi)−Ai

)
(r − fiAi)2

. (A.8)

The numerator is(
(1− fi)r′(fi)− r

)
(r − fiAi)− r(1− fi)

(
r′(fi)−Ai

)
=r′(fi)

(
(1− fi)(r − fiAi)− r(1− fi)

)
− r(r − fiAi) + rAi(1− fi)

=− r′(fi)(1− fi)fiAi + r(Ai − r).

We now consider

r(Ai − r)− r′(fi)(1− fi)fiAi
r

= Ai − r − (1− fi)Ai
fiAiSi

(r−fiAi)2∑m
i=n+1

fiAiSi
(r−fiAi)2

. (A.9)

A.4 Proof of Proposition 3

It is easy to see that ∂Yn
∂fi

= 0 ∀i ≤ n. For i ≥ n+ 1, we have

∂Yn
∂fi

=
m∑

j=n+1

AjSj

∂
( r

r − fjAj

)
∂fi

=
m∑

i 6=j=n+1

AjSj

∂
( r

r − fjAj

)
∂r

∂r

∂fi
+AiSi

r′(fi)(r − fiAi)− r(r′(fi)−Ai)
(r − fiAi)2

=

m∑
i 6=j=n+1

AjSj
−fjAj

(r − fjAj)2

∂r

∂fi
+AiSi

−fiAir′(fi) + rAi
(r − fiAi)2

=
m∑

j=n+1

AjSj
−fjAj

(r − fjAj)2

∂r

∂fi
+

rSiA
2
i

(r − fiAi)2

=
m∑

j=n+1

AjSj
−fjAj

(r − fjAj)2

rAiSi
(r−fiAi)2(∑m

j=n+1
fjAjSj

(r−fjAj)2

) +
rSiA

2
i

(r − fiAi)2

=
∂r

∂fi

(
Ai

m∑
j=n+1

fjAjSj
(r − fjAj)2

−
m∑

j=n+1

fjSjA
2
j

(r − fjAj)2

)
.
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A.5 Proof of Proposition 4

We firstly consider the regime Rn with n ≤ m− 1. In this regime, we have

Y = Yn =
m∑

i=n+1

rAiSi
r − fiAi

≤
m∑

i=n+1

Am
rSi

r − fiAi
= AmS. (A.10)

Notice that Y = AmS if and only if n+ 1 = m.
We now consider the regime An with n ≤ m. In this regime, we have

Y = An

n∑
i=1

Si +
m∑

i=n+1

An(1− fi)AiSi
An − fiAi

= An

m∑
i=1

Si +An

m∑
i=n+1

An(Ai −An)

An − fiAi

≤ AnS + (Am −An)
m∑

i=n+1

An
An − fiAi

≤ AnS + (Am −An)S = AmS.

where the last inequality is from the condition
∑m

i=n+1
AnSi

An−fiAi in the regime An. It is easy

to see that Y = AmS if and only if either n+ 1 > m or n+ 1 = m and Am−1

Am−1−fmAmSm = S.
Combining these two cases, we obtain our result.

B Proofs: concave technology case

B.1 Proof of Lemma 8

Assume that F ′(0) = 0, then at optimum, k > 0. The Lagrange function is

L = F (k)− ra+ λ(S + a− k) + µ(fAkα − ra)

It is easy to see that (k, a) is a solution if and only if there exists (λ, µ) such that

[k] : (1 + µf)F ′(k) = λ

[a] : (1 + µ)r = λ

µi ≥ 0, and µi(fF (k)− a) = 0.

These equations imply that:

F ′(k) = r
1 + µ

1 + fµ
≥ r. (B.1)

Denote x(F, r) the solution of F ′(x) = r. We see that x(F, r) is decreasing in r.
Since F ′ is decreasing, we have k ≤ x(F, r).

Case 1: The credit constraint is binding: fF (k) = ra. In this case, (k, a) is the solutions of
the following equations:

a = k − S (B.2)

fF (k) = r(k − S), i.e.,
f

r
=

k

F (k)
− S

F (k)
. (B.3)

Consider k/F (k). Its derivative is F (k)−kF ′(k)
(F (k))2

≥ 0 because F is concave. So, G(k) ≡ k
F (k) −

S
F (k) is strictly increasing in k. Moreover, G(0) < f/r and G(∞) > f/r (because F ′(∞) < 1).

Therefore, there exists a unique solution k of equation (B.3), and this is positive.
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We have to now verify that such solution satisfies k ≤ x(F, r). Since G(k) = r, this
condition is equivalent to G(x(F, r)) ≥ f/r.

Case 2: fF (k) > ra. In this case, we have µ = 0, and hence F ′(k) = r, i.e, k = x(F, r).
It remains to check that this value of ki satisfies the condition: fF (k) > ra = r(S − k), i.e.,
f/r > G(x(F, r)).

In this case, agent borrows (i.e., a > 0) if and only if k > S or equivalently x(F, r) > S.
This means that her wealth is low and/or interest rate is low and/or her productivity is high.

Notice that if rG(x(F, r)) < (≥)f , then G(x(F, r)) < (≥)f/r = G(k(F, S, f, r)), which
implies that x(F, r) < (≥)k(F, S, f, r).

B.2 Proof of Theorem 2

Let us consider an equilibrium. Since there is at least one agent whose credit constraint is
not binding, we have r > R1.

• Suppose that r ∈ (Rn, Rn+1]. So, credit constraint of any agent i ≥ n + 1 is binding
and that of any agent i ≤ n is not binding. Hence, the capital demand is determined
by

∑
i

ki =
n∑
i=1

x(Fi, r) +
m∑

i=n+1

k(Fi, Si, fi, r). (B.4)

In this case, the equilibrium interest rate is determined by

n∑
i=1

x(Fi, r) +
m∑

i=n+1

k(Fi, Si, fi, r) = S ≡
∑
i

Si. (B.5)

According to Lemma 7, the left-hand side is decreasing in r, and hence this equation
has a unique solution.

Since r ∈ (Rn, Rn+1], Lemma 7 implies that

n∑
i=1

x(Fi, Rn) +

m∑
i=n+1

k(Fi, Si, fi, Rn) >
∑
i

Si ≥
n∑
i=1

x(Fi, Rn+1) +

m∑
i=n+1

k(Fi, Si, fi, Rn+1).

Conversely, if this condition holds, using Lemma 7 we can easily prove that r ∈
(Rn, Rn+1]. Indeed, if r > Rn+1, then point 2 of Lemma 9 implies that S < Bn+1(Rn+1).
This contradicts to S ≥ Bn+1(Rn+1). If r ≤ Rn, then point 3 of Lemma 9 implies that
S ≥ Bn−1(Rn) = Bn(Rn). This contradicts to S < Bn(Rn). Therefore, we obtain
r ∈ (Rn, Rn+1].

• We now suppose that r∗ > Rm. We will prove that credit constraint of any agent is
not binding. Suppose that B = {i ∈ {1, . . . ,m} : (1c) is binding} 6= ∅. Let n : 1 ≤ n ≤
m−1 be the highest element in B, i.e., credit constraint of any agent i ≥ n+1 is binding
while that of any agent i ≤ n is not. We have r ∈ (Rn, Rn+1]. So, k(Fi, Si, fi, r) ≥
k(Fi, Si, fi, Rn + 1) > k(Fi, Si, fi, Rm) and x(Fi, r) ≥ x(Fi, Rn+1) ≥ x(Fi, Rm). Hence,
we get that

∑
i

Si =

n∑
i=1

x(Fi, r) +

m∑
i=n+1

k(Fi, Si, fi, r) ≥
m∑
i=1

x(Fi, Rm). (B.6)
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However, by definition of r∗, we have

∑
i

Si =

m∑
i=1

x(Fi, r
∗) <

m∑
i=1

x(Fi, Rm). (B.7)

This is a contradiction.

We now prove that rn ≤ r∗ ∀n ≤ m − 1. Indeed, in the regime Rn, for any i ≥ n + 1,
agent i’s credit constraint is binding. Hence, Lemma 8 follows that k(Fi, Si, fi, rn) ≤ x(Fi, rn)
∀i ≥ n+ 1. Consequently, we get that

m∑
i=1

x(Fi, r
∗) = S =

n∑
i=1

x(Fi, rn) +

m∑
i=n+1

k(Fi, Si, fi, rn) ≤
m∑
i=1

x(Fi, rn)

which implies that r∗ ≥ rn.

B.3 Proof of Proposition 5

For i ≤ n, the agent i’s consumption is equal to Fi(x(Fi, rn)) while for i > n the agent i’s
consumption is πiFi(k(Fi, Si, fi, rn))− rnai = (1− fi)Fi(ki(Fi, Si, fi, rn)).

1. For j ≤ n, when fi increases, rn increases. According to Lemma 10, kj = x(Fj , rn)
and aj = kj − Sj will decrease. It is easy to compute that

∂πj
∂fi

=
∂
(

(F ′j(xj(rn))− rn
(
xj(rn)− Sj

))
∂fi

=
(
F ′j(xj(rn))− rn

)
x′j(rn)− (xj(rn − Sj)) = −aj .

2. We now take j > n and i 6= j. When fi increases, rn increases. According to Lemma
10, kj = x(Fj , rn) and aj = kj − Sj will decrease. However, πj will decrease because

∂πj
∂fi

= (1− fj)F ′j
(
kj(Fj , Sj , fj , rn)

)∂kj
∂rn

∂rn
∂fi

< 0.

We now look at the allocation of agent i. Following (21), we have

∂ki
∂rn

∂rn
∂fi

+
∂ki
∂fi

= −
( n∑
i=1

x′i(rn) +
∑

i≥n+1,i 6=j

∂ki
∂rn

)∂rn
∂fj

> 0.

It means that ki = k(Fi, Si, fi, rn), and hence ai = ki−Si are increasing in fi. We can
also compute that

∂πi
∂fi

= (1− fi)F ′i
(
ki(Fi, Si, fi, rn)

)( ∂ki
∂rn

∂rn
∂fi

+
∂ki
∂fi

)
− Fi

(
ki(Fi, Si, fi, rn)

)
∂πi
∂fi

= F ′i
(
ki(Fi, Si, fi, rn)

∂ki
∂fi
− r∂ai

∂fi
− ai

∂rn
∂fi

=
(
F ′i
(
ki(Fi, Si, fi, rn)− r

)∂ki
∂fi
− ai

∂rn
∂fi

.
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B.4 Proof of Remark 11 (homogeneous credit limit)

Notice that
∂kni
∂f = ∂ki

∂rn
∂rn
∂f + ∂ki

∂f . First, from equation (18a), we have
∑n

i=1 x
′
i(rn)∂rn∂f +∑m

i=n+1
∂kni
∂f = 0. Since xi(·) is decreasing for any i ≤ n and rn is increasing in f , we have∑m

i=n+1
∂kni
∂f > 0.

We now claim that
∂kni
∂f =

(
∂ki
∂rn

∂rn
∂f + ∂ki

∂f

)
> 0 ∀i ≥ n + 1, i.e., any credit-constrained

agent gets more capital. Taking the derivative with respect to f of both sides of the equation
fFi(k

n
i )− rn(kni − Si), we have

Fi(k
n
i ) + fF ′i (k

n
i )
∂kni
∂f

=
∂rn
∂f

(kni − Si) + rn
∂kni
∂f

(B.8)

i.e.,
∂kni
∂f

=
(∂rn
∂f

f

rn
− 1
) Fi(k

n
i )

rn − fF ′i (kni )
. (B.9)

By summing with respect to i from n + 1 to m and noticing that
∑m

i=n+1
∂kni
∂f > 0 and

rn − fF ′i (kni ) > 0 ∀i ≥ n + 1, we get that ∂rn
∂f

f
rn
− 1 ≥ 0. From this and (B.9), we obtain

∂kni
∂f > 0 ∀i ≥ n+ 1.

We now observe that

∂Yn
∂f

=
m∑

j=n+1

F ′j(k
n
i )
∂kni
∂f

+
n∑
i=1

F ′i (xi(rn))x′i(rn)
∂rn
∂f

(B.10)

≥ rn
( m∑
j=n+1

∂kni
∂f

+
n∑
i=1

x′i(rn)
∂rn
∂f

)
= 0. (B.11)

B.5 Proof of Proposition 6

The output in the frictionless economy is Y ∗ =
∑

i Fi(k
∗
i ) =

∑
i Fi(x(Fi, r

∗)). Since F ′i (k
∗
i ) =

r∗ ∀i and
∑m

i=1 k
∗
i = S, we have

Y ∗ ≡
∑
i

Fi(k
∗
i ) = max

(ki)≥0;
∑m
i=1 ki≤S

m∑
i=1

Fi(ki). (B.12)

By consequence, Y ≤ Y ∗ in equilibrium. Since (k∗i )i is the unique solution of the above
maximization problem, it is easy to see that Y = Y ∗ if and only if r = r∗.

We now prove that Y = Y ∗ if and only if r∗ ≥ Rm.
Suppose that r∗ ≥ Rm, we will prove that r = r∗ which implies that Y = Y ∗.
Indeed, if r∗ > Rm, then the economy is in the regime Rm. Then r = r∗, and hence

Y = Y ∗.
If r∗ = Rm, then S =

∑m
i=1 x(Fi, Rm). The economy is in the regime Rm−1 and we have

S =
m−1∑
i=1

x(Fi, r) + k(Fm, Sm, fm, r).

If S =
∑m−1

i=1 x(Fi, Rm) + k(Fm, Sm, fm, Rm), then we have By definition of Rm, we have
k(Fm, Sm, fm, Rm) = x(Fm, Rm) which in turns implies that

m−1∑
i=1

x(Fi, r) + k(Fm, Sm, fm, r) = S =
m−1∑
i=1

x(Fi, Rm) + k(Fm, Sm, fm, Rm).

Since both functions x(Fi, ·) with i ≤ m− 1, and k(Fm, Sm, fm, ·) are decreasing, we get
that r = Rm = r∗.
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C Two- and three-agent economies

Two-agent economy: equilibrium computation

In the case of two agents, the linear form helps us to find closed-form solutions (see Pham and
Pham (2018) for more analyses in this case). Let Assumption 1, 2 be satisfied. Assume that
A2 > A1. There are three cases, each having a unique equilibrium and with the productive
agent being the borrower in any cases.

1. If f2 ≤ A1
A2

S1
S1+S2

, then the credit constraint of agent 2 is binding and there exists a
unique equilibrium characterized by:

Interest rate: r = A1

Physical capital: k2 =
A1

A1 − f2A2
S2, k1 = − f2A2

A1 − f2A2
S2 + S1

Financial asset: a2 =
f2A2

A1 − f2A2
S2, a1 = − f2A2

A1 − f2A2
S2;

The aggregate output and consumption of each agent are:

Y = A1S1 +A2S2
A1(1− f2)

A1 − f2A2
, c2 = A2S2

A1(1− f2)

A1 − f2A2
, c1 = A1S1.

2. If A1
A2

S1
(S1+S2) < f2 <

S1
S1+S2

, then the credit constraint of agent 2 is binding, and there
exists a unique equilibrium characterized by:

Interest rate: r = f2A2

(
1 +

S2

S1

)
, or equivalently

f2A2

r − f2A2
S2 = S1

Physical capital: k2 = S1 + S2, k1 = 0

Financial asset: a2 = S1, a1 = −S1.

The aggregate output and consumption of each agent are:

Y = A2(S1 + S2), c2 = A2(1− f2)(S1 + S2), c1 = f2A2(S1 + S2).

3. If f2 ≥ S1
S1+S2

, then the credit constraint is not binding, and there exists a unique
equilibrium characterized by:

Interest rate: r = A2

Physical capital: k2 = S2 + S1, k1 = 0

Financial asset: a2 = S1; a1 = −S1

The aggregate output and consumption of each agent are:

Y = A2(S1 + S2), c2 = A2S2, c1 = A2S1.

Three-agent economy: equilibrium computation

General results are presented in Theorem 1, Lemma 11 and Lemma 12. In this appendix, we
focus on the case max(f2A2, f3A3) < A1 because in this case the interest rate r may take
any value in [A1, Am]. There are 5 different cases. In any case, we can explicitly compute
equilibrium outcomes.
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1. If S1 ≥ f3A3

A1−f3A3
S3 + f2A2

A1−f2A2
S2, then there exists a unique equilibrium where agent 1

lends, agents 2 and 3 borrow in the financial market, with:

Interest rate: r = A1

Financial assets: a1 = − f2A2

A1 − f2A2
S2 −

f3A3

A1 − f3A3
S3, ai =

fiAi
A1 − fiAi

Si, ∀i ∈ {2, 3}

Capital allocation: k1 = S1 −
f2A2

A1 − f2A2
S2 −

f3A3

A1 − f3A3
S3,

ki =
A1

A1 − fiAi
Si, ∀i ∈ {2, 3}

The aggregate output and consumption of each agent:

Y = A1S1 +
1− f2

A1 − f2A2
A1A2S2 +

1− f3

A3 − f3A3
A1A3S3

c1 = A1S1, πi =
(1− fi)
A1 − fiAi

A1AiSi ∀i ∈ {2, 3}

2. If f3A3

A2−f3A3
S3 + f2

1−f2S2 < S1 < f3A3

A1−f3A3
S3 + f2A2

A1−f2A2
S2, then there exists a unique

equilibrium under which agent 1 lends, agents 2 and 3 borrow from the financial market,
with:

Interest rate: r ∈ (A1, A2);
f2A2

r − f2A2
S2 +

f3A3

r − f3A3
S3 = S1 (C.1a)

Capital allocation: k1 = 0, k2 =
r

r − f2A2
S2, k3 =

r

r − f3A3
S3 (C.1b)

Financial assets: a1 = −S1, a2 =
f2A2

r − f2A2
S2, a3 =

f3A3

r − f3A3
S3 (C.1c)

The aggregate output and consumption of each agent:

Y =
r

r − f2A2
A2S2 +

r

r − f3A3
A3S3

c1 = rS1, c2 =
r(1− f2)

r − f2A2
A2S2, c3 =

r(1− f3)

r − f3A3
A3S3

By using (C.1a), we can compute the equilibrium interest rate. Indeed, (C.1a) implies
that r(S2(r − f3A3) + S3(r − f2A2)) = S(r − f2A2)(r − f3A3), or equivalently

S1r
2 − r

(
(S1 + S2)f2A2 + (S1 + S3)f3A3

)
+ Sf2A2f3A3 = 0 (C.2a)

so, r =
(S1 + S2)f2A2 + (S1 + S3)f3A3 +

√
∆

2S1
(C.2b)

where ∆ ≡
(
(S1 + S2)f2A2 + (S1 + S3)f3A3

)2 − 4S1Sf2A2f3A3 (C.2c)

Moreover, we have ∂Y
∂f3

> 0 > ∂Y
∂f2

.

3. If f3A3

A2−f3A3
S3−S2 ≤ S1 ≤ f3A3

A2−f3A3
S3 + f2

1−f2S2, then there exists a unique equilibrium,
under which agent 1 lends, agent 2 borrows in the financial market.

Interest rate: r = A2

Capital allocation: k1 = 0, k3 =
A2

A2 − f3A3
S3, k2 = S2 + S1 −

f3A3

A2 − f3A3
S3

Financial assets: a1 = −S1, a3 =
f3A3

A2 − f3A3
S3, a2 = S1 −

f3A3

A2 − f3A3
S3
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The aggregate output and consumption of each agent:

Y =
1− f3

A2 − f3A3
A2A3S3 +A2(S2 + S1)

c1 = A2S1, c2 = A2S2, c3 =
(1− f3)A2

A2 − f3A3
A3S3

4. If f3
1−f3S3 − S2 < S1 <

f3A3

A2−f3A3
− S2, then there exists a unique equilibrium under

which agents 1 and 2 lend, and agent 3 borrows in the financial market, with:

Interest rate: r ∈ (A2, A3) and r = f3A3

(
1 +

S3

S1 + S2

)
Capital allocation: k1 = 0, k2 = 0, k3 =

r

r − f3A3
S3 =

∑
i

Si

Financial assets: a1 = −S1, a2 = −S2, a3 =
f3A3

r − f3A3
S3

The aggregate output and consumption of each agent:

Y =
r

r − f3A3
A3S3 = A3S

πi = rSi ∀i ∈ {1, 2}, c3 =
r(1− f3)

r − f3A3
A3S3 = (1− f3)A3S.

5. If S1 ≤ f3
1−f3S3 − S2, there exists a unique equilibrium under which agents 1 and 2

lend, and agent 3 borrows from the financial market, with:

Interest rate: r = A3

Capital allocation: k1 = 0, k2 = 0, k3 = S1 + S2 + S3

Financial asset: a1 = −S1, a2 = −S2, a3 = S1 + S2

The aggregate output and consumption of each agent are:

Y = A3(S1 + S2 + S3)

πi = A3Si ∀i ∈ {1, 2, 3}

D Proofs: Models with exogenous borrowing limits

To prove Proposition 8, we need several intermediate steps. First, we solve th problem (Qi).
Notice that ai ≥ −Si ∀i. At optimal, we must have ki = Si+ai. Then, πi = AiSi+(Ai−r)ai.

Lemma 13 (Individual problem). The solution of the problem (Qi) is given by

1. If Ai < r, then agent i does not produce goods and invest all her wealth in the financial
market: ki = 0, ai = −Si.

2. If Ai > r, then agent i borrows from the financial market and the borrowing constraint
is binding: ai = āi, ki = Si + āi.

3. If Ai = r, then the solutions for the agent’s problem include all sets (ki, ai) such that
−Si ≤ ai ≤ āi and ki = ai + Si.
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We now investigate the properties of the equilibrium interest rate which is useful to figure
out all possible equilibria.

Lemma 14. 1. If r < An, then
∑

i≥n āi ≤
∑

i≤n−1 Si.

2. If r > An, then
∑

i≤n Si ≤
∑

i≥n+1 āi.

3. If r ∈ (An, An+1), then
∑

i≤n Si =
∑

i≥n+1 āi.

4. If r = An, then Sn +
∑

i≥n āi ≥
∑

i≤n Si ≥
∑

i≥n+1 āi.

Proof. Point 1. If r < An, then, according to Lemma 13, ai = āi, ki = Si + āi ∀i ≥ n. The
financial market clearing condition implies that∑

i≥n
āi =

∑
i≥n

ai = −
∑
i≤n−1

ai ≤
∑
i≤n−1

Si

Point 2. If r > An, then, according to Lemma 13, ai = −Si ∀i ≤ n. The financial market
clearing condition implies that∑

i≤n
Si = −

∑
i≤n

ai =
∑
i≥n+1

ai ≤
∑
i≥n+1

āi

where the last inequality is from the fact that ai + Si ≥ 0 ∀i.
Point 3. If r ∈ (An, An+1), then ai = āi, ki = Si + āi ∀i ≥ n + 1 and ai = −Si, ki = 0

∀i ≤ n. By using market clearing condition, we have
∑

i≤n Si =
∑

i≥n+1 āi.
Point 4: If r = An, we have

ai = −Si, ki = 0 ∀i = 1, . . . , n− 1 (D.1)

ai = āi, ki = āi + Si ∀i = n+ 1, . . . ,m (D.2)

an =
n−1∑
i=1

Si −
m∑

i=n+1

āi, kn =
n∑
i=1

Si −
m∑

i=n+1

āi. (D.3)

Since an ≤ ān, we have
∑

i≥n āi ≥
∑

i≤n−1 Si. Condition kn ≥ 0 implies that
∑

i≤n Si ≥∑
i≥n+1 āi.

Proof of Proposition 8. Since
∑

i ai = 0, we have r ∈ [A1, Am].
Point 1. If r = A1, then r < Ai ∀i ≥ 2 which implies that ai = āi and ki = Si + āi.

By using market clearing condition, we have a1 = −
∑m

i=2 āi, and hence k1 = S1 −
∑m

i=2 āi.
Therefore, we need condition S1 −

∑m
i=2 āi > 0. Conversely, if S1 −

∑m
i=2 āi > 0, point 2 of

Lemma 14 implies that r = A1.
Point 2. If ām >

∑m−1
i=1 Si, point 1 of Lemma 14 implies that r = Am.

Point 3 is consequence of Lemma 14.

By combining Proposition 8 and Lemma 14, we can compute equilibrium allocations and
the aggregate output.

1. If S1−
∑m

i=2 āi > 0, then r = A1. In this case, the equilibrium allocations and aggregate
output are

ai = āi, ki = āi + Si ∀i = 2, . . . ,m, a1 = −
m∑
i=2

āi, k1 = S1 −
m∑
i=2

āi (D.4a)

Y =
∑
i

Aiki = A1(S1 −
m∑
i=2

āi) +

m∑
i=2

Ai(āi + Si). (D.4b)
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2. ām >
∑m−1

i=1 Si, then r = Am. In this case, the equilibrium allocations and aggregate
output are

ai = −Si, ki = 0 ∀i = 1, . . . ,m− 1, am =

m−1∑
i=1

Si, km =

m∑
i=1

Si (D.5a)

Y =
∑
i

Aiki = Am

m∑
i=1

Si. (D.5b)

3. For 2 ≤ n ≤ m− 1:

(a) If
∑

i≥n āi >
∑

i≤n−1 Si and
∑

i≤n Si >
∑

i≥n+1 āi, then r = An. In this case,
the equilibrium allocations are

ai = −Si, ki = 0 ∀i < n, ai = āi, ki = āi + Si ∀i > n (D.6a)

an =
n−1∑
i=1

Si −
m∑

i=n+1

āi, kn =
n∑
i=1

Si −
m∑

i=n+1

āi, (D.6b)

Y =
∑
i

Aiki = An(
n∑
i=1

Si −
m∑

i=n+1

āi) +
m∑

i=n+1

Ai(āi + Si) (D.6c)

Condition
∑

i≥n āi >
∑

i≤n−1 Si ensures that an < ān while condition
∑

i≤n Si >∑
i≥n+1 āi ensures that kn > 0.

(b) If
∑

i≤n−1 Si =
∑

i≥n āi, then any r ∈ [An−1, An] is an equilibrium interest rate.

If r ∈ (An−1, An), the equilibrium allocations and aggregate output are

ai = −Si, ki = 0, πi = rSi ∀i = 1, . . . , n− 1 (D.7a)

ai = āi, ki = āi + Si, πi = Ai(āi + Si)− rāi ∀i = n, . . . ,m (D.7b)

Y =
∑
i

Aiki =
m∑
i=n

Ai(āi + Si) (D.7c)
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