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1. Introduction 

This article presents evidence on the links between R&D and productivity for
manufacturing firms in the Netherlands. The study provides estimates of the output
elasticity of the R&D stock and of the private rate of return to R&D. The article applies
the methodology used by Hall and Mairesse (1995) to a panel dataset of R&D
performing firms in the Netherlands, with some minor modifications. First, a correction
for sample selection bias is used in an attempt to adjust the results for possible bias
arising when the basic methodology is applied to the R&D survey for the Netherlands.
Next, more complete adjustment is made to the resource input data to correct for the
’double counting’ of R&D inputs. Lastly, an attempt is made to correct for
heteroskedasticity in the error term of the basic model. The study makes use of linked
files of the R&D surveys and the annual production statistics collected by Statistics
Netherlands for the years 1985, 1989, and 1993. 

Most previous work on the link between R&D and productivity in the Netherlands has
been based on aggregate or industry data. Den Butter and Wollmer (1992) report a
significantly negative estimate for private returns to R&D, whereas the cross-country
study of Coe and Helpman (1993) shows a positive contribution of private R&D to total
factor productivity growth for the Netherlands. These inconclusive results are a likely
reason that Verspagen (1995) omits the Netherlands from his broad-based survey article
on R&D and productivity growth. The ambiguous estimates probably derive from the
very skewed distribution of firm size and R&D expenditure in the Netherlands. R&D
expenditure in Dutch manufacturing is highly concentrated in five multinational
companies. These companies spend a disproportionate – albeit decreasing – part of their
worldwide R&D in the Netherlands, whereas their production is to a large extent located
outside the Netherlands. The recent dramatic decrease of domestic R&D expenditure of
these companies can be held responsible for the decline in aggregate manufacturing
R&D from 1989 onwards. 
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The use of micro-data enables us to estimate the effect of R&D on productivity growth
free from aggregation bias. However, the use of firm-level data does not solve all
econometric problems. Measurement errors, simultaneity and selectivity can continue to
cloud results (see e.g. Grilliches and Mairesse, 1995). The data allow robustness checks
of the results with respect to measurement of capital stocks, double counting of R&D
inputs, creation of initial R&D knowledge stocks, and different measures of output. We
correct for simultaneity bias by estimating a production function in ’long-difference’
form and by using a partial TFP approach. Selectivity may be a problem in our sample:
indeed the probability of exiting the sample is negatively related to the level of R&D
intensity. The problem appears to be more severe in the period 1989–1993, when R&D
expenditure was declining, on average. In our estimation procedure an attempt is made
to correct for the selectivity problem by using a Tobit model. 

Our findings are very similar to the results recently published by Hall and Mairesse
(1995). It is found that the elasticity for the stock of R&D capital is about 0.06 for gross
output and 0.08 for value added and the private gross rate of return to R&D varies
between 12 percent for gross output and about 30 percent for value added. Because the
Hall and Mairesse estimates were derived from a panel with considerably more
observations in the time dimension, this is a surprising result. 

2. The data 

The dataset used in this study contains linked firm-level information from the annual
production surveys and the extended R&D surveys of 1985, 1989 and 1993, conducted
by Statistics Netherlands 1). The production surveys provide data for each firm on sales,
gross output, value added, payroll, number of employees, materials, electricity use and
capital consumption allowances (depreciation costs). The R&D surveys give information
on R&D full-time equivalents and other staff, and expenditure on in-house R&D and
outsourced R&D. The R&D expenditure is further disaggregated into staff costs,
material costs and R&D plant and equipment investments. Other disaggregations split
expenditure by type of research (basic and applied) and by process and product research.

A distinct advantage of this dataset is that the R&D expenditures can be separated from
the other operating expenses of the firm, avoiding the biases in estimation caused by
’double counting’ resource inputs (see Schankerman, 1981). In the production function
estimations, material and labour input variables can be adjusted for the amounts used in
R&D endeavour. This adjustment is not attempted for the capital input because the R&D
investments account for only 10 percent of total R&D expenditure and we have only two
observations of R&D expenditure for each panel (1985–1989 and 1989–1993). So the
best we can do is to solve the double counting problem for 90 percent. 
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The nominal variables in the dataset are all deflated into constant 1985 guilders. Output
and materials are deflated by applying 3-digit SIC 2) product and material prices to all
firms within the corresponding industry. R&D expenditure is deflated by a Divisia index
of changes in wages of R&D staff and material prices. The price changes for R&D staff
were computed for industry groups as the change in average hourly compensation for
R&D employees between 1985 and 1989 and between 1989 and 1993 3). Using
firm-specific labour and material expenditure shares, the appropriate wage change was
averaged with the material price change to construct R&D expenditure deflators. 

The capital input measure required to estimate the production functions is proxied by the
consumption allowances, available in the production statistics. This financial measure is
related to the capital stock but does not directly reflect the capital service flow. Tax
laws, vintage and type distribution of the assets, and cyclical capital utilisation all cause
differences between the depreciation data and the desired measure of capital real capital
input. When the production function is estimated in first difference form, changes in the
capital inputs are proxied by changes in electricity use. This measure should correct for
fluctuations in capital utilisation, but may misrepresent the growth of capital inputs if
firms adopt energy saving technologies. Given the fall of electricity prices in the period
of observation, it is unlikely that large scale substitution between energy and capital has
taken place. 

Tables 1A, 1B and 2 give some summary statistics for the linked datasets. In table 1A
descriptive statistics for three cross-sections of linked data are presented. In total 382,
436 and 347 R&D firms could be linked to the production statistics of 1985, 1989 and
1993 respectively. These firms contribute to between 90 and 95 percent of Dutch
manufacturing R&D. The major R&D performing firms are included in all years,
ensuring that coverage remains high. The top five firms alone account for approximately
70%, 65% and 60% of manufacturing R&D in 1985, 1989 and 1993 respectively.
Smaller firms – as measured by their contribution to manufacturing R&D – have a
higher probability of exiting the panel due to incidental R&D performance. In fact the
four-yearly extended R&D surveys reflect to some extent a rotating design, because
small firms have higher probability to be replaced by other firms. Firms may also exit
the sample owing to merging or liquidation. Because of the considerable drop out of the
smaller R&D performing firms no attempt was made to construct a panel over the full
period of three years. Instead two different panels are used in the estimation procedures,
labelled PS-RD8589 and PS-RD8993. The nature of the balanced panels may introduce
a selectivity bias in the estimated R&D coefficients. An attempt is made to correct for
this problem by including a selectivity equation in the models.
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Table 1A. Summary Statistics for yearly cross-sections

Year 1985 1989 1993

Mean Q1–Q3a Mean Q1–Q3 Mean Q1–Q3

Number of employees 757 100–430 686 102–368 619 85–317
Gross outputb 252  22–128 226  21–131 232 20–102
Value addedb  71   8– 35  66   7– 36  68  6– 31
Capital per employeec  10   5– 13  13   6– 16  16  7– 19
Labour productivityd  87  60– 96  92  59– 06  94 57–107
R&D to sales ratio (%)  2.0   0.3–2.7  2.4  0.5–2.9  2.7 0.6–3.1
Number of observations 382 436 347

a IQ: inter-quartile range: first and third quartile boundary; 
b In million guilders of 1985; 
c Depreciation charges per employee in thousand guilders; 
d Value added per employee in 1985 prices in thousand guilders.

Table 1B. Summary Statistics for balanced data

Period 1985–1989a 1989–1993a

Year 1985 1989 1989 1993

Mean Q1–Q3b Mean Q1–Q3 Mean Q1–Q3 Mean Q1–Q3

Number of employees 1,169 124–581 1,158 146–589 1,347 119–589 1,084 119–480
Gross output   380  32–167   393  38–190   414  30–165   348  31–195
Value added   110  10– 55   119  12– 54   133  10– 49   111   9– 63
Capital per employee    11   5– 14    15   7– 17    13   6– 17    16   8– 20
Labour productivity    92  66– 99   106  65–116   103  73–115   114  70–129
R&D to sales ratio (%)    2.6  0.4–3.3    2.7  0.6–3.1    3.1  0.7–3.6    3.4  0.8–4.0

a Number of observations for 1985–1989: 209, for 1989–1993: 159. All amounts in constant 1985 guilders; 
b IQ: inter-quartile range: first and third quartile boundary.

Table 2. Growth in balanced panelsa

Period 1985–1989b 1989–1993b

Mean Median Q1–Q3c Min Max Mean Median Q1–Q3 Min Max

Employment 0.2 1.4 –2.6– 4.9  –45 24 –0.5 –0.7 –2.8– 2.5 –23  26
Labour productivity 2.0 1.5 –2.3 –6.8  –65 64  0.5 –0.2 –5.1– 5.5 –36  33
Total factor productivity 0.6 0.1 –1.3– 2.1  –10 26  0.2 –0.2 –1.9– 2.3  –7  11
R&D capital δ d = 0.05 6.3 5.0  3.7– 7.6   –4 48  5.8  4.4  2.7– 7.3  –3  56
R&D capital δ  = 0.15 6.9 5.0  2.8– 9.5  –13 61  5.7  4.0  0.7– 9.2  12  71
R&D capital δ  = 0.25 7.0 5.0  1.9–11.0  –24 69  5.4  3.7  1.1–10.6 –21  79
R&D expenditures 4.7 3.4 –2.6–14.0 –100 90  1.2  0.9 –8.8–13.3 –90 101

a Average growth (%) per year (in constant 1985 prices); 
b Number of observations for 1985 1989: 209, for 1989 1993: 159; 
c IQ: interquartile-range: boundary of the first and third quartile; 
d δ = depreciation rate.
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As can be seen from the means and inter-quartile ranges for the balanced panels (table
1B) and the 1985 cross-section, as presented in table 1A, the datasets consist of
relatively large firms. Average firm size in the panel is much larger than the average
firm size for total manufacturing for two reasons: the R&D survey only covers firms
with more than 50 employees and the probability of performing own R&D increases
with firm size. Further, the size distributions within our dataset are very skew, with
means for employment, gross output and value added substantially larger than the third
quartile. The distribution of R&D expenditure is even more skew than for output and
employment. For example the average R&D-sales ratios presented in tables 1A and 1B
are unweighted averages. On a weighted base these ratios are considerably larger:
respectively 4.6%, 6.6% and 6.7% for 1985, 1989 and 1993. This reflects the dominance
of the ’top five’ enterprises, which spend a disproportionately large share of their
worldwide R&D in the Netherlands compared with the domestic share of their
production. The extreme size of these enterprises together with their inordinate share of
R&D indicates why estimates of the return from R&D from industry-level data reveal
little about the effects of R&D for the average firm 4). Idiosyncratic movements in their
research expenditure, such as moving research labs overseas, may greatly affect the
aggregate R&D measure, while not affecting domestic production.  

From table 1B it can also be inferred that the two periods are rather different.
Employment, gross output and value added dropped significantly in the second period.
The turn of the business cycle is more manifest in our dataset because of the impact of
the chemical industry. Chemical firms are overrepresented in our R&D panels. Due to
severe price competition gross output and value added of relatively few but very large
firms producing basic chemicals show a dramatic decrease in the period 1989–1993.
Together with the downsizing of other large R&D performing companies this explains
the picture of aggregate R&D in the second period. A better impression of the dynamics
can be obtained by looking at the distribution of growth rates in both periods. From table
2 it can be inferred that the distributions for R&D expenditure and productivity growth
rates are shifted to the left in 1989–1993. Average labour productivity growth dropped
from 2.0 in 1985–1989 to 0.5 in 1989–1993. Similar patterns are observed for the
decreases of total factor productivity and R&D expenditure. We also have listed growth
rates for R&D capital using different depreciation rates (δ). As can be seen the different
depreciation assumptions have a substantial impact on the shape of the R&D capital
growth rates distributions, but the means and medians remain relatively stable between
the alternatives presented. 

3. Methodology 

The empirical framework for this article will be a production function with R&D
knowledge stock, or R&D intensity, as an additional input. This is a commonly used
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specification to estimate the effects of R&D on productivity (see e.g. Mairesse and
Sassenou, 1991). Starting point is the Cobb-Douglas production function: 

(1)   qit = αit + γkit + Σjβjxjit  + εit

where qit is the log of real production of firm i in year t, αit is a firm and time specific
indicator of the level of technology, kit is the (log of) R&D stock of knowledge and the
x’s are the (log) traditional factor inputs belonging to set S, and ε is a normally
distributed error term with mean zero and variance σ2. The summation in (1) runs over
factor inputs, j ∈ S. If production is measured by value added then S = {C, L}, capital
and labour, and if it is measured by real gross output then the input set is augmented by
materials: S = {C, L, M}. The β’s  and γ are output elasticity parameters to be estimated.
In its present form, equation (1) is not identified and further assumptions regarding the
disembodied technology parameter αit, are needed. For example, if αit = αi + λt, and if a
full panel of firm data over time were available, then a fixed effect estimator of
differenced data, a ’within’ estimator, would provide consistent estimates of the output
elasticities. 

Given that data are only available for 1985, 1989 and 1993, ’within’ estimation is not
possible. The first possibility is to estimate the elasticities from equation (1) under the
assumption that there is a different constant term in each year (αit = λt). The restriction
that the output elasticities are constant over time can also be dropped. The resulting
estimation procedure is then equivalent to estimating a separate cross-sectional equation
for 1985, 1989 and 1993. Using the matched panel, firm-level fixed effects of the form
αit = αi + λt cannot be estimated from (1), but can be eliminated by estimating the
production function in ’long-difference’ form. Taking ’long-differences’ has the
additional advantage that it preserves more variance for the identification of the
parameters than other data transformations (see Griliches and Mairesse, 1995, pp 13).
The long difference form is 

(2)   ∆4 qit = λ + γ∆4 kit + Σβj∆4xjit  + µit

where ∆4zit = zi,89 – zi,85 or zi,93 – zi,89 and µit is a newly defined disturbance term
(= ∆4εit). Equation (2) is used in various forms to get estimates of the output elasticities.
A number of alternatives will be discussed in section 4. The issue of how to measure the
relevant R&D variable is explained below.

R&D knowledge stock  

Two related methods have been widely used to assess the effects of R&D on
productivity. The first assumes that R&D expenditure accumulates into a stock of
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knowledge, similar to the formation of capital through investment. This assumption
implies that past R&D continues to have spillover effects on production in the present,
although the effect may diminish over time through depreciation. In estimating this
specification, it is assumed that all firms have the same output elasticity of the
knowledge stock. The alternative specification assumes that there is no depreciation of
the knowledge stock, and in estimating assumes that the rate of return to the R&D
knowledge stock is the same for all firms. 

The first method calculates the R&D stock using the perpetual inventory method (PIM): 

(3)   Kit = Rit + (1−δ)Kit−1

where Kit is the R&D knowledge stock of firm i in year t, Rit represents real R&D
expenditures and δ is the rate of depreciation. The depreciation is supposed to reflect, for
example, the obsolescence of ideas and the reduced profitability of old products as new
ones are created. The magnitude of the depreciation rate is usually chosen in the 15 to 20
percent range (see e.g. Hall and Mairesse, 1995). 

Two problems arise in implementing this method with the available data: R&D
expenditure is observed only in 1985, 1989 and 1993, and no initial R&D knowledge
stock measure is available. Real R&D expenditure for the intervening years is
interpolated using the observed growth rate for each firm. Initial stocks of knowledge,
Ki,85 for the first wave and Ki,89 for the second wave, are created by assuming a
pre-sample R&D expenditure growth rate, g, constant across firms. Then, following Hall
and Mairesse (1995), the initial knowledge stock can be written as:    

(4)   Ki0 = 
Ri0

(g + δ)

Combining this expression into the PIM framework yields the knowledge stock growth
equation: 

(5)   ∆4ki = 1n 






 
(1 − δ)4

(g + δ)  + ∑(1
s=1

4

 + ri)s(1 − δ)4−s






 + 1n(g + δ)

with ri the growth rate of real R&D expenditure for firm i in the period 1985–1989 or
1989–1993. A range of parameter values for g and δ will be used in order to assess the
sensitivity of the estimated R&D elasticities to different assumptions pertaining to
depreciation and initial stocks. 
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R&D intensity  

The alternative method for estimating the effect of R&D on productivity is the intensity
method, where the rate of return to R&D is assumed to be constant across firms.
Assuming no depreciation (δ = 0), the change in the R&D knowledge stock can be
written as: 

(6)   ∆4Kit = ∑Rio

s=1

4

(1 + ri)s.

Using the fact that the marginal product of the R&D stock, ρ, is equal to its output
elasticity times the ratio of output to the R&D stock: 

(7)   ρ ≡ 
∂Qit

∂Qit
 = γ

Qit

Kit
,

Now we can rewrite equation (2) as:

(8)   ∆4qit = λ + γ
Qi0

Ki0
 
∆4Kit

Qi0
 + ∑βj

j∈s

xjit  + µit = λ + ρ
∆4Kit

Qi0
 + ∑βj

j∈s

xjit  + µit.

In this specification, the R&D intensity variable is computed as the sum of R&D
expenditure from 1986 to 1989 and from 1990 to 1993 divided by output in 1985 and
1989 respectively. The interpretation of ρ is that of the marginal product of a unit of
knowledge stock, which in the absence of depreciation, is the amount by which output
increases with an increase in real R&D expenditure. Although being a different model
than (2) we also estimated equation (8) for two reasons: its ease of interpretation and
because this specification has been frequently applied in related empirical research.  

4. Estimation of R&D contribution 

Cross-sectional estimates 

As a starting point estimates are presented for the output elasticities using a log-linear
Cobb-Douglas production function with R&D capital (equation 1). In this level
specification R&D-capital is proportional to the R&D expenditures (see equation 4).
Both gross output and value added are used as output measures and estimates are
presented for specifications with and without the adjustment for ’double-counting’, the
latter with labour and material inputs containing non-R&D inputs, and value added
measured as gross output minus non-R&D materials. In estimating, all R&D firms that
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could be linked to the production surveys in either year are used and sectoral dummy
intercepts are included.

The sectoral dummies distinguish between four sectors: 1) food, beverages and tobacco,
2) petroleum, chemical industry and allied, 3) metal industries and 4) other industries
(textiles, wearing apparel, paper and paper products and manufacture of building
materials). These groups will be used throughout. 

In estimating the production function in log-levels with panel data, much of the
identification comes from cross sectional variation. Biases in coefficient estimates may
arise owing to fixed effects or endogeneity of inputs, i.e., better firms have elevated
outputs and inputs. Even so, the estimates presented in Table 3A for the traditional
factor elasticities are close to the corresponding factor shares as these should be under
the maintained hypothesis of perfect competition. Further the elasticities add up to about
unity in most cases and constant returns to scale cannot be rejected 5). Contrary to the
results for traditional factor inputs, the estimate for the R&D elasticity does not differ
significantly from zero in the majority of cases. However, the adjustment for ’double
counting’ (see Table 3B) produces some important differences. When the traditional
inputs are adjusted for double counting, the R&D elasticities become significant. This
result confirms predictions by Schankerman (1981) that double counting factor inputs
gives lower estimates of R&D output elasticities. The interpretation for this, on the
assumption that the estimates are accurate, is that total returns to R&D are significantly
positive, but R&D did not provide increases in output above and beyond that predicted
by the traditional factors, i.e. no excess returns. 

Table 3A. Cross-sectional estimates ’log-level’ specification not adjusted for double-counting

Dependent variable Gross output Value added

Year 1985 1989 1993 1985 1989 1993

Coefficient of

Labour .136 .145 .189 .570 .626 .755
(.013) (.014) (.019) (.036) (.042) (.067)

Material inputs .769 .750 .727
(.010) (.010) (.013)

Capital .080 .103 .085 .365 .352 .253
(.009) (.010) (.013) (.025) (.031) (.049)

R&D .009 .003 .012 .041 .026 .035
(.006) (.005) (.006) (.018) (.018) (.026)

SIC dummiesa yes yes yes yes yes yes

N of observations  382  436  347  382  436  347
R2 .992 .990 .990 .911 .882 .826

a) SIC-dummies for four groups: 1) food, beverages and tobacco, 2) petroleum, chemical industry and allied, 3) metal industries
and 4) other industries (textiles, wearing apparel, paper and paper products and manufacture of building materials).
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’Long difference’ estimates  

A disadvantage of estimating ’log-level’ specifications is that they have not been
controlled for fixed effects. If these effects are correlated with other explanatory
variables, then the cross-sectional estimates are not consistent. This problem can be
solved by using differenced series. However, by differencing the data measurements
errors are exacerbated. This pitfall can be circumvented by estimating ’long difference’
equations, which relate growth of output to growth of factor inputs over some years. The
introduction of the time dimension may, however, worsen the simultaneity problem.
Before treating this issue further, we first present several variants of ’long-difference’
growth equations. 

R&D knowledge stock approach  

Estimates for the ’long difference’ equations are presented in Table 4. All firms for
which two adjacent observations were available in the four-yearly R&D surveys are
included. The growth of the R&D knowledge stock is calculated according to (5), using
a pre-sample R&D growth of 5% and a depreciation rate of 15%. Estimates are
presented for the two panels separately and for the pooled data. In the pooled estimates
an extra dummy intercept is included. This time dummy represents a mixture of time
and population effects. The data are adjusted for double-counted R&D inputs. Further,
we distinguish between estimates for the gross output and the value added specification. 

Table 3B Cross-sectional estimates ’log-level’ specification adjusted for double-counting

Dependent variable Gross output Value added

Year 1985 1989 1993 1985 1989 1993

Coefficient of

Labour .134 .142 .174 .552 .602 .700
(.012) (.013) (.013) (.035) (.039) (.063)

Material inputs .763 .740 .723
(.010) (.010) (.013)

Capital .081 .105 .090 .362 .347 .269
(.010) (.010) (.013) (.025) (.030) (.048)

R&D .018 .015 .024 .068 .059 .076
(.006) (.005) (.006) (.017) (.017) (.025)

SIC dummiesa yes yes yes yes yes yes

N of observations  382  436  347  382  436  347
R2 .992 .990 .990 .914 .889 .833

a) SIC-dummies for four groups: 1) food, beverages and tobacco, 2) petroleum, chemical industry and allied, 3) metal industries
and  4) other industries (textiles, wearing apparel, paper and paper products and manufacture of building materials).
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The results show two major differences from the ’log-level’ specifications of Tables 3A
and 3B. First, the output elasticities for labour increase at the expense of the capital
output elasticities. With the exception of the pooled estimates the capital elasticity even
becomes insignificant. Secondly, the elasticity of the R&D knowledge stock is more
than doubled when one controls for ’permanent’ differences across firms. The results
suggest that both the traditional and the R&D capital variable are strongly correlated
with firm effects. Further, Table 4 shows that the estimates for R&D stock elasticities for
1989–1993 are insignificant. 

R&D intensity approach 

Next estimates are made of the rate of return to R&D under the assumption of zero
depreciation of the R&D knowledge stock and a marginal rate of return to R&D
common to all firms. Here, as mentioned above, we replace ∆4ki by the appropriate
R&D intensity by estimating equation (8). The coefficient of the R&D intensity variable
can be interpreted as the gross marginal private rate of return to R&D. The results are
presented in Table 5. As can be seen from a comparison with Table 4, imposing the
constraint δ = 0 has only minor effects on the pattern of parameter estimates for the
traditional inputs. According to these estimates the gross rate of return to R&D is
insignificantly different from zero in the gross output specification and about 20 percent
in the value added specification. The 1989–1993 period has a lower rate of return than
the earlier period, although the differences are not statistically significant.

Table 4. Estimates R&D contribution for ’long-difference’ specifications

Dependent variable Gross output Value added

Year 85–89 89–93 Pooled 85–89 89–93 Pooled

Coefficient of

Labour .196 .222 .205 .780 .700 .752
(.037) (.052) (.030) (.125) (.139) (.092)

Material inputs .718 .689 .705
(.025) (.032) (.019)

Capital .024 .031 .030 .083 .105 .095
(.019) (.027) (.015) (.069) (.083) (.052)

R&D capital .074 .028 .051 .247 .104 .179
(.023) (.026) (.017) (.083) (.080) (.057)

Period dummy .123  –.764

SIC dummies yes yes yes yes yes yes
N of observations  209  159  368  209  159  368
R2 .903 .867 .890 .329 .227 .299
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5. Robustness tests 

A striking difference between the estimates for the ’log-level’ specifications of table 3B
and the estimates for the ’long-difference’ equations (Table 4) is that the coefficients for
the R&D variables are higher in the ’long difference’ estimates than in the ’log-level’
estimates, whereas the opposite applies to the elasticity estimates for the traditional
inputs. There are several possible candidates for explaining the observed change in the
patterns of the parameter estimates when switching from the cross-sectional to the time
series dimension of the data. Plausible candidates are the measurement related issues
such as the assumptions underlying the construction of the R&D knowledge stocks and
the selectivity of the R&D data set. Furthermore, our data show heteroskedasticity in the
error terms related to the R&D variables used in the equations. Also the simultaneity
problem may be more manifest when estimating ’long difference’ equations. In this
section we pay attention to the robustness of the results, to the assumptions underlying
the calculation of the growth of the R&D knowledge stock variable, to selectivity and to
the problems of heteroskedasticity and simultaneity. We first discuss the way in which
several sources of biases were dealt with and lastly we present the results of the
robustness tests, focusing on the estimates of the R&D variables and the elasticity of
traditional capital inputs.   

Table 5. Estimates R&D intensity equations

Dependent variable Gross output Value added

Year 85–89 89–93 Pooled 85–89 89–93 Pooled

Coefficient of

Labour .216 .223 .215 .838 .677 .771
(.038) (.052) (.030) (.124) (.139) (.091)

Material inputs .719 .693 .707
(.027) (.032) (.020)

Capital .024 .032 .030 .069 .101 .085
(.020) (.027) (.015) (.069) (.083) (.052)

R&D intensity .052 –.004 .030 .218 .173 .192
(.061) (.079) (.048) (.085) (.082) (.059)

Period dummy .083 –1.032
(.032) (1.088)

SIC dummies yes yes yes yes yes yes

N of observations  209  159  368  209  159  368

R2 .898 .866 .990 .321 .241 .301
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Depreciation and pre-sample growth for the R&D knowledge stock  

With respect to the measurement related problems we first look at the construction of the
R&D knowledge stock. A robustness test was performed by applying various
assumptions for the depreciation parameter and the R&D pre-sample growth rate. The
results of similar previous studies suggest that the estimates for the output elasticities of
the R&D stock are rather robust to different assumptions concerning the rate of
depreciation, δ. However, these results are based on balanced firm-level time series data
with longer R&D histories. Given that the construction of data on the growth of the
R&D stock – in essence – rests on only two observations for R&D expenditure, the
elasticities presented in Tables 3 to 5 may be dependent on the choice of δ and the
pre-sample growth g in formula 5. For this reason equation (2) is re-estimated using
three alternative assumptions for δ (0.10, 0.15 and 0.20) and three assumptions for
pre-sample R&D growth, g (0.03, 0.05, 0.07). The results of this robustness test show
that the R&D output elasticities only slightly decline with increasing δ and with
increasing g. Overall, the output elasticities seem to be rather robust to different
assumptions with respect δ and g. For this reason and for reasons of space we shall not
present the estimates for this robustness test (see Bartelsman et al. (1996) for more
details). 

Selectivity  

In section 2 it was shown that in constructing the panel data, sample attrition was a
possible cause of selectivity biases in regression results. Some elements of selectivity are
inherent in the use of the R&D surveys, because the probability of exit decreases with
the R&D intensity, which is our variable of interest. For this reason, the estimated R&D
contribution to productivity growth could be biased. Selectivity can be taken into
account by extending our models with a selection equation which models the probability
of continuing in the sample. Several approaches are possible to capture the effects of
selectivity. We could follow Heckman’s two-step method by including a correction term
in the regression equations. A more efficient estimate can be obtained with the so-called
Tobit model. Assuming that  the probability of being selected in the sample depends on
the level of the R&D intensity in the first year, the Tobit model reads as: 

(9A) ∆4qit = λ + γ∆4kit + Σj∈sβj∆4xjit  + µit

or

∆4qit = λ + ρ 
∆4Kit

Qi0
 + ∑βj

j∈s

∆4xjit  + µit      if D = 1
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(9B) ∆4 qit not observed           if D = 0,

with selection equations 

(10A) D = 1    if   c + α
Ri0

Qi0
 + ηit > 0

(10B) D = 0    if   c + α
Ri0

Qi0
 + ηit ≤ 0,

where 
Ri0

Qi0
 is the R&D intensity in the starting year, c a constant term and ηit a Gaussian

disturbance term. 

In using the Tobit model the number of observations differ from those given for the
matching specifications in tables 4 and 5, because firms which are in production survey
samples but not in the R&D dataset in the end year are also included in the analysis. 

Heteroskedasticty and simultaneity  

Other possible biases in the ’long difference’ estimates can arise due to
heteroskedasticity and simultaneity. Indeed, the Goldfeld-Quandt test for
heteroskedasticity indicates a significantly higher residual variance for firms with the
lowest growth rates in the R&D stock than for firms with the highest growth rates6). In
the robustness tests we corrected for heteroskedasticity by applying weighted least
squares with weights equal to the square root of the R&D variables. The possible biases
due to simultaneity caused by the producers’ joint decisions on inputs and outputs was
investigated by using the Partial Total Productivity (labelled P-TFP) form for the
productivity equation (see Bartelsman et al. (1996) for a detailed explanation of this
approach). 

Results of the robustness tests  

The results for the different robustness tests applied to the pooled data are presented in
Tables 6 and 7. Table 6 gives the elasticity estimates for R&D and traditional capital for
the specifications with the growth of the R&D knowledge stock as the explanatory R&D
variable. Table 7 gives the same estimates for the R&D intensity specifications, using
the pooled results of Table 5 as a reference. The base case of Table 6 is represented by
the pooled estimates of Table 4. WLS estimates are not given for the gross output
specification because the relevant Goldfeld-Quandt statistics did not indicate
heteroskedasticity for this specification.  
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Further P-TFP estimates are not presented for the gross output specification because the
P-TFP approach starts from a value added specification. 

Two conclusion can be drawn from Table 6. First when relating output growth to the
growth of the R&D knowledge stock, the selectivity and the simultaneity bias seem to
be rather small. Correcting for selectivity raises the R&D output elasticity for both
specifications, but the difference compared with the base case is statistically
insignificant. Secondly, simultaneity seems not to be an important source of bias for this
specification either: the elasticity estimate for the P-TFP variant also does not differ very
much from the base case estimate. However, correcting for heteroskedasticity makes
quite a difference. Applying WLS reduces the estimates of the R&D capital elasticities
and also restores the pattern of the two capital elasticity estimates found for the ’log-
level’ specifications of Table 3B, with the elasticity of the traditional capital input higher
than that for the R&D capital input. 

Lastly, Table 7 presents the results of the robustness test for the estimates of the rates of
return to R&D, with the base case represented by the estimates of Table 5. Again the
comparisons aim at assessing the importance of biases due to selectivity (both for the
gross output and value added specifications) and heteroskedasticity (for the value added
specification) 7). However, the pattern of results differ from that presented in Table 6.
Selectivity seems to be an equally important bias as heteroskedasticity. Modelling the
presence in the sample being dependent on the level of R&D doubles the rate of return
for the gross output specification and also increases the rate of return to R&D in case of
the value added specification by more than ten percent. The latter result is also obtained
after correcting the base case estimates for heteroskedasticity in the R&D intensity
measure, leading to an estimate for the gross rate of return to R&D close to 0.30. 

Table 6. Robustness tests R&D stock approach on pooled data

Dependent variable Gross output Value added

Coefficient of R&D capital Ordinary Capital R&D capital Ordinary Capital

Base LD .051 .030 .179 .095
(0.17) (0.15) (0.57) (0.52)

Selectivity LD .061 .038 .226 .095
(.022) (0.17) (.080) (.045)

Simultaneity LD   x  x .190 .098
(.064) (.043)

Heteroskedasticity LD   x  x .070 .269
(.039) (.054)

Heteroskedasticity +   x  x .077 .304
Simultaneity LD (.039) (.045)
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6. Summary and conclusions 

In a first attempt to estimate the contribution of R&D to productivity growth using
firm-level data for the Netherlands, several variants of production functions with R&D
as a separate input have been analysed. The  main objective was to estimate the private
returns to R&D and output elasticities of the stock of R&D knowledge capital. The data
derive from the four-yearly extended R&D surveys for 1985, 1989 and 1993. These
surveys were linked to the production surveys. In using firm-level data it became
possible to circumvent the specific problems which arise when using aggregated R&D
data for the Dutch manufacturing industry. These problems are related to the very skew
distribution of manufacturing R&D due to the dominance of few multinational
enterprises. The variants of the basic R&D augmented production functions were made
along different dimensions. First corrections were made for double- counting of R&D
inputs. This correction increased the R&D output elasticity estimate for the ’log-level’
value added specification by about 5 percentage points. Next ’long-difference’ estimates
were presented, both for output elasticities and rates of return to R&D. The
’long-difference’ specifications correct for biases from firm fixed effects. Subsequently,
the ’long-difference’ specifications of the R&D augmented production function were
used as a base case to assess the importance of other sources of biases in the R&D
estimates. The R&D elasticities appeared to be relatively insensitive to different
assumptions concerning the depreciation rate and pre-sample growth in R&D
expenditure and also to simultaneity due to the joint decision on inputs and outputs.
Selectivity appeared to be an important source of bias for the estimation of the gross rate
of return to R&D, but not so when estimating elasticities of R&D capital. In both cases
heteroskedasticity of the error terms related to the R&D measures seems to be an equally
important source of bias. Cutting through all the specifications the output elasticity for
R&D capital is about 6 percent for gross output and about 8 percent for value added,
while the private rate of return to R&D varies between 12 percent for gross output and
30 percent for value added. 

Table 7 Robustness tests R&D intensity approach on pooled data

Dependent variable Gross output Value added

Coefficient of R/Q Ordinary Capital R/Y Ordinary Capital

Base LD .030 .030 .192 .085
(0.48) (0.15) (0.59) (0.52)

Selectivity LD .124 .025 .314 .085
(.058) (0.17) (.078) (.060)

Heteroskedasticity LD   x  x .348 .276
(.154) (.041)
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Notes

1) R&D surveys were also conducted for the intervening years, but only for the largest
R&D performing firms. The 1985, 1989 and 1993 surveys are more representative,
and provide a more adequate sample size after linking with the production statistics. 

2) SIC: Standard Industrial Classification of Statistics Netherlands; the 3-digit-level
allocates industrial firms to 122 groups. 

3) The industry groups are: food, beverages and tobacco (SIC 20,21), chemical industry
and allied (SIC 28–31), metal industry (SIC 33–38) and other manufacturing (SIC
22–27, 32 and 39). 

4) For instance in 1989 the ’top five’ firms had 15 percent of their employees working in
R&D but their labour productivity was about the same as the rest of the firms in the
panel. 

5) At the 90% significance level the hypothesis of constant returns to scale is rejected in
favour of slightly increasing returns to scale for the 1993 value added specifications. 

6) The Goldfeld-Quandt test statistics is computed based on residual variances for the
first and forth quartiles of firms for the distribution of the R&D stock growth. For
instance for δ = 0.15 the test statistics were 3.151 for 1985–1989 at a critical value of
1.60. 

7) The Goldfeld-Quandt test also indicates that heteroskedasticity is absent for the gross
output R&D intensity specification. Furthermore simultaneity appears to be an
insignificant source of bias for the value added specification, also when using the
R&D intensity measure as the explanatory R&D variable. 
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