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Abstract 

This study investigates the ways in which terrain ruggedness affects sectoral diversification. A 
cross-country analysis using data from 142 countries over the period 1970‒2007 documents an 
inverted U-shaped link between terrain ruggedness and sectoral diversification, which mainly 
works through the extensive margin of diversification. A within-country analysis based on 
United States (US) state-level data over the period 1997‒2011 confirms this non-monotonic 
relationship. The within-country analysis further reveals that an important mechanism through 
which terrain ruggedness affects sectoral diversification is the spatial concentration of 
economic activity, as measured by the concentration of satellite-based night lights. 

Keywords: sectoral diversification, spatial concentration, extensive margin, intensive margin, 
terrain ruggedness. 
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1 Introduction 

Imbs and Wacziarg’s (2003) deservedly influential study demonstrates economies with low 

income levels experience rising levels of sectoral diversification; after reaching a certain level 

of development, they tend to concentrate (see also Koren and Tenreyro (2007)). While this 

curious finding has major implications for key stages of sectoral diversification, most countries 

face exogenous hurdles in their sectoral development trajectories—chiefly, non-economic 

barriers. This study examines the manner in which terrain ruggedness, a time-invariant 

topographic factor that constitutes a significant obstacle to economic activity, affects the course 

of sectoral diversification.  

That rugged topography would be a major inhibiting factor for sectoral development is 

hardly a novel proposition. However, the ways in which this effect arises remain opaque, and 

require detailed examination given the widely held arguments and policy prescriptions around 

the world that emphasize the critical role of spreading risks across sectors by diversifying real 

economies. How could economies facing significant natural barriers adopt such prescribed 

policies? We investigate the topography‒sectoral diversification relationship in both cross-

country and single-country settings. The main focus of our cross-country analysis, which is 

based on an annual panel of 142 countries over the period 1970–2007, is to unpack whether 

topography affects sectoral diversification through the intensive or extensive margins of the 

latter. That is, does topography affect diversification by influencing the sizes of existing sectors 

(i.e., intensive margin of sectoral diversification), or by affecting the introduction of newer 

sectors and phasing out the older sectors (i.e., extensive margin of sectoral diversification)? 

Despite painting a useful global picture, the cross-country analysis nonetheless has limitations 

in terms of explaining the mechanism through which terrain ruggedness might impede or boost 

sectoral diversification. The key concern here is that a heterogeneous cross-country setting may 

not enable a comparable platform to tease out the mechanism of effect reliably. To address that 
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gap, we extend our analysis to a within-country context using United States (US) state-level 

data for the period 1997‒2011. The mechanism we conjecture is that rugged topography affects 

the spatial distribution of economic activity, which in turn may affect the levels of sectoral 

diversification. In particular, rugged topography may restrict geographic clusters from spatially 

(i.e., the extensive margin of spatial concentration), given that population growth requires 

residential and entrepreneurial areas to extend over space. Terrain ruggedness may also force 

economies to operate within certain spatial clusters characterized by relatively uneven nodal 

shares (i.e., intensive margin of spatial concentration). While counter-arguments in both veins 

are possible, spatial concentration induced by topographic barriers, according to our 

hypothesis, is likely to lead to sectoral concentration caused by the uneven relative sizes of 

existing sectors, or the prevention of new and/or phasing out of older sectors. Our within-

country analysis has its own limitation of not enabling measurement of the intensive and 

extensive margins of sectoral diversification, because no manufacturing sector is introduced or 

phased out in the US in our sample period. Consequently, the cross-country and within-country 

analyses in this paper are complementary, with one addressing the other’s shortcoming. 

To investigate the effect of terrain ruggedness on sectoral diversification, an accurate 

quantification of topographic disturbances is vital. Crude indicators reflecting larger scale 

irregularities, such as the percentage of mountains in a country’s surface area, are far from able 

to capture the proximate conditions that affect the sectoral distribution of economic activity. 

Thus, we adopt the terrain-ruggedness index developed by Nunn and Puga (2012), a precise 

metric that quantifies topographic irregularities in 30 arcseconds (926 meters). 

To measure sectoral diversification, we exploit the Theil index, particularly its 

decomposability property (Cadot et al. 2011). The Theil index is an additive measure that 

usefully decomposes the extensive and intensive margins of the inequalities of sectors’ sizes. 

Consequently, in a novel step, we decompose the sectoral diversification into its extensive and 
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intensive margins (i.e., between- and within-components, respectively). For cross-country 

analysis, we use two-digit manufacturing data for 23 sectors of 142 countries obtained from 

the INDSTAT2 (2012) International Standard Industrial Classification (ISIC) Rev.3 database, 

whose employment and value-added data we use to compute the sectoral labor and value-added 

shares, respectively. Analogously, the Theil index of US states’ sectoral diversification is 

computed using two-digit data on value-added shares of 18 manufacturing sectors classified 

according to the North American Industry Classification System (NAICS) for 50 US states for 

the period 1997‒2011.  

To measure the spatial concentration of economic activity for the US states, we again 

take advantage of the Theil index, but apply it to 30 arcsecond-gridded satellite night lights 

data (see Henderson, Storeygard and Weil (2012)). In contrast to most of the earlier studies 

that have used the night lights data only as a proxy for income, our approach adopts a more 

literal interpretation of the data and uses them as an indicator of the spatial concentration of 

economic activity. Further, we compute the spatial extensive and intensive margins of the 

distribution of night lights. To the best of our knowledge, no other study has hitherto considered 

the spatial extensive and intensive margins of the satellite night lights data. 

Our cross-country results show that terrain ruggedness is significantly associated with 

sectoral diversification in a country, that this effect works through the sectoral diversification’s 

extensive margin, and that the effect is inverse U-shaped. The effect’s non-monotonicity may 

arise given the threshold effects, owing to the skewed distribution of surface irregularities 

across countries, and suggests that ruggedness is associated with higher (lower) levels of 

sectoral diversification (concentration) up to a certain level of ruggedness, after which it is 

associated with lower (higher) sectoral diversification. The within-country evidence also 

supports the inverted U-shaped effect of terrain ruggedness on sectoral diversification. In 

addition, it shows that rugged terrain increases spatial concentration, and this in turn reduces 
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sectoral diversification. Further, there is some evidence that an extensive margin of spatial 

concentration (i.e., inability to extend the night lights into previously dark areas) drives this 

spatial mechanism. The intuition behind this finding is that if geographic clusters in a state 

cannot spatially extend, then they are likely to operate with a handful of sectors. The corollary 

is that if geographic decentralization occurs within a state (i.e., new night lights are introduced), 

then it is likely that new sectors have also been introduced. Although alternative mechanisms 

may not be ruled out, our ordinary least-squares (OLS) results are robust to Hausman–Taylor 

(HT) and instrumental variable (IV) estimations, which address the endogeneity in key control 

variables, such as income and trade openness.  

This study thus makes two novel contributions to the literature by addressing 

topography’s important role in sectoral diversification. First, in our cross-country analysis, we 

investigate not only the effect of terrain ruggedness on overall sectoral diversification, but also 

on the latter’s extensive and intensive margins. Second, to investigate the mechanism of effect, 

we exploit the satellite night lights data in a single-country analysis to measure spatial 

concentration, which is predicated on a literal interpretation of what the night lights data 

actually display. Moreover, we exploit the intensive and extensive margins of the night lights 

data to delve deeper into the geographic concentration mechanism. Overall, our study stands 

at the crossroad of two strands of literature: one examining the determinants of sectoral 

diversification, and the other focusing on geography’s effect on the real economy.  

The remainder of the paper is organized as follows: section 2 provides a brief overview 

of topography and diversification relationship, section 3 explains the data used, and section 4 

describes the estimation framework. Section 5 presents the results and section 6 concludes the 

study. 
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2 Topography, Spatial Concentration, and Sectoral Diversification: A Theoretical 

Discussion 

In this sub-section, first we provide theoretical arguments as to how sectoral diversification 

and ruggedness may be related. Then, we explain how spatial concentration can work as a 

mechanism in this relationship. 

 

2.1 Sectoral Diversification, Terrain Ruggedness, and the Extensive and Intensive 

Margins of Sectoral Economic Activity 

Diversification has been at the center of a long-standing debate in economics. While several 

theories, such as the Ricardian and Heckscher-Ohlin theories of international trade, promote 

specialization, a number of others emphasize the importance of diversification. For example, 

diversification plays a critical role in spreading risks across sectors in economies facing 

external shocks and severe vulnerability (Imbs and Wacziarg 2003). Similarly, the International 

Monetary Fund (2014) observes that sectoral diversification has a “growth payoff” as well as 

a “stability payoff.” Therefore, it is no wonder that international institutions such as the World 

Bank run field programs in developing countries to assist them with their diversification 

objectives.  

The effect of physical geography on economic variables is widely acknowledged in the 

economic geography literature (see Malik and Temple (2009); Gallup, Sachs & Mellinger 

(1999)). The role of terrain ruggedness is well documented, not only in the spatial concentration 

of economic activity (Ramcharan 2009), but also in such diverse factors as exports (Radelet 

and Sachs, 1999), economic development (Mellinger, Sachs, and Gallup (2000)) civil conflict 

(Shaver, Carter and Shawa (2015)), social trust (Khalifa, (2016)), and state capacity (Jimenez-

Ayora and Ulubasoglu (2015)). Nunn and Puga (2012) show that ruggedness was a ‘blessing’ 
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for African countries in that it protected slave trade, and thus had an indirect bearing on the 

economic development of some African countries. 

A priori, the manner in which physio-geography influences sectoral diversification is 

ambiguous. For example, settlements lying in different altitudes within a short distance are 

likely to face non-negligible costs of production. In addition, rugged terrain imposes serious 

constraints on delivering infrastructure and basic public services to different communities.1 

Transaction costs due to rugged terrain may thus impede private sector development and limit 

the economy from venturing into different sectors, inducing sectoral concentration. By 

contrast, some levels of ruggedness may provide advantages over a smoother terrain (e.g., by 

leading to higher productivity in certain industrial crops), or spatial segregation may motivate 

cooperation up to some level of topographic difficulty (e.g., building roads, railways, and other 

infrastructure for common use), which may thus lead to sectoral diversification. 

It is important to note that negative consequences of rugged topography can be 

alleviated, if not reversed, through engineering. One example of a highly successful rugged 

country that won over its topography is Switzerland. Though not all rugged-terrain countries 

are as successful as Switzerland, it is reasonable to expect that an average country would 

attempt to overcome certain forms of ruggedness. Nonetheless, an overly rugged terrain would 

discourage investments into such infrastructure because of their non-negligible costs and 

uncertain returns—Nepal is a good example. These arguments suggest that ruggedness may 

initially assist sectoral diversification such that its adverse consequences may be observed 

beyond a certain point, but then sectoral concentration may win over. This would mean an 

inverted U-shaped relationship between ruggedness and sectoral diversification.  

                                                             
1 Ulubasoglu and Cardak (2007) find that landlocked countries, generally mountainous, exhibit higher inequality 
in rural and urban schooling because of the difficulties associated with public service delivery to rural areas. 
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Whether and how the intensive and extensive margins of sectoral diversification may 

be affected by terrain irregularities constitutes an open, ambiguous, and critical empirical 

question. In terms of the extensive margin, rugged topography may prevent new sectors from 

being introduced or older ones from being phased out, and may thus result in a concentrated 

sectoral structure. A counter-argument is that terrain ruggedness may lead to pockets of clusters 

that host different sectors, which may underlie diversified sectoral production. Turning to the 

intensive margin, how sectoral shares in a given topographic cluster would be shaped is 

ambiguous, but, taking a cue from the extensive margin discussion, it is likely that constrained 

intersectoral linkages caused by having to operate in a narrow space may give rise to unequal 

size distribution for existing sectors, leading to sectoral concentration.  

2.2. Spatial Concentration as a Mechanism 

Critically, the above discussion suggests that spatial (i.e., geographic) concentration within an 

observational unit (i.e., state or country) is central to understanding the relationship between 

terrain ruggedness and sectoral diversification. To this end, Ramcharan (2009, 2010) provides 

very useful insights. Ramcharan (2010) reviews the road construction literature, and documents 

that the terrain grade variation—that is, the rise and fall of the surface area—as well as soil 

characteristics can exponentially affect the cost of building roadways and rail lines. This may 

result in spatial concentration and reduced sectoral diversification opportunities, given the 

increased cost of transporting goods across space. Conversely, ruggedness-induced spatial 

concentration may increase sectoral diversification through an agglomeration effect. 

Ruggedness may be responsible for concentrated economic activities in a narrow area, and thus 

create opportunities for a larger home market, boosting returns to scale and leading to higher 

productivity levels. The expanded domestic demand generated may facilitate scope for sectoral 

diversification (Ramcharan (2009)). 
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As indicated above, we investigate the spatial concentration mechanism as measured 

by US night lights data. To link the spatial distribution of economic activity with sectoral 

diversification, we assume the following: if sectoral diversification in a state takes place 

alongside spatial diversification, then it is likely that diversification of economic activity in 

space has contributed to the diversification of economic activity in sectors (or vice versa). This 

effect can arise through both the spatial extensive or spatial intensive margins of economic 

activity. Considering the spatial extensive margin, if new areas are lit up, then either new 

sectors are introduced/older sectors are phased out, or the relative shares of existing sectors 

have changed in a manner resulting in sectoral diversification. Of these possibilities, we rule 

out the introduction of new or phasing out of older sectors in the US, because we do not observe 

such development in the US manufacturing data for 1997‒2011. We thus assume the only 

remaining possibility: that the introduction of night lights into previously dark areas has 

changed the relative shares of existing sectors in a manner that has led to more even sectoral 

shares. Considering the spatial intensive margin, we assume that if the relative strengths of 

existing night lights across different nodes have changed in a way that has reduced spatial 

concentration, then it is likely that the relative shares of existing sectors have become more 

even, such that some sectoral diversification has occurred. Taken together, both of our 

assumptions mean that changes in the extensive and intensive margins of spatial concentration 

are likely to affect sectoral structure by changing the relative shares of existing sectors.  

The downside of our approach is that we are unable to geocode the new sectors or those 

existing sectors in a manner that fully connects sectoral diversification with spatial 

diversification, hence the above assumptions. Nonetheless, the effect of ruggedness on spatial 

concentration, and in turn the effect of spatial concentration (through both spatial extensive 

and spatial intensive margins) on sectoral diversification based on these assumptions, are 

exactly what we test in our empirical analysis.  
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3 Data and Descriptive Statistics 

In this section, we discuss the construction of the main study variables. Appendix Tables A1 

and A2 present a description of all variables used in this study. 

3.1 Terrain Ruggedness 

Our terrain-ruggedness measure, originally constructed by Riley et al. (1999) and later 

improved by Nunn and Puga (2012), precisely quantifies topographic irregularities in a 

country’s land area.2 A higher value of the terrain-ruggedness index implies a higher surface 

roughness or irregularity. Figure A1 shows the level of ruggedness across different countries 

of the world. In our sample, Dominica has the lowest ruggedness, with a value of 0.003, while 

Bhutan has the highest, with 6.74, and Barbados has the median ruggedness value of 0.963. 

Turning to the within-country analysis, we construct the terrain-ruggedness index for 

the 51 US states/territories using the same procedure as Nunn and Puga (2012) (see Figure A2). 

Delaware has the least terrain irregularities, with a value of 0.06, while the state of Washington 

has the most, with a value of 2.6, and Arkansas has the median ruggedness value of 0.51.  

3.2 Measure of Sectoral Diversification 

In a recent innovative contribution, Cadot et al. (2011, pp. 594–596) take advantage of the 

Theil index’s decomposability and compute the intensive and extensive margins of export 

diversification. In particular, they partition export diversification additively into within-group 

and between-group (product) components, referring, respectively, to diversification occurring 

within existing products, and diversification arising because of new products being introduced 

or older products being phased out.3  

                                                             
2 Based on digital elevation data taken from GTOPO30, a global dataset led by the US Geological Survey Center, 
the terrain-ruggedness index accurately measures the topographic characteristics of a country’s land surface. 
Elevation observations in GTOPO30 are gridded at 30 arcseconds (926 meters) across the entire surface of the 
Earth (Nunn & Puga 2012). These grid cells are subsequently averaged to compute the average ruggedness of the 
counry’s lands that are free of water. 
3 They find that most of the variation between export diversification and income per capita is because of intensive 
trade margins (i.e., existing export products), but the non-monotonic relationship between the two is driven by 
extensive margins (new products, or new markets for existing products).  
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Following Cadot et al. (2011), we decompose the Theil index of sectoral production 

diversification in a country into its within- and between-components. Sectoral production 

diversification caused by changes in the within-component occurs because of sectoral 

employment or value-added shares within existing sectors becoming more even (which might 

occur as a result of reallocation and/or movement of labor and capital across the existing 

sectors). Sectoral diversification caused by changes in the between-component occurs because 

of new sectors being introduced or older sectors being phased out (which might occur as a 

result of switching the exising labor and capital to new sectors). A higher value of the overall 

Theil index for sectoral diversification indicates a lower level of sectoral diversification, or a 

higher level of concentration. In this setting, a higher between-component (extensive margin) 

of the Theil index means a higher concentration caused by the inability to introduce new sectors 

or phase out older sectors, while a higher within-component (intensive margin) indicates a 

higher concentration caused by some sectors dominating the rest in terms of size.  

To calculate the Theil index of sectoral diversification at the cross-country level, we 

use a panel dataset for the period 1970‒2007. This period is mainly dictated by the availability 

of the sectoral size data. We compute the index using the INDSTAT2 (2012) ISIC Rev.3 

database, which provides manufacturing data for 23 sectors at the two-digit level of 

disaggregation. Our sectoral size measures are employment and value-added shares. Figure A3 

presents the employment share-based sectoral diversification status of the countries averaged 

over the sample period. 

Following Theil (1972), we compute a sectoral diversification index as follows: 

S = 1
𝑛𝑛
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
ln� 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�𝑛𝑛

𝑆𝑆=1  

where i stands for sectoral size, and n denotes the total number of sectors (omitting country and 

time subscripts for brevity). 
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Like Cadot et al. (2011), our sectoral diversification index can be calculated for groups 

of sectors and decomposed additively into within-groups and between-groups components. 

Mathematically, let us consider some partition of that total number of potential sectors (of a 

given country in a particular year) into J+1 groups denoted Gj, where j = 0, …, J. Let nj be the 

number of sectors in group j, and let Sj stand for the overall sectoral diversification index for 

group j. The between-groups component of sectoral diversification index is defined as follows: 

SB = ∑ 𝑛𝑛𝑗𝑗×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆  𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
𝑛𝑛×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

ln �𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

�𝐽𝐽
𝑗𝑗=0  

And its within-groups component is measured by the following: 

SW = ∑ 𝑛𝑛𝑗𝑗×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
𝑛𝑛×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑗𝑗
𝐽𝐽
𝑗𝑗=0  

Given the additivity property of Theil’s index, S would be equal to SB+SW (for technical 

details, see Cadot et al., 2011). 

To calculate sectoral diversification in the US, we use the state-level manufacturing 

data for the period 1997‒2011. We now have 18 sectors (instead of 23 in the cross-country 

analysis), which are classified according to the NAICS. The NAICS classification is not 

directly comparable with ISIC data because of its different classification conventions. The 

measure of sectoral size in our within-country analysis is value-added. As indicated above, 

sufficient variation does not exist in the between-component of the US manufacturing value-

added data, so we calculate only the overall Theil index for the US. Figure A4 presents the 

sectoral diversification status of the US states in 2011. On average, across the sample period, 

Alabama has the highest sectoral diversification, while Alaska has the lowest. 

3.3 Measure of Spatial Concentration 

Turning to spatial concentration, we compute the (spatial) Theil index across the US states 

using satellite night lights data for the period 1995‒2013. Our unique contribution to the 
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literature that uses satellite night lights data is to compute the intensive and extensive margins 

of night lights for the US states over the period 1997‒20114. The within-component (intensive 

margin) of the index would identify the changes in the lights’ density within a localized 

geographic area, and the between-component (extensive margin) would capture the geographic 

areas with lights, or with no lights before (see below). The night lights raw data come with six-

bit digital number S for every 30-arcsecond grid of the US; which are sourced from the National 

Oceanic and Atmospheric Administration’s National Geophysical Data Center. Using this grid-

level dataset, we obtain the Theil-based spatial concentration night lights index using the 

following formula:  

L = 1
𝑛𝑛
∑ 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡 𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡𝑖𝑖

𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡  𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡
ln� 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡  𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡𝑖𝑖

𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡 𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡
�𝑛𝑛

𝑆𝑆=1  

in which i is the index for geographic nodal point at 30 arcseconds and n denotes the total 

number of nodes in a given state. In addition, using a similar analogy as sectoral diversification, 

we compute the within- and between-groups components of the spatial concentration index 

with the following formulas: 

LB = ∑ 𝑛𝑛𝑗𝑗×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡 𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡𝑗𝑗
𝑛𝑛×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡 𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡

ln �𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡  𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡𝑗𝑗
𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡  𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡

�𝐽𝐽
𝑗𝑗=0  

LW = ∑ 𝑛𝑛𝑗𝑗×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆 𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡  𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡𝑗𝑗
𝑛𝑛×𝐴𝐴𝐴𝐴𝑆𝑆𝑡𝑡𝑡𝑡𝐴𝐴𝑆𝑆  𝑁𝑁𝑆𝑆𝐴𝐴ℎ𝑡𝑡  𝐿𝐿𝑆𝑆𝐴𝐴ℎ𝑡𝑡

𝑆𝑆𝑗𝑗
𝐽𝐽
𝑗𝑗=0  

where LB+LW is equal to L. A higher overall spatial concentration index points to a more 

concentrated geographic structure. Along these lines, a higher between-component of this 

index means greater geographic concentration caused by the inability to extend spatially and 

to light up new areas, while a higher within-component means a higher concentration caused 

by some nodes dominating the geographic (i.e., night lights) distribution within a spatial unit 

in terms of light density (vis-à-vis relatively equal strength of lights in that cluster). 

                                                             
4 The computation of the between-component results in the loss of 1995‒1996 and 2012‒2013. 
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Figure A5 illustrates the between-group (extensive margin) and within-group (intensive 

margin) components of spatial concentration, displaying 30-by-30 arcsecond cells, where each 

cell is centered on a point from the night lights grid. The solid black circles represent the 

existing night lights, and the grey circles represent new night lights introduced in a previously 

dark cell. The empty cells show the absence of night lights. The size of a circle portrays the 

density of night lights in a given cell. Compared with the baseline case in 5.1, a simple 

exchange of the circles across two cells in 5.2 leads to no change in spatial concentration. 

However, with the previously smaller black circle becoming as large as the other black circle, 

5.3 displays a reduction in spatial concentration caused by a change in the within-component. 

Compared with 5.1, 5.4 displays another case of no change in concentration, where the larger 

black circle disappears and simply shifts to another cell (with the grey color). Yet 5.5 represents 

a decrease in spatial concentration caused by the introduction of a new (grey) night light in a 

third cell, denoting geographic diversification at the spatial extensive margin (between-

component); 5.6 represents a further reduction in spatial concentration, with the previously 

smaller black circle becoming larger, thus suggesting geographic diversification in the spatial 

intensive margin (within-component) compared with 5.5. 

3.4 Descriptive Statistics 

We present the descriptive statistics of our cross-country panel data in appendix Table A3. The 

Theil index statistics show that variations in sectoral diversification arise from both within- and 

between-components. Figure 1 displays the relationship between sectoral diversification 

(inversely) measured by the Theil index and terrain ruggedness.5 The relationship is evidently 

non-monotonic—that is, ruggedness initially helps diversification, but at higher levels of 

ruggedness, countries tend to concentrate. This evidence supports the argument that the costs 

                                                             
5 On average, across our sample, Slovak Republic, Canada, and the US have the highest sectoral diversification 
according to the employment-based metric, while Gambia, the Dominican Republic, and Rwanda have the lowest. 
For the value-added-based Theil index, the first three countries with the highest levels of sectoral diversification 
are France, the Czech Republic, and Canada, while the last three countries are Gambia, Rwanda, and Botswana. 
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associated with developing railways and roads and maintaining transport networks grows 

exponentially with terrain grade variation, as pointed out by Ramcharan (2010).  

Appendix Figure A6 depicts the spatial distribution of economic activity across the US 

states based on 2011 satellite night lights data. According to our metric, the District of 

Columbia (DC) has the lowest spatial concentration of economic activity, given that almost all 

its surface is lit up, while Alaska has the highest concentration, given a handful of nodes with 

night light.6 New Jersey follows DC in terms of (the lowest) spatial concentration. 

Figure 2, constructed following Cadot et al. 2011, provides striking insights into the 

within- and between-components of nights lights as a function of average night lights for a 

given state. The figure demonstrates that as the average night light intensity increases, overall 

spatial inequality decreases, particularly up to the average night light level of 24. Importantly, 

the reduction is driven by the between-component up to the level of 15, meaning that new areas 

are lit up such that overall spatial concentration goes down. In our dataset, Indiana, Ohio, and 

North Dakota witnessed the highest drops in overall spatial concentration from 1997 to 2011. 

North Dakota is an especially instructive case—with an average night light value of 1.1 during 

1997‒2009, North Dakota attained the night light level of 5.1 in 2013; the between-component 

of its Theil index dropped from 1.02 in 1997 to 0.81 in 2011. North Dakota experienced 

reduced spatial concentration because of recently developed oil and gas fields driven by the 

groundbreaking extraction technology known as hydraulic fracturing, or ‘fracking’; see Figure 

A7, which marks a patch of night lights that overlayed with the newly opened oil field. 

Returning to Figure 2, between the average night light levels of 15 and 24, the decrease 

in spatial inequality is mainly driven by the within-component, suggesting that the light 

densities among the existing lit nodes become relatively more equal. In this range of night 

lights, Delaware is among the top three (along with Ohio and Indiana) that experienced 

                                                             
6 In our analysis, we drop DC given its very small size; it is also an outlier, with an index almost equal to zero. 
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intensive margin-driven spatial de-concentration. Its overall Theil index dropped from 0.60 to 

0.42 from 1997 to 2011, which is almost wholly driven by the within-component. Such within-

component domination of a spatial concentration decrease is depicted in Figure A8, where we 

observe no subtle change in the pattern of night lights in Delaware between 2012 and 2016, but 

some of the existing locations become more illuminated. This could be caused by the expansion 

of already-established corporate business in urban areas, where the financial services sector 

grew almost 21% between 2002 and 2012 (The News Journal, 2013).  

In Figure 2, beyond the average night light level of 24, overall spatial concentration 

increases again, first by unequal relative shares of night light density among the extant lit nodes, 

but then chiefly because of the between-component. Expressed another way, some active night 

light nodes are darkened as the average night lights level goes beyond 30 (some inequality is 

also contributed by existing nodes that become more unequal). New Jersey serves as an ideal 

example in this context: it sparks the highest level of average night lights—32.11 in 1997—

among all states (except DC). However, some parts of New Jersey have lost night lights over 

time because of economic activities in the state shifting to more vibrant areas. Figure A9 

compares the night lights in New Jersey between 2012 and 2016—evidently, the night lights 

in Old Bridge Township of New Jersey (marked in red circles) have faded away. In Figure 2, 

it is also interesting to note that the average night lights do not correlate with the between-

component except at either end of the spectrum. This is not surprising, because introducing 

new lights and phasing out older nodes with lights occurs at both ends. Taken together, the 

spatial distribution of economic activity as measured by satellite night lights seems to provide 

rich variation with which to explore the spatial concentration mechanism in this paper. 

Table A4 presents descriptive statistics for all US state-level data. Figure A10 

reinforces that the sectoral diversification‒ruggedness relationship is non-monotonic within the 

US states: at low levels of ruggedness, states are highly diversified (i.e., lower Theil index), 
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and at higher levels, they tend to become sectorally concentrated (i.e., higher Theil index). 

Finally, Figure A11 illustrates the relationship between ruggedness and spatial concentration, 

and shows that, on average, states with higher levels of ruggedness tend to exhibit higher spatial 

concentration. Unsurprisingly, this implies that entrepreneurial and residential areas are likely 

to cluster with more rugged terrain. 

4 Estimation Method 

For our empirical analysis, we estimate the following equation: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑡𝑡 = 𝛽𝛽0 + η𝑡𝑡 + 𝛽𝛽1𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑆𝑆 + 𝛽𝛽2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑠𝑠𝑠𝑠𝑆𝑆 +  𝑿𝑿𝑆𝑆𝑡𝑡𝜹𝜹 + Ziα + 𝜀𝜀𝑆𝑆𝑡𝑡          (1) 

where div refers to sectoral diversification (measured by the Theil index, an inverse measure 

of diversification) for county/state i at time t, and rugged and rugged_sq are time-invariant 

terrain-ruggedness index and its quadratic form, respectively. The quadratic specification 

captures the possible non-monotonicity observed in the data presented in Figures 1, 2, and A10.

i,tX is a vector of controls that includes log per capita income, population log, and trade 

openness. Income level is correlated with diversification as demonstrated in Imbs and Wacziarg 

(2003), and we include this in the model along with its quadratic. Population is intended to 

control for country size, since a small economy may not be able to afford to diversify its 

production structure. Trade openness may create more scope for diversification because open 

countries are likely to be producing and consuming a variety of goods. Data for these controls 

come from the Penn World Tables. Zi includes time-invariant country characteristics, including 

dummies for colonial origins and countries’ oil-exporting status. Colonial origin captures the 

historical institutional factors, while oil exporters may have concentrated production structures. 

tη  is the aggregate time effects captured by year dummies. A fixed-effects estimation of 

equation (1) is not feasible because of the time-invariant nature of ruggedness. Therefore, our 

benchmark is a pooled panel approach, where standard errors are clustered at the country level.  



18 
 

We also subject our main results to a variety of estimation approaches, including 

random effects, HT estimation, and the instrumentation of log income per capita and trade 

openness in a two-stage least-squares estimation. A country’s income is instrumented with the 

trade-weighted income of its neighbors (e.g., Acemoglu et. al (2008)), while trade is 

instrumented with the predicted changes in bilateral trade owing to foreign natural disasters, as 

adopted by Felbermayr and Groschl (2013). 

As indicated previously, cross-country analysis is useful for examining the intensive 

and extensive margins of sectoral diversification with a global picture; however, it is limited in 

its ability to shed light on the possible mechanisms of effect, given that a large variety of 

countries is unlikely to form comparable units with which to tease out the mechanism. Hence, 

we turn to the single-country case to illuminate the potential channel. Thus, for within-country 

analysis, we specify an equation similar to equation (1), where we retain the quadratic form of 

ruggedness. The control variables are state size as measured by log population, trade openness 

as proxied by export share of gross state product, log per capita gross state product as a measure 

of income, and a dummy variable for major oil-producing states. The equation is estimated 

using OLS and by clustering standard errors at the state level. As above, unobserved state 

characteristics may result in omitted variable bias and thus could create a risk of endogeneity. 

While this is less of a problem in the single-country case, we nonetheless also estimate the 

equation using the HT estimation method, considering openness and income as endogenous. 

5 Results 

5.1 Cross-Country Evidence 

Table 1 presents the pooled OLS results for the effect of ruggedness on sectoral diversification. 

Columns 1 to 6 report the results with employment as the sectoral size measure. Focusing on 

the overall Theil index, columns 1 and 2 demonstrate, without and with controls, respectively, 

that both ruggedness and its quadratic are statistically significant. Using controls in column 2, 
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both coefficients are significant at the 1% and 5% levels, confirming that terrain ruggedness 

affects diversification in a non-monotonic fashion. In particular, terrain ruggedness exhibits a 

diversifying effect up to the ruggedness level of 2.06 (which corresponds to the 77th percentile) 

and has a concentrating effect beyond this. Conversely, the negative and positive signs of the 

coefficients of income and its quadratic, respectively, confirm the well-established non-

monotonic relationship between income and sectoral diversification, as demonstrated by Imbs 

and Wacziarg (2003). Economic size, measured by log population, is estimated to be highly 

significant, with the negative coefficient implying that larger countries have a greater scope to 

diversify.7  

We next focus on the intensive and extensive margins of sectoral diversification, which 

is one of our main contributions. Reporting the results for the extensive margin, columns 3 and 

4, both with and without controls, respectively, document a statistically significant non-

monotonic effect for ruggedness. By contrast, the coefficient estimates in columns 5 and 6 yield 

that intensive margins of sectoral diversification do not significantly correlate with a country’s 

topographical structure. Thus, a key result here is that the relationship between the overall Theil 

index and terrain ruggedness is dominated by the between-component of sectoral 

diversification. Recall that between-component refers to the diversification arising because of 

new sectors being introduced or older sectors being phased out.8 The implied turning point for 

the U-shaped effect of ruggedness on the between-component of the Theil index is 

approximately 1.7. This evidence offers important insights for economic geography literature, 

and should be further elaborated. It is well known that countries with rougher surfaces have 

less developed road and rail transport networks—for example, Ramcharan (2009) documents 

                                                             
7 In unreported regressions, Herfindahl and Gini indices of sectoral diversification yield quite comparable 
findings to the overall Theil index regarding the effect of terrain ruggedness (results available upon request). 
8 The number of new sectors should be interpreted cautiously here, as these new products are not necessarily true 
entrepreneurial discoveries. In majority of cases, this corresponds to establishing firms and or producing products 
that already exist in other countries. True product innovation could have been measured at more detailed 
classifications of manufacturing firms; yet such data are not available. 
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that a 1% increase in surface roughness is associated with an approximately 1% decline in the 

number of kilometers of roadway within a country. Our result suggests that rugged terrain 

impedes new sectors beyond a certain level of surface roughness.  

For time-varying controls, economic size proxied by the log of population is strongly 

related to both the between-component and within-component of the Theil index. In contrast 

to the case of the overall Theil, income and its quadratic do not always significantly vary with 

each component of diversification, but retain their negative and positive signs, respectively. 

Columns 7 to 12 of Table 1 replicate the results using value-added as the sectoral size 

measure. The findings for terrain ruggedness are qualitatively similar, pointing to the extensive 

margin as the main driver of variation in sectoral diversification. As per the income effect—

although the U-shaped effect is present in the overall Theil case—only the coefficient of the 

linear term is statistically significant. Inability to account for individual country heterogeneity 

and the extended timeframe in our analysis (compared with Imbs and Wacziarg (2003)) may 

explain the statistical insignificance of the quadratic term. Yet a significant relationship exists 

between income and the intensive margin of diversification, suggesting that the level of 

development correlates strongly with variations in the value-added shares of existing sectors. 

5.2 Sensitivity Analysis of Cross-Country Results 

Thus far, we have addressed individual country heterogeneity through clustered standard 

errors. Income and trade openness have also been assumed to be uncorrelated with the error 

term. To improve the econometric inference, we extend the analysis in several directions. First, 

we perform a random-effects estimation. As reported in Table 2, this method improves the 

standard errors, but Hausman tests indicate that time-varying controls are correlated with the 

error term (see columns 1, 4, and 7). Next, we adopt the HT estimation method, where time-
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varying controls are instrumented within the HT procedure.9 Baltagi et al.’s (2003) version of 

the Hausman test demonstrates that compared with fixed-effects estimates, the HT estimates 

of time-varying controls are “acceptable.” This estimation approach results in better standard 

errors compared with the benchmark pooled OLS estimation and reinforces the inverted U-

shaped effect of topography on sectoral diversification through its extensive margin (see Table 

2, columns 2, 5, and 8). Coefficients of ruggedness yield similar turning points, as in the pooled 

OLS estimation—that is, approximately two in the overall Theil case and approximately 1.7 in 

the between-Theil case. Columns 5 and 8 of Table 2 reinforce the key result that the extensive 

margin of diversification dominates the variations in the overall Theil index.  

Nevertheless, income and trade openness may still be correlated with the regression 

error. We take an IV approach to address this correlation. Following Acemoglu et al. (2008), 

we adopt the trade-share-weighted average income of trading partners as an instrument for a 

country’s own income. In addition, parallel to Felbermayr and Groschl (2013), we use the 

predicted changes in bilateral trade owing to foreign natural disasters as instruments for trade 

openness. Foreign natural disasters are clearly exogenous to a country’s sectoral 

diversification, and are likely to influence diversification through their effects on trade links. 

However, it is not immediately clear, as also acknowledged by Acemoglu et al. (2008) in the 

context of their study, whether the trade-share-weighted income of trading partners can be 

excluded from the diversification equation. It is more reasonable to assume that this instrument 

provides only a partial correction to endogenous income, rather than a fully causal relationship. 

That said, both IVs have strong explanatory powers in the first stage, as can be seen in the F-

statistics from Table 2 that are above the rule of thumb 10. Focusing on the sensitivity of 

ruggedness, the inefficient 2SLS estimator, as anticipated, produces higher standard errors 

                                                             
9 Time-invariant controls are not instrumented. It does not appear that strong grounds exist for the endogeneity of 
ruggedness, colonial origins, and oil-exporter status.  
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compared with pooled OLS (see Table 2, columns 3, 6, and 9). Yet the results reinforce our 

main finding that ruggedness is related to sectoral diversification in an inverted U-shaped 

fashion through its extensive margin. Value-added-based regressions in panel B of Table 2 

point to analogous variations, except that the standard errors are slightly higher. 

5.3 Within-Country Evidence 

We now turn to the US state-level data. We initially investigate whether the non-monotonic 

relationship obtained from cross-country data also holds for the US. Subsequently, and more 

importantly, we analyze the mechanism through which this relationship works. Recall that for 

the US, we are unable to compute the extensive and intensive margins of sectoral 

diversification, and hence consider only overall sectoral diversification—however, we are able 

to compute the extensive and intensive margins of spatial concentration.  

Column 1 in Table 3, using the size metric of value-added to measure sectoral 

diversification, displays the inverted U-shaped link between ruggedness and sectoral 

diversification observed at the cross-country level. Although the coefficients of ruggedness and 

its quadratic are not significant at conventional levels, the t-statistic of the non-linear term is 

greater than 1.5. Further, the non-linear term becomes significant at the 5% level in the full 

model with controls (column 2), where the linear ruggedness term is negative with its t-statistic 

greater than 1.5. The HT estimation of the full model, which accounts for the possible 

endogeneity of income and trade openness, also confirms the non-linear relationship between 

ruggedness and sectoral diversification, albeit with high standard errors. The latter is most 

likely because the HT is an inefficient IV estimator. Among the controls, larger population 

creates more scope for diversification, while income has a concentrating effect.10 There is also 

some evidence that major oil-producing states tend to concentrate. 

                                                             
10 Quadratic of income is not included in this estimation because unlike cross-country data, income among the 
US states is less heterogeneous. 
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Our findings in Table 4 importantly document that the relationship between terrain 

ruggedness and spatial concentration is positive and significant. As the estimates with quadratic 

form of ruggedness are consistently insignificant, we surmise that the relationship is linear. The 

estimates, obtained using pooled OLS with clustered standard errors at the state level, are also 

robust to the HT estimation. Table 4 explores the effect of ruggedness on the between- and 

within-components of the spatial Theil index in columns 5 to 12 using both OLS and HT 

estimations. Columns 11 and 12 suggest that ruggedness contributes more to the within-

component of the spatial concentration, given its statistically and economically more 

significant coefficients, than in the case of the between-component in columns 7 and 8. 

We now turn to the mechanism through which topography may affect sectoral 

diversification. Recall that we measure the geographic concentration of firms and households 

by the Theil index of satellite night lights data along with its within- and between-components. 

We should reiterate here that the within-component refers to the density of light in a given 

localized geographical area. Conversely, the between-component captures how the spatial 

distribution of areas with light evolves over time. An increase in this component would imply 

a rise in spatial concentration. Table 5 reports our regression analysis, which includes variables 

of overall spatial Theil index (columns 1 and 2), spatial between-component (columns 3 and 

4), and spatial within-component (columns 5 and 6), with OLS and HT estimations. The 

following key findings stand out. First, the coefficients of the overall spatial Theil index in 

columns 1 and 2 show that sectoral diversification tends to increase on average as economic 

activity becomes more spatially concentrated. This result is robust to HT estimation. Second, 

both the between- and within-components of the spatial Theil index (columns 3 and 5) are 

significant with OLS, and the between-component stands with a t-statistic of 1.56 using HT 

estimation (column 4). This implies that the more new residential or industrial areas are built 

by extending the geographic areas, the higher the sectoral diversification levels. Third, with 
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spatial concentration measures added in the model, the coefficient of ruggedness is moderately 

augmented, especially when the between-component of (spatial) Theil index is included 

(column 3). This provides evidence for the extensive margin of spatial concentration as the 

mechanism of effect for the ruggedness‒sectoral diversification relationship.  

The HT estimates in columns 4 and 6 generally support the findings obtained with OLS, 

although the standard errors of the between- and within-components tend to be larger. This is 

most probably because of the HT estimator’s inefficiency. Nonetheless, as a word of caution, 

the OLS coefficients obtained in columns 1, 3, and 5 are larger than the HT estimates, which 

may imply that our OLS coefficients for the Theil indices may be upwardly biased. 

Taken together, there is strong evidence that the (adverse) effect of spatial concentration 

on sectoral diversification works through the extensive margin of spatial concentration. The 

broad conclusion is that rugged topography restricts the geographic clusters from spatially 

extending; therefore, their sectoral structure remains concentrated. The corollary of this finding 

is that if a state extends over space by introducing new lights, it may introduce new sectors. To 

exemplify this, consider chemical factories and food factories, which are unlikely to operate 

within proximity. Thus, operating in different (light) clusters would mean that more sectors are 

in operation. Our finding rules out the alternative hypothesis that ruggedness may enable 

opportunities for a larger home market by facilitating increasing returns to scale and higher 

productivity levels through concentrating economic activities in a narrow area, and thus 

generating scope for sectoral diversification (Ramcharan (2009)). 

6 Conclusion 

This paper investigates the role of physio-geography in sectoral diversification. Our 

investigation takes a two-pronged approach in which we first conduct a cross-country analysis 

of 142 countries over the period 1970‒2007, then a within-country analysis using US state-

level data for the period 1997‒2011. While the cross-country data provide useful insights into 
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the global relationship, the within-country data overcome the drawback of the former by 

offering a homogeneous platform for a meaningful examination of the mechanism.  

We present strong evidence for a robust and highly significant non-monotonic effect of 

ruggedness in the cross-country setting. In particular, ruggedness initially assists sectoral 

diversification, but exhibits a concentrating effect beyond a certain level. In a unique 

contribution, we next explore the extensive and intensive margins of sectoral diversification. 

We demonstrate that the relationship between terrain ruggedness and patterns in the real 

economy mostly works through the extensive margin of sectoral diversification, and, to a lesser 

extent, through the intensive margin.  

Moving forward, we verify the aforementioned non-monotonic effect with US state-

level data. Then, we establish that terrain ruggedness increases spatial concentration, which in 

turn reduces sectoral diversification. We measure spatial concentration with the satellite night 

lights data of Henderson, Storeygard, and Weil (2012), where we adopt a more literal 

interpretation of data to represent the geographic distribution of night lights. Thus, our 

approach to using satellite night lights data contrasts with those of most previous studies, which 

have used the data only to proxy income. This approach, quite innovatively, also enables us to 

compute the spatial extensive and intensive margins of night lights for the US. In this vein, we 

document that as residential or industrial areas extend in space (i.e., spatial extensive margin), 

sectoral diversification tends to increase. This relationship is generally robust to alternative 

estimation approaches. 

While geography’s role in economic development is widely studied, to the best of our 

knowledge, this is the first paper that investigates its role in sectoral diversification, and, more 

importantly, in the extensive and intensive margins of the latter. Another novel aspect of this 

study is to shed light on the link between physio-geography and spatial concentration, as well 

as the extensive and intensive margins of spatial distribution of economic activity. Taken 



26 
 

together, our findings could inform the global debate on spreading risks across sectors to 

mitigate the vulnerability of real economies. In particular, our results suggest that a 

combination of innovative policies that incorporate the efficient use of space, urban planning, 

and intersectoral linkages could help alleviate the adverse role of natural barriers that stand in 

the way of a healthy trajectory of sectoral development. 
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Figures and Tables 

Figure 1: Terrain Ruggedness and Sectoral Diversification – Cross-Country Data  

 
 

Figure 2: Average Night Lights and the Within- and Between Components of Night 
Lights 
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Table 1: Topography and Sectoral Diversification—Pooled OLS Results of Cross-Country Analysis 
 

 Employment based diversification measure  Value-added-based diversification measure 
 (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) (11) (12) 
 Theil 

overall 
Theil 
overall 

Theil 
between 

Theil 
between 

Theil 
within 

Theil  
within 

 Theil 
overall 

Theil 
overall 

Theil 
between 

Theil 
between 

Theil 
within 

Theil  
within 

Ruggedness -0.139* -0.099** -0.087** -0.055* -0.042 -0.046  -0.198** -0.136** -0.138** -0.104* -0.055 -0.043 
 (0.078) (0.044) (0.041) (0.033) (0.056) (0.040)  (0.092) (0.056) (0.060) (0.055) (0.058) (0.035) 
Ruggedness square 0.037** 0.024*** 0.024*** 0.016** 0.009 0.009  0.043** 0.031*** 0.035*** 0.028*** 0.005 0.005 
 (0.016) (0.009) (0.007) (0.006) (0.013) (0.008)  (0.020) (0.011) (0.012) (0.011) (0.013) (0.008) 
Income (log)  -0.614***  -0.296  -0.172   -0.746*  0.043  -0.634** 
  (0.236)  (0.231)  (0.192)   (0.391)  (0.332)  (0.265) 
Income square (log)   0.022*  0.012  0.002   0.031  -0.007  0.029* 
  (0.014)  (0.013)  (0.011)   (0.022)  (0.019)  (0.015) 
Population (log)  -0.117***  -0.056***  -0.058***   -0.147***  -0.064***  -0.077*** 
  (0.012)  (0.008)  (0.011)   (0.014)  (0.012)  (0.009) 
Trade openness  -0.020  -0.008  0.005   -0.060*  -0.038  -0.010 
  (0.030)  (0.024)  (0.022)   (0.033)  (0.033)  (0.025) 

Country 142 142 132 132 135 135  134 134 122 122 125 125 
Observations 3,402 3,402 2,586 2,586 2,977 2,977  3,091 3,091 2,408 2,408 2,693 2,693 
R-squared 0.049 0.544 0.057 0.319 0.008 0.373  0.040 0.590 0.075 0.319 0.039 0.489 

Note: Dependent variable for each regression is the Theil index, which is the inverse measure of sectoral diversification. Robust standard errors clustered at the 
country level in parentheses. Columns 2, 4, 6, 8, 10 and 12 include a dummy for major oil-exporting countries and three dummies for colonial origins. All regressions 
include year dummies and a constant. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2: Topography and Sectoral Diversification—Random Effects, Hausman–Taylor 
and Two-Stage Least Squares Estimations of Cross-Country Analysis 

 
 (1) 

RE 
(2) 
HT 

(3) 
2SLS 

(4) 
RE 

(5) 
HT 

(6) 
2SLS 

(7) 
RE 

(8) 
HT 

(9) 
2SLS 

 Theil 
overall 

Theil 
overall 

Theil 
overall 

Theil 
Between 

Theil 
between 

Theil 
between 

Theil 
within 

Theil 
within 

Theil 
within 

Panel A: Employment-based diversification measure 

Ruggedness -0.176*** -0.183* -0.082 -0.094** -0.094** -0.065** -0.084** -0.091 -0.019 
 (0.053) (0.095) (0.055) (0.039) (0.046) (0.032) (0.042) (0.063) (0.053) 
Ruggedness square 0.040*** 0.042** 0.021* 0.020*** 0.021** 0.019** 0.018** 0.020 0.004 
 (0.009) (0.020) (0.013) (0.007) (0.010) (0.009) (0.008) (0.013) (0.013) 
Income (log)  -0.294 -0.213** -0.213*** -0.122 -0.063 -0.087** -0.293 -0.277*** -0.143*** 
 (0.264) (0.098) (0.049) (0.229) (0.110) (0.037) (0.256) (0.091) (0.044) 
Income square (log)  0.010 0.008  0.002 -0.002  0.014 0.014***  
 (0.015) (0.005)  (0.013) (0.006)  (0.014) (0.005)  
Population (log) -0.086*** -0.050*** -0.121*** -0.057*** -0.056*** -0.048*** -0.050*** -0.046*** -0.069*** 
 (0.020) (0.018) (0.015) (0.011) (0.012) (0.011) (0.015) (0.014) (0.014) 
Trade openness -0.026 -0.025* -0.063 0.006 0.014 -0.022 -0.017 -0.020 -0.012 
 (0.039) (0.015) (0.056) (0.039) (0.016) (0.042) (0.028) (0.013) (0.042) 
Country 142 142 111 132 132 103 135 135 104 
Observations 3,402 3,402 2,848 2,586 2,586 2,226 2,977 2,977 2,507 
R-squared 0.49 - - 0.31 - - 0.29 - - 
Hausman test p-value 0.03 0.99 - 0.00 0.99 - 0.03 - - 
 F-stat-income, 
openness 

- - 12.7, 7.5 - - 8.9, 5.9 - - 11.1, 7.4 

A-P F-Income, openness - - 20.6, 14.4 - - 13.9, 10.4 - - 18.6, 14.4 

Panel B: Value-added-based diversification measure 

Ruggedness -0.221*** -0.340 -0.107* -0.169*** -0.219* -0.050 -0.049 -0.107 -0.053 
 (0.061) (0.241) (0.057) (0.054) (0.131) (0.043) (0.041) (0.094) (0.044) 
Ruggedness square 0.049*** 0.081 0.019 0.040*** 0.053* 0.013 0.008 0.020 0.006 
 (0.011) (0.051) (0.014) (0.009) (0.028) (0.010) (0.008) (0.020) (0.010) 
Income  (log)  -0.412 -0.656*** -0.200*** 0.288 0.268** -0.078* -0.485 -0.447*** -0.135*** 
 (0.387) (0.127) (0.052) (0.214) (0.116) (0.046) (0.306) (0.122) (0.048) 
Income  square (log) 0.015 0.034***  -0.020* -0.017***  0.022 0.022***  
 (0.022) (0.007)  (0.012) (0.006)  (0.018) (0.007)  
Population (log) -0.107*** 0.188*** -0.149*** -0.043*** 0.071*** -0.062*** -0.064*** -0.021 -0.081*** 
 (0.018) (0.030) (0.014) (0.015) (0.023) (0.010) (0.012) (0.019) (0.011) 
Trade openness -0.101** -0.100*** -0.116* -0.056 -0.053*** -0.089** -0.016 -0.017 -0.007 
 (0.051) (0.018) (0.063) (0.034) (0.016) (0.043) (0.033) (0.017) (0.046) 
Country 134 134 107 122 122 100 125 125 100 
Observations 3,091 3,091 2,709 2,408 2,408 2,132 2,693 2,693 2,374 
R-squared 0.55 - - 0.27 - - 0.48 - - 
Hausman test p-value 0.00 0.68 - 0.02 0.96 - 0.26 - - 
F-stat-income, openness - - 14..4, 

50.3 
- - 10.7, 50.3 - - 12.4, 54.1 

A-P F-Income, openness - - 17.4, 93.5 - - 13.2, 90.6 - - 15.3, 
101.7 

Note: Dependent variable for each regression is the Theil index, which is the inverse measure of sectoral diversification. RE, HT and 2SLS stand for 
random effects, Hausman–Taylor, and two-stage least square estimation, respectively. For RE and 2SLS, robust standard errors clustered at country 
level in parentheses, for HT standard errors in parentheses. All regressions include a dummy for major oil-exporting countries and three dummies for 
colonial origins. All regressions include year dummies and a constant. Hausman test for RE and HT are in comparison with fixed-effects estimation. 
Hausman test in column 8 is undefined. In 2SLS, only linear income is instrumented because the instrument cannot explain income and its quadratic. 
In each panel, F-stat and A-P F are the first stage F statistics and Angrist-Pischke F-statistics, respectively for both income and openness. The 
instruments are mostly strong when evaluated with respect to critical values reproduced in statistical software. 2SLS results are robust to LIML 
estimation. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3: Topography and Sectoral Diversification in the US –  
Pooled OLS and Hausman-Taylor Results  

 
 (1) (2) (3) 
 OLS OLS HT 

Ruggedness -0.152 -0.225 -0.100 
 (0.195) (0.146) (0.429) 
Ruggedness square 0.107 0.117** 0.091 
 (0.070) (0.053) (0.179) 
Population (log)  -0.114*** 0.116* 
  (0.031) (0.061) 
Income  (log)  0.559*** 0.261*** 
  (0.174) (0.080) 
Oil dummy  0.145* 0.208 
  (0.085) (0.200) 
Export (%  of GSP)   0.006 0.001 
  (0.011) (0.002) 
Observations 750 750 750 
R-squared 0.102 0.467 - 
No. of State 50 50 50 
Note: Dependent variable for each regression is the Theil index, which is the 
inverse measure of sectoral diversification. Robust standard errors clustered 
at the state level in parentheses. All regressions include year dummies and a 
constant. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 4: Topography and Spatial Concentration of Economic Activity in the US  
- Pooled OLS and Hausman Taylor Estimation Results 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 T_OLS T_HT T_OLS T_HT TB_OLS TB_HT TB_OLS TB_HT TW_OLS TW_HT TW_OLS TW_HT 
             
Ruggedness 0.327 0.482 0.408*** 0.417*** 0.242 0.280 0.144* 0.146* 0.085 0.172 0.264*** 0.258*** 
 (0.504) (0.532) (0.130) (0.144) (0.280) (0.286) (0.081) (0.078) (0.282) (0.287) (0.068) (0.078) 
Ruggedness square 0.035 -0.028   -0.043 -0.058   0.078 0.038   
 (0.185) (0.223)   (0.117) (0.119)   (0.102) (0.120)   
Population (log) -0.250** -0.190** -0.249** -0.191*** -0.147** -0.131*** -0.148** -0.132*** -0.102** -0.105** -0.102** -0.104** 
 (0.108) (0.074) (0.108) (0.074) (0.062) (0.048) (0.062) (0.048) (0.050) (0.048) (0.050) (0.048) 
Income  (log) -0.951 -0.369*** -0.946 -0.369*** -0.439 -0.304*** -0.445 -0.304*** -0.512 -0.071 -0.501 -0.071 
 (0.612) (0.095) (0.607) (0.095) (0.338) (0.096) (0.341) (0.096) (0.311) (0.090) (0.307) (0.090) 
Oil dummy 0.939*** 0.890*** 0.937*** 0.891*** 0.366*** 0.355*** 0.369*** 0.357*** 0.574*** 0.529*** 0.568*** 0.527*** 
 (0.211) (0.248) (0.207) (0.247) (0.117) (0.133) (0.119) (0.133) (0.111) (0.133) (0.105) (0.133) 
Export (%  of GSP) -0.026 -0.002 -0.025 -0.002 -0.007 -0.002 -0.009 -0.002 -0.019* -0.001 -0.016 -0.001 
 (0.029) (0.002) (0.027) (0.002) (0.021) (0.002) (0.018) (0.002) (0.010) (0.002) (0.010) (0.002) 

Observations 750 750 750 750 750 750 750 750 750 750 750 750 
R-squared 0.466 - 0.465 - 0.365 - 0.363 - 0.500 - 0.496 - 
No of State 50 50 50 50 50 50 50 50 50 50 50 50 

Note: Dependent variable for each regression is the Theil index of spatial concentration of economic activities as measured by Satellite Night Lights data. T, 
TB and TW denote Theil overall, Theil between and Theil within, respectively. OLS and HT denote the underlying estimators and robust standard errors are in 
parentheses. Missing exports values are addressed with ‘missing dummy approach’. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5: Topography and Sectoral Diversification in the US:  
Is Spatial Concentration a Mechanism?  

 
 (1) (2) (3) (4) (5) (6) 
 Theil 

Sectoral 
Theil 

Sectoral 
Theil 

Sectoral 
Theil 

Sectoral 
Theil 

Sectoral 
Theil 

Sectoral 
 OLS HT OLS HT OLS HT 
       
Ruggedness -0.254* -0.134 -0.265* -0.116 -0.236* -0.103 
 (0.133) (0.420) (0.133) (0.424) (0.138) (0.429) 
Ruggedness square 0.114** 0.094 0.124** 0.094 0.107** 0.090 
 (0.048) (0.176) (0.050) (0.178) (0.049) (0.179) 
Population (log) -0.092*** 0.123** -0.090*** 0.118* -0.101*** 0.117* 
 (0.027) (0.060) (0.028) (0.060) (0.028) (0.061) 
Income  (log) 0.642*** 0.284*** 0.631*** 0.275*** 0.623*** 0.262*** 
 (0.158) (0.080) (0.142) (0.080) (0.173) (0.080) 
Oil dummy 0.063 0.150 0.085 0.190 0.073 0.200 
 (0.092) (0.198) (0.089) (0.198) (0.090) (0.200) 
Export (%  of GSP) 0.008 0.002 0.007 0.001 0.008 0.001 
 (0.010) (0.002) (0.010) (0.002) (0.010) (0.002) 
Spatial concentration (Theil overall) 0.088** 0.065**     
 (0.039) (0.032)     
Spatial concentration (Theil between)   0.165** 0.050   
   (0.075) (0.032)   
Spatial concentration (Theil within)     0.126** 0.015 
     (0.060) (0.034) 
Observations 750 750 750 750 750 750 
R-squared 0.511  0.514  0.495  
No. of State 50 50 50 50 50 50 

Note: Dependent variable for each regression is the Theil index, which is the inverse measure of sectoral 
diversification. OLS and HT denote the underlying estimators. Robust standard errors are in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1. 



36 
 

 
ONLINE APPENDICES  

 
Figure A1: Terrain Ruggedness Across Countries 

 

 
 
 
 

Figure A2: Terrain Ruggedness Across the US States  
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Figure A3: Sectoral Diversification Across Countries (Employment Share-Based Theil 
index)  

 

 
 
 
 

Figure A4: Sectoral Diversification Across US states (Value Added-Based Overall Theil 
Index) 
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Figure A5: Spatial Concentration of Night Lights:  

Schematic of the Within- and Between-Components 
 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

Figure A5.1: Baseline 

 

 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

Figure A5.2: No Change in Spatial 
Concentration 

 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

Figure A5.3: A Decrease in the 
Within-Component of Spatial 

Concentration 

 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

Figure A5.4: No Change in Spatial 
Concentration 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

Figure A5.5: A Decrease in the 
Between-Component of Spatial 

Concentration 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

Figure A5.6: A Decrease in both the 
Between- and Within-Components 

of Spatial Concentration 

 

Note: Figure 5 illustrates 30-by-30 arcsecond cells, with each cell centered on a point from the night lights grid. 
The solid circles in black present the size of existing night lights, and the grey colored circles represent new night 
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lights introduced in cells that were dark previously. The empty cells show the absence of night lights. The size of 
the circle shows the density of night lights in a given cell. 
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Figure A6: Spatial Concentration of Economic Activity Across the US States 
(Overall Theil Index Based on Satellite Night Lights Data) 

 

 
 
 

Figure A7: Oil Fields in North Dakota, 2012  
 

 
Note: This picture shows the 2012 night lights in some parts of 
the United States. The area marked with a red circle shows the 
location of oil fields in North Dakota; this area was not 
illuminated until 2006. 
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Figure A8: Night Lights in Delaware, 2012 and 2016 
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Figure A9: Night Lights in New Jersey, 2012 and 2016 
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Figure A10: Terrain Ruggedness and Sectoral Diversification in the US  
 

 

 
 
 

Figure A11: Terrain Ruggedness and Spatial Concentration of Economic Activity in the 
US 
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Table A1: Variables and Data Sources – Cross-Country Analysis 
 

Variable Variable description Data source Availability 

Ruggedness Terrain ruggedness Nunn & Puga (2012) 1970 - 2007 

Sectoral diversification -
Theil index overall 
(value added) 

Value added share based overall 
Theil index, a measure of overall 
sectoral diversification  

Constructed by the authors using 
INDSTAT2 (2012) sectoral share 
data and following Cadot et al. 
(2011) methodology 

1970 - 2007 

Sectoral diversification -
Theil index within (value 
added) 

Value added share based within 
component of Theil index, a 
measure of intensive margin of 
sectoral diversification 

Constructed by the authors using 
INDSTAT2 (2012) sectoral share 
data and following Cadot et al. 
(2011) methodology  

1970 - 2007 

Sectoral diversification -
Theil index between 
(value added) 

Value added share based between 
component of Theil index, a 
measure of extensive margin of 
sectoral diversification 

Constructed by the authors using 
INDSTAT2 (2012) sectoral share 
data and following Cadot et al. 
(2011) methodology 

1970 - 2007 

Sectoral diversification -
Theil index overall 
(employment) 

Employment share based overall 
Theil index, a measure of overall 
sectoral diversification 

Constructed by the authors using 
INDSTAT2 (2012) sectoral share 
data and following Cadot et al. 
(2011) methodology 

1970 - 2007 

Sectoral diversification -
Theil index within 
(employment) 

Employment share based within 
component of Theil index, a 
measure of intensive margin of 
sectoral diversification 

Constructed by the authors using 
INDSTAT2 (2012) sectoral share 
data and following Cadot et al. 
(2011) methodology  

1970 - 2007 

Sectoral diversification -
Theil index between 
(Employment) 

Employment share based between 
component of Theil index, a 
measure of extensive margin of 
sectoral diversification 

Constructed by the authors using 
INDSTAT2 (2012) sectoral share 
data and following Cadot et al. 
(2011) methodology 

1970 - 2007 

Income (log) Log of per capita income Penn World Table version 7.1 1970 - 2007 

Trade Openness Sum of exports and imports as 
percentage of GDP 

Penn World Table version 7.1 1970 - 2007 

Population (log) Log of population, measures 
country size   

Penn World Table version 7.1 1970 - 2007 

Oil dummy A dummy representing twenty 
major oil exporting country  

The World Bank 1970 - 2007 

Colonial origin dummy Dummies for colonial origin  La Porta et al. (1999) 1970 - 2007 

Neighbor’s income Trade share weighted income of 
neighbors of a country; an 
instrument for income of the 
country a la Acemoglu et al. 
(2008). 

Constructed by the authors 
following Acemoglu et al. (2008) 
methodology 

1970 - 2007 
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Predicted trade Predicted changes in bilateral 
trade owing to foreign natural 
disasters. An instrument for 
trade openness as proposed by 
Felbermayr & Groschl (2013). 

Felbermayr & Groschl (2013) 1970 - 2007 
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Table A2: Variables and Data Sources – Within-Country Analysis for the US 
 

Variable Variable description Data source Availability 

Ruggedness Terrain ruggedness of the US 
states 

Constructed by the authors 
following Nunn & Puga (2012) 
methodology 

1997 - 2011 

Sectoral diversification – 
Theil index overall 

Manufacturing sector 
diversification index as 
measured by Theil index for the 
US states 

Constructed by the authors 
using sectoral value added 
shares of 18 manufacturing 
sectors, and Cadot et al. (2011) 
methodology 

1997 - 2011 

    

Geographic concentration – 
Theil index overall 

Measure of overall spatial 
concentration of economic 
activities across the US states 

Constructed by the authors 
using night-time satellite light 
data and, Cadot et al. (2011) 
methodology 

1997 -2011 

Geographic concentration – 
Theil index within 

Measure of within component 
(intensive) of spatial 
concentration of economic 
activities across the US states 

Constructed by the authors 
using night-time satellite light 
data, Cadot et al. (2011) 
methodology  

1997 -2011 

Geographic concentration – 
Theil index between 

Measure of between (extensive) 
component of spatial 
concentration of economic 
activities across the US states 

Constructed by the authors 
using night-time satellite light 
data, and Cadot et al. (2011) 
methodology 

1997 -2011 

Income (log) Per capita Gross State Product 
(GSP) 

Sourced from the Regional 
Product Division, Bureau of 
Economic Analysis (BEA), the 
U.S. Department of Commerce 
(June 6, 2013). Available on 
BEA’s website at 
https://www.bea.gov/regional/ 

1997 - 2011 

Export (% of GSP) A proxy for trade openness of 
the US states 

Sourced from the Foreign 
Trade Division, the U.S. 
Census Bureau. Available at 
http://tse.export.gov/TSE/TSER
eports.aspx?DATA=SED 

1999 - 2011 

Population (log) Log population measuring size 
of the US states 

The Census U.S. Intercensal 
County Population Data, 1970-
2014, The National Bureau of 
Economic Research (NBER). 
Available at 
http://www.nber.org/data/censu
s-intercensal-county-
population.html 

1997 - 2011  
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Oil dummy A dummy representing ten 
largest oil producing states 

US Energy Information 
Administration (EIA), available 
at 
https://www.eia.gov/state/ranki
ngs/#/series/46 

1997 - 2011 
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Table A3: Descriptive Statistics of Cross-Country Data, 1970-2007 
 

Variable 
Country Obs. Mean Median S. D. Max Min 

Ruggedness 189 7182 1.35 0.96 1.27 6.74 0.003 

Sectoral diversification - Theil index overall (value-added based) 139 3192 0.86 0.76 0.43 2.86 0.24 

Sectoral diversification - Theil index between (value-added based) 127 2493 0.33 0.25 0.26 2.04 0.04 

Sectoral diversification - Theil index within (value-added based) 130 2778 0.55 0.47 0.30 1.88 0.14 

Sectoral diversification - Theil index overall (employment based) 150 3558 0.82 0.72 0.40 2.95 0.22 

Sectoral diversification - Theil index between (employment based) 140 2709 0.33 0.25 0.24 2.04 0.04 

Sectoral diversification - Theil index within (employment based) 143 3100 0.51 0.46 0.27 2.37 0.06 

Income (log) 184 6403 8.53 8.53 1.16 11.62 5.03 

Trade openness  184 6403 79.68 68.88 50.46 456.56 1.09 

Population (log) 182 6916 8.42 8.56 2.00 14.09 3.08 
 
 
 
 
 
 
 
 

Table A4: Descriptive Statistics of the US State-Level Data, 1997-2011 
 
 

Variable Obs. Mean Median S.D. Min Max 

Ruggedness 765 0.83 0.51 0.69 0.06 2.59 

Sectoral diversification (Theil index overall) 765 0.52 0.45 0.27 0.12 1.62 

Geographic Concentration (Theil index overall) 764 1.69 1.60 0.92 0.00 5.24 

Geographic Concentration (Theil index within) 764 1.14 1.06 0.53 0.00 3.34 

Geographic Concentration (Theil index between) 764 0.55 0.50 0.45 0.00 2.97 

Export (% gross state product) 663 6.62 5.87 3.87 0.58 28.10 

Population (log) 765 15.06 15.19 1.04 13.08 17.44 

Per capita Gross State Product (log) 765 10.60 10.57 0.25 10.15 11.91 

 
 

 
 


