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Abstract 

The framework of minimum-variance hedging rests on a restrictive foundation. This study shows that 

the objective of variance minimization is only justifiable when variance coincides with expected 

squared forecast error. Nevertheless, the classical framework is routinely applied when the condition 

fails, giving rise to inaccurate risk assessments and suboptimal hedging decisions. This study proposes 

a new, improved framework of hedging which relaxes the condition at no tangible cost. It derives a 

new objective function, an optimal hedge ratio, and a measure of hedging effectiveness under square 

loss. Their superior performance is demonstrated from a theoretical standpoint and by applying them 

to hedging the price risk of oil and natural gas. Simple yet general, the new framework is well suited 

to replace the classical one and facilitates adequate risk measurement and improved hedging 

decisions. It also provides fundamental insight into dealing with uncertainty under square loss and 

beyond. 

(JEL: D81, G11, G32, Q02) 

 

Keywords: minimum-variance hedging, hedging effectiveness, optimal hedge ratio, risk, uncertainty, 

square loss, quadratic loss, forecast error.  
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1.  Introduction 

Hedging is a classical means of risk reduction in financial markets. It exploits the idea that negative 

surprises in the future price of an asset can be mitigated by investing in related assets with opposite 

shocks. The future price of a portfolio formed this way is more certain than the future price of the 

original asset. A popular measure of risk or uncertainty associated with price is its variance. Variance 

measures the spread of a random variable around its expected value and hence is a natural and 

appropriate measure of risk under square loss provided that the expected value is known.2 This 

underlies the classical framework of minimum-variance hedging due to Johnson (1960) and Stein 

(1961) and motivates the use of relative reduction in variance as a measure of hedging effectiveness 

suggested by Johnson (1960) and Ederington (1979).3 

However, financial variables such as share or commodity prices do not have known expected 

values, rendering variance an inappropriate measure of risk under square loss (or any other loss 

function). Indeed, a variable with zero variance but unknown expected value is in principle less 

predictable and may produce more uncertainty than a variable with a known expected value and 

moderate variance. This undermines the use of variance as a risk measure, and variance minimization 

as a proxy for risk minimization. Employing variance as a risk measure in absence of a known 

expected value may result in grave miscalculation of uncertainty and inferior hedging decisions, 

particularly in short hedging horizons and for prices that have a predictable component, as will be 

illustrated below both theoretically and empirically. Therefore, a replacement risk measure is 

needed. 

In general, our uncertainty over an outcome of a random variable is characterized by the 

distribution of the difference between our beliefs, or our prediction of the value to be realized, and 

                                                           
2 An alternative term for square loss is quadratic loss.  

3 The discussion of risk and uncertainty can be phrased either in terms of price or of return (i.e. price change). 

The two formulations are mathematically equivalent and yield identical implications in the present context. 

Hence, without loss of generality, only one of them is entertained here.  
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the actual random variable. Under square loss, this uncertainty is reflected by the expected squared 

forecast error, a measure that applies regardless of whether the expected value of the random 

variable is known or not. As such, the expected squared forecast error is a valid substitute for 

variance for measuring hedging effectiveness under square loss. 

The purpose of this paper is twofold. First, it is to identify, expose, and illustrate the problems 

with the classical minimum-variance hedging framework in financial markets, and to relate them to 

several of their symptoms known from the past. Second, it is to introduce a new, appropriate 

framework of hedging under square loss based on minimizing the expected squared forecast error. 

The new framework consists of a new objective function, an optimal hedge ratio, and a measure of 

hedging effectiveness, all seamlessly generalizing their classical counterparts due to the minimum-

variance framework.  

The new framework will primarily benefit hedgers by enabling them to properly measure risk 

and adequately assess and compare the performance of alternative hedging strategies, allowing for 

optimal hedging decisions to be made. It will also facilitate policymakers’ better understanding of risk 

management and may lead to improved regulations and incentive schemes favoring efficient 

strategies of uncertainty reduction. Therefore, current users of the classical minimum-variance 

hedging can only gain from adopting the new framework, avoiding the pitfalls inherent in the 

classical one.  

The remainder of the paper is structured as follows. Section 2 reviews measuring uncertainty in 

general and under square loss in particular. Section 3 presents the minimum-variance hedging 

framework and traces some of its problems identified in the literature. Section 4 introduces the new 

framework of hedging under square loss. Two special cases are considered in Section 5; one where 

the expected values of prices are known and are used as point forecasts, and another where the 

expected values are additionally known to equal the current prices. Section 6 provides empirical 

examples from oil and natural gas markets illustrating the failure of the classical hedging framework 
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and the adequacy of the new one. A conclusion and a discussion of the broader implications of the 

main results are supplied in Section 7. 

2.  Measuring uncertainty 

2.1 Uncertainty and the forecast error 

Hedging pertains to reduction of uncertainty, and thus it is important to clearly delineate the latter. 

Uncertainty reflects an agent’s lack of knowledge about the future price of an asset. It involves two 

basic building blocks, the agent’s beliefs about the future price (formulated as a point or a density 

forecast) and the future price itself (a random variable). The gap between the two, i.e. the mismatch 

between the beliefs about the random variable and the actual properties of the variable, or the 

distance between the forecast and the target, characterize uncertainty. Hence, uncertainty cannot be 

defined without a reference to beliefs held by the agent facing it. For example, information on the 

future price alone is not sufficient to characterize uncertainty if the information on the agent’s beliefs 

(her forecast) is missing. Therefore, any definitions and/or measures of uncertainty based solely on 

the price itself, such as its variance, are ill conceived. In contrast, relevant definitions and/or 

measures of uncertainty reflect the discrepancy between the beliefs and the reality, hence, the 

forecast error.  

An agent cares about what the price of an asset will be in the future, but she does not know it, 

hence the uncertainty. Currently, at time �, the price of the asset � is ��. In the future, at time � + ℎ, 

where ℎ > 0, the price will be ��	
. At time �, the agent does not know ��	
, but she has some idea 

of what it could be. She may have a density forecast or at least a point forecast for ��	
. Let us 

consider the point forecast and let us denote it �̂�	
|�, indicating that it is a point forecast of ��	
 

made at time �.  

The difference between the actual realization of the future price and the forecast constitutes a 

forecast error ���	
|� ≔ ��	
 − �̂�	
|�. The error is realized (becomes known) at time � + ℎ; before 

that, at time �, ���	
|� is a random variable. The probabilistic properties of ���	
|� are fundamental 
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in characterizing the price uncertainty that the agent is facing at time �. These properties allow us to 

investigate the uncertainty from a quantitative perspective, to measure it, and to link the practical 

interpretation of uncertainty with its mathematical characterization.  

Any and all probabilistic properties of ���	
|�, including those characterizing uncertainty, can 

be extracted from the probability distribution function and the probability density function of 

���	
|�. For example, if large (negative and/or positive) errors are relatively likely to be realized, i.e. 

their probability density is high, then the uncertainty is high. If large errors are unlikely, i.e. their 

probability density is low, the uncertainty is low. Conversely, high uncertainty means that large 

(negative and/or positive) errors are relatively likely to be realized, i.e. their probability density is 

high. Meanwhile, low uncertainty means that such errors are unlikely, i.e. their probability density is 

low. This is how the probability distribution of ���	
|� is interpreted in terms of uncertainty, and 

also how the practical understanding of uncertainty translates into probabilistic statements about 

���	
|�. 

2.2 Moments that reflect uncertainty 

However, it is not always convenient to work with the probability distribution function or the 

probability density function of a random variable. Instead, some summary characteristics may be 

simpler to handle yet still serve the purpose of characterizing uncertainty; see Table 1 for a schematic 

overview. For example, one such characteristic is the first absolute moment E������	
|���, where 

E��∙� denotes the mathematical expectation conditional on the information available at time �. When 

E������	
|��� is large, the probability density of large (negative and/or positive) errors must be high 

and hence the uncertainty is high; when E������	
|��� is small, the probability density of large errors 

must be low and hence the uncertainty is low; Figure 1 illustrates the point. Conversely, high 

uncertainty translates into high probability density of large errors and thus large values of 

E������	
|���; and low uncertainty translates into low probability density of large errors and hence 
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small values of E������	
|���. Thus E������	
|��� is informative of the magnitude of uncertainty and 

in general is a sensible measure of uncertainty. 

[Table 1 about here] 

 [Figure 1 about here] 

Another example is the second moment E�����	
|�� �. When E�����	
|�� � is large, the 

probability density of large errors must be high and hence the uncertainty is high; when E�����	
|�� � 

is small, the density must be low and the uncertainty too. Conversely, high uncertainty and the 

corresponding high probability density of large errors produce large values of E�����	
|�� �; and low 

uncertainty produces small values. Just like the first absolute moment, also the second moment is 

informative of the magnitude of uncertainty and thus is a sensible measure of uncertainty. Whether 

to use the first absolute moment or the second moment depends on the loss function that is relevant 

for a particular application. The first absolute moment is applicable under absolute loss, while the 

second moment applies under square loss. Other summary characteristics of the probability 

distribution, such as value at risk or expected shortfall, are relevant under other loss functions. 

2.3 Moments that fail to reflect uncertainty 

Not all summary characteristics of the error distribution adequately reflect uncertainty. That is, some 

or all values of these characteristics are not informative its magnitude. The first moment, or the 

mathematical expectation E�����	
|��, is the simplest example. If E�����	
|�� is large (negative or 

positive), the uncertainty is high, because a large E�����	
|�� implies that large errors are relatively 

likely to be realized and that large positive errors do not outweigh large negative errors nor the other 

way around. But if E�����	
|�� is small (close to zero), the uncertainty may be either low or high. 

E.g. the error distribution may be light-tailed and symmetric around zero, which corresponds to low 

probability density of large errors and hence low uncertainty; see panel a) of Figure 1. Alternatively, 

the error distribution may be heavy-tailed and symmetric around zero, indicating high uncertainty 

because large errors are likely; see panel b) of Figure 1. Since a small E�����	
|�� is perfectly 
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compatible with both low and high uncertainty, it is not informative of the magnitude thereof. 

Hence, E�����	
|�� is not a sensible measure of uncertainty.  

A similar case can be made for the second central moment, or variance Var�����	
|�� ≔
E� �����	
|� − E�����	
|�����. When it is large, large errors (either negative or positive, or both, 

depending on E�����	
|��) are likely and the uncertainty is high; an example is provided in panel b) 

of Figure 1. But if variance is small, the uncertainty may be either low or high. E.g. the error 

distribution may be light-tailed and symmetric around zero, which corresponds to low probability 

density of large errors and hence low uncertainty; see panel a) of Figure 1. On the other hand, the 

error distribution may be light-tailed and symmetric around a large value (either negative or 

positive), indicating high uncertainty because large errors are likely; refer to panel c) of Figure 1. A 

more extreme stylized example is also possible and is depicted in panel d) of Figure 1. There, variance 

is zero, i.e. the smallest possible, but the error distribution has all of its mass concentrated at a large 

positive value, meaning high uncertainty because large errors are guaranteed. In summary, small 

variance is perfectly compatible with both low and high uncertainty, and thus it is not informative of 

the magnitude thereof. Hence, variance is generally not a valid measure of uncertainty.  

Since the second moment is the sum of variance and squared first moment, variance of the 

forecast error reflects forecast precision (the spread of forecasts around their center) but not 

forecast accuracy (the closeness of the center of the forecasts to the target). Low uncertainty 

requires high precision and high accuracy simultaneously, but low variance only ensures the former. 

Using variance of the forecast error as a measure of uncertainty is akin to drawing the bullseye right 

at the center of all shots after they have been fired. Clearly, this is not an adequate measure of the 

overall skill of the shooter. 

However, there is one condition under which variance becomes a sensible measure of 

uncertainty; this condition is that the mathematical expectation be zero. In the context of forecast 

errors, this translates into a condition of perfect forecast accuracy (though not necessarily perfect 
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precision). If the expectation is zero, variance equals the second moment: E�����	
|�� = 0
⇒ Var�����	
|�� = E�����	
|�� �. Since the second moment adequately reflects uncertainty, the 

expectation being zero ensures that variance does, too. The expectation being zero is an important 

special case in which variance turns from an otherwise invalid measure of uncertainty into a valid 

one; it happens, as variance becomes the second moment. Consequently, for all practical purposes of 

measuring uncertainty, it is always safer and simpler to use the second moment in place of variance. 

First, if the two coincide, there is no loss in using the second moment. Second, if they do not 

coincide, it is only the second moment that appropriately measures uncertainty while variance does 

not. 

3.  Minimum-variance hedging and its problems 

3.1 Minimum-variance hedging framework 

Minimum-variance hedging is one of the oldest and most popular approaches to hedging, introduced 

by Johnson (1960) and Stein (1961).4 According to Johnson (1960), ““price risk” can be considered a 

reflection of the variance <…> of a subjective probability distribution (or a subjective probability 

density function) for price change from �" to �� <…> where actual price from �" to �� is treated as a 

random variable”. This gives rise to declaring variance minimization the hedger’s objective:  

Var��#�	
� = E� ��#�	
 − E��#�	
���� → min( , (1) 

where # = #�*� = � − *+ is the price of the hedge portfolio , = � − *-; � is the price of the 

original asset �; + is the price of the hedging instrument -; and −* is the portfolio weight of the 

hedging instrument; * is also known as the hedge ratio. The (negative of the) hedge ratio reflects the 

hedger’s exposure to the price of the hedging instrument as a fraction (or a multiple) of the exposure 

to the price of the original asset.  

                                                           
4 Historically, the role and definition of hedging has been investigated in numerous papers, e.g. Hardy and Lyon 

(1923), Hoffman (1931), Kaldor (1940), and Working (1953, 1962), among other. 
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Johnson (1960) and later Ederington (1979) suggested assessing hedging effectiveness by 

calculating the relative reduction in variance due to hedging,  

RRV����	
, #�	
� ≔ Var����	
� − Var��#�	
�
Var����	
� = 1 − Var��#�	
�

Var����	
�, (2) 

where the absolute reduction in variance due to hedging, Var����	
� − Var��#�	
�, is measured as a 

fraction of the variance of the original asset, Var����	
�, to arrive at the relative reduction in 

variance RRV����	
, #�	
�. The higher the relative reduction in variance, the higher the effectiveness. 

The final element to complete the minimum-variance hedging framework is the optimal hedge 

ratio, *
,01∗  (where the subscript ℎ indicates the hedging horizon and 34 stands for minimum 

variance), which is defined as the argument minimizing the objective function,  

*
,01∗ ≔ arg min( Var��#�	
�. (3) 

The triplet {objective, optimal hedge ratio, effectiveness measure} constitutes the hedging 

framework.  

3.2 Problems with minimum-variance hedging 

Johnson (1960) acknowledges that his concept of risk is different from traditional theory since it is 

based on subjective rather than objective probability. He introduces a measure of hedging 

effectiveness that is also defined in terms of subjective probability and does not account for the 

actual distribution nor the actual realizations of price. However, the minimum-variance hedging 

framework has been repeatedly employed with (estimated) objective probabilities in settings where 

the price distribution and particularly the expected value (the first moment of the distribution) may 

be unknown to the agent. This has led to numerous puzzling results and apparent paradoxes in the 

literature.  

Lien (2008) notes that persistent confusion permeates the literature on minimum-variance 

hedging and on measuring hedging effectiveness. He observes that the empirical findings are often 

counterintuitive. Multiple authors (Lindahl, 1989; Lien, 2005a; Alexander & Barbosa, 2007) state that 

relative reduction in variance is applicable and meaningful only under rather restrictive assumptions 
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on the price changes, or returns5, of the original asset and of the hedging instrument. Lindahl (1989) 

identifies a problem with using the classical measure when there is predictable development of the 

basis, i.e. of the difference between the price of the original asset and that of the hedging 

instrument. According to her, focusing exclusively on the unexpected changes in the basis would 

yield a more precise definition of basis risk. However, she acknowledges that distinguishing between 

expected and unexpected changes is difficult and therefore does not apply this idea in her work. Lien 

(2005a) identifies a mismatch between the aim of minimizing the conditional variance of portfolio 

returns when estimating a model in sample and the evaluation of the model performance by 

measuring the unconditional variance out of sample. Further, he calls the widespread use of the 

relative reduction in variance “redundant and uninformative” when comparing out-of-sample 

hedging effectiveness between different hedging strategies. Indeed, Lien (2005b) discourages the 

readers from using the classical effectiveness measure except under restrictive assumptions on the 

optimal hedge ratio. He argues that the measure only applies when the hedge ratio is obtained as the 

slope coefficient in a least-squares regression of the spot returns on the futures returns. Should this 

fail to be the case, Lien (2005b) raises the idea of using variance of the unpredictable components of 

portfolio returns instead of that of the raw returns when assessing hedging effectiveness. However, 

he immediately identifies a weakness that undermines the applicability of this approach: if the model 

is misspecified, the variance of the model residuals is not economically meaningful. Alexander and 

Barbosa (2007) refer to the criticism of the classical measure in Lien (2005b) and propose to employ 

fitted time-varying variance in place of the regular variance. This is intended to address the 

discrepancy between the objective of minimizing conditional variance and the effectiveness measure 

that uses unconditional variance. However, allowing for time variation does not make variance a valid 

                                                           
5 Returns may be nominal or relative. Here and in the remainder of the text, the term returns denotes nominal 

returns that are nothing else than price changes. This should not be confused with relative returns that are 

price changes divided by the price level. 
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measure of uncertainty as long as it does not coincide with the expected squared forecast error; 

hence, the quandary persists.  

Kahl (1983) does not specifically criticize the minimum-variance framework but contains a useful 

idea for improving it. She mentions in passing that risk may be measured by “forecast variance, in 

particular, the mean square error”, but does not elaborate on why and how, nor does she 

acknowledge the fundamental discrepancy between the two measures. Nevertheless, realizing that 

the forecast error – rather than the portfolio price – is the variable reflecting risk is an important 

contribution to better understanding the nature of the problem. Similarly, Hauser et al. (1990) 

consider a setting in which “the hedger compares the variance of an expected to realized hedged 

price ratio to the variance of an expected to realized unhedged price ratio”. Here, the term expected 

price might be interpreted as the price forecast. Focusing on the discrepancy between the forecast 

and the realized value, Hauser et al. (1990) are approaching a fruitful solution to the problem, though 

it remains largely implicit. In summary, the problem of measuring uncertainty and hedging 

effectiveness in the classical framework is widely acknowledged but incompletely understood, with 

no general remedies available. 

Another strand of literature focuses on the relevance of raw versus unexpected returns for 

estimating the optimal hedge ratio. Hilliard (1984) distinguishes between expected and unexpected 

returns and only considers the latter in an application on hedging interest rate risk. Bell and Krasker 

(1986) refer to confusion in the literature regarding the estimation of the optimal hedge ratio and 

provide a clear and enlightening treatment aimed at clarifying some prevalent misconceptions. 

Importantly, they note that only the unexpected returns should enter the definition of the optimal 

hedge ratio as only the conditional rather than marginal distributions of prices matter. Similarly, 

Myers and Thompson (1989) emphasize the use of unexpected prices (or returns, or relative returns) 

and derive a generalized estimator for the optimal hedge ratio that should be valid under a variety of 

price generating processes. Agreeing with the studies above, Viswanath (1993) commends the use of 

unexpected returns in minimum-variance hedging as he proposes an improvement to the Myers and 
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Thompson’s procedure, namely, to incorporate information on the basis into the model of the spot 

price. He also notes that minimization of unconditional variance is impossible without minimizing 

conditional variance, but the difference between the two can be eliminated by investing into bonds 

to counteract the expected price movements in the original asset. Ederington and Salas (2008) build 

on these works and examine the adverse effects of considering raw returns in place of the 

unexpected ones onto the estimated hedge ratio and measures of uncertainty and hedging 

effectiveness. They find that estimates of optimal hedge ratio are inefficient while those of riskiness 

and of hedging effectiveness are biased when spot returns are partially predictable.  

The shortcomings in the classical measure of uncertainty, the optimal hedge ratio, and the 

measure of hedging effectiveness are real and important. However, while the suggested remedies 

are generally helpful, they are not entirely satisfactory for the following two reasons. First, the 

studies addressing the difference between unexpected and raw returns do not seem to clearly 

distinguish between the notions of mathematical expectation of a random variable and a point 

forecast. Consequently, none of the papers (with the possible exception of Kahl, 1983) manage to 

explicitly operationalize the concept of unexpected returns by forecasts errors. Second, the 

uncertainty arising from forecast bias in addition to variance of the forecast error is neglected. 

Therefore, neither the optimal hedge ratios nor the measures of uncertainty or hedging effectiveness 

proposed above are fully adequate in the general case under square loss. Hence, the classical 

approach to hedging remains problematic in spite of the suggested improvements. The new hedging 

framework presented in the next section gets to the heart of the problem and offers a simple yet 

complete solution to it.  

4.  Hedging under square loss: the general case 

4.1 Objective function 

Under square loss, uncertainty is measured by the expected squared forecast error (see Section 2.2), 

denoted ESFE��∙�. The goal of a hedger is to minimize uncertainty, i.e. to minimize the expected 
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squared forecast error, by selecting a relevant hedging instrument - among the available set of 

instruments 96 and an optimal portfolio weight *. Formally, the objective function is 

ESFE��#�	
�*, -�� ≔ E� ��#�	
�*, -� − #̂�	
|��*, -���� → min(∈;,<∈=  , (4) 

where, as before, #�	
 = ��	
 + *+�	
 and #̂�	
|� = �̂�	
|� + *+?�	
|�, � is the price of the original 

asset �, + is the price of the hedging instrument -, and hats denote point forecasts. For a given 

instrument -, the objective function reduces to 

ESFE��#�	
�*�� = E� ��#�	
�*� − #̂�	
|��*���� → min(∈; . (5) 

Equation (5) forms the basis of the new framework of hedging under square loss. 

4.2 Optimal hedge ratio 

The uncertainty-minimizing portfolio weight, or the optimal hedge ratio, for hedging ℎ periods ahead 

is denoted *
,@AB@∗  and is defined as 

*
,@AB@∗ ≔ arg min(∈; �ESFE��#�	
�*��� = arg min(∈; �E� ��#�	
 − #̂�	
|�����. (6) 

Under regularity conditions on the distribution of #�	
 as a function of *, the optimal hedge ratio is 

obtained by taking the derivative of the objective function in equation (5) with respect to the hedge 

ratio and setting it to zero: 

*
,@AB@∗ = C*: EESFE��#�	
�*��
E* = 0F. (7) 

This yields 

*
,@BA@∗ ≔ − E����	
+�	
� − �̂�	
|�E��+�	
� − +?�	
|�E����	
� + �̂�	
|�+?�	
|�
E��+�	
� � − 2+?�	
|�E��+�	
� + +?�	
|�� . (8) 

(see Appendix for the derivation). 

The hedge ratio in equation (8) is a theoretical optimal hedge ratio as it involves moments of the 

underlying (conditional) probability distribution of the price vector ���	
, +�	
�. Since these moments 

                                                           
6 This setting allows for hedging with several instruments at once since the elements of 9 may be both 

individual instruments and instrument portfolios. 
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are not normally known to the hedger, *
,@BA@∗  is not a feasible hedge ratio. However, a feasible 

hedge ratio *?
,@BA@∗  may be obtained by substituting the true moments with their estimates: E����	
� 

with �̂�	
|�, E��+�	
� with +?�	
|�, E����	
+�	
� with EH����	
+�	
�, and E��+�	
� � with EH��+�	
� �, to 

yield  

*?
,@BA@∗ ≔ − EH����	
+�	
� − �̂�	
|�+?�	
|� − +?�	
|��̂�	
|� + �̂�	
|�+?�	
|�
EH��+�	
� � − 2+?�	
|�+?�	
|� + +?�	
|��  

= − EH����	
+�	
� − �̂�	
|�+?�	
|�
EH��+�	
� � − +?�	
|��                                       

= − CovL ����	
, +�	
�
VarL ��+�	
� ,                                                          

(9) 

where CovL ����	
, +�	
� and VarL ��+�	
� are estimates of covariance Cov����	
, +�	
� and variance 

Var��+�	
�, respectively. The hedge ratio in equation (9) may be obtained from sample data without 

reference to moments of the true probability distribution of the price vector ���	
, +�	
� and thus 

constitutes a feasible hedge ratio, i.e. a ratio that can be constructed from the available data.7 The 

theoretical and empirical optimal hedge ratios in the general case and under additional assumptions 

are listed in Table 2. 

[Table 2 about here] 

4.3 Measures of hedging effectiveness 

A natural measure of success (or lack thereof) of hedging is the value of the objective function, 

ESFE��#�	
�*��, at the chosen hedge ratio * (e.g. at *?
,@BA@∗ ). It reflects the level of uncertainty over 

the future portfolio price in terms of square loss. This study proposes to use ESFE��#�	
�*�� as the 

theoretical absolute measure of hedging effectiveness. Since ESFE��#�	
�*�� is a function of the 

                                                           
7 While *?
,@BA@∗  is derived in a standard way, by substituting the population quantities with their sample 

counterparts, no optimality is claimed for it as an estimator of *
,@BA@∗ . Finding optimal estimators for *
,@BA@∗  

within different classes of estimators is an interesting problem in itself, but is left for future studies. 
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typically unknown true probability distribution of #�	
, the theoretical measure cannot be applied in 

practice, and an empirical counterpart is needed. 

Consider sets of ℎ-period-ahead point forecasts of the asset price and the price of the portfolio, 

denoted M�̂�	
|�N�O"
P

 and M#̂�	
|�N�O"
P

, and the corresponding realized prices, Q��	
R�O"P  and Q#�	
R�O"P . 

Hedging effectiveness can be assessed empirically by mean squared forecast error of the portfolio, 

MSFE�#	
�, which is the empirical counterpart of ESFE��#�	
� over the time period � = 1, … , U: 

MSFE�#	
� ≔ 1
T W�#�	
 − #̂�	
|���P

�O"
. (10) 

Here, the subscript to the argument of MSFE is +ℎ, indicating the forecast horizon. MSFE�#	
� is 

the empirical absolute measure of hedging effectiveness under square loss. 

Hedging performance can also be gauged in relative terms by comparing the loss under hedging 

to the benchmark of no hedging. Let us define the theoretical relative measure of hedging 

effectiveness as the relative reduction in expected squared forecast error (RRESFE) when using the 

portfolio in comparison with the case of no hedging, 

RRESFE��#�	
, ��	
� ≔ ESFE����	
� − ESFE��#�	
�
ESFE����	
� = 1 − ESFE��#�	
�

ESFE����	
�. (11) 

RRESFE has an upper bound of unity which corresponds to complete absence of uncertainty, or 

perfect predictability of the portfolio price and hence perfect hedging performance: 

RRESFE��#�	
, ��	
� = 1 ⇔ ESFE��#�	
� = 0. The measure is unbounded from below. A value 

between zero and one suggests that hedging is somewhat effective as it helps reduce the uncertainty 

without completely eliminating it: RRESFE��#�	
, ��	
� > 0 ⇔ 0 < ESFE��#�	
� < ESFE����	
�. A 

value of zero indicates that the uncertainty over the portfolio price is as great as that of the 

unhedged position, and therefore hedging is completely ineffective: RRESFE��#�	
, ��	
� = 0
⇔ ESFE��#�	
� = ESFE����	
�. A value below zero indicates that hedging increases the expected 

squared forecast error and is thus detrimental to the goal of uncertainty reduction: 

RRESFE��#�	
, ��	
� < 0 ⇔ ESFE��#�	
� > ESFE����	
�. RRESFE is undefined when 
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ESFE����	
� = 0, but that also implies there is no uncertainty in the future price of the original asset 

to begin with, rendering hedging irrelevant. 

Similarly, let us define the empirical relative measure of hedging effectiveness as the relative 

reduction in mean squared forecast error (RRMSFE) when using the portfolio compared to no 

hedging, 

RRMSFE�#	
, �	
� ≔ MSFE��	
� − MSFE�#	
�
MSFE��	
� = 1 − MSFE�#	
�

MSFE��	
�, (12) 

where MSFE��	
� ≔ "
Z ∑ ���	
 − �̂�	
|���P�O" . The bounds and the interpretation of values of 

RRMSFE are analogous to those of RRESFE. The theoretical and empirical, absolute and relative 

measures of hedging effectiveness in the general case and under additional assumptions are 

presented in Table 3.  

[Table 3 about here] 

4.4 Statistical significance of hedging effectiveness 

When measuring hedging effectiveness empirically, estimation errors are unavoidable; hence, the 

measured values are imperfect reflections of the true underlying values. Given a measured value, 

one may be interested in whether the corresponding true value is different from zero. This is 

equivalent to asking whether hedging has any genuine effect on price uncertainty. The null 

hypothesis of equally great price uncertainty under hedging versus no hedging can be tested by the 

Diebold-Mariano test of equal predictive ability (Diebold, 2015; Diebold & Mariano, 1995; Harvey et 

al., 1997). A rejection of the null hypothesis would attest that the effect of hedging is genuine, 

whereas a failure to reject would indicate that the evidence is insufficient to conclude so. Testing 

whether the hedging effectiveness of two competing strategies is equally great, or assessing the 

difference between the true effectiveness and an arbitrary value other than zero are trivial 

extensions. 
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5.  Hedging under square loss: two special cases 

5.1 Expected values of prices are known 

Let us consider a special case of hedging under square loss where the mathematical expectations of 

the future prices ��	
 and #�	
 of the original asset � and the hedge portfolio Π, respectively, are 

assumed to be known at time � and are used as point forecasts. (Under square loss, expectations are 

optimal point forecasts, therefore it would be suboptimal to use any other forecasts when 

expectations are available.) 

 Assumption 1. The conditional expectations of ��	
 and #�	
, denoted ]^,�	
 ≔ E����	
� and 

]_,�	
 ≔ E��#�	
�, are known as of time � and are used as point forecasts, �̂�	
|� = ]^,�	
 and 

#̂�	
|� = ]_,�	
. 

Corollary 1. Under Assumption 1, the conditional expectation of +�	
, denoted ]`,�	
 ≔
E��+�	
�, is known as of time �. 

For example, if � and - are exchange rates in a liquid currency exchange market or shares of 

highly-traded companies, their future prices (at least for a relatively short time period ℎ) can 

reasonably be assumed to have a true population mean at their current values, ]^,�	
 = �� and 

]`,�	
 = +�. In other words, a martingale property can be conjectured for �� and +� in short horizons. 

Or if � is a share of a highly-traded company and there is a 1:10 share split scheduled for some point 

in time between � and � + ℎ, one may assume ]^,�	
 = 0.1 ∙ ��, except perhaps for a rounding error. 

Consequently, the mathematical expectation of the future portfolio price for a given hedge ratio * is 

known today and is ]_,�	
 = ]^,�	
 + *]`,�	
.  

Under Assumption 1, �̂�	
|� and #̂�	
|� are equal to ]^,�	
 and ]_,�	
, respectively, and the 

expected squared forecast error of the portfolio price becomes the variance of the portfolio price, 

ESFE��#�	
� = E� ��#�	
 − ]_,�	
��� = Var��#�	
� according to the definition of variance. Then 

the objective function in equation (5) turns into 

Var��#�	
�*�� → min(∈; , (13) 
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yielding the well-known objective of variance minimization that stems from the classical framework 

of Johnson (1960) and Stein (1961). The optimal hedge ratio due to equation (13) is 

*
,abc∗ = − Cov����	
, +�	
�
Var��+�	
� , (14) 

and its sample counterpart is 

*?
,abc∗ = − Covd ����	
, +�	
�
Vard ��+�	
�  (15) 

(see Appendix for derivations). Here, Covd ����	
, +�	
� ≔ EH����	
+�	
� − ]^,�	
]`,�	
 and 

Vard ��+�	
� ≔ EH��+�	
� � − ]`,�	
�  are estimators of covariance and variance, respectively, which 

employ the true first moments ]^,�	
 and ]`,�	
 rather than their sample counterparts EH����	
� and 

EH��+�	
�. The presence of Covd ����	
, +�	
� and Vard ��+�	
� in the definition of *?
,abc∗  under 

Assumption 1 is in contrast to CovL ����	
, +�	
� and VarL ��+�	
� in equation (9) for the optimal hedge 

ratio in the general case. 

Under Assumption 1, the measures of hedging effectiveness collapse as follows. First, the 

theoretical absolute measure, i.e. the expected squared forecast error, becomes the variance of the 

portfolio price, 

ESFE��#�	
� = Var��#�	
�, (16) 

which is analogous to the change in the objective function from equation (5) to equation (13). 

Second, the empirical absolute measure, the mean squared forecast error, becomes the empirical 

variance of the portfolio price that employs the true first moment rather than its sample counterpart: 

MSFE�#	
� = Vard �#	
�, (17) 

where Vard �#	
� ≔ "
P ∑ �#�	
 − ]_,�	
��P�O" . An alternative, widespread measure of empirical 

variance, VarL �#	
� ≔ "
Pe" ∑ �#�	
 − "

P ∑ #�	
P�O" ��P�O" , does not make for a meaningful measure of 

portfolio variance (or absolute hedging effectiveness) as it replaces the true expected values with an 

estimate of their average, i.e. the mean of realizations Q#�	
R�O"P , thereby introducing an error. 

VarL �#	
� is an upward-biased and inconsistent estimator of the true variance (and hence an ill-
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suited measure of hedging effectiveness) unless the true first moments are equal for all � between 1 

and U: ]_,"	
 = ⋯ = ]_,P	
. In the latter case, VarL �#	
� is a valid effectiveness measure, though 

inferior to Vard �#	
�, which is more efficient. The use of VarL �∙� in place of Vard �∙� in empirical studies 

may explain some of the counterintuitive findings in the literature.  

Third, the theoretical relative measure of hedging effectiveness becomes 

RRESFE��#�	
, ��	
� = ESFE����	
� − ESFE����	
�
ESFE����	
�                  

                    = Var����	
� − Var��#�	
�
Var����	
�  

      =: RRV��#�	
, ��	
�, 

(18) 

where RRV stands for “relative reduction in variance”, a term and effectiveness measure proposed 

by Johnson (1960) and Ederington (1979). RRV is justified as the theoretical relative measure of 

hedging effectiveness whenever Assumption 1 holds. Fourth, the empirical relative measure of 

hedging effectiveness turns into 

RRMSFE�#	
, �	
� = MSFE��	
� − MSFE�#	
�
MSFE��	
�              

                 = Vard ��	
� − Vard �#	
�
Vard ��	
�  

     =: RRVg�#	
, �	
�. 

(19) 

where RRVg�#	
, �	
� is a plug-in estimator of RRV��#�	
, ��	
�. Just as in the case of the theoretical 

relative measure, also here the use of VarL �∙� in place of Vard �∙� is unwarranted following the same 

argumentation as above. It may be responsible for the prevalent confusion surrounding the 

minimum-variance framework. 

5.2 Expected values of prices equal current prices 

When the expected future price of an asset is known in advance, it may typically equal the last 

observed price as in the examples of the foreign exchange and stock markets in Section 5.1, but 

unlike the example involving a share split. Thus a relevant assumption can be formulated as follows. 
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Assumption 2. The conditional expectations of ��	
 and #�	
 equal the last observed values of � 

and #, respectively, ]^,�	
 = �� and ]_,�	
 = #�. 

Corollary 2. Under Assumption 2, the conditional expectation of +�	
 equals the last observed 

value of +, ]`,�	
 = +�. 

When the expected price coincides with the last observed price and is used as a point forecast, 

the ℎ-step-ahead forecast error is nothing else than the realized price change, or return, from time � 

to � + ℎ. This allows replacing the forecast error with the return in the expressions for the objective 

function, the optimal hedge ratio, and the measures of hedging effectiveness. Under Assumptions 1 

and 2, the expected squared forecast error of the portfolio price becomes the expected squared 

portfolio return, ESFE��#�	
� = E���#�	
 − #���� =: ESR��#�	
�, leading to the objective function  

ESR��#�	
�*�� → min(∈; , (20) 

which is to minimize the expected squared portfolio return with respect to the hedge ratio *. The 

theoretical optimal hedge ratio is implicitly defined as 

*
,@Bh∗ ≔ arg min(∈; �ESRi�#�	
�� = arg min(∈; �E���#�	
 − #�����, (21) 

which yields the explicit expression 

*
,@Bh∗ = − E����	
+�	
� − ��+�E��+�	
� � − +�� . (22) 

The corresponding empirical optimal hedge ratio is  

*?
,jBh∗ = − EH����	
+�	
� − ��+�
EH��+�	
� � − +��  (23) 

(see Appendix for derivations). The theoretical absolute measure of hedging effectiveness is the 

expected squared return, 

ESFE��#�	
� = ESR��#�	
�, (24) 

and the empirical absolute measure is mean squared return of the portfolio, MSR�#	
�, 

MSR�#	
� ≔ 1
T W�#�	
 − #���

P

�O"
. (25) 
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The theoretical relative measure of hedging effectiveness becomes the relative reduction in expected 

squared return, 

RRESR��#�	
, ��	
� ≔ ESR����	
� − ESR��#�	
�
ESR����	
� , (26) 

and the corresponding empirical relative measure is the relative reduction in mean squared return 

when holding the portfolio as compared to holding the original asset alone: 

RRMSR�#	
, �	
� ≔ MSR��	
� − MSR�#	
�
MSR��	
� . (27) 

Here, MSR��	
� = "
Z ∑ ���	
 − ����P�O"  is the mean squared return on the original asset. Of course, it 

would generally be wrong to use the measures given in equations (24) to (27) when at least one of 

the Assumptions 1 and 2 is violated. The discussion on the inadequacy of VarL  in place of Vard  in 

Section 5.1 applies here, too, with MSR substituting for Vard . That is, the use of VarL  instead of MSR 

can only be justified when ]_,"	
 = ⋯ = ]_,P	
, but even then VarL  is less efficient than MSR as the 

estimator for ESR.  

5.3 Why minimum-variance framework does not always fail 

Even though the classical minimum-variance hedging framework has been demonstrated to fail in 

absence of stringent assumptions, it often delivers seemingly sensible results. This section 

investigates how this might come about. First, the empirical optimal hedge ratio might nearly or fully 

coincide between the classical and the new framework, as the empirical counterpart of the classical 

optimal hedge ratio in equation (3) is quite similar to the new empirical optimal hedge ratio in 

equation (9). Depending on what estimators are used for the former, the two may even be equal. 

Hence, the optimal hedge ratio derived within the classical framework might often be unproblematic.  

Second, the classical empirical relative measure of hedging effectiveness, the RRVk ≔
abcL l�^lmn�eabcL l�_lmn�

abcL l�^lmn� , might nearly or fully coincide with the new measure, the RRMSFE. This may 

happen when the price forecasts of the original asset and portfolio are their last observed values in 

all periods, and the forecast bias happens to average to zero or close to zero for both of them in the 
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given test sample. In such a case, the estimated relative reduction in variance closely matches the 

relative reduction in mean squared forecast error. In other words, the reduction in uncertainty as 

measured in the classical framework is about the same as in the new framework.  

While these observations might be taken as evidence in favour of continued use of the classical 

hedging framework, it should be remembered that minimum-variance hedging may or may not fail 

depending on the application at hand. On the other hand, the new framework is unconditionally 

guaranteed to deliver correct results. 

6.  Empirical examples 

This section exemplifies the main theoretical considerations of Sections 3 to 5 by demonstrating the 

performance of the new and the classical hedging frameworks when hedging the spot price risk of 

two major commodities, oil (WTI) and natural gas (Henry Hub). It reveals how the estimated 

uncertainty and hedging effectiveness differ across the frameworks and shows whether the same or 

different hedging strategies are favoured by the relative reduction in mean squared forecast error 

versus the relative reduction in variance.8 

 Hedging the risk of the monthly spot price with a futures contract is considered for the one-

month horizon and for two hedge ratios, the naïve 1:1 and the estimated optimal hedge ratio due to 

equation (9). A bivariate time series of spot and futures prices is modelled in 120-month-long rolling 

windows. In the oil market, the spot price is predicted with an error-correction model that allows it 

to adjust towards the futures price. The futures price of a given contract is treated as a martingale, 

hence its forecast equals the last observed value. In the natural gas market, the futures price of the 

relevant contract is taken as a point forecast for both spot and futures prices in the next month. The 

optimal hedge ratio is obtained from a bivariate GARCH(1,1)-DCC(1,1) model (Bollerslev, 1986; Engle, 

2002) applied on in-sample forecast errors of the two price series. 

                                                           
8 Another application of the new framework is available in Bloznelis (2018), who considers hedging the spot 

price risk in the market for Norwegian farmed salmon. 
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The spot price data is obtained from the WIKI Commodities Prices database at Quandl, and the 

futures prices are taken from Chicago Mercantile Exchange via Quandl. The oil price data covers May 

1983 to August 2017 (412 data points), while the natural gas price data covers May 1990 to August 

2017 (328 data points). Figures 2 to 5 depict the spot and futures prices of oil and natural gas 

together with their returns and forecast errors, alongside the returns and the forecast errors of the 

hedge portfolios. 

[Figures 2, 3, 4, and 5 around here] 

In the case of oil, the forecast errors of spot and portfolio prices are visibly smaller in magnitude 

than the respective returns, suggesting that there is a material discrepancy between uncertainty 

measured as a function of returns (in the classical framework) versus forecast errors (in the new 

framework). This can be seen from the first, third, fourth, and last columns of Table 4 that contains 

the hedging results for oil. The variances of the spot and portfolio prices are considerably (up to three 

times) higher than the corresponding mean squared forecast errors. Hence, variance and expected 

squared forecast error are far from interchangeable, attesting that the former is not an adequate 

proxy for the latter. Indeed, variance is an ill-suited measure of uncertainty under square loss, 

because not all variability in returns is unpredictable, and the magnitude of returns overestimates 

the inherent uncertainty. The exception here is the futures price; the model treats the returns on 

futures contracts as entirely unpredictable, which makes them coincide with the forecast errors. 

[Table 4 around here] 

The last two columns of Table 4 display the readings of the RRV and the RRMSFE, which can be 

either similar, as in the case of the 1:1 hedge ratio, or quite different, as in the case of the optimal 

hedge ratio. Therefore, the RRV cannot be used in place of the RRMSFE as an innocuous alternative 

or an approximation. Moreover, the two measures may also have different subject-matter 

implications. E.g. a potential hedger might find a 51% reduction in uncertainty (due to RRV) 

insufficient to warrant investing her time and effort in hedging, while a 74% reduction (due to 
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RRMSFE) might seem large enough to spur her into action. Thus relying on RRV in place of RRMSFE 

might make her miss the opportunity to effectively reduce the price uncertainty. 

The case of natural gas underscores the qualitative difference in implications of the two 

frameworks even more clearly; compare the last two columns in Table 5. While RRV is negative and 

hence suggests hedging is detrimental, i.e. it increases uncertainty, RRMSFE is positive and thus 

indicates hedging is moderately helpful. The two measures point to opposite directions, and once 

again, following the irrelevant measure might lead to suboptimal choices in risk management.  

[Table 5 around here] 

In summary, real-world hedging applications in major commodity markets highlight pronounced 

differences between the classical and the new hedging frameworks. They confirm that the variance 

of the portfolio price can be very different from the corresponding expected squared forecast error, 

and that RRV and RRMSFE need not be alike. As such, the classical framework of minimum variance 

hedging may realistically lead to different implications and hedging decisions than the new 

framework of minimum expected squared forecast error. Since hedging is fundamentally concerned 

with risk minimization, it is only the latter framework that is adequate for the purpose. 

7.  Conclusion 

Minimum-variance hedging framework has been a highly popular approach to hedging both in the 

financial world and in the academic literature starting from the early 1960s. Nearly six decades after 

its origins in Johnson (1960) and Stein (1961), it remains the starting point for introducing non-naïve 

hedging strategies with futures contracts in finance textbooks (Hull, 2012, p. 57; McDonald, 2013, 

p. 114). Despite its continued popularity among practitioners and the extensive academic research 

addressing its theoretical as well as applied facets, a key weakness of the minimum-variance hedging 

framework has gone unidentified and unexplained so far. It consists of two elements: (1) the fact that 

uncertainty over a future price may be better characterized by the probability distribution of its 

forecast error rather than that of the price itself; and (2) the fact that variance is not a generally 
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sensible measure of uncertainty, whereas the second moment is. Even though broadly overlooked, 

this weakness has created considerable confusion, as the intuitively perceived uncertainty would 

repeatedly fail to match the formalized uncertainty estimated in the minimum-variance framework. 

While the variance of the hedge portfolio price would be successfully minimized, the perceived 

uncertainty (reflected by the magnitude of the expected squared forecast error) would still be 

looming large. Also, hedging strategies that incorporate additional information in the price models 

would paradoxically yet routinely be found inferior to ones that ignore it. 

 This work has pinned down and explicitly formulated the previously elusive problem with the 

classical minimum-variance hedging framework. It also offers a simple and complete solution to it in 

the form of a new hedging framework that generalizes and extends the classical one. Instead of 

aiming to minimize the variance of the portfolio price, the actual goal of a hedger might indeed be to 

minimize the expected squared forecast error. Once an appropriate objective is adapted, it gives rise 

to a new optimal hedge ratio and a new measure of hedging effectiveness. Taken together, the 

objective, the ratio, and the effectiveness measure constitute the new framework of hedging under 

square loss. This framework applies without restrictions as long as the objective is relevant, and it 

contains the minimum-variance framework as a special case, namely, under the assumption that the 

true conditional expectations of the future prices of the original asset and the portfolio are known in 

advance and are used as point forecasts. 

 The implications of replacing the classical framework with the new one are substantial. First, 

confusion is eliminated as the formalized hedging objective now properly reflects the hedger’s goal. 

In turn, measurement of uncertainty is now intuitive and well defined, so that intuitively perceived 

and measured effectiveness agree. Second, decisions on the choice of best hedging strategies are 

better informed, since hedging strategies that emerge as optimal under the new framework generally 

differ from those due to the classical one. Empirical examples from hedging in the oil and natural gas 

markets serve to illustrate these points, with the implications for hedgers differing considerably 
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depending on which framework is referred to. Overall, the new framework should thus be of 

immediate interest to hedgers and policymakers in commodity and financial markets. 

Appropriate measurement of uncertainty introduced in this study is relevant in a much broader 

context than hedging alone. Uncertainty underlies significant subfields of finance, economics, and 

operations research, among other disciplines. For example, modern portfolio theory, i.e. the mean-

variance framework (Markowitz, 1952), relies on the variance of the portfolio return as representing 

the risk. Should variance be replaced by the expected squared forecast error, the theory would need 

to be revised. Uncertainty is also a critical element in decision-making problems. Therefore, improved 

understanding of uncertainty and the availability of a proper measure thereof can be instrumental in 

making better decisions. To conclude, the new measure of uncertainty opens new avenues for 

improvement in the context of hedging under square loss, hedging in general, and beyond. 

Embracing the new measure and the ensuing hedging framework and examining the broad range of 

implications are directions for future research. 
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Appendix A: Tables 

Table 1   Some measures of uncertainty and their characteristics 

Measure (moment of 

forecast error distribution) 

Value Magnitude 

of 

uncertainty 

Is informative of 

the magnitude of 

uncertainty 

Minimizing the measure 

is equivalent to 

minimizing uncertainty 

First moment, i.e. 

mathematical expectation 

Close to zero Unknown No No 

Far from zero High Yes  

First absolute moment Close to zero Low Yes Yes 

 Far from zero High Yes  

Second moment Close to zero Low Yes Yes 

 Far from zero High Yes  

Second central moment, i.e. 

variance 

Close to zero Unknown No* No* 

Far from zero High Yes  

Note: * except when the first moment is zero. 
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Table 2   Theoretical and empirical optimal hedge ratios under different assumptions on expected 

prices 

Assumptions Theoretical and empirical optimal hedge ratios 

General case  

(no assumptions) 
*
,@BA@∗ = − E����	
+�	
� − �̂�	
|�E��+�	
� − +?�	
|�E����	
� + �̂�	
|�+?�	
|�

E��+�	
� � − 2+?�	
|�E��+�	
� + +?�	
|��  

*?
,@BA@∗ = − EH����	
+�	
� − �̂�	
|�+?�	
|�
EH��+�	
� � − +?�	
|��  

Assumption 1 *
,abc∗    = − E����	
+�	
� − E����	
�E��+�	
�
E��+�	
� � − �E��+�	
��� = − Cov����	
, +�	
�

Var��+�	
�  

*o
,abc∗    = − EH����	
+�	
� − E����	
�E��+�	
�
EH��+�	
� � − �E��+�	
��� = − Covd ����	
, +�	
�

Vard ��+�	
�  

Assumptions 1 and 2 *
,jBh∗  = − E����	
+�	
� − ��+�E��+�	
� � − +��  

*?
,jBh∗  = − EH����	
+�	
� − ��+�
EH��+�	
� � − +��  

Note: Covd ����	
, +�	
� ≔ EH����	
+�	
� − E����	
�E��+�	
� and Vard ��+�	
� ≔ EH��+�	
� � −
�E��+�	
���

 are the estimators of covariance and variance, respectively, that employ the true first 

moments E����	
� of ��	
 and E��+�	
� of +�	
 rather than their respective sample counterparts 

EH����	
� and EH��+�	
�. 

Assumption 1.   The conditional expectations of ��	
 and #�	
, denoted ]^,�	
 ≔ E����	
� and 

]_,�	
 ≔ E��#�	
�, are known as of time � and are used as point forecasts, �̂�	
|� = ]^,�	
 and 

#̂�	
|� = ]_,�	
. 

Assumption 2.   The conditional expectations of ��	
 and #�	
 equal the last observed values of � and 

#, respectively, ]^,�	
 = �� and ]_,�	
 = #�. 



 

 

Table 3   Measures of hedging effectiveness under different assumptions on expected prices 

Assumptions  Theoretical absolute measure  Empirical absolute measure  Theoretical relative measure  Empirical relative measure  

General case  

(no assumptions) 

Expected squared forecast 

error,  

Mean squared forecast error,  Relative reduction in expected 

squared forecast error,  

Relative reduction in mean 

squared forecast error,  

 ESFE��#�	
� 

= E� ��#�	
 − #̂�	
|���� 

MSFE�#	
� 

= 1
T W�#�	
 − #̂�	
|���P

�O"
 

RRESFE��#�	
, ��	
� 

= ESFE����	
� − ESFE��#�	
�
ESFE����	
�  

RRMSFE�#	
, �	
� 

= MSFE��	
� − MSFE�#	
�
MSFE�p	"�  

Assumption 1 Variance*,  Empirical variance*,  Relative reduction in variance*,  Relative reduction in empirical 

variance*,  

 Var��#�	
� 

= E� ��#�	
 − ]_,�	
��� 

Vard �#	
� 

= 1
U W�#�	
 − ]_,�	
��P

�O"
 

RRV��#�	
, ��	
� 

= Var����	
� − Var��#�	
�
Var����	
�  

qq4g�#	
, �	
� 

= Vard ��	
� − Vard �#	
�
Vard ��	
�  

Assumptions 1 and 2 Expected squared return,  Mean squared return,  Relative reduction in expected 

squared return,  

Relative reduction in mean 

squared return,  

 ESR��#�	
� 

= E� ��#�	
 − #�	
|���� 

MSR�#	
� 

= 1
T W�#�	
 − #���

P

�O"
 

RRESR��#�	
, ��	
� 

= ESR����	
� − ESR��#�	
�
ESR����	
�  

RRMSR�#	
, �	
� 

= MSR��	
� − MSR�#	
�
MSR��	
�  

Note: * denotes variance based on the true first moments ]_,�	
 for the time periods � = 1, … , U. For Assumptions 1 and 2, see note under Table 2.



 

 

Table 4   Results of hedging the monthly spot price of oil (WTI) with oil futures contracts 

Effectiveness 

measure 

Spot Futures Portfolio 

1:1 

Portfolio 

OHR 

Relative 

reduction 1:1 

Relative 

reduction OHR 

MSFE 13.41 27.11 7.52 3.52 0.44 0.74 

Variance 22.44 27.10 13.10 10.89 0.42 0.51 

Note: The hedging period is from June 1993 to August 2017. Rolling windows of 120 months are used 

for estimating the optimal hedge ratio. Hedging horizon is 1 month ahead. 1:1 denotes the naive 1:1 

hedge ratio; OHR denotes the estimated optimal hedge ratio due to equation (9). 

 

 

 

Table 5   Results of hedging the monthly spot price of natural gas (Henry Hub) with natural gas 

futures contracts 

Effectiveness 

measure 

Spot Futures Portfolio 

1:1 

Portfolio 

OHR 

Relative 

reduction 1:1 

Relative 

reduction OHR 

MSFE 0.51 0.91 0.42 0.45 0.18 0.12 

Variance 0.70 0.91 0.71 0.75 -0.02 -0.08 

Note: The hedging period is from June 2000 to August 2017. Rolling windows of 120 months are used 

for estimating the optimal hedge ratio. Hedging horizon is 1 month ahead. 1:1 denotes the naive 1:1 

hedge ratio; OHR denotes the estimated optimal hedge ratio due to equation (9). 
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Appendix B: Figures 

Figure 1   Illustrations of measures of uncertainty for different distributions of forecast error 

a) Low uncertainty  b) High uncertainty 

Light-tailed distribution, symmetric around zero.  Heavy-tailed distribution, symmetric around zero. 

E�����	
|�� = 0,  E�����	
|�� � small,  E�����	
|�� = 0 (!),  E�����	
|�� � large, 

E������	
|��� small, Var�����	
|�� small  E������	
|��� large, Var�����	
|�� large 

 

 

  

 

     

c) High uncertainty  d) High uncertainty 

Light-tailed distr., symmetric around a large value.  Distribution with a unit mass at a large value. 

E�����	
|�� large, E�����	
|�� � large  E�����	
|�� large, E�����	
|�� � large, 

E������	
|��� large, Var�����	
|�� small (!)  E������	
|��� large, Var�����	
|�� = 0 (!) 

 

 

  

 

Note: ���	
|� denotes the forecast error resulting from a forecast made at time � for a target 

variable at time � + ℎ. E��∙� and Var��∙� are the mathematical expectation and variance, 

respectively, conditional on the information available at time �. |∙| is the absolute value operator. 
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Figure 2   Spot and futures prices, returns, and forecast errors of oil (WTI) 

 

Note: Monthly data from May 1983 to August 2017 (412 data points). Return denotes price change.  
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Figure 3   Hedge portfolio returns and forecast errors of oil (WTI) 

 

Note: Monthly data from May 1983 to August 2017 (412 data points). Return denotes price change; 

(1:1) denotes naïve 1:1 hedge ratio; (OHR) denotes estimated optimal hedge ratio due to 

equation (9).   
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Figure 4   Spot and futures prices, returns, and forecast errors of natural gas (Henry Hub) 

 

Note: Monthly data from May 1990 to August 2017 (328 data points). Return denotes price change.  
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Figure 5   Hedge portfolio returns and forecast errors of natural gas (Henry Hub) 

 

Note: Monthly data from May 1990 to August 2017 (328 data points). Return denotes price change; 

(1:1) denotes naïve 1:1 hedge ratio; (OHR) denotes estimated optimal hedge ratio due to 

equation (9).  
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Appendix C: Proofs 

Derivation of the optimal hedge ratio in the general case: equation (7) � (8) 

EESFE��#�	
�*��
E*  = E

E* E� ��#�	
�*, -� − #̂�	
|��*, -���� 
 (7) 

 = E
E* E� �����	
 + *+�	
� − ��̂�	
|� + *+?�	
|����� 

  

 = E
E* E����	
� + 2*��	
+�	
 − 2��	
�̂�	
|� − 2*��	
+?�	
|� + *�+�	
�  

  

 
              −2*+�	
�̂�	
|� − 2*�+�	
+?�	
|� + �̂�	
� + 2*�̂�	
|�+?�	
|� + *�+?�	
� � 

 = E
E* E��2*��	
+�	
 − 2*��	
+?�	
|� + *�+�	
�  

  

 
              −2*+�	
�̂�	
|� − 2*�+�	
+?�	
|� + 2*�̂�	
|�+?�	
|� + *�+?�	
� �   

 
= E��2��	
+�	
� − E��2��	
+?�	
|�� + E��2*+�	
� �   

 
− E��2+�	
�̂�	
|�� − E��4*+�	
+?�	
|�� + E��2�̂�	
|�+?�	
|�� + E��2*+?�	
� � 

 
= 2E����	
+�	
� − 2+?�	
|�E����	
� + 2*E��+�	
� � − 2�̂�	
|�E��+�	
�   

 
− 4*+?�	
|�E��+�	
� + 2�̂�	
|�+?�	
|� + 2*+?�	
�    

 
= 0,   

E����	
+�	
� − +?�	
|�E����	
� + *E��+�	
� � − �̂�	
|�E��+�	
� − 2*+?�	
|�E��+�	
�   

                         + �̂�	
|�+?�	
|� + *+?�	
� = 0,   

*�E��+�	
� � − 2+?�	
|�E��+�	
� + +?�	
|�� � + �E����	
+�	
� − �̂�	
|�E��+�	
� − +?�	
|�E����	
�   

                      + �̂�	
|�+?�	
|�� = 0,   

*
,@BA@∗ ≔ − E����	
+�	
� − �̂�	
|�E��+�	
� − +?�	
|�E����	
� + �̂�	
|�+?�	
|�
E��+�	
� � − 2+?�	
|�E��+�	
� + +?�	
|�� .  (8) 

* * *  
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Derivation of the theoretical optimal hedge ratio under Assumption 1: equation (8) � (14) 

*
,@BA@∗  = − E����	
+�	
� − �̂�	
|�E��+�	
� − +?�	
|�E����	
� + �̂�	
|�+?�	
|�
E��+�	
� � − 2+?�	
|�E��+�	
� + +?�	
|��  

 
(8) 

 = − E����	
+�	
� − E����	
�E��+�	
� − E��+�	
�E����	
� + E����	
�E��+�	
�
E��+�	
� � − 2E��+�	
�E��+�	
� + �E��+�	
���  

  

 = − E����	
+�	
� − E����	
�E��+�	
�
E��+�	
� � − �E��+�	
���  

  

 = − Cov����	
, +�	
�
Var��+�	
�  

  

 = : *
,abc∗  .  (14) 

* * * 

Derivation of the empirical optimal hedge ratio under Assumption 1: equation (9) � (15) 

*?
,@BA@∗  = − EH����	
+�	
� − �̂�	
|�+?�	
|� − +?�	
|��̂�	
|� + �̂�	
|�+?�	
|�
EH��+�	
� � − 2+?�	
|�+?�	
|� + +?�	
|��                                  

(9) 

 = − EH����	
+�	
� − �̂�	
|�+?�	
|�
EH��+�	
� � − +?�	
|��  

 
 

 = − EH����	
+�	
� − E����	
�E��+�	
�
EH��+�	
� � − �E��+�	
���  

  

 = − Covd ����	
, +�	
�
Vard ��+�	
�                   

 = :  *o
,abc∗   (15) 

where Covd ����	
, +�	
� ≔ EH����	
+�	
� − E����	
�E��+�	
� and Vard ��+�	
� ≔ EH��+�	
� � −
�E��+�	
���

 are the estimators of covariance and variance, respectively, that employ the true first 

moments E����	
� of ��	
 and E��+�	
� of +�	
 rather than their respective sample counterparts 

EH����	
� and EH��+�	
�. 

* * * 

Derivation of the theoretical optimal hedge ratio under Assumptions 1 and 2: equation (8) � (22) 

*
,@BA@∗  = − E����	
+�	
� − �̂�	
|�E��+�	
� − +?�	
|�E����	
� + �̂�	
|�+?�	
|�
E��+�	
� � − 2+?�	
|�E��+�	
� + +?�	
|��  

 (8) 
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 = − E����	
+�	
� − ��+� − ��+� + ��+�E��+�	
� � − 2+�+� + +��  
  

 = − E����	
+�	
� − ��+�E��+�	
� � − +��  
  

 = : *
,jBh∗  .  (22) 

* * * 

Derivation of the empirical optimal hedge ratio under Assumptions 1 and 2: equation (9) � (23) 

*?
,@BA@∗  = − EH����	
+�	
� − �̂�	
|�+?�	
|� − +?�	
|��̂�	
|� + �̂�	
|�+?�	
|�
EH��+�	
� � − 2+?�	
|�+?�	
|� + +?�	
|��                                  

(9) 

 = − EH����	
+�	
� − �̂�	
|�+?�	
|�
EH��+�	
� � − +?�	
|��  

 
 

 = − EH����	
+�	
� − ��+�
EH��+�	
� � − +��  

  

 = :  *?
,jBh∗ .  (23) 

* * * 


