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Abstract

We consider two-sided matching problems where agents on one side
of the market (hospitals) are required to satisfy certain distributional
constraints. We show that when the preferences and constraints of
the hospitals can be represented by an M♮-concave function, (i) the
generalized Deferred Acceptance (DA) mechanism is strategyproof for
doctors, (ii) it produces the doctor-optimal stable matching, and (iii)
its time complexity is proportional to the square of the number of pos-
sible contracts. Furthermore, we provide sufficient conditions under
which the generalized DA mechanism satisfies these desirable prop-
erties. These conditions are applicable to various existing works and
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enable new applications as well, thereby providing a recipe for devel-
oping desirable mechanisms in practice.
JEL Classification: C78, D61, D63
Keywords: two-sided matching, many-to-one matching, market de-
sign, matching with contracts, matching with constraints, M♮-concavity,
strategyproofness, deferred acceptance.

1 Introduction

The theory of two-sided matching has been extensively developed, and it
has been applied to design clearinghouse mechanisms in various markets in
practice.1 As the theory has been applied to increasingly diverse types of en-
vironments, however, researchers and practitioners have encountered various
forms of distributional constraints. As these features have been precluded
from consideration until recently, they pose new challenges for market de-
signers.

The regional maximum quotas provide an example of distributional con-
straints. Under the regional maximum quotas, each agent on one side of the
market (who we call a hospital) belongs to a region, and there is an upper
bound on the number of agents on the other side (who we call doctors) who
can be matched in each region. Regional maximum quotas exist in many
markets in practice. A case in point is medical residency matching in Japan.
Although the match organizers initially employed the standard Deferred Ac-
ceptance (DA) mechanism (Gale and Shapley, 1962), it was criticized as
placing too many doctors in urban areas and causing doctor shortages in
rural areas. To address this criticism, the Japanese government now imposes
a regional maximum quota on each region of the country. Regulations that
are mathematically isomorphic to regional maximum quotas are utilized in
various contexts, such as Chinese graduate admission, Ukrainian college ad-
mission, and Scottish probationary teacher matching, among others (Kamada
and Kojima, 2012, 2015).

Furthermore, there are many matching problems in which minimum quo-
tas are imposed. School districts may need at least a certain number of
students in each school in order for the school to operate, as in college ad-
missions in Hungary (Biro, Fleiner, Irving, and Manlove, 2010). The cadet-

1See Roth and Sotomayor (1990) for a comprehensive survey of many results in this
literature.
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branch matching program organized by United States Military Academy im-
poses minimum quotas on the number of cadets who must be assigned to
each branch (Sönmez and Switzer, 2013). Yet another type of constraints
takes the form of diversity constraints. Public schools are often required to
satisfy balance between different types of students, typically in terms of so-
cioeconomic status (Ehlers, Hafalir, Yenmez, and Yildirim, 2014). Several
mechanisms have been proposed for each of these various constraints, but
previous studies have focused on tailoring mechanisms to specific settings,
rather than providing a general framework.2

This paper develops a general framework for handling various distribu-
tional constraints in the setting of matching with contracts (Hatfield and
Milgrom, 2005). We begin with a simple model in which, on one side of the
market, there exists just one hypothetical representative agent, the hospi-
tals. Although extremely simple, this model proves useful. More specifically,
we offer methods to aggregate the preferences of individual hospitals and
distributional constraints into a preference of this representative agent and,
as detailed later, use this aggregation to help analyze matching with con-
straints.3

For this model with the hospitals, the crux of our analysis is to asso-
ciate the preference of the hospitals with a mathematical concept called
M♮-concavity (Murota and Shioura, 1999).4 M♮-concavity is an adaptation
of concavity to functions on discrete domains, and has been studied exten-
sively in discrete convex analysis, a branch of discrete mathematics. We

2Examples of papers that accommodate specific constraints include Ehlers, Hafalir,
Yenmez, and Yildirim (2014); Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo (2016);
Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo (2016); Goto, Iwasaki, Kawasaki,
Yasuda, and Yokoo (2014); Kamada and Kojima (2015). Needless to say, we do not claim
to subsume all the results in the existing studies. For instance, Kamada and Kojima
(2017a) allow for general choice functions that satisfy substitutability, while our study
focuses on choice functions that satisfy M♮-concavity, which is a stronger requirement.
Another notable example is the study of matching with minimum quotas by Fragiadakis
and Troyan (2017). Their mechanisms are different from ours, and whether there is any
way to reduce their problem to our framework, or even any matching framework with
substitutability, is an open question.

3In fact, our results readily generalize for cases with multiple, separate hospitals each
of which satisfies M♮-concavity. The assumption of exactly one agent on the hospital
side is made for simplicity only and, as stated above, that model proves sufficient for our
purposes. A similar technique has been used by Kamada and Kojima (2017a).

4The letter M in M♮-concavity comes from “matroid,” a mathematical structure that
plays an important role in this paper. The symbol ♮ is read “natural.”
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show that if the hospitals’ aggregated preference can be represented by an
M♮-concave function, then the following key properties in two-sided match-
ing hold: (i) the generalized Deferred Acceptance (DA) mechanism (Hatfield
and Milgrom, 2005) is strategyproof for doctors, (ii) the resulting match-
ing is stable (in the sense of Hatfield and Milgrom (2005)) and optimal for
each doctor among all stable matchings, and (iii) the time complexity of the
generalized DA mechanism is proportional to the square of the number of
possible contracts.

Equipped with this general result, we study conditions under which the
hospitals’ preference can be represented by an M♮-concave function. We start
by separating the preference of the hospitals into two parts. More specifically,
we divide the preference of the hospitals into hard distributional constraints
for the contracts to be feasible, and soft preferences over a family of feasible
contracts. Drawing upon techniques from discrete convex analysis, we first
show that if the hospitals’ preference is represented by an M♮-concave func-
tion, then a family of the sets of contracts that satisfy hard distributional
constraints (which we call hospital-feasible contracts) must constitute a ma-
troid. Next, we show that if the hard distributional constraints constitute a
matroid and the soft preferences satisfy certain easy-to-verify conditions (e.g.,
they can be represented as a sum of values associated with individual con-
tracts), then the hospitals’ preference can be represented by an M♮-concave
function; thus the generalized DA mechanism satisfies desirable properties.

One of the main motivations of our work is to provide an easy-to-use
recipe, or a toolkit, for organizing matching mechanisms under constraints.
Although our general result is stated in terms of the abstract M♮-concavity
condition, market designers do not need advanced knowledge of discrete con-
vex analysis or matching theory. On the contrary, our sufficient conditions
in the preceding sections suffice for most practical applications. To use our
tool, all one needs to show is that the given hard distributional constraints
produce a matroid (as pointed out in the preceding paragraph, requirements
over soft preferences turn out to be elementary, e.g., the sum of the individ-
ual contract values). Fortunately, there exists a vast literature on matroid
theory, and what kinds of constraints produce a matroid is well-understood.
Therefore, it usually suffices to show that the hard distributional constraints
can be mapped into existing results in matroid theory. We confirm this fact
by demonstrating that most distributional constraints can be represented
using our method. The list of applications includes matching markets with
regional maximum quotas (Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo,
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2014; Kamada and Kojima, 2015, 2017a,b), regional minimum quotas (Goto,
Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo, 2016), diversity require-
ments in school choice (Ehlers, Hafalir, Yenmez, and Yildirim, 2014), the
student-project allocation problem (Abraham, Irving, and Manlove, 2007),
and the cadet-branch matching program (Sönmez and Switzer, 2013).5

We further demonstrate the applicability of our methodology by intro-
ducing a novel application. We examine a case in which constraints are
defined based on the distance from a given ideal distribution. To our knowl-
edge, no mechanism with desirable properties has been found in this setting
before, but our general methodology enables us to find such a mechanism
straightforwardly.6 As such, we believe that this study contributes to the ad-
vance of practical market design (or “economic engineering”) as emphasized
in the recent literature (see Roth (2002) and Milgrom (2009) for instance),
by providing tools for organizing matching clearinghouses in practice.

The rest of this paper is organized as follows. First, in the rest of this
section, we discuss related literature. In Section 2, we introduce our model.
In Section 3, we prove that when the hospitals’ preference is represented
as an M♮-concave function, the above-mentioned key properties hold. In
Section 4, we present several sufficient conditions under which the general-
ized DA satisfies these key properties. Then, in Section 5, we examine an
existing application (regional maximum quotas) and a new application (dis-
tance constraints) on two-sided, many-to-one matching problems and show
that the sufficient conditions described in the previous section hold in these
cases. Furthermore, in Section 6, we discuss how to modify distributional
constraints and soft preferences when applying our framework. Finally, Sec-
tion 7 concludes this paper. Proofs are deferred to the online appendix unless
noted otherwise.

Related literature

Although matching with constraints is a fairly new research topic, questions
related to this issue have been studied in the literature in various specific
contexts. In the U.K. medical match in the 20th century, some hospitals pre-

5Most of these results are presented in the online appendix.
6In the online appendix, we examine another novel application. Specifically, we study

a setting where hospitals are partitioned into regions, and each region is associated with
a regional maximum quota as well as a subset of doctors who have priority to be placed
in that region over other doctors.
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ferred to hire at most one female doctor (Roth, 1991). In school choice, many
schools are subject to diversity constraints in terms of socioeconomic sta-
tus and academic performance (Abdulkadiroğlu, 2005; Abdulkadiroğlu and
Sönmez, 2003; Echenique and Yenmez, 2015; Ehlers, Hafalir, Yenmez, and
Yildirim, 2014; Hafalir, Yenmez, and Yildirim, 2013; Kojima, 2012). Con-
straints placed over sets of agents have been studied in the context of student-
project allocations (Abraham, Irving, and Manlove, 2007), college admission
(Biro, Fleiner, Irving, and Manlove, 2010), and medical residency matching
(Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo, 2016; Goto, Iwasaki,
Kawasaki, Yasuda, and Yokoo, 2014; Kamada and Kojima, 2015, 2017a,b).
Our marginal contribution over these existing studies is to present a unified
framework and analyze these specific markets as well as others using a single
technique: as will be seen below, our theory can be applied to a wide variety
of existing applications as well as new ones (Section 5).

Our paper is at the intersection of discrete mathematics and economics.
In the former research field, there is a vast literature on discrete optimization.
Its insight has been used in a broad range of applications such as schedul-
ing, facility location, and structural analysis of engineering systems among
others: see Murota (2000) or Schrijver (2003) or Korte and Vygen (2012),
for instance. Recent advances in discrete convex analysis have found appli-
cations in exchange economies with indivisible goods (Murota, 2003; Murota
and Tamura, 2003; Sun and Yang, 2006), systems analysis (Murota, 2003),
inventory management (Huh and Janakiraman, 2010; Zipkin, 2008) and auc-
tion (Murota, Shioura, and Yang, 2013). As this long, and yet partial, list
suggests, techniques from this literature can be applied to a wide variety
of problems. We add matching problems to this list. As suggested by our
analysis, results from discrete convex analysis may provide useful tools for
studying matching specifically as well as economics in general.

This paper is not the first to apply discrete convex analysis to matching
problems.7 Fujishige and Tamura (2006, 2007) and Murota and Yokoi (2015)
apply discrete convex analysis to study matching problems, and some of our
analysis draws upon their results.8 9 Our marginal contributions are twofold.

7See the survey paper by Murota (2016) on applications of discrete convex analysis to
economics.

8More specifically, these works deal with a many-to-many matching problem, in which
a doctor/worker can work at multiple hospitals/firms. Fujishige and Tamura (2006, 2007)
also consider continuous transfer and quasilinear payoff functions.

9See also an earlier contribution by Fleiner (2001) who applies matroid theory to match-
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First, while incentive issues are not a central topic in these existing studies,
they are one of the main issues in our analysis, i.e., we apply our technique to
show that the generalized DA mechanism is strategyproof for doctors. Such
a strategic question is a natural issue in economics, but it is rarely studied in
the optimization literature. In this sense, we provide new economic questions
to the discrete optimization literature. Second, we are the first to establish
that various constraints found in practice can be addressed by the technique
of discrete convex analysis.

This paper uses the framework of matching with contracts due to Hat-
field and Milgrom (2005).10 They identify a set of conditions for key results
in matching with contracts. More specifically, if the choice function of ev-
ery hospital satisfies substitutability, the law of aggregate demand, and the
irrelevance of rejected contracts, then a generalized DA mechanism finds a
stable allocation, and the mechanism is strategyproof for doctors.11 Hatfield
and Kojima (2009, 2010) further show that the generalized DA mechanism is
group strategyproof for doctors.12 Our analysis draws upon those studies, but
it makes at least three marginal contributions over them. First, we provide
three sufficient conditions for the key results to hold, where the requirements
over soft preferences are elementary. Thus, basically all one needs to show
is that the given hard distributional constraints produce a matroid. Second,
there exists a vast literature on matroid theory, and what kinds of constraints
produce a matroid is well-understood. Therefore, it usually suffices to show
that the hard distributional constraints can be mapped into existing results
in matroid theory. Lastly, the time complexity of the generalized DA mecha-

ing. His analysis is a special case of a more recent contribution by Fujishige and Tamura
(2007).

10Fleiner (2003) obtains some of the results including the existence of a stable allocation
in a framework that is more general than the model of Hatfield and Milgrom (2005). On
the other hand, he does not show results regarding incentives, which are important for our
purposes.

11Hatfield and Milgrom (2005) implicitly assume the irrelevance of rejected contracts
throughout their analysis. Aygün and Sönmez (2013) point this out and show that this
condition is important for the conclusions of Hatfield and Milgrom (2005), while showing
that substitutability and the law of aggregate demand imply the irrelevance of rejected
contracts.

12Other contributions in matching with contracts include Hatfield and Kojima (2008),
Hatfield and Kominers (2009, 2012), Hatfield, Kominers, Nichifor, Ostrovsky, and West-
kamp (2013), Echenique (2012), Sönmez (2013), Sönmez and Switzer (2013), and Kominers
and Sönmez (2016).
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nism is polynomial under M♮-concavity while this property is not guaranteed
under general substitutable preferences. This property is very important in
practical application.

As stated above, one of the main goals of our paper is to identify a class
of payoff functions that is general enough to represent various distributional
constraints and preferences, while being tractable enough so that desirable
normative properties can be established. Although this research program is
still in its infancy, there are notable contributions. Hatfield and Milgrom
(2005) set the agenda by introducing a family of payoff functions called en-
dowed assignment valuations. A variant of this class of functions is proposed
by Milgrom (2009) and further studied by Budish, Che, Kojima, and Mil-
grom (2013), while Ostrovsky and Paes Leme (2015) propose a new class of
payoff functions called matroid-based valuations. We contribute to this line
of research in several ways. First, we identify a superclass of payoff functions,
M♮-concave functions, as the key to our approach.13 Second, in addition to
various sufficient conditions, we identify a necessary condition for a payoff
function to allow the use of our theory in terms of the matroid structure.

This paper is part of the literature on practical market design, both in
terms of content and in terms of approach. As advocated by Roth (2002),
recent market design theory has focused on solving practical problems by
providing detailed and concrete solutions.14 Real problems often share com-
mon basic features, but differ substantially in details. For instance, differ-
ent school districts share some common goals such as efficiency, stability
(fairness) and incentive compatibility, but can differ in some details such as
diversity constraints, structure of school priorities, and authoritative power
of individual schools (Abdulkadiroğlu, Pathak, and Roth, 2005, 2009; Ab-
dulkadiroğlu, Pathak, Roth, and Sönmez, 2005, 2006). In this respect, our
contributions are twofold. First, our framework provides mechanisms that
can be applied to a variety of existing problems as discussed earlier. Second,

13Ostrovsky and Paes Leme (2015) demonstrate that the class of endowed assignment
valuations is a strict subset of the matroid-based valuations. The matroid-based valuations
is a subset of the class of valuations that satisfy the gross substitutes condition. The
gross substitutes condition is equivalent to M♮-concavity (Fujishige and Yang, 2003). As
Ostrovsky and Paes Leme (2015) mention, it is still an open question whether the matroid-
based valuations is equivalent to the class of valuations that satisfy the gross substitutes
condition.

14Auction market design emphasizes the importance of addressing practical problems
as well (see Milgrom (2000, 2004) for instance).
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we develop a theory of matching under constraints that could be applied to
new problems that have not been found yet but may be found in the future.

Finally, this paper is part of the literature on matching and market design.
The field is too large to even casually summarize here. Instead, we refer inter-
ested readers to surveys by Roth and Sotomayor (1990), Roth (2008), Sönmez
and Ünver (2011), Abdulkadiroğlu and Sönmez (2013), Pathak (2016), and
Kojima (2016).

2 Model

A market is a tuple (D,H,X, (≻d)d∈D, f). D is a finite set of doctors and
H is a finite set of hospitals. X is a finite set of contracts. Each contract
x ∈ X is bilateral, in the sense that x is associated with exactly one doctor
xD ∈ D and exactly one hospital xH ∈ H. Each contract can also contain
some terms of contracts such as working time and wages. Each ≻d represents
the strict preference of each doctor d over acceptable contracts within Xd =
{x ∈ X | xD = d}.15 We assume each contract x ∈ X is acceptable for xH :
if a hospital considers a contract unacceptable, it is not included in X. For
notational simplicity, for X ′ ⊆ X and x ∈ X, we write X ′ + x and X ′ − x
to represent X ′ ∪ {x} and X ′ \ {x}, respectively. Also, when x = ∅, X ′ + x
means nothing is added to X ′, and X ′ − x means nothing is removed from
X ′.

We assume some distributional constraints are enforced on feasible con-
tracts. We assume such distributional constraints and hospital preferences
are aggregated into a preference of a representative agent, which we call “the
hospitals” (Section 5 and Appendix C illustrate in detail how such aggrega-
tions can be done in various applications). The preference of the hospitals
is represented by a payoff function f : 2X → R ∪ {−∞}, where R is the
set of all real numbers. For two sets of contracts X ′, X ′′ ⊆ X, the hospitals
strictly prefer X ′ over X ′′ if and only if f(X ′) > f(X ′′) holds. If X ′ ⊆ X
violates some distributional constraint, then f(X ′) = −∞. We assume f is
normalized by f(∅) = 0.16 Also, we assume f is unique-selecting, i.e., for all

15More precisely, we assume that for each doctor d, the set of acceptable contracts for
d is given as a subset of Xd, and ≻d represents a strict preferences over that set. Clearly,
it is equivalent to a (more standard) model in which we let ≻d be a strict preference over
Xd ∪ {∅} where ∅ is the outside option, and say that a contract x is acceptable if x ≻d ∅.

16As described later, this assumption is slightly stronger than mere normalization, be-
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X ′ ⊆ X, | argmaxX′′⊆X′ f(X ′′)| = 1 holds.17

Now, we introduce several concepts used in this paper.

Definition 1 (feasibility). For a subset of contracts X ′ ⊆ X, we say X ′ is
hospital-feasible if f(X ′) ̸= −∞. We say X ′ is doctor-feasible if for all
d ∈ D, either (i) X ′

d = {x} and x is acceptable for d, or (ii) X ′
d = ∅ holds,

where X ′
d = {x ∈ X ′ | xD = d}. We say X ′ is feasible if it is doctor- and

hospital-feasible. We call a feasible set of contracts a matching.

With a slight abuse of notation, for two sets of contracts X ′ and X ′′, we
denote X ′

d ≻d X
′′
d if either (i) X ′

d = {x′}, X ′′
d = {x′′}, and x′ ≻d x

′′ for some
x′, x′′ ∈ Xd that are acceptable for d, or (ii) X

′
d = {x′} for some x′ ∈ Xd that

is acceptable for d and X ′′
d = ∅. Furthermore, we denote X ′

d ⪰d X
′′
d if either

X ′
d ≻d X ′′

d or X ′
d = X ′′

d . Also, we use notations like x ≻d X ′
d or X ′

d ≻d x,
where x is a contract and X ′ is a matching. Furthermore, for X ′

d ⊆ Xd, we
say X ′

d is acceptable for d if either (i) X ′
d = {x} and x is acceptable for d, or

(ii) X ′
d = ∅ holds.

For each doctor d, its choice function Chd specifies her most preferred
contract within X ′ ⊆ X, i.e., Chd(X

′) = {x}, where x is the most preferred
acceptable contract in X ′

d if one exists, and Chd(X
′) = ∅ if no such contract

exists. Then, the choice function of all doctors ChD is defined as ChD(X
′) :=∪

d∈D Chd(X
′).

For the hospitals, their choice function ChH is defined by ChH(X
′) =

argmaxX′′⊆X′ f(X ′′) for each X ′ ⊆ X. Since we assume payoff function f is
unique-selecting, ChH is uniquely determined by f .

Note that if X ′ contains multiple contracts that are related to the same
doctor d, ChH is allowed to choose them simultaneously.

Definition 2 (stability (Hatfield and Milgrom, 2005)). We say a matching
X ′ is stable if X ′ = ChH(X

′) = ChD(X
′) and there exists no x ∈ X \ X ′

such that x ∈ ChH(X
′ + x) and x ∈ ChD(X

′ + x).18

cause it implies that ∅ is hospital-feasible.
17Observe that strict preference of the hospitals, a standard assumption in matching

theory, implies f is unique-selecting, but the converse does not hold. Also we note that if
f is not unique-selecting, we can obtain a unique-selecting function by modifying f very
slightly. Let us define a total order relation onX, and for each x ∈ X, let rank(x) represent
the position of x within X according to this relation, i.e., rank(x) = i if x is ranked i-th.
Also, let v(x) denote ϵ · 2− rank(x), where ϵ is a sufficiently small positive number. Then,
f(X ′)+

∑
x∈X′ v(x) is unique-selecting and argmax[f(X ′)+

∑
x∈X′ v(x)] ⊆ argmax f(X ′).

18Hatfield and Milgrom (2005) as well as many others define stability in such a way that
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We sometimes refer to the stability concept in Definition 2 as Hatfield-
Milgrom (HM)-stability when we discuss the relation with other stability
concepts.

Let X be the set of all stable matchings. We say X ′ ∈ X is the doctor-
optimal stable matching if X ′

d ⪰d X
′′
d for all X ′′ ∈ X and d ∈ D.19

A mechanism φ is a function that takes a profile of preferences of doctors
≻D as an input and returns a matching X ′ ⊆ X. Let ≻D\{d} denote a
profile of preferences of doctors except d, and (≻d,≻D\{d}) denote a profile
of preferences of all doctors, where d’s preference is ≻d and the profile of
preferences of other doctors is ≻D\{d}. We say φ is strategyproof for
doctors if φd((≻d,≻D\{d})) ⪰d φd((≻′

d,≻D\{d})) holds for all d, ≻d, ≻′
d, and

≻D\{d}.
Let us introduce three properties of the choice function of the hospitals. If

ChH satisfies these conditions, the generalized DA satisfies several desirable
properties (Aygün and Sönmez, 2013; Hatfield and Milgrom, 2005).

Irrelevance of rejected contracts: for any X ′ ⊆ X and any x ∈ X \ X ′,
ChH(X

′) = ChH(X
′ + x) holds whenever x /∈ ChH(X

′ + x).

Substitutability (the substitutes condition): for any X ′, X ′′ ⊆ X with X ′ ⊆
X ′′, ReH(X

′) ⊆ ReH(X
′′) holds, where ReH(Y ) = (Y \ ChH(Y )).

Law of aggregate demand: for anyX ′, X ′′ ⊆ X withX ′ ⊆ X ′′, |ChH(X
′)| ≤

|ChH(X
′′)|.

3 M♮-concavity and the generalized DAmech-

anism

This section introduces the concept of M♮-concavity, which imposes a re-
striction on the way that the hospitals evaluate sets of contracts. Then we
show that if the preference of the hospitals is represented as an M♮-concave
function, then a number of key conclusions in matching theory hold.

a block by a coalition that includes multiple doctors is allowed. Such a concept is identical
to our definition if the hospitals have substitutable preferences.

19As in the case of the term stability, when we explicitly consider a set of matchings
that satisfy a particular stability concept, we abuse terminology slightly by, for instance,
writing “the doctor-optimal HM-stable matching.”
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Figure 1: Concavity of a continuous-variable function

Definition 3 (M♮-concavity (Murota and Shioura, 1999)). We say that f is
M♮-concave if for all Y, Z ⊆ X and y ∈ Y \Z, there exists z ∈ (Z \Y )∪{∅}
such that f(Y ) + f(Z) ≤ f(Y − y + z) + f(Z − z + y) holds.

M♮-concavity is a discrete analogue of concavity of continuous-variable
functions. To help develop intuition of M♮-concavity, consider a continuous-
variable function g : R → R. We say g is concave if for all y, z ∈ R and λ
such that 0 ≤ λ ≤ 1, the following condition holds:

g(y) + g(z) ≤ g(y + d) + g(z − d),

where d = λ(z − y).20 Assume y < z. Then, y + d is a point reached from
y by moving d to the right, and z − d is a point reached from z by moving
d to the left (Figure 1). In a discrete domain, we can interpret Y − y + z is
a point reached from Y by moving one-step closer to Z, and Z − z + y is a
point reached from Z by moving one-step closer to Y . Thus, M♮-concavity
is a counterpart of concavity, adapted to make sense in the discrete domain.

In our context, M♮-concavity is a requirement that contracts are substi-
tutable in a particular manner. To be more precise, we can immediately
derive the following proposition.

Proposition 1. Assume f is M♮-concave. For any Y ⊊ X and z ∈ X \ Y ,
(i) ChH(Y + z) = ChH(Y ), or (ii) ChH(Y + z) = ChH(Y ) + z, or (iii)
ChH(Y + z) = ChH(Y )− y + z for some y ∈ ChH(Y ) \ ChH(Y + z).

Proof. Let Y ∗ = ChH(Y ) and Z∗ = ChH(Y + z). If z ̸∈ Z∗, since Y ∗ ⊆
Y and Z∗ ⊆ Y ⊊ Z = Y + z hold and f is unique-selecting, Y ∗ =

20This definition is equivalent to the most common definition that g(λy + (1 − λ)z) ≥
λg(y) + (1− λ)g(z) for all y, z ∈ R and λ with 0 ≤ λ ≤ 1.
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argmaxX′′⊆Y f(X ′′) = Z∗ holds. Thus, let us assume z ∈ Z∗. Since f is
M♮-concave, either (a) there exists y ∈ Y ∗ \ Z∗ such that f(Z∗) + f(Y ∗) ≤
f(Z∗−z+y)+f(Y ∗−y+z) holds, or (b) f(Z∗)+f(Y ∗) ≤ f(Z∗−z)+f(Y ∗+z)
holds. Assume (a) and Z∗ ̸= Y ∗−y+z hold. Since Z∗ = argmaxZ′⊆Y+z f(Z

′),
Y ∗ − y + z ⊆ Y + z, and f is unique-selecting, f(Z∗) > f(Y ∗ − y + z)
holds. Also, since Y ∗ = argmaxY ′⊆Y f(Y ′) and Z∗ − z + y ⊆ Y , f(Y ∗) >
f(Z∗ − z + y) holds. Thus, f(Z∗) + f(Y ∗) > f(Z∗ − z + y) + f(Y ∗ − y + z)
holds. This is a contradiction. Thus, if (a) holds, Z∗ = Y ∗ − y + z, i.e.,
ChH(Y + z) = ChH(Y ) − y + z, holds. Assume (b) and Z∗ ̸= Y ∗ + z hold.
Since Z∗ = argmaxZ′⊆Y+z f(Z

′) and Y ∗+z ⊆ Y +z, f(Z∗) > f(Y ∗+z) holds.
Also, since Y ∗ = argmaxY ′⊆Y f(Y ′) and Z∗ − z ⊆ Y , f(Y ∗) > f(Z∗ − z)
holds. Thus, f(Z∗) + f(Y ∗) > f(Z∗ − z) + f(Y ∗ + z) holds. This is a con-
tradiction. Thus, if (b) holds, Z∗ = Y ∗ + z, i.e., ChH(Y + z) = ChH(Y ) + z,
holds.

This proposition provides a specific sense in which contracts are viewed
as substitutable when the payoff function is M♮-concave. When a new con-
tract z becomes available, the new chosen set of contracts ChH(Y + z) is (i)
unchanged from the original chosen set ChH(Y ) or (ii) obtained by adding z
to ChH(Y ) or (iii) obtained by replacing exactly one contract y in ChH(Y )
with z. In particular, no contract that is not chosen from the original set is
chosen, that is, contracts are substitutable. Note also that at most one con-
tract becomes newly rejected, and that happens only when the new contract
is accepted. Therefore, from Proposition 1, we can immediately derive the
following properties.21

Corollary 1. If f is M♮-concave, then ChH satisfies substitutability, the law
of aggregate demand, and the irrelevance of rejected contracts.

The converse of Corollary 1 does not hold in general. That is, there
exists a choice function ChH such that it satisfies irrelevance of rejected
contracts, substitutabiilty, and the law aggregate demand, but there exists
no M♮-concave payoff function which represents ChH . For example, let us
assume that the preference of H on X = {a, b, c} is

{b, c} ≻H {a, b} ≻H {a, c} ≻H {a} ≻H {b} ≻H {c} ≻H ∅ ≻H {a, b, c},
21Fujishige and Tamura (2006) show that substitutability holds if f is M♮-concave and

unique-selecting. Furthermore, Murota and Yokoi (2015) show that the law of aggregate
demand holds if f is M♮-concave and unique-selecting.
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and that, for each X ′ ⊆ X, ChH(X
′) is defined as the most preferred subset

of X ′. It is easy to show that ChH satisfies irrelevance of rejected contracts,
substitutability and law of aggregate demand. Suppose that ChH is described
by a payoff function f . In this case, f must satisfy the following inequalities:

f({b, c}) > f({a, b}) > f({a, c}) > f({a}) > f({b}) > f({c}) > f(∅) = 0

and f({a, b, c}) = −∞. This function f is not M♮-concave because for Y =
{b, c}, Z = {a} and b ∈ Y \ Z, the following inequality must hold:

f({b, c}) + f({a}) > max {f({c}) + f({a, b}), f({a, c}) + f({b})} ,

which contradicts the definition of M♮-concavity.
Actually, it is possible to characterize M♮-concavity based on substi-

tutability (Farooq and Shioura, 2005; Farooq and Tamura, 2004). More
precisely, a function f : Zn → R ∪ {−∞} with a bounded effective do-
main is M♮-concave if and only if for all linear functions p : Zn → R,
f + p satisfies substitutability, where the effective domain of f is defined
by {x ∈ Zn | f(x) ̸= −∞}. Furthermore, Fujishige and Yang (2003) show
that M♮-concavity is equivalent to the gross substitutes condition due to
Kelso and Crawford (1982), as well as the single improvement property due
to Gul and Stacchetti (1999).

The generalized DA mechanism (Hatfield and Milgrom, 2005) is a gen-
eralized version of the well-known deferred acceptance algorithm (Gale and
Shapley, 1962), which is adapted for the ‘matching with contracts’ model.22

Mechanism 1 (Generalized Deferred Acceptance (DA) mechanism).
Apply the following stages from k = 1.

Stage k ≥ 1

Step 1 Each doctor offers her most preferred contract which has not been
rejected before Stage k. If no remaining contract is acceptable for d, d
does not make any offer. Let X ′ be the set of contracts that are offered
in this Step.

Step 2 The hospitals tentatively accept ChH(X
′) and reject all other con-

tracts in X ′.

22In Hatfield and Milgrom (2005), this mechanism is called generalized Gale-Shapley
algorithm.
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Step 3 If all the contracts in X ′ are tentatively accepted in Step 2, then let
X ′ be the final matching and terminate the mechanism. Otherwise, go
to Stage k + 1.

Now we are ready to show that the fact that f is M♮-concave guarantees
that the generalized DA mechanism satisfies several desirable properties. The
following lemma immediately follows from existing results in discrete convex
analysis.

Lemma 1. Suppose that the preference of the hospitals can be represented
by an M♮-concave function f . Then, the generalized DA mechanism is strat-
egyproof for doctors. Also, it always produces a stable matching, and the
obtained matching is the doctor-optimal stable matching.

Proof. By Corollary 1, if f is M♮-concave, then ChH satisfies the irrelevance
of rejected contracts, substitutability, and the law of aggregate demand. Hat-
field and Milgrom (2005) show that if ChH satisfies these three conditions,
then the generalized DA mechanism is strategyproof for doctors, and it ob-
tains the doctor-optimal stable matching.

This lemma shows that the generalized DA mechanism produces a desir-
able matching, and incentive compatibility for doctors are guaranteed. These
are the key properties emphasized in the theoretical matching literature (see
Hatfield and Milgrom (2005) for example) as well as in the literature on prac-
tical market design (see, for instance, Abdulkadiroğlu and Sönmez (2003) and
Abdulkadiroğlu, Pathak, and Roth (2009)).

Next, we show that M♮-concavity also guarantees efficient computation.

Theorem 1. Suppose that the preference of the hospitals can be represented
by an M♮-concave function f . Then, the time complexity of the generalized
DA mechanism is proportional to |X|2.

Proof. At Step 1 in Mechanism 1, the calculation of ChD is O(|X|) in to-
tal, because each (rejected) doctor selects her most preferred contract which
has not been rejected. Hence the time complexity of the generalized DA
mechanism depends on calculations of ChH . At Step 2 in Mechanism 1, we
calculate ChH(X

′) by adding newly offered contracts one by one. More pre-
cisely, we use the next relation which is guaranteed by substitutability and
irrelevance of rejected contracts,

ChH(X
′) = ChH(ChH(· · ·ChH(ChH(X

′′ + y1) + y2) + · · · ) + yk)
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where X ′′ and {y1, y2, . . . , yk} are the tentatively accepted contracts at the
previous stage (or initially X ′′ = ∅) and the newly offered contracts in X ′

at Step 1, respectively. By Proposition 1 and the fact X ′′ = ChH(X
′′),

ChH(X
′′ + y1) is determined by calculating f exactly |X ′′| + 1 times, and

hence, at most |X| times.23 In the same way as above, we can determine
ChH(X

′) by calculating f at most k · |X| times. Since each contract is
selected as a newly offered contract at most once in the generalized DA
mechanism, the calculation of ChH is O(T (f) · |X|2) in total, where T (f)
denotes the time required to calculate f . Thus, the time complexity of the
generalized DA mechanism is O(T (f) · |X|2).

This theorem shows that the desired outcome can be easily computed by
the algorithm. This property is not guaranteed for the general substitutable
preference case. While sometimes de-emphasized in the literature, we em-
phasize that efficient computability is crucial for the actual implementation
of the mechanism in practical market design.

Overall, these results suggest that the generalized DA mechanism is a
compelling mechanism if preferences and constraints can be aggregated into
an M♮-concave function. The remainder of this paper demonstrates that such
an aggregation is indeed possible in various applied environments.

4 Conditions for M♮-concavity

In this section, we investigate conditions under which payoff function f be-
comes M♮-concave. Without loss of generality, we can assume payoff function
f is represented by the summation of two parts, i.e., f(X ′) = f̂(X ′)+ f̃(X ′),

where f̂ represents hard distributional constraints for hospital-feasibility and
f̃ represents soft preferences over hospital-feasible contracts. More specifi-
cally, f̂(X ′) returns 0 if X ′ is hospital-feasible and −∞ otherwise, while

f̃(X ′) returns a bounded non-negative value.

Let dom f = dom f̂ = {X ′ | X ′ ⊆ X, f̂(X ′) ̸= −∞} be the effective do-

main of f (or equivalently f̂). In the present context, dom f represents the
family of hospital-feasible sets of contracts. In this section, we first show a

23To be more precise, ChH(X ′′ + y1) is either X ′′, X ′′ + y1, or X ′′ − x + y1, where
x ∈ X ′′. Thus, to obtain ChH(X ′′ + y1), it is sufficient to apply f to these |X ′′| + 1
candidates and to choose the one that maximizes f , because f(X ′′) has been calculated
at the previous stage.
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necessary condition on f̂ , namely, the effective domain of f̂ (or equivalently
f) must constitute a mathematical structure called matroid. Next, we iden-
tify three sufficient conditions so that f becomes M♮-concave, assuming the
effective domain of f̂ constitutes a matroid.

Let us first introduce the concept of matroid (Oxley, 2011).

Definition 4 (matroid). LetX be a finite set, and F be a family of subsets of
X. We say a pair (X,F) is a matroid if it satisfies the following conditions.

1. ∅ ∈ F .

2. If X ′ ∈ F and X ′′ ⊆ X ′, then X ′′ ∈ F holds.

3. If X ′, X ′′ ∈ F and |X ′| > |X ′′|, then there exists x ∈ X ′ \X ′′ such that
X ′′ + x ∈ F .

The term “matroid” is created from “matrix” and “-oid”, i.e., a matroid is
something similar to a matrix, and the concept of a matroid is an abstraction
of some properties of matrices. To get an idea, suppose that A is a matrix
and X is the set of column vectors of A. Let us assume F is a family of
subsets of X, such that for each X ′ ∈ F , all column vectors in X ′ are linearly
independent. It is clear that conditions 1 and 2 of the above definition hold.
Also, if X ′ has more elements than X ′′, we can always choose x ∈ X ′ \ X ′′

such that X ′′+x becomes linearly independent. Therefore condition 3 is also
satisfied, which shows that (X,F) in this example is a matroid.

The concept of matroid has been utilized in matching theory. For exam-
ple, Roth, Sönmez, and Ünver (2005) show that the sets of simultaneously
matchable patients induces a matroid. As we will see in this paper, matroids
play an essential role in our analysis of matching under constraints.

Now we are ready to present one of the connections between matroids
and our theory of matching with constraints. The following lemma holds.

Lemma 2. Under the assumption ∅ ∈ dom f̂ , f̂ is M♮-concave if and only if
(X, dom f̂) is a matroid.24

Intuitively, if any of the matroid conditions is violated, we can create a
situation where f̂(X ′) = f̂(X ′′) = 0, but either f̂(X ′−x+y) or f̂(X ′′+x−y)
becomes −∞ for some X ′, X ′′, x ∈ X ′ \X ′′, and y ∈ X ′′ \X ′ ∪ {∅}.

24Murota and Shioura (1999) show that the effective domain dom f of an M♮-concave
function f : Zn → R ∪ {−∞} forms a generalized polymatroid. The “only if” part of
Lemma 2 is a special case of this result.
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This lemma suggests that the matroid structure plays an important role
in our analysis. In particular, it is easy to see that the “only if” part implies
that a matroid structure is needed in order for the function f = f̂ + f̃ to be
M♮concave. This means that, in order to utilize the theory of M♮-concavity
in our analysis of matching with constraints, it is necessary for the sets of
hospital-feasible contracts to constitute a matroid.

Now that we have found the necessity of a matroid structure for our
analysis, let us turn to sufficient conditions. More specifically, we assume
that (X, dom f) = (X, dom f̂) is a matroid and examine conditions on f̃ ,

i.e., the soft preference of the hospitals, for guaranteeing that f = f̂ + f̃ is
M♮-concave. This task would have been easy if the sum of two M♮-concave
functions were always M♮-concave, since the hard constraint part f̂ is M♮-
concave if dom f̂ is a matroid (Lemma 2). However, the following example
demonstrates that the sum of two M♮-concave functions is not guaranteed to
be M♮-concave.

Example 1. Assume X = {x1, x2, x3}. f1(X ′) is 0 if either X ′ ⊆ {x1, x2} or
X ′ ⊆ {x1, x3}, and otherwise, −∞. f2(X

′) is 0 if eitherX ′ ⊆ {x2, x3} orX ′ ⊆
{x1, x3}, and otherwise, −∞. Since (X, dom f1) and (X, dom f2) are ma-
troids, both f1 and f2 are M

♮-concave from Lemma 2. However, f = f1+f2 is
not M♮-concave, since (X, dom f), where dom f = {∅, {x1}, {x2}, {x3}, {x1, x3}},
is not a matroid. To see this, observe that when X ′ = {x1, x3}, X ′′ = {x2},
we have X ′, X ′′ ∈ dom f and |X ′| > |X ′′|, but there exists no x ∈ X ′ \ X ′′

such that X ′′ + x ∈ dom f holds (note that if f2 has some special form,
e.g., f2(X

′) is of the form
∑

x∈X′ v(x), we can guarantee that f = f1 + f2 is
M♮-concave as long as f1 is M♮-concave, as shown in Condition 1).

The above example shows the mere fact that both f̂ and f̃ are M♮-concave
is not sufficient for guaranteeing M♮-concavity of f = f̂ + f̃ . Nevertheless,
we demonstrate that a number of simple sufficient conditions exist when
the hard constraint part induces a matroid. More specifically, we assume
(X, dom f̂) constitutes a matroid, and introduce three sufficient conditions

to guarantee that f is M♮-concave: (1) f̃ is a sum of contract values, (2) f̂ is

symmetric for groups G and f̃ is order-respecting for G, and (3) (X, dom f̂)

is a structure called a laminar matroid on a laminar family and f̃ is a laminar
concave function on it. If one of these conditions hold, from Lemma 1 and
Theorem 1, we obtain: (i) the generalized DA mechanism is strategyproof
for doctors, (ii) it produces the doctor-optimal stable matching, and (iii) its
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time complexity is proportional to |X|2. As will be seen in Section 5 and the
online appendix, most stability concepts in existing works can be understood
as stability with respect to one of these M♮-concave functions.

Let us introduce the first condition, which provides a simple but very
general method for obtaining an M♮-concave function.

Definition 5 (sum of contract values). We say f̃ is a sum of contract

values if f̃(X ′) =
∑

x∈X′ v(x), where v : X → (0,∞) is a function such that
x ̸= x′ implies v(x) ̸= v(x′).

As indicated by the name, function f̃ in this definition is written as a
sum of values of individual contracts, where v(x) is interpreted as the value
of contract x. Note that we assume each value is positive, and different
contracts are assigned different values.

Now we are ready to present our first condition.

Condition 1. Assume (X, dom f̂) is a matroid (or equivalently, f̂ is M♮-

concave and ∅ ∈ dom f̂) and f̃(X ′) is a sum of contract values, then f = f̂+f̃
is M♮-concave.

Proof. Let us assume f̃(X ′) is represented as
∑

x∈X′ v(x). Since f̂ is M♮-
concave, for any Z, Y ⊆ X, for any y ∈ Y \Z, there exists z ∈ (Z \ Y )∪ {∅}
such that f̂(Y )+f̂(Z) ≤ f̂(Y −y+z)+f̂(Z−z+y) holds. On the other hand,
we have

∑
x∈Y−y+z v(x) +

∑
x∈Z−z+y v(x) =

∑
x∈Y v(x) +

∑
x∈Z v(x). Thus,

f(Y ) + f(Z) ≤ f(Y − y + z) + f(Z − z + y) holds, so f is M♮-concave.

This class of functions is equivalent to the class of weighted matroids (Ed-
monds, 1971). Ostrovsky and Paes Leme (2015) show that a weighted ma-
troid satisfies the gross substitute condition.

The second sufficient condition for M♮-concavity is based on an idea of
grouping contracts. We begin by formally introducing the concept of a group
of contracts.

Definition 6 (group of contracts). Let G = {g1, . . . , gn} be a partition of
X, i.e., g ∩ g′ = ∅ for any g, g′ ∈ G with g ̸= g′ and

∪
g∈G g = X. We refer

to each element g of G as a group of contracts (or simply a group) in G,
and G as groups.

One division of contracts into groups that we use in this paper is based
on hospitals, that is, we let each gi represent the set of contracts related to
hospital hi.
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Kamada and Kojima (2014) introduce a concept called an order-respecting
preferences, which models a variety of preferences of the hospitals. Using the
concept of groups of contracts, we now introduce a class of payoff functions
that represent this class of preferences.

Definition 7 (order-respecting payoff function). For groups G, an order-

respecting payoff function f̃ is given as follows:

f̃(X ′) =
∑
g∈G

Vg(|X ′ ∩ g|) +
∑
x∈X′

v(x),

where v : X → (0,∞) is a function such that x ̸= x′ implies v(x) ̸= v(x′),
and Vg : Z+ → (0,∞) is a concave function.

Now, we introduce a further condition on a matroid so that f̂+ f̃ becomes
M♮-concave, when f̃ is an order-respecting payoff function.

Definition 8 (symmetry of groups). Let (X,F) be a matroid and G be a
partition of X. We say that G is symmetric in (X,F) if for all g ∈ G, for
all x, x′ ∈ g, and for all X ′ ⊊ X such that {x, x′} ∩ X ′ = ∅, X ′ + x ∈ F if
and only if X ′ + x′ ∈ F holds.

Now, we are ready to define our second condition.

Condition 2. If (X, dom f̂) is a matroid, G is symmetric in (X, dom f̂), and

f̃ is an order-respecting payoff function for G, then f = f̂ + f̃ is M♮-concave.

Finally, we introduce the third sufficient condition. The crucial concept
we use is the laminar family defined below.

Definition 9 (laminar family). T is a laminar family of subsets of X if
for any Y, Z ∈ T , one of the following conditions holds:

1. Y ∩ Z = ∅,

2. Y ⊆ Z, or

3. Z ⊆ Y .

We say f(X ′) =
∑

T∈T fT (|X ′ ∩ T |) is a laminar concave function if T is
a laminar family and each fT is a univariate concave function.
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In words, a family of sets T is said to be a laminar family if it has a
structure that can be described as layers or a hierarchy. More specifically,
for any pair of sets in this family, either they are disjoint from each other or
one of them is a subset of the other. Laminar families have been used for
mechanism design in two-sided matching (Biro, Fleiner, Irving, and Manlove,
2010; Kamada and Kojima, 2017a), indivisible object allocation (Budish,
Che, Kojima, and Milgrom, 2013), and auction (Milgrom, 2009).

A laminar family of subsets of contracts naturally induces a matroid, a
structure we call a laminar matroid, as defined below.

Definition 10 (laminar matroid). We say (X,F) is a laminar matroid on
a laminar family T if it is constructed as follows:

• For each T ∈ T , a positive integer qT is given.

• F is defined as {X ′ ⊆ X | |X ′ ∩ T | ≤ qT (∀T ∈ T )}.

To show a laminar matroid is a matroid, let us introduce a simple matroid
and methods for creating new matroids. (X,F) is said to be a uniform
matroid if F = {X ′ | X ′ ⊆ X, |X ′| ≤ k} for some non-negative integer k.

For a set of matroids (X1,F1), . . . , (Xk,Fk), where each Xi is disjoint,
their direct sum is defined as (X,F), where X =

∪
1≤i≤k Xi, F = {X ′ |

X ′ =
∪

1≤i≤k X
′
i, where X ′

i ∈ Fi}. Assume (X,F) is a matroid and k is a

non-negative integer. Then, its k-truncation is defined as (X, F̃), where
F̃ = {X ′ ∈ F | |X ′| ≤ k}.

It is obvious that conditions 1 and 2 of a matroid hold in the above three
cases. For a uniform matroid, if X ′, X ′′ ∈ F and |X ′| > |X ′′| hold, then for
any x ∈ X ′ \X ′′, it follows that |X ′′ + x| ≤ |X ′| ≤ k, so X ′′ + x ∈ F holds.
Thus, a uniform matroid is a matroid. For a direct sum, if X ′, X ′′ ∈ F and
|X ′| > |X ′′|, then for some i, |X ′ ∩Xi| > |X ′′ ∩Xi| holds. By this and the
assumption that (Xi,Fi) is a matroid, there exists x ∈ (X ′ ∩Xi) \ (X ′′ ∩Xi)
such that (X ′′ ∩Xi) + x ∈ Fi holds. Therefore X ′′ + x ∈ F holds, showing
that a directed sum of matroids is a matroid. Finally, for k-truncation, if
X ′, X ′′ ∈ F̃ and |X ′| > |X ′′|, then there always exists x ∈ X ′ \X ′′ such that
X ′′+x ∈ F , since X ′, X ′′ ∈ F holds. Since we also have |X ′′+x| ≤ |X ′| ≤ k,
it follows that X ′′ + x ∈ F̃ . Thus, a k-truncation of a matroid is a matroid.

A laminar matroid is a matroid, since it is obtained from uniform matroids
by repeatedly taking directed sums and truncations. With this concept at
hand, we are ready to state the last sufficient condition.
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Condition 3. Assume (X, dom f̂) is a laminar matroid on a laminar family

T , and f̃ is a laminar concave function on T , then f = f̂ + f̃ is M♮-concave.

5 Applications

As emphasized in Introduction, one of the main motivations of our work is to
provide an easy-to-use recipe, or a toolkit, for organizing matching mecha-
nisms under constraints. To demonstrate the effectiveness our recipe/toolkit,
we examine numerous applications of our method to two-sided, many-to-one
matching problems. Specifically, this section presents one existing appli-
cation (regional maximum quotas) as well as one new application (distance
constraints), while relegating many others to the online appendix.25 We show
that the sufficient conditions described in Section 4 hold in these cases. For
existing applications, these findings allow us to reproduce key results and,
for some applications, show stronger results.

Before describing how to apply our framework to particular applications,
let us summarize our recipe. Consider a mechanism designer who is faced
with a matching problem with constraints, and imagine that she has some
initial ideas on what hard distributional constraints exist and what kind
of stability properties are desired. We suggest the mechanism designer to
perform the following two steps.

1. Check whether (X,F), where F is the family of hospital-feasible sets
of contracts, is a matroid. If not, modify distributional constraints so
that (X,F) becomes a matroid.

2. Compose f̃ , which reflects stability, such that it satisfies one of the suffi-
cient conditions described in this paper. Modify the stability definition
as necessary, by adding more desirable properties, relaxing excessively
demanding requirements, or simply introducing tie-breaking.

25Specifically, the online appendix examines the following existing applications: the stan-
dard model without distributional constraints (Gale and Shapley, 1962), matching markets
with regional minimum quotas (Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo,
2016), diversity requirements in school choice (Ehlers, Hafalir, Yenmez, and Yildirim,
2014), the student-project allocation problem (Abraham, Irving, and Manlove, 2007), and
the cadet-branch matching problem(Sönmez and Switzer, 2013). It also studies a new
application where there are regional maximum quotas and regionally prioritized doctors.

22



If these two steps are successful, the job of the mechanism designer is done,
because she can use an off-the-shelf mechanism, i.e., the generalized DA
mechanism. More specifically, our analysis from the preceding sections guar-
antees that the generalized DA mechanism satisfies desirable properties. The
cases we discuss in this section illustrate how the above recipe works. Fur-
thermore, in Section 6, we discuss how to modify constraints and stability
definitions when applying this recipe.

The advantages of using this recipe over using other general frameworks
(e.g., Hatfield and Milgrom (2005), Hatfield and Kojima (2009, 2010)) are as
follows. To use our recipe, basically all one needs to show is that the given
hard distributional constraints produce a matroid, since the requirements
over soft preferences are usually elementary as described in Conditions 1–3.
There exists a vast literature on matroid theory, and what kinds of constraints
produce a matroid is well-understood. Therefore, it usually suffices to show
that the hard distributional constraints can be mapped into existing results
in matroid theory. Furthermore, by using our recipe, the time complexity of
the generalized DA mechanism is guaranteed to be polynomial.

5.1 Regional maximum quotas (Goto, Iwasaki, Kawasaki,
Yasuda, and Yokoo, 2014; Kamada and Kojima,
2015)

5.1.1 Model

A market is a tuple (D,H,X,R, (≻d)d∈D, (≻h)h∈H , (qh)h∈H , (qr)r∈R). D is a
finite set of doctors and H is a finite set of hospitals. X is a finite set of
contracts. A contract x ∈ X is a pair (d, h), which represents a matching
between doctor d and hospital h. (≻d)d∈D is a profile of doctors’ preferences,
i.e., each ≻d represents the strict preference of each doctor d over acceptable
contracts in Xd = {(d, h) ∈ X | h ∈ H}. (≻h)h∈H is a profile of hospitals’
preferences, i.e., each ≻h represents the preference of each hospital h over the
contracts that are related to it. (qh)h∈H is a profile of hospitals’ maximum
quotas, i.e., each qh represents the maximum quota of hospital h. We assume
hospitals are grouped into regions R = {r1, . . . , rn}, where each region r is a
subset of hospitals. (qr)r∈R is a profile of regional maximum quotas, i.e., each
qr represents the regional maximum quota of r. We assume each hospital h
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is included in exactly one region, that is, regions partition H.26

5.1.2 Feasibility

For each r ∈ R, let X ′
r denote

∪
h∈r X

′
h. We say X ′ is hospital-feasible if

|X ′
h| ≤ qh for all h ∈ H, and |X ′

r| ≤ qr for all r ∈ R. We say X ′ ⊆ X is
doctor-feasible if X ′

d is acceptable for all d. Then, we say X ′ is feasible if it
is doctor- and hospital-feasible.

5.1.3 Stability

First, let us define the concept of a blocking pair.

Definition 11. For a matching X ′, we say (d, h) ∈ X \ X ′ is a blocking
pair if (i) (d, h) is acceptable for d and (d, h) ≻d X

′
d, and (ii) either |X ′

h| < qh
or there exists (d′, h) ∈ X ′ such that (d, h) ≻h (d′, h).27

We say a matching X ′ is strongly stable (Kamada and Kojima, 2017b)
if the following condition holds: if (d, h), where h ∈ r, is a blocking pair
(Definition 11) then (i) |X ′

r| = qr, (ii) (d′, h) ≻h (d, h) for all (d′, h) ∈ X ′
h,

and (iii) if (d, h′) ∈ X ′, then h′ ̸∈ r. In words, a matching is strongly stable if
satisfying the desire of a blocking pair by matching them results in a violation
of a regional maximum quota. To be more precise, assume (d, h) is a blocking
pair. Then, if (d, h′) ∈ X ′, then h′ ̸∈ r (condition (iii)). Moreover, moving d
to h necessarily involves filling a vacant seat at h because no existing doctor
at h is less preferred to d (condition (ii)). Thus, if we move d to h from
her current match (which can be h′ or the option of being unmatched), the
regional maximum quota of r is violated since |X ′

r| is already qr (condition
(i)).

A strongly stable matching does not necessarily exist (Kamada and Ko-
jima, 2017b). Thus, we need to consider a weaker definition of stability in
order to guarantee the existence. Kamada and Kojima (2015) introduce a
weaker stability concept, which we call Kamada-Kojima (KK)-stability. We

26Kamada and Kojima (2017a) consider a more general case where regions are hierar-
chical. We can generalize our results to such a case by utilizing the fact that contracts
related to each region form a laminar family.

27Note that we denote X ′
d ≻d X ′′

d if either (i) X ′
d = {x′}, X ′′

d = {x′′}, and x′ ≻d x′′ for
some x′, x′′ ∈ Xd that are acceptable for d, or (ii) X ′

d = {x′} for some x′ ∈ Xd that is
acceptable for d and X ′′

d = ∅.
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say a matching X ′ is KK-stable if the following condition holds: if (d, h),
where h ∈ r, is a blocking pair then (i) |X ′

r| = qr, (ii) (d
′, h) ≻h (d, h) for all

(d′, h) ∈ X ′
h, and (iii) if (d, h′) ∈ X ′, then either h′ ̸∈ r or |X ′

h′ | − |X ′
h| ≤ 1.

The second part of condition (iii) accounts for the difference between KK-
stability and strong stability; (d, h) is not regarded as a legitimate blocking
pair if h and h′ are in the same region and moving d from h′ to h does not
strictly decrease the imbalance of doctors between these hospitals.

Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014) assume there exists a
total preference ordering ≻H over X, i.e., x1 ≻H x2 ≻H x3 ≻H . . .. Here, we
assume ≻H respects each ≻h, i.e., if (d, h) ≻h (d′, h), then (d, h) ≻H (d′, h)
holds. Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014) introduce a
weaker stability concept than strong stability based on this ordering, which
we call contract-order-stability.28 We say a matching X ′ is contract-order-
stable (Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo, 2014) if the following
condition holds: if (d, h), where h ∈ r, is a blocking pair then (i) |X ′

r| = qr
and (ii) (d′, h′) ≻H (d, h) for all h′ ∈ r and (d′, h′) ∈ X ′

h′ . We note that the
condition (ii) includes the cases where d′ = d or h′ = h. When d = d′, the
condition (ii) means that (d, h) is not regarded as a legitimate blocking pair
when the hospitals prefer (d, h′) to (d, h).

5.1.4 Mechanism

Fix a round-robin ordering among hospitals; without loss of generality, de-
note it as h1, h2, . . . h|H|. Kamada and Kojima (2015) present a mechanism
called the Flexible Deferred Acceptance (FDA) mechanism, which utilizes
this ordering. Roughly speaking, the FDA mechanism allows each hospital
to sequentially accept one contract at a time according to the given round-
robin ordering, subject to regional maximum quotas. Formally, the FDA
mechanism is defined as follows.29

Mechanism 2 (FDA).
Apply the following stages from k = 1.

28A contract-order stable matching is identical to a regionally fair and regionally non-
wasteful matching defined in Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014).

29To be more precise, Kamada and Kojima (2015) allow a target capacity for each
hospital such that each hospital gets priority in accepting doctors up to its target capacity.
For simplicity, here we consider a case where these target capacities are identical for all
hospitals that belong to the same region, but allowing for more general target capacities
is straightforward.
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Stage k ≥ 1

Step 1 Each doctor applies to her most preferred hospital by which she has
not been rejected before Stage k. If no remaining hospital is acceptable
for d, d does not apply to any hospital. Reset X ′ as ∅.

Step 2 For each r, iterate the following procedure until all doctors applying
to hospitals in r are either tentatively accepted or rejected:

1. Choose the hospital with the smallest index in the region first, the
hospital with the second-smallest index second, and so forth and,
after the last hospital, go back to the first hospital.

2. Choose doctor d who is applying to h and is not tentatively ac-
cepted or rejected yet, and is the most preferred according to ≻h

among the current applicants. If there exists no such doctor, then
go to the procedure for the next hospital.

3. If |X ′
h| < qh and |X ′

r| < qr, d is tentatively accepted by h and (d, h)
is added to X ′. Then go to the procedure for the next hospital.

4. Otherwise, d is rejected by h. Then go to the procedure for the
next hospital.

Step 3 If all the doctors are tentatively accepted in Step 2, then let X ′ be
the final matching and terminate the mechanism. Otherwise, go to
Stage k + 1.

Kamada and Kojima (2015) show that the FDA mechanism is strate-
gyproof for doctors and obtains a KK-stable matching.

Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014) introduce a different
mechanism, called Priority-List based Deferred Acceptance (PLDA) mecha-
nism, which utilizes the total preference ordering ≻H . Formally, the PLDA
mechanism is defined as follows.

Mechanism 3 (PLDA).
Apply the following stages from k = 1.

Stage k ≥ 1

Step 1 Each doctor applies to her most preferred hospital by which she has
not been rejected before Stage k. If no remaining hospital is acceptable
for d, d does not apply to any hospital. Reset X ′ as ∅.

26



Step 2 For each r, iterate the following procedure until all doctors applying
to hospitals in r are either tentatively accepted or rejected:

1. Choose (d, h), where d is applying to h, d is not tentatively ac-
cepted or rejected yet, and (d, h) has the highest priority according
to ≻H among the current applicants to hospitals in r.

2. If |X ′
h| < qh and |X ′

r| < qr, d is tentatively accepted by h and
(d, h) is added to X ′. Then go to the procedure for the next pair.

3. Otherwise, d is rejected by h. Then go to the procedure for the
next pair.

Step 3 If all the doctors who make applications in this stage are tentatively
accepted in Step 2, then let X ′ be the final matching and terminate
the mechanism. Otherwise, go to Stage k + 1.

Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014) show that the PLDA
mechanism is strategyproof for doctors and obtains a contract-order-stable
matching.

5.1.5 Representation in our model

Let us define f̂(X ′) as 0 if X ′ is hospital-feasible, i.e., |X ′
h| ≤ qh for all h and

|X ′
r| ≤ qr for all r, and otherwise, −∞. Then, (X, dom f̂) is a laminar ma-

troid, since T = {Xr1 , Xr2 , . . . , Xrn , Xh1 , Xh2 , . . . , Xh|H|} is a laminar family
of X.

First, we study KK-stability. As in Kamada and Kojima (2015), fix a
round-robin ordering over hospitals, h1, h2, . . . , h|H|. Let vhi

(j) denote the
value associated with the j-th choice of hospital hi. Then, define vhi

(j) as
C(C−|H|·j−i) where C is a large positive constant. Let Vh(k) :=

∑k
j=1 vh(j).

It is clear that Vh is concave. Then, define f̃(X ′) as follows:

f̃(X ′) =
∑
h∈H

Vh(|X ′
h|) +

∑
x∈X′

v(x), (1)

where v(·) is a function representing contract values as in Definition 5 (where,
for each h, v((d, h)) > v((d′, h)) if and only if (d, h) ≻h (d′, h)), and C ≫ v(x)
for all x ∈ X. By choosing G as {Xh1 , Xh2 , . . . , Xh|H|}, it is clear that G is

symmetric in (X, dom f̂) and f̃ defined by equation (1) is an order-respecting
payoff function for G. Thus, we can apply Condition 2.
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The FDA mechanism is identical to the generalized DA mechanism where
ChH is defined as the maximizer of function f defined above.

The following proposition holds.

Proposition 2. HM-stability (based on f̃ in equation (1)) implies KK-stability.

Proof. To show that HM-stability implies KK-stability, assume X ′ is not
KK-stable, i.e., there exists a blocking pair (d, h), where h ∈ r and (i)
|X ′

r| < qr, or (ii) there exists (d′, h) ∈ X ′
h such that (d, h) ≻h (d′, h)

holds, or (iii) there exists (d, h′) ∈ X ′, where h′ ∈ r and |X ′
h′| − |X ′

h| > 1
holds. In any of these cases, clearly (d, h) ∈ ChD(X

′ + (d, h)). In case
(i), obviously (d, h) ∈ argmaxX′′⊆X′+(d,h) f(X

′′) because adding (d, h) to X ′

does not violate the regional maximum quota for f . In case (ii), (d, h) ∈
argmaxX′′⊆X′+(d,h) f(X

′′) because adding (d, h) and subtracting (d′, h) ∈ X ′
h

such that (d, h) ≻h (d′, h) from X ′, the resulting matching does not violate
the regional maximum quota for r. In case (iii), by the construction of f ,
(d, h) ∈ argmaxX′′⊆X′+(d,h) f(X

′′). Thus, for each of the cases (i)–(iii), it
follows that (d, h) ∈ ChH(X

′ + (d, h)), which implies X ′ is not HM-stable.
Thus, HM-stability implies KK-stability.

We note that KK-stability does not imply HM-stability. To see this, let
us consider the following case. There are two hospitals h1 and h2, both of
them belong to region r, and qr = 1. There are two doctors d1 and d2. We
assume h1 ≻d1 h2, h2 ≻d2 h1, d1 ≻h1 d2, and d2 ≻h2 d1 hold. The round-
robin ordering over hospitals is defined as h1, h2. X ′ = {(d2, h2)} is clearly
KK-stable, but it is not HM-stable since (d1, h1) ∈ ChD(X

′ + (d1, h1)) and
(d1, h1) ∈ ChH(X

′ + (d1, h1)) hold.
The FDA (and the generalized DA) mechanism is not guaranteed to ob-

tain the doctor-optimal KK-stable matching. In fact, there is a case where
the doctor-optimal KK-stable matching does not even exist. Note that the
main focus of Kamada and Kojima (2015) is two-sided matching such as la-
bor market matching, so optimality for one side of the market is not the main
requirement. Note also that, despite the fact that the FDA (and hence the
generalized DA) mechanism does not lead to doctor-optimality, the mecha-
nism is still strategyproof for doctors.

Alternatively, we can define f̃(X ′) as C1·|X ′|−
∑

h∈H C2·|X ′
h|2+

∑
h∈H Ch·

|X ′
h|+

∑
x∈X′ v(x), where C1 ≫ C2 ≫ Ch ≫ v(x) for all h and x, and Ch1 ≫

Ch2 ≫ . . .. This is a laminar concave function onX∪{Xr1 , Xr2 , . . . , Xrn , Xh1 ,
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Xh2 , . . . , Xh|H|}. Thus, we can apply Condition 3. It is clear that Proposi-

tion 2 still holds when f̃ is defined in this way.
Next, we study contract-order-stability. As in Goto, Iwasaki, Kawasaki,

Yasuda, and Yokoo (2014), let us assume there exists a total preference
ordering ≻H over X, i.e., x1 ≻H x2 ≻H x3 ≻H . . .. Then assume a positive
value v(x) for each x is defined with the property that v(x) > v(x′) when

x ≻H x′. Let us assume f̃(X ′) is given as follows:

f̃(X ′) =
∑
x∈X′

v(x). (2)

Thus, we can apply Condition 1. The PLDA mechanism is identical to the
generalized DA mechanism where ChH is defined by the maximizer of this
function f .

The following proposition holds.

Proposition 3. HM-stability (based on f̃ in equation (2)) is equivalent to
contract-order-stability.

Proof. Assume X ′ is not contract-order-stable, i.e., there exists a blocking
pair (d, h), where h ∈ r and either (i) |X ′

r| < qr or (ii) there exists (d
′, h′) ∈ X ′

such that h′ ∈ r and (d, h) ≻H (d′, h′) hold. In either case, (d, h) ∈ ChD(X
′+

(d, h)) and (d, h) ∈ ChH(X
′ + (d, h)) hold.

If X ′ is contract-order-stable, then the first condition for HM-stability,
namely X ′ = ChH(X

′) = ChD(X
′), is obvious. Assume there exists (d, h) ∈

X \ X ′ such that (d, h) ∈ ChD(X
′ + (d, h)) and (d, h) ∈ ChH(X

′ + (d, h))
hold. Then, it is clear that (d, h) is a blocking pair, and either (i) |X ′

r| < qr
or (ii) there exists (d′, h′) ∈ X ′ such that h′ ∈ r and (d, h) ≻H (d′, h′) hold.
Thus, X ′ is not contract-order-stable.

From Proposition 3, we can guarantee that the generalized DA mechanism
obtains the doctor-optimal contract-order-stable matching, so the generalized
DA mechanism and the PLDA mechanism obtain the same outcome. Note
that this fact can be derived without checking whether these two mechanisms
behave exactly in the same way.

5.2 Distance constraints

In this subsection, we investigate a new application domain, where hospital-
feasibility is defined based on the distance from an ideal distribution. For
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example, assume |D|/|H| = k, and a set of contracts that allocates exactly k
doctors to each hospital is regarded as ideal, but for a set of contracts X ′, as
long as its distribution is close enough to this ideal distribution, then X ′ is
regarded as hospital-feasible. We call such constraints distance constraints.
Although such a constraint seems to be natural, to our knowledge, distance
constraints have never been studied before.

The closest to our model is Echenique and Yenmez (2015) who analyze
a choice function of a school that chooses a subset of students that gives a
distribution of students of different types closest to a given ideal distribution.
Their model is different from ours in a number of ways, however. First, they
consider a choice function of a single school, whereas our model is concerned
about distributional constraints of multiple hospitals/schools. Second, the
metrics used in their paper and ours are different. Lastly, and perhaps most
importantly, Echenique and Yenmez (2015) provide a choice function that
minimizes the distance from an ideal point while our feasibility constraint
only requires the distance to be at most a given amount. Given these dif-
ferences, there is no logical relationship, and the connection appears to be
tangential at best. We show a more formal discussion on Echenique and Yen-
mez (2015) in the end of this subsection. Erdil and Kumano (2012) propose
a preference class of one school called substitutable priorities with ties and
show that a preference that is similar to Echenique and Yenmez (2015) can
be represented as an instance of this preference class. The preference of the
hospitals in our model is not an instance of this preference class, since the
former is concerned about distributional constraints over contracts, which
can be related to multiple hospitals.

5.2.1 Model and desirable properties

A market is a tuple (D,H,X, (≻d)d∈D, (≻h)h∈H , (qh)h∈H , ξ
∗, δ, ϵ). The defini-

tions of D,H,X, ≻d,≻h, and (qh)h∈H are identical to those in Section 5.1.
We assume each doctor can accept any hospital and each hospital can ac-
cept any doctor. Thus, X = D × H. For notation simplicity, let us denote
|H| = m and |D| = n, and M = {1, 2, . . . ,m}. ξ∗ ∈ (Z+)m is a given vector,
which is interpreted as the ideal distribution of doctors across the hospitals.
We assume

∑
i∈M ξ∗i = n and ξ∗i ≤ qhi

holds for all i ∈ M , i.e., the ideal
distribution satisfies maximum quotas. δ : (Z+)

m × (Z+)
m → R+ is a dis-

tance function, which returns the distance between two vectors. We consider
two representative distance functions: (i) the Manhattan distance (or L1 dis-
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tance), which is defined as δ(ξ, ξ′) =
∑

i∈M |ξi − ξ′i|, and (ii) the Chebyshev
distance (or L∞ distance), which is defined as δ(ξ, ξ′) = maxi∈M |ξi − ξ′i|.
ϵ ≥ 0 represents the maximal allowed distance.

For a set of contracts X ′, let ξ(X ′) denote a vector of m non-negative
integers (|X ′

h1
|, |X ′

h2
|, . . . , |X ′

hm
|). Also, let ξh(X

′) denote |X ′
h|. The value

ξ(X ′) describes how doctors are distributed among hospitals at X ′.
We say X ′ is hospital-feasible if the following conditions hold:

(i) |X ′| = n,

(ii) |X ′
h| ≤ qh for all h ∈ H, and

(iii) δ(ξ(X ′), ξ∗) ≤ ϵ.

At a matching X ′, a doctor d where (d, h) ∈ X ′ has a justified envy to-
wards another doctor d′ where (d′, h′) ∈ X ′, if (d, h′) ≻d (d, h) and (d, h′) ≻h′

(d′, h′) hold. We say a matching is fair if no doctor has justified envy.
At a matching X ′, a doctor d where (d, h) ∈ X ′ claims an empty seat

of h′ if the following conditions hold: (i) (d, h′) ≻d (d, h), and (ii) X ′′ =
X ′ − (d, h) + (d, h′) is hospital-feasible. We say a matching is nonwasteful
if no doctor claims an empty seat.

In general, fairness and nonwastefulness are incompatible, i.e., there exists
a case where no matching is fair and nonwasteful. To see this point, let us
consider the following example. There are six doctors d1, . . . , d6 and three
hospitals h1, h2, and h3, where qh = 3 for all h ∈ H. The ideal distribution
is ξ∗ = (2, 2, 2), δ is the Manhattan distance, and ϵ = 2.

The preferences of doctors are given as follows:

• (d1, h2) ≻d1 (d1, h3) ≻d1 (d1, h1),

• (d2, h3) ≻d2 (d2, h2) ≻d2 (d2, h1),

• (d3, h2) ≻d3 (d3, h3) ≻d3 (d3, h1),

• (d4, h2) ≻d4 (d4, h3) ≻d4 (d4, h1),

• (d5, h3) ≻d5 (d5, h2) ≻d5 (d5, h1),

• (d6, h3) ≻d6 (d6, h2) ≻d6 (d6, h1).

The preferences of hospitals are given as follows:
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• (d1, h1) ≻h1 (d2, h1) ≻h1 (d3, h1) ≻h1 (d4, h1) ≻h1 (d5, h1) ≻h1 (d6, h1),

• (d3, h2) ≻h2 (d4, h2) ≻h2 (d2, h2) ≻h2 (d1, h2) ≻h2 (d5, h2) ≻h2 (d6, h2),

• (d5, h3) ≻h3 (d6, h3) ≻h3 (d1, h3) ≻h3 (d2, h3) ≻h3 (d3, h3) ≻h3 (d4, h3).

Assume X ′ is fair and nonwasteful. Since ϵ = 2, at least one doctor must
be assigned to each hospital. Note that h1 is the least preferred hospital for
all doctors. Thus, only one doctor can be assigned to h1 because, otherwise,
any doctor assigned to h1 claims an empty seat of either h2 or h3. Then,
remaining five doctors must be assigned to h2 and h3. Since the maximum
quota of each hospital is three, at least two doctors must be assigned to h2

and h3. Since (d3, h2) is the most preferred contract for both d3 and h2, it
must be included in X ′ (otherwise, d3 has justified envy). Also, (d5, h3) is
the most preferred contract for both d5 and h3, so it must be included in X ′.
Furthermore, since h2 accepts at least two doctors, (d4, h2) must be included
in X ′, since it is the most preferred contract for d4 and the second most
preferred contract for h2. Similarly, (d6, h3) must be included in X ′. Then,
either d1 or d2 must be assigned to h1. Assume d1 is assigned to h1. Then, X

′

must assign d2 to her most preferred hospital h3 because, otherwise, d2 will
claim an empty seat of h3. However, this implies that d1 has justified envy
towards d2, since (d1, h3) ≻h3 (d2, h3) holds. Then, assume d2 is assigned
to h1. Then, X ′ must assign d1 to her most preferred hospital h2 because,
otherwise, d1 will claim an empty seat of h2. However, this implies that d2
has justified envy towards d1, since (d2, h2) ≻h2 (d1, h2) holds.

Since fairness and nonwastefulness are incompatible in general, let us
introduce weaker requirements related to nonwastefulness.

As in Section 5.1, let us assume the hospitals have a strict preference
≻H over contracts X. We assume (d, h) ≻h (d′, h) implies (d, h) ≻H (d′, h),
i.e., ≻H respects each ≻h. Then, at a matching X ′, we say a doctor d
where (d, h) ∈ X ′ strongly claims an empty seat of h′ based on a
contract order if the following conditions hold: (i) (d, h′) ≻d (d, h), (ii)
X ′′ = X ′ − (d, h) + (d, h′) is hospital-feasible, and (iii) (d, h′) ≻H (d, h). We
say a matching is weakly nonwasteful based on a contract order if no
doctor strongly claims an empty seat based on a contract order.

Similarly, at a matchingX ′, we say a doctor d where (d, h) ∈ X ′ strongly
claims an empty seat of h′ based on hospital equality if the follow-
ing conditions hold: (i) (d, h′) ≻d (d, h), (ii) X ′′ = X ′ − (d, h) + (d, h′) is
hospital-feasible, and (iii) |X ′

h| − |X ′
h′ | ≥ 2. We say a matching is weakly
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nonwasteful based on hospital equality if no doctor strongly claims an
empty seat based on hospital equality.

5.2.2 Representation in our model

It is clear that the family of all hospital-feasible contracts does not form a
matroid since ∅ is not hospital-feasible. Thus, let us introduce a weaker con-
dition than hospital-feasibility. We sayX ′ is semi-hospital-feasible if it is a
subset of (or equal to) a hospital-feasible matching. Then, it is clear that the
family of all semi-hospital-feasible contracts forms a matroid.30 The following
proposition enables us to apply our methodology for this environment.

Proposition 4. Let δ be the Manhattan distance function or the Chebyshev
distance function, and F be the family of semi-hospital-feasible contracts.
Then (X,F) is a matroid.

Thanks to Proposition 4, we can use the off-the-shelf mechanism (i.e.,

the generalized DA) by appropriately designing f . Let us assume f̂(X ′)
is 0 if X ′ ∈ F , and otherwise, −∞. Also, let us define contract values
v : X → (0,∞) where (d, h′) ≻H (d, h) implies v((d, h′)) > v((d, h)).

We can obtain an appropriate f to apply Condition 1. Let us assume
f̃(X ′) is given as follows:

f̃(X ′) =
∑
x∈X′

v(x). (3)

Thus, we can apply Condition 1. It is clear that HM-stability (based on f̃
in equation (3)) implies fairness as well as weak nonwastefulness based on a
contract order.

Furthermore, we can obtain another f to apply Condition 2. As in Sec-
tion 5.1, fix a round-robin ordering over hospitals, h1, h2, . . . , hm. Let vhi

(j)
denote the value associated with the j-th choice of hospital hi. Then, de-
fine vhi

(j) as C(C − |H| · j − i) where C is a large positive constant. Let

Vh(k) :=
∑k

j=1 vh(j). It is clear that Vh is concave. Then, define f̃(X ′) as
follows:

f̃(X ′) =
∑
h∈H

Vh(|X ′
h|) +

∑
x∈X′

v(x), (4)

30Since we assume all hospitals/doctors are acceptable to each other, when we apply
the generalized DA, the obtained contracts are guaranteed to be hospital-feasible.
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where C ≫ v(x) for all x ∈ X. By choosing G as {Xh1 , Xh2 , . . . , Xhm}, it
is clear that G is symmetric in (X, dom f̂) and f̃ defined by equation (4) is
an order-respecting payoff function for G. Thus, we can apply Condition 2.
It is clear that HM-stability (based on f̃ in equation (4)) implies fairness as
well as weak nonwastefulness based on hospital equality.

In the model of Echenique and Yenmez (2015), the set of students is
partitioned into finite types T = {t1, . . . , tk}, as in the model discussed in
Section 5.4. Each school c has its own ideal distribution of types ζ∗ ∈ (Z+)

k

such that
∑k

i=1 ζ
∗
i ≤ qc where qc is the maximum quota of school c. For given

X ′, the choice function of school c first chooses a feasible distribution ζ̂ based
on X ′ that is closest to ζ∗. More specifically, let Z = {ζ | ζ ∈ (Z+)

k, ∀i ∈
{0, . . . , k}, ζi ≤ min(ζ∗i , |X ′

c,ti
|),

∑k
i=1 ζi ≤ qc}, where X ′

c,ti
represents the set

of contracts in X ′ which are related to school c and type ti students. Then, ζ̂
is given as argminζ∈Z δ(ζ, ζ

∗), where δ can be any Lp distance function except
for p = ∞ (i.e., the Chebyshev distance). Actually, given the restriction
that

∑k
i=1 ζ

∗
i ≤ qc, ζ̂ is simply given by ζ̂i = min(ζ∗i , |X ′

c,ti
|) for all i ∈

{1, . . . , k}, regardless of the definition of the distance function. Therefore,
this setting is isomorphic to the following model in which a school is divided
into t type-specific sub-schools. For each sub-school corresponding to type
ti, its maximum quota is ζ∗i . There exist no distributional constraints over
these sub-schools. In contrast to theirs, our distance constraints only requires
the distance from the ideal point to be at most a given amount. Thus,
our constraint allows for some flexibility in the sense that the chosen set
of contracts does not need to minimize the distance. Instead, the choice
depends on the soft preference subject to the constraint that its distance
from the ideal distribution is within the given bound.

6 Discussion

In Section 5, we introduced a two-step recipe for applying our framework:
(1) check whether distributional constraints form a matroid; if not, modify
distributional constraints, and (2) compose soft preferences, which reflect
stability, such that they are represented by an M♮-concave function; modify
the stability definition as necessary. In this section, we discuss how to modify
constraints and stability definitions when applying our recipe.
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6.1 Modifying constraints

When distributional constraints do not form a matroid, one approach is to
transform the given distributional constraints into different ones that form
a matroid and ensure the original hospital-feasibility. This implies that the
family of hospital-feasible contracts must be smaller than the original one,
which means we lose the flexibility specified by the original distributional con-
straints to some extent, and this can in turn result in, among other things,
some loss in efficiency. Thus, in this subsection we analyze when it is nec-
essary to resort to modifying constraints and, if so, how to “minimize” the
loss of flexibility, as formalized below.

Let us introduce a setting where distributional constraints do not nec-
essarily form a matroid. A market is represented by (D,H,X,R, (≻d)d∈D,
(≻h)h∈H , (qh)h∈H , (qr)r∈R), which is basically identical to the model presented
in Section 5.1, but the set of regions R is not necessarily a partition of H,
i.e., for two regions r and r′ ̸= r, the set r ∩ r′ can be nonempty. To exclude
trivial cases, we assume D and H are nonempty, qh > 0 and Xh ̸= ∅ for each
h ∈ H.

The following proposition shows that the fact that R is a laminar family
(Definition 9) is a necessary and sufficient condition for guaranteeing the
distributional constraints to form a matroid.

Proposition 5. Let D and H be the sets of doctors and hospitals, respec-
tively, and R be a family of subsets of H.

1. If R is a laminar family, then for any (qh)h∈H and (qr)r∈R, the distri-
butional constraints form a matroid.

2. If R is not a laminar family, then for any (qh)h∈H , there exist (qr)r∈R
such that the distributional constraints do not form a matroid.

As highlighted in Proposition 5, the matroid imposes a meaningful, if rea-
sonably mild, restriction on the constraints. Given this, we consider how we
modify a given non-matroid constraint into a matroid such that any matching
that satisfies the latter always satisfies the former. In the context of regional
maximum quotas, the simplest transformation method would be to trans-
form the distributional constraints into individual maximum quotas. This
method is called the artificial cap approach and has been applied to handle
various distributional constraints, including those that form a matroid (Goto,
Iwasaki, Kawasaki, Yasuda, and Yokoo, 2014; Kamada and Kojima, 2015).
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For example, if R is not a laminar family, we can use artificial individ-
ual maximum quotas (q̂h)h∈H that satisfy the following conditions: ∀r ∈
R,

∑
h∈r q̂h ≤ qr, and ∀h ∈ H, q̂h ≤ qh. It is clear that if X ′ satisfies these

artificial quotas, it also satisfies the original regional maximum quotas. It
is also clear that we lose the flexibility specified by the regional maximum
quotas.

By transforming the original constraints into less restrictive matroid con-
straints, we can retain more flexibility. For example, let us assume R̂ =
{r̂1, r̂2, . . .} is a partition of H, and for each r ∈ R, there exists R̂′ ⊆ R̂,
such that r =

∪
r̂∈R̂′ r̂ holds. For each r ∈ R, let R̂(r) denote R̂′ ⊆ R̂,

such that r =
∪

r̂∈R̂′ r̂. Intuitively, R̂ is a fine-grained partition, which can

exactly cover each of r ∈ R by R̂(r). Let us define (qr̂)r̂∈R̂, i.e., the regional

maximum quotas for R̂, such that for each r ∈ R,
∑

r̂∈R̂(r) qr̂ ≤ qr. It is
clear that if X ′ satisfies these regional maximum quotas, it also satisfies the
original regional maximum quotas. Furthermore, if qr̂ ≥

∑
h∈r̂ qĥ holds for

each r̂ ∈ R̂ (it is always possible to choose such qr̂), then this method is
(weakly) more flexible than the artificial cap approach, in the sense that the
family of hospital-feasible matching in this method is a superset of that in
the artificial cap approach.

To summarize, if the family of hospital-feasible contracts do not form a
matroid, we can transform the distributional constraints into different con-
straints that form a matroid. The artificial cap and partition approaches de-
scribed above are such examples in the context of regional maximum quota
setting. More generally, such a transformation is always possible as long as
constraints are hereditary, i.e., if X ′ is hospital-feasible, any X ′′ ⊆ X ′ is also
feasible.31 In the worst case, we can just choose one element in the family,
and assume only the subset of this element is hospital-feasible. Clearly, this
newly defined family forms a matroid. To retain more flexibility, the newly
defined family should be large enough. Ideally, it should be maximal, i.e.,
for the original family F and the newly defined family F̂ ⊊ F , there exists
no family F ′ ⊊ F such that F ′ ⊋ F̂ and F ′ forms a matroid.

We present an algorithm to find such a maximal family. It deals with the
largest elements of F called bases, and selects a subset of bases such that it
induces a matroid. Let us assume X = {x1, . . . , xn}. Let k = max{|Y | | Y ∈
F}. Without loss of generality, let us assume {x1, x2, . . . , xk} ∈ F . Let B

31As shown in Section 5.2, even if constrains are not hereditary, e.g., ∅ is not hospital-
feasible, we can apply our approach by considering semi-hospital-feasible contracts.
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denote {Y | Y ∈ F , |Y | = k}. Also, without loss of generality, we assume F
is hereditary with respect to B, i.e., for all B ∈ B and all B′ ⊆ B, B′ ∈ F
holds.32 For B̂ ⊆ B, let F̂ denote {B′ | B′ ⊆ B ∈ B̂}. It is well-known that

F̂ forms a matroid if and only if B̂ satisfies the following condition (Oxley,
2011):

∀Y, Z ∈ B̂,∀y ∈ Y \ Z, ∃z ∈ Z \ Y such that Y − y + z ∈ B̂ holds. (5)

It is also well-known that (5) is equivalent to the following stronger condi-
tion (Oxley, 2011):

∀Y, Z ∈ B̂,∀y ∈ Y \ Z, ∃z ∈ Z \ Y
such that Y − y + z ∈ B̂ and Z + y − z ∈ B̂ hold. (6)

Given B, the following algorithm returns B̂ ⊆ B, such that (5) holds.

Algorithm 1.

Step 1: Set B̂k to {{1, 2 . . . , k}} and j to k + 1.

Step 2: If j > n, return B̂j−1 as B̂.

Step 3: Let Y = {Y ∈ B | |Y | = k, Y ⊆ {x1, . . . , xj}, and xj ∈ Y }.

Step 4: If there exist Y ∈ Y and Z ∈ B̂j−1 such that the following condition
holds,33 then remove Y from Y and go to Step 4.

∃y ∈ Y \ Z, ∀z ∈ Z \ Y, Y − y + z ̸∈ B̂j−1 ∪ Y or Z + y − z ̸∈ B̂j−1 ∪ Y ,

or

∃z ∈ Z \ Y, ∀y ∈ Y \ Z, Y − y + z ̸∈ B̂j−1 ∪ Y or Z + y − z ̸∈ B̂j−1 ∪ Y .

Step 5: Otherwise, set B̂j to B̂j−1 ∪ Y , set j to j + 1, and go to Step 2.

The following proposition holds.

Proposition 6. For each j = k, . . . , n, B̂j obtained by Algorithm 1 satisfies

(5), and F̂ (obtained from B̂) gives a maximal matroid for a given family F .

32If some B violates this condition, we can simply remove B from B.
33When this condition holds, Y, Z ∈ B̂j−1 ∪ Y violate (6).
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This proposition guarantees that Algorithm 1 produces a maximal ma-
troid subset of any given constraints. This is appealing because there is no
other matroid subset that is larger in the set inclusion sense than the one
found by the algorithm, so there is a sense in which we find one of the most
flexible constraints among those satisfying the matroid property while guar-
anteeing the original constraints. Note, however, that there may be multiple
maximal matroid subsets of given constraints, and in some specific examples,
the particular maximal subset found in our algorithm may be regarded unde-
sirable by some policy makers. We address this issue further in Appendix D.3
by proposing another class of algorithms and offering a further generalization
of our algorithms.

6.2 Modifying stability

When distributional constraints are imposed, the standard stability concept
may be inappropriate or just infeasible. Thus, some modification is called for.
Since there is no absolute criterion of the most “natural” or “appropriate”
stability definition (that would be highly application-dependent), our recipe
aims to provide a flexible tool that is versatile enough to cope with many
(if not all) definitions in the literature and those that may appear in future
works. We showed that our tool is actually useful in various application
domains described in Section 5 and the online appendix. In this subsection,
we examine in more detail how to modify stability definitions when using our
tool.

When distributional constraints are imposed, one natural way in extend-
ing the standard stability definition would be to require that if (d, h) is a
blocking pair (Definition 11), then moving doctor d to hospital h causes a vi-
olation of a distributional constraint. However, a stable matching often fails
to exist with this definition. This is true for regional maximum quotas; as
described in Section 5.1, the above requirement–called strong stability–may
lead to non-existence and, in fact, conditions for the existence are extremely
restrictive (Kamada and Kojima, 2017b). Given this fact, one natural ap-
proach is to weaken the stability requirement. Section 5.1 presented two such
weakened concepts, KK-stability and contract-order stability. By crafting an
appropriate f̃ , an HM-stable matching is guaranteed to satisfy KK-stability
or contract-order stability.

As in the case for the aforementioned stability concepts under regional
maximum quotas, in general our modified stability requirement must be
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weaker than (or identical to) HM-stability. However, this is not a draw-
back for the following reason. As mentioned earlier, there is no absolute
appropriate stability concept (recall, for instance, at least two alternative
stability concepts have been proposed under regional maximum quotas). In
our recipe, the mechanism designer first decides an appropriate stability con-
cept given her environment and policy goal and then implements the concept
by choosing an appropriate function f̃ . In that sense, function f̃ , as well as
HM-stability based on f̃ , is merely a tool for achieving a given stability prop-
erty, and not a goal per se. Thus, the fact that the chosen stability property
is weaker than HM-stability is not a limitation; if the mechanism designer
wants to make the stability requirement more demanding, she can do so by
choosing an appropriate function f̃ to implement it. Then, HM-stability un-
der that f̃ may also become stronger and could be strictly more demanding
than the given desired stability concept, but this is not problematic because
HM-stability for the chosen f̃ per se is not the desired property anyway.

With that said, it is often possible to strengthen a given stability concept
to make it equivalent to HM-stability. To see this point, we modify KK-
stability under regional maximum quotas as in Section 5.1. Specifically, we
change condition (iii) of KK-stability to: (iii) if (d, h′) ∈ X ′, then either (iii-
a) h′ ̸∈ r, (iii-b) |X ′

h′ | − |X ′
h| < 1, or (iii-c) |X ′

h′ | − |X ′
h| = 1 and h appears

earlier than h′ in the round-robin ordering over hospitals. This definition is
stronger than the original one as the requirement for a legitimate blocking
pair is weaker. Intuitively, this concept uses a round-robin ordering as a tie-
breaking rule to resolve the competition among doctors who apply to different
hospitals within the same region. It is straightforward to verify that with
this modification, KK-stability is equivalent to HM-stability.

In some applications, the standard stability definition is simply inappro-
priate. For example, in the controlled school choice (Ehlers, Hafalir, Yenmez,
and Yildirim, 2014), doctors (students) are partitioned into a finite number
of types {t1, . . . , tk}. A type may represent race, income, gender, or any so-
cioeconomic status. Let us assume for each hospital h and for each type t,
a type-specific minimum quota pth is defined.34 Here, this type-specific min-
imum quota is a soft bound and does not affect feasibility. Intuitively, for
each type t, up to pth doctors of type t can be assigned to hospital h without
competing against other types. If less than pth doctors are applying to h,

34We show a more detailed discussion in online appendix C.3, where type-specific max-
imum quotas, as well as type-specific minimum quotas, are introduced.
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assigning less than pth doctors of type t is considered to be feasible. Also,
more than pth doctors of type t can be assigned, as long as they get through
the competition against other types. In this setting, each hospital (or a pol-
icy maker) hopes to treat different types of doctors differently. Thus, the
standard stability definition, which does not consider the types of doctors, is
inappropriate.

One approach to formalize such a policy goal is to modify the condition
of a blocking pair (d, h) ∈ X \ X ′, where the type of d is t, as follows:
(i) (d, h) is acceptable for d and (d, h) ≻d X ′

d, and one of the following
conditions holds (ii-a) |X ′

h| < qh, (ii-b) |X ′
h,t| < pth (where X ′

h,t is the set of
contracts in X ′, which are related to h and type t students), or (ii-c) there
exists (d′, h) ∈ X ′ such that (d, h) ≻h (d′, h) and the type of d′ is t. Let us
compare this definition with Definition 11. On the one hand, condition (ii-
b) is added. Thus, the set of legitimate blocking pairs becomes larger. On
the other hand, condition (ii-c) is more demanding than the corresponding
condition in the original definition. Thus, the set of legitimate blocking
pair becomes smaller. Condition (ii-c) means, if doctor d claims that she
should be accepted to hospital h instead of another doctor d′, such a claim
is considered to be legitimate only if d and d′ are of the same type.35 As we
show in online appendix C.3, we can further refine this stability requirement,
such that it reflects how the competition among different types of doctors
should be resolved.

To summarize, under distributional constraints, the standard stability
definition is often inapplicable or inappropriate. Then, the mechanism de-
signer needs to modify the stability definition and craft f̂ . The modification
can be done by adding more desirable properties (e.g., condition (ii-b) in the
controlled school choice), relaxing excessively demanding requirements (e.g.,
KK-stability, contract-order stability, condition (ii-c) in the controlled school
choice), or simply introducing tie-breaking (e.g., the modified definition of
KK-stability). Since an appropriate stability definition can be highly con-
text dependent, it is not our aim to argue one particular stability definition
is always the “best” in all cases. Instead, our aim is to provide a flexible
tool to accommodate a wide variety of existing and new stability concepts.
As illustrated throughout the paper, the approach based on discrete convex
analysis seems to achieve this goal.

35This property is called fairness for same type of students (Ehlers, Hafalir, Yenmez,
and Yildirim, 2014).
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7 Conclusion

This paper studied two-sided matching problems in which certain distribu-
tional constraints are imposed. We demonstrated that if the preference of the
hospitals can be represented by an M♮-concave function, then the general-
ized DA mechanism is strategyproof for doctors and finds the doctor-optimal
stable matching. Building on this result, we derived sufficient conditions un-
der which the generalized DA mechanism satisfies desirable properties, and
established that these sufficient conditions are satisfied in various applied
settings. By utilizing these conditions, we obtained various results in the ex-
isting literature as well as new ones as corollaries of our results. Because our
sufficient conditions are easy to verify in many cases, they provide a recipe
for non-experts in matching theory or discrete convex analysis to develop
desirable mechanisms that handle distributional constraints.

Our aim was to demonstrate that this paper’s methodology is flexible
enough to address various types of constraints. For this purpose, we showed
that existing results in the literature can be derived with our methodology.
Furthermore, we exploited our methodology to establish new results. A re-
lated point is that all of our mechanisms are instances of the generalized DA
mechanism. This is a major advantage of our approach in that it allows a
policy maker to adopt a mechanism off the shelf rather than searching for an
entirely new solution from scratch. We envision that our approach will prove
useful when the match organizer is challenged by new kinds of constraints.
We verified this conjecture to a certain extent in Section 5. Further verifying
whether this conjecture is true and, if so, in what applications, is left for
future research.

While many application domains have matroid structures and are amenable
to our method, there are other important applications that are outside of the
scope of our present method. For example, Goto, Kojima, Kurata, Tamura,
and Yokoo (2017) introduce a problem called the student-project-room as-
signment problem. In this problem, students and a room must be assigned to
each project, and the maximum quota of a project is determined by the ca-
pacity of the room assigned to the project. Such distributional constraints do
not have a matroid structure. Goto, Kojima, Kurata, Tamura, and Yokoo
(2017) develop a strategyproof mechanism whose outcome is nonwasteful
while satisfying such constraints. Their mechanism, however, does not pro-
duce a fair outcome in the sense of eliminating justified envy, one of the main
desiderata achieved in the present paper. A possible step in future research
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is to develop a strategyproof and fair mechanism that can handle constraints
beyond the matroid structure.
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Abdulkadiroğlu, A., and T. Sönmez (2003): “School Choice: A Mech-
anism Design Approach,” American Economic Review, 93(3), 729–747.

(2013): “Matching Markets: Theory and Practice,” in Advances
in Economics and Econometrics, ed. by D. Acemoglu, M. Arello, and

E. Dekel, vol. 1, pp. 3–47. Cambridge.
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Appendix

A Properties of matroids

We introduce three properties related to matroids that are used in our proofs.

Property 1 (simultaneous exchange property). Let (X,F) be a matroid.
Then for all Y, Z ∈ F and y ∈ Y \ Z, there exists z ∈ (Z \ Y ) ∪ {∅} such
that Y − y + z ∈ F and Z − z + y ∈ F hold.

Proof. Let B be the set of maximal elements in F with respect to set inclu-
sion. B is called the family of bases. For B, the following property holds:
For all Ŷ , Ẑ ∈ B and y ∈ Ŷ \Ẑ, there exists z ∈ Ẑ \ Ŷ such that Ŷ −y+z ∈ B
and Ẑ − z + y ∈ B hold. This property is known as the simultaneous ex-
change property for bases of matroids (see Theorem 39.12 of Schrijver (2003)
or Condition (B) on page 69 of Murota (2003) for its proof). For Y and Z
in F , let us choose Ŷ , Ẑ ∈ B such that Ŷ ⊇ Y and Ẑ ⊇ Z hold. For any
y ∈ Y \ Z, either y ∈ Y \ Ẑ or y ∈ Ẑ holds.

1. If y ∈ Y \ Ẑ, y is also included in Ŷ \ Ẑ. Thus, from the simultaneous
exchange property for bases, there exists z ∈ Ẑ\Ŷ such that Ŷ −y+z ∈
B and Ẑ− z+ y ∈ B holds. If z ∈ Z, both Y − y+ z (which is a subset
of Ŷ −y+z) and Z−z+y (which is a subset of Ẑ−z+y) are elements
in F . If z ∈ Ẑ \ Z, both Y − y (which is a subset of Ŷ − y + z) and
Z + y (which is a subset of Ẑ − z + y) are elements in F . In either
case, we have established that there exists z ∈ (Z \ Y )∪ {∅} such that
Y − y + z ∈ F and Z − z + y ∈ F , as desired.

2. If y ∈ Ẑ, both Y − y (which is a subset of Ŷ ) and Z + y (which is a
subset of Ẑ) are elements in F . Thus the desired property holds with
respect to z = ∅.

Property 2 (laminar concave function). Assume T is a laminar family of
subsets of X, and f(X ′) is given by a laminar concave function

∑
T∈T fT (|X ′∩

T |). Then, f(X ′) is M♮-concave.

This property is the M♮-concave version of Note 6.11 of Murota (2003).
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Finally, we show a property that connects a network flow problem and a
matroid. Let (V,E, c, S, t) be a directed graph, where V is a set of vertexes
and E is a set of directed edges. Here, S ⊊ V is a set of start vertexes and
t ∈ V \ S is a unique terminal vertex. Let c ∈ ZE represent the capacities
of each edge, i.e., c((u, v)) is the capacity of the directed edge from u to v,
where u, v ∈ V and Z is the set of all integers.

A network flow is represented by ρ ∈ ZE. ρ((u, v)) is the flow for edge
(u, v) ∈ E, i.e., the flow from u to v. For flow ρ, δρ(v) represents the bound-
ary at vertex v, which is defined as

∑
(u,v)∈E ρ((u, v)) −

∑
(v,u)∈E ρ((v, u)),

i.e., the difference between the inflow to v and the outflow from it.
We say a flow ρ is valid if for all e ∈ E, ρ(e) ≤ c(e) holds, and there

exists S ′ ⊆ S such that for all v ∈ S ′, δρ(v) = −1, δρ(t) = |S ′|, and for all
v′ ∈ V \ (S ′ ∪ {t}), δρ(v′) = 0 hold. We say S ′ is the sources of ρ.

The following property holds.

Property 3. Let (V,E, c, S, t) be a directed graph. Then (S,F), where F =
{S ′ | S ′ ⊆ S, ∃ρ ∈ ZE, such that ρ is a valid flow where S ′ is its sources},
is a matroid.

Proof. This matroid is a variant of gammoids; see Oxley (2011) on gammoids.
This is also a special case with zero costs of the network flow problem defined
in Section 9.6 in Murota (2003). Theorem 9.26 in Murota (2003) shows that
a function f(S ′), which is defined as 0 if S ′ ∈ F , and −∞ otherwise, is
M♮-concave. Since ∅ ∈ F , from Lemma 2, (S,F) is a matroid.

Here, we provide a more elementary proof. It suffices to show the last
condition of matroids (the other conditions are obvious). Let S1, S2 ∈ F with
|S1| < |S2|. Let us add an artificial source s and edges (s, v) of capacity 1 for
each vertex v in S1∪S2 to a given directed graph. We denote the new directed
graph by N̂ = (V ∪ {s}, Ê, ĉ, s, t), where Ê = E ∪ {(s, v) | v ∈ S1 ∪ S2} and
ĉ(u, v) is 1 if u = s and c(u, v) otherwise. For i = 1, 2, we can construct a
valid flow ρi in N̂ such that ρi(s, v) = 1 for all v ∈ Si, δρi(t) = |Si| = −δρi(s)
and δρi(u) = 0 for u ̸= s, t. By an optimality criterion of maximum flows in

networks (e.g., see Corollary 10.2a of Schrijver (2003)), a valid flow ρ ∈ ZÊ

from s to t in N̂ is maximum (i.e., maximizes δρ(t) among valid flows from
s to t in N̂) if there is no directed path from s to t in the auxiliary directed
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graph Ñρ = (V ∪ {s}, Ẽ, c̃, s, t), where

Ef = {(u, v) | (u, v) ∈ Ê, c(u, v) > ρ(u, v)},
Eb = {(v, u) | (u, v) ∈ Ê, ρ(u, v) > 0},
Ẽ = Ef ∪ Eb,

c̃(u, v) = c(u, v)− ρ(u, v) ((u, v) ∈ Ef ),

c̃(v, u) = ρ(u, v) ((v, u) ∈ Eb).

Since ρ1 is not maximum by δρ1(t) < δρ2(t), there is a directed path P from
s to t in Ñρ1 . By modifying ρ1 into ρ′1 by

ρ′1(u, v) =


ρ1(u, v) + 1 ((u, v) ∈ P ∩ Ef )
ρ1(u, v)− 1 ((v, u) ∈ P ∩ Eb)
ρ1(u, v) (otherwise),

we have δρ′1(t) = δρ(t) + 1. Furthermore, since there is no edge from s to S1

in Ñρ1 , P must pass through a vertex v in S2 \ S1. We can construct a valid
flow in the original directed graph from ρ′1 where S1+ v is its source, that is,
S1 + v is a member of F .

B Proofs

B.1 Proof of Lemma 2

The “if” part is obtained immediately from Property 1. The proof of the
“only if” part is given as follows. Let us denote dom f̂ by F . The condition
∅ ∈ F holds because of the hypothesis of this lemma. To show the second
condition of Definition 4, let us consider X ′ ∈ F \{∅} and x ∈ X ′. From the

M♮-concavity of f̂ , we have

f̂(X ′) + f̂(∅) ≤ f̂(X ′ − x) + f̂({x}).

This inequality implies that X ′ − x ∈ F because f̂(X ′) = f̂(∅) = 0 by
assumption, so the left hand side of the above inequality is 0, which holds
only if f̂(X ′ − x) = 0. By repeatedly using the above argument, any subset
of X ′ is also included in F .
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To show the third condition of Definition 4, let us consider X ′, X ′′ ∈ F
with |X ′| > |X ′′|. It follows from |X ′| > |X ′′| that there exists x ∈ X ′ \X ′′.

The M♮-concavity of f̂ guarantees that (a) X ′ − x,X ′′ + x ∈ F or (b) there
exists y ∈ X ′′ \ X ′ such that X ′ − x + y,X ′′ + x − y ∈ F because 0 =

f̂(X ′)+ f̂(X ′′) ≤ f̂(X ′−x)+ f̂(X ′′+x) or 0 = f̂(X ′)+ f̂(X ′′) ≤ f̂(X ′−x+

y) + f̂(X ′′ + x− y) for some y ∈ X ′′ \X ′. In case (a), we have X ′′ + x ∈ F .
In case (b), let X̂ ′ := X ′ − x+ y ∈ F . We note that |X̂ ′| = |X ′| and X̂ ′ \X ′′

is a proper subset of X ′ \X ′′. We replace X ′ by X̂ ′, and continue the above
discussion. After a finite number of iterations, the above (a) must occur by
|X ′| > |X ′′|. Hence the third condition in Definition 4 holds.

B.2 Proof of Condition 2

It suffices to show that the function f́ defined by f́(X ′) = f̂(X ′)+
∑

g∈G Vg(|X ′∩
g|) is M♮-concave, because f is equal to the sum of f́ and a linear function∑

x∈X′ v(x) (see the proof of Condition 1). Let Y, Z ∈ dom f̂ and y ∈ Y \Z.
We assume that y belongs to a group g ∈ G.

For any z′ ∈ (Z\Y )∩g′ with |Z∩g′| ≤ |Y ∩g′| and g′ ̸= g, by the symmetry

of G in (X, dom f̂), there exists y′ ∈ (Y \Z)∩g′ such that Z−z′+y′ ∈ dom f̂
and f́(Z−z′+y′) = f́(Z). By repeatedly using the above argument, without
loss of generality, we can assume that Z satisfies Z ∩ g′ ⊆ Y ∩ g′ whenever
|Z ∩ g′| ≤ |Y ∩ g′| and g′ ̸= g.

If |Y ∩ g| ≤ |Z ∩ g| then there exists z ∈ g ∩ (Z \ Y ). By the symmetry

of G in (X, dom f̂), f́(Y ) = f́(Y − y + z) and f́(Z) = f́(Z − z + y), so the
desired inequality for M♮-concavity holds with equality.

For the remainder of the proof, we suppose that |Y ∩ g| > |Z ∩ g|. Since
(X, dom f̂) is a matroid, Property 1 guarantees that either (i) Y − y, Z+ y ∈
dom f̂ or (ii) there exists z ∈ (Z \Y ) such that Y − y+ z, Z− z+ y ∈ dom f̂ .
In case (i), we have f́(Y ) + f́(Z) ≤ f́(Y − y) + f́(Z + y), because(

f́(Y − y) + f́(Z + y)
)
−

(
f́(Y ) + f́(Z)

)
=(Vg(|Z ∩ g|+ 1)− Vg(|Z ∩ g|))− (Vg(|Y ∩ g|)− Vg(|Y ∩ g| − 1)) .

This value must be non-negative since Vg is concave and |Z ∩ g| < |Y ∩ g|.
In case (ii), z must belong to a group g′ with |Y ∩ g′| < |Z ∩ g′| and

f́(Y ) + f́(Z) ≤ f́(Y − y + z) + f́(Z − z + y)
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holds, because(
f́(Y − y + z) + f́(Z − z + y)

)
−

(
f́(Y ) + f́(Z)

)
=(Vg(|Z ∩ g|+ 1)− Vg(|Z ∩ g|))− (Vg(|Y ∩ g|)− Vg(|Y ∩ g| − 1))

+ (Vg′(|Y ∩ g′|+ 1)− Vg′(|Y ∩ g′|))− (Vg′(|Z ∩ g′|)− Vg′(|Z ∩ g′| − 1)) .

This value must be non-negative since Vg is concave, |Z ∩ g| < |Y ∩ g|, and
|Y ∩ g′| < |Z ∩ g′|. Hence f́ is M♮-concave.

B.3 Proof of Condition 3

Assume f̃(X ′) is given as
∑

T∈T f̃T (|X ′∩T |). Then, f = f̂+ f̃ can be written

as
∑

T∈T fT (|X ′ ∩ T |), where fT (k) = f̂T (k) if k ≤ qT , and otherwise, −∞.
This is also a laminar concave function, since each fT is a univariate concave
function. Thus, f is M♮-concave from Property 2.

B.4 Proof of Proposition 4

Let B be the set of maximal elements in F with respect to set inclusion, i.e.,
the set of all hospital-feasible contracts. To prove the claim, it is enough to
show that B satisfies the following property: For all Y, Z ∈ B and y ∈ Y \Z,
there exists z ∈ Z \ Y such that Y − y + z ∈ B (e.g., see Theorem 39.6 of
Schrijver (2003)).

Let Y, Z ∈ B, y ∈ Y \Z and y ∈ Yh for some hospital h ∈ H. If |Yh| ≤ |Zh|
then there exists z ∈ Zh \ Yh which also satisfies Y − y + z ∈ B because
ξ(Y ) = ξ(Y − y + z). In the rest of the proof, we assume that |Yh| > |Zh|.
Since |Y | = |Z|, there exist a hospital h′ ∈ H and a contract z such that
|Yh′| < |Zh′ | and z ∈ Zh′ \ Yh′ . Let Y ′ = Y − y + z. Obviously, Y ′ satisfies
|Y ′| = n and |Y ′

i | ≤ qi for all i ∈ H. If δ is the Chebyshev distance function,
Y ′ is hospital-feasible because |ξh(Y ′)− ξ∗h| ≤ max{|ξh(Y )− ξ∗h|, |ξh(Z)− ξ∗h|}
and |ξh′(Y ′)− ξ∗h′ | ≤ max{|ξh′(Y )− ξ∗h′ |, |ξh′(Z)− ξ∗h′|}. For the remainder of
the proof, we assume δ represents the Manhattan distance. If |Yh| > ξ∗h then
Y ′ is hospital-feasible because |ξh(Y ′)− ξ∗h| = |ξh(Y )− ξ∗h|−1. Let us assume
that ξ∗h ≥ |Yh| > |Zh|. If |Yh′ | < ξ∗h′ then Y ′ is hospital-feasible because
δ(ξ(Y ′), ξ∗) = δ(ξ(Y ), ξ∗). We finally assume that for each i ∈ H if |Yi| < |Zi|
then ξ∗i ≤ |Yi|. By this assumption together with |Y | = |Z| =

∑
i ξ

∗
i , we have
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{i : |Yi| < ξ∗i } ∪ {h} ⊆ {i : |Zi| < ξ∗i } and

δ(ξ(Y ), ξ∗) = 2
∑

i:|Yi|<ξ∗i

(ξ∗i − |Yi|) ≤ 2
∑

i:|Yi|<ξ∗i

(ξ∗i − |Zi|)

≤ 2
∑

i:|Zi|<ξ∗i

(ξ∗i − |Zi|) = δ(ξ(Z), ξ∗),

where the first equality follows from the assumption |Y | =
∑

i ξ
∗
i , the first

inequality results from the assumption that |Yi| ≥ |Zi| for all i ∈ H with
ξ∗i > |Yi|, the second inequality follows from the relation {i : |Yi| < ξ∗i } ∪
{h} ⊆ {i : |Zi| < ξ∗i }, and the last equality results from the assumption that
|Z| =

∑
i ξ

∗
i . Also, note that at least one of the above inequalities holds

strictly. This implies δ(ξ(Y ′), ξ∗) = δ(ξ(Y ), ξ∗)+2 ≤ δ(ξ(Z), ξ∗), that is, the
hospital-feasibility of Y ′.

B.5 Proof of Proposition 5

Proof. If R is a laminar family, the family of hospital-feasible contracts is
given as: {X ′ ⊆ X | |X ′

r| ≤ qr (∀r ∈ R), |X ′
h| ≤ qh (∀h ∈ H)}. This is a

laminar matroid (Definition 10).
If R is not a laminar family, there exist two regions r, r′ such that each of

r∩ r′, r \ r′, and r′ \ r is non-empty. Let us choose h1, h2, and h3 from r∩ r′,
r \ r′, and r′ \ r, respectively. Also, let us choose qr = 1, qr′ = 1, (d, h1) ∈
Xh1 , (d

′, h2) ∈ Xh2 , and (d′′, h3) ∈ Xh3 . Then, X ′ = {(d′, h2), (d
′′, h3)} and

X ′′ = {(d, h1)} are hospital-feasible. However, there exists no x ∈ X ′ \ X ′′

such that x+X ′′ becomes hospital-feasible.

B.6 Proof of Proposition 6

Proof. We prove the first assertion by induction on j. Clearly, B̂k = {{x1, x2 . . . , xk}}
satisfies (5). We assume that j > k and B̂j−1 satisfies (5). Let us consider the

situation just before Step 5. For each pair of Z ∈ B̂j−1 and Y ∈ Y , (6) holds

for B̂j−1∪Y . Thus, for each Y ∈ Y , there exists Z ∈ B̂j−1 with |Z∩Y | = k−1.
It is sufficient to show that for all Y1, Y2 ∈ Y with |Y1 \ Y2| ≥ 2, and for all
xi ∈ Y1 \ Y2, there exists xi′ ∈ Y2 \ Y1 with Y1 − xi + xi′ ∈ Y . We suppose
Y1 \ Y2 = {xi1 , . . . , xih}, and Y2 \ Y1 = {xi′1

, . . . , xi′h
}.
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From symmetry, it is sufficient to prove the case where i = i1. Let us
choose Z1, Z2 ∈ B̂j−1, such that Z1 = Y1 − xj + xi0 , Z2 = Y2 − xj + xi′0

, and
|Z1 ∩ Y1| = |Z2 ∩ Y2| = k − 1 hold. We consider the following three cases.

Case 1: i0 ∈ {i′1, . . . , i′h}. Without loss of generality, we assume i0 = i′h.

Since Z1 ∈ B̂j−1, Y2 ∈ Y , and xi1 ∈ Z1 \ Y2, there exists xi′ ∈ Y2 \Z1 =

{xi′1
, . . . , xi′h−1

, xj} such that Z ′
1 = Z1 − xi1 + xi′ ∈ B̂j−1 ∪ Y by (5). If

i′ = j then Z ′
1 = Y1 − xi1 + xi′h

∈ Y satisfies the required condition.
Thus, we assume that i′ ∈ {i′1, . . . , i′h−1}. Without loss of generality,

we assume i′ = i′1. Since Y1 ∈ Y , Z ′
1 ∈ B̂j−1, and xj ∈ Y1 \ Z ′

1, there

exists xℓ ∈ Z ′
1 \ Y1 such that Z ′

1 + xj − xℓ ∈ B̂j−1 ∪ Y by (6). Since ℓ
is either i′1 or i′h, Z

′
1 + xj − xℓ is either Y1 − xi1 + xi′1

or Y1 − xi1 + xi′h
,

each of which is in Y and satisfies the required condition.

Case 2: i0 = i′0. Since Z1, Z2 ∈ B̂j−1, and xi1 ∈ Z1 \ Z2, there exists

xi′ ∈ Z2 \ Z1 such that Z ′
1 = Z1 − xi1 + xi′ ∈ B̂j−1 by (5). Without

loss of generality, we assume i′ = i′h. Furthermore, since Z ′
1 ∈ B̂j−1,

Y1 ∈ Y , and xi0 ∈ Z ′
1 \ Y1, there exists xℓ ∈ Y1 \ Z ′

1 = {xj, xi1}
such that Z ′′

1 = Z ′
1 − xi0 + xℓ ∈ B̂j−1 ∪ Y by (5). If ℓ = j then

Z ′′
1 = Y1 − xi1 + xi′h

∈ Y satisfies the required condition; otherwise we

have Z ′′
1 = Z1 − xi0 + xi′h

= Y1 − xj + xi′h
∈ B̂j−1, and hence, we induce

Case 1.

Case 3: i0 ̸= i′0 and i0 ̸∈ {i′1, . . . , i′h}. Since Z1, Z2 ∈ B̂j−1, and xi0 ∈ Z1 \Z2,

there exists xi′ ∈ Z2 \ Z1 such that Z ′
1 = Z1 − xi0 + xi′ ∈ B̂j−1 by (5),

and hence, we induce Case 1 or Case 2.

To show the maximality of B̂, assume for contradiction that there exists
B′ ⊋ B̂, such that B′ ⊆ B and B′ forms a matroid. Let Y ′ be the first
element of B′ \ B̂ removed by Algorithm 1, and xh be the element of Y ′ with

the maximum subscript. Then there exists Z ∈ B̂h−1 ⊆ B′ such that (6) does

not hold for Y ′, Z and B̂h−1 ∪ Y ′, where Y ′ is Y in Algorithm 1 just before
Y ′ is removed. By the definition of Y ′, if Y ⊊ {x1, . . . , xh} is an element of

B′, it is also an element of B̂h−1 ∪ Y ′. Thus (6) does not hold for Y ′, Z and
B′, which contradicts the assumption that B′ is a matroid.
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C Applications

In this section, we examine existing and new models of matching and show
that the sufficient conditions described in Section 4 hold in these cases. For
existing applications, this connection allows us to reproduce key results and,
for some applications, show stronger results. This enables us to provide
mechanisms that are strategyproof for doctors and produce stable matchings.

C.1 Standard model (Gale and Shapley, 1962)

C.1.1 Model

A market is a tuple (D,H,X, (≻d)d∈D, (≻h)h∈H , (qh)h∈H). D is a finite set of
doctors and H is a finite set of hospitals. X is a finite set of contracts. A
contract x ∈ X is a pair (d, h), which represents a matching between doctor
d and hospital h. (≻d)d∈D is a profile of doctors’ preferences, i.e., each ≻d

represents the strict preference of each doctor d over acceptable contracts in
Xd = {(d, h) ∈ X | h ∈ H}. (≻h)h∈H is a profile of hospitals’ preferences,
i.e., each ≻h represents the preference of each hospital h over the contracts
that are related to it. (qh)h∈H is a profile of hospitals’ maximum quotas, i.e.,
each qh represents the maximum quota of hospital h.

C.1.2 Feasibility

We say X ′ ⊆ X is hospital-feasible if |X ′
h| ≤ qh for all h, where X ′

h =
{(d, h) ∈ X ′ | d ∈ D}. We say X ′ ⊆ X is doctor-feasible if X ′

d is acceptable
for all d (we say X ′

d is acceptable for d if either (i) X ′
d = {x} and x is

acceptable for d, or (ii) X ′
d = ∅ holds). We say X ′ is feasible if it is doctor-

and hospital-feasible.

C.1.3 Stability

Here, let us reprint the definition of a blocking pair in Section 5.1. For
a matching X ′, we say (d, h) ∈ X \ X ′ is a blocking pair if (i) (d, h) is
acceptable for d and (d, h) ≻d X ′

d, and (ii) either |X ′
h| < qh or there exists

(d′, h) ∈ X ′ such that (d, h) ≻h (d′, h).
We say a matching X ′ is Gale-Shapley (GS)-stable if there exists no

blocking pair (Gale and Shapley, 1962).
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C.1.4 Mechanism

The standard Deferred Acceptance (DA) mechanism (Gale and Shapley,
1962) is defined as follows.

Mechanism 4 (standard DA).
Apply the following stages from k = 1.

Stage k ≥ 1: Each doctor d applies to her most preferred hospital by which
she has not been rejected before Stage k (if no remaining hospital is
acceptable for d, d does not apply to any hospital). Each hospital h
tentatively accepts doctors applying to h up to qh according to ≻h. The
rest of doctors are rejected. If no doctor is rejected by any hospital,
terminate the mechanism and return the current tentatively accepted
pairs as the final matching. Otherwise, go to Stage k + 1.

The standard DA mechanism is strategyproof for doctors (Dubins and
Freedman, 1981; Roth, 1982) and obtains a GS-stable matching (Gale and
Shapley, 1962).

C.1.5 Representation in our model

Let us define f̂(X ′) as 0 if X ′ is hospital-feasible, i.e., |X ′
h| ≤ qh for all h, and

otherwise as−∞. Then, (X, dom f̂) is a laminar matroid, since {Xh | h ∈ H}
is a laminar family and we require |X ′ ∩Xh| ≤ qh for each h.

Let us assume a positive value v(x) is defined for each x = (d, h) with
the property that v((d, h)) > v((d′, h)) when (d, h) ≻h (d′, h) holds.36 With

f̃(X ′) =
∑

x∈X′ v(x), we can apply Condition 1. The standard DA mecha-
nism is identical to the generalized DA mechanism where ChH is defined as
the maximizer of function f defined above.

The following proposition holds.

Proposition 7. HM-stability is equivalent to GS-stability.

36We note that although we assume a value v(x) is given for each contract and f is
defined by the sum of these values, ChH(X ′) is determined only by the relative ordering of
the values among the contracts that belong to the same hospital. Thus, the specific cardinal
choice of these values, or the relative ordering among contracts for different hospitals, is
not important.
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Proof. To show that HM-stability implies GS-stability, assume for contra-
diction that a feasible matching X ′ is not GS-stable. Then there exists
a blocking pair (d, h). Because (d, h) is acceptable for d and (d, h) ≻d

X ′
d, it immediately follows that (d, h) ∈ ChD(X

′ + (d, h)) by definition
of ChD. Because either |X ′

h| < qh or there exists (d′, h) ∈ X ′ such that
(d, h) ≻h (d′, h), by the definition of f , in either case it follows that (d, h) ∈
argmaxX′′⊆X′+(d,h) f(X

′′) = ChH(X
′ + (d, h)). Therefore X ′ is not HM-

stable.
To show that GS-stability implies HM-stability, assume for contradiction

that a feasible matching X ′ is not HM-stable. X ′ = ChD(X
′) because X ′

is a matching and hence doctor-feasible, and X ′ = ChH(X
′) because X ′ is

a matching and hence hospital-feasible, that is, |X ′
h| ≤ qh for all h in the

current model, and v((d, h)) > 0 for all (d, h) ∈ X ′ by the definition of
v(·). These facts and the assumption that X ′ is not HM-stable imply there
exists a doctor-hospital pair (d, h) such that (d, h) ∈ ChH(X

′ + (d, h)) and
(d, h) ∈ ChD(X

′ + (d, h)) hold. Then (d, h) ≻d X
′
d by the definition of ChD

and, by the definition of f , either |X ′
h| < qh or there exists (d′, h) ∈ X ′ such

that (d, h) ≻h (d′, h). Therefore (d, h) is a blocking pair, showing that X ′ is
not GS-stable. Thus HM-stability is equivalent to GS-stability.

From Proposition 7, we can guarantee that the generalized DA mecha-
nism obtains the doctor-optimal GS-stable matching, so the generalized DA
mechanism and the standard DA mechanism obtain the same outcome. Note
that this fact can be derived without checking whether the two mechanisms
behave exactly in the same way.

C.2 Regional minimum quotas (Goto, Iwasaki, Kawasaki,
Kurata, Yasuda, and Yokoo, 2016)

C.2.1 Model

A market is a tuple (D,H,X,R, (≻d)d∈D, (≻h)h∈H , (qh)h∈H , (ph)h∈H , (pr)r∈R).
As in the standard model, D is a finite set of doctors and H is a finite set of
hospitals. (qh)h∈H is a profile of maximum quotas of hospitals. X := D×H
is the set of contracts. Here, we assume every doctor is acceptable to every
hospital and vice versa; without this assumption, satisfying all minimum
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quotas can be impossible.37

We assume hospitals are grouped into regions R = {r1, . . . , rn}, where
each region r is a subset of hospitals. Here, we allow these regions to overlap.
To be more precise, we assume R is a laminar family of H, i.e., these regions
have a hierarchical structure. Without loss of generality, we assume H ∈
R holds. We assume each region, as well as each individual hospital, has
its minimum quota. More specifically, for each h ∈ H, ph represents the
minimum quota of hospital h, and for each r ∈ R, pr represents the regional
minimum quota of region r.

Since R is a laminar family of subsets of H, R has a tree structure,
where H is the root node, and each h ∈ H is a leaf node (as shown in
Figure 2 (a)). In a tree, we say region rp is the parent of another region r
if rp = argminr′⊋r |r′|. Similarly, we say region rp is the parent of hospital h
if rp = argminr′∋h |r′|. We say region r (or hospital h) is a child of region
rp if rp is a parent of r (or h). For each node r, let children(r) denote the
set of all children of r. Without loss of generality, we assume for each r,
pr ≥

∑
r′∈children(r) pr′ holds (if this inequality does not hold, then one can

redefine pr :=
∑

r′∈children(r) pr′ and the constraints are unchanged). We also

assume pH = |D|, i.e., the minimum quota of the root is equal to the number
of doctors.

The model presented in Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo
(2016) is a special case of this model in which minimal quotas are imposed
only on individual hospitals.

C.2.2 Feasibility

We say X ′ ⊆ X is hospital-feasible if ph ≤ |X ′
h| ≤ qh for all h, and pr ≤ |X ′

r|
for all r. We say X ′ is doctor-feasible if |X ′

d| = 1 for all d. Then, we say
X ′ is feasible if it is doctor- and hospital-feasible. Goto, Iwasaki, Kawasaki,
Kurata, Yasuda, and Yokoo (2016) show that if pr ≤

∑
h∈r qh and ph ≤ qh

37This assumption is motivated by some real-life applications. For example, in many
universities in Japan, an undergraduate student who majors in engineering must be as-
signed to a laboratory to conduct a project, and the project is required for graduation. In
this setting, every student can be assumed to be acceptable to every laboratory and vice
versa. In particular, since 2011, the third author has been applying a mechanism based on
Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo (2016) to assign students to laboratories
in Department of Electrical Engineering and Computer Science, School of Engineering,
Kyushu University, where every student is acceptable to every laboratory and vice versa.
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hold for all r and h, then a feasible matching always exists. In the rest of
this section, we assume the above conditions hold.

X ′ is hospital-feasible only if |X ′| = |D| since pH = |D|. Thus, feasibility
of X ′ requires that all doctors be matched to some hospital. It is clear that
the family of all hospital-feasible contracts does not form a matroid since ∅ is
not hospital-feasible. However, we can apply a technique similar to the one
used in Section 5.2, i.e., we say X ′ is semi-hospital-feasible if it is a subset of
(or equal to) a hospital-feasible matching.

C.2.3 Stability

Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo (2016) introduce sev-
eral concepts that are related to stability. First, in a matching X ′, a doctor
d where (d, h) ∈ X ′ has a justified envy towards another doctor d′ where
(d′, h′) ∈ X ′, if (d, h′) ≻d (d, h), and (d, h′) ≻h′ (d′, h′) hold.

Second, in a matching X ′, a doctor d where (d, h) ∈ X ′ claims an
empty seat of h′ if the following conditions hold: (i) (d, h′) ≻d (d, h), and
(ii) X ′′ = X ′ − (d, h) + (d, h′) is feasible.

Third, in a matching X ′, a doctor d where (d, h) ∈ X ′ strongly claims
an empty seat of h′ if the following conditions hold: (i) (d, h′) ≻d (d, h), (ii)
X ′′ = X ′− (d, h)+ (d, h′) is feasible, and (iii) |X ′

h| − |X ′
h′| ≥ 2. The intuitive

meaning of condition (iii) is similar to KK-stability; the claim of doctor d for
moving her from h to h′ is justified if such a movement strictly decreases the
imbalance of doctors between these hospitals, but not otherwise.

We say a matching is fair if no doctor has justified envy. We say a
matching is nonwasteful if no doctor claims an empty seat, and weakly
nonwasteful if no doctor strongly claims an empty seat. In general, fair-
ness and nonwastefulness are incompatible, i.e., there exists a case where
no matching is fair and nonwasteful (Ehlers, Hafalir, Yenmez, and Yildirim,
2014). Fleiner and Kamiyama (2016) gave an efficient algorithm for checking
whether there exists a fair and nonwasteful matching or not. On the other
hand, Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo (2016) show
that a fair and weakly nonwasteful matching always exists.

C.2.4 Mechanism

Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo (2016) present a mech-
anism based on the FDA mechanism called Round-robin Selection Deferred
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Acceptance mechanism for Regional Minimum Quotas (RSDA-RQ), which is
defined as follows.38

Mechanism 5 (RSDA-RQ).
Apply the following stages from k = 1.

Stage k ≥ 1

Step 1 Each doctor applies to her most preferred hospital by which she has
not been rejected before Stage k. Reset X ′ as ∅.

Step 2 For each r, iterate the following procedure until all doctors applying
to hospitals in r are either tentatively accepted or rejected:

1. Choose hospital h based on the round-robin ordering.

2. Choose doctor d who is applying to h and is not tentatively ac-
cepted or rejected yet, and has the highest priority according to
≻h among the current applicants to h. If there exists no such
doctor, then go to the procedure for the next hospital.

3. If X ′+(d, h) is semi-hospital-feasible, d is tentatively accepted by
h and (d, h) is added to X ′. Then go to the procedure for the next
hospital.

4. Otherwise, d is rejected by h. Then go to the procedure for the
next hospital.

Step 3 If all the doctors are tentatively accepted in Step 2, then let X ′ be a
final matching and terminate the mechanism. Otherwise, go to Stage
k + 1.

This procedure is almost identical to the FDA mechanism. The only dif-
ference is that in the RSDA-RQ mechanism, when making a decision whether
to tentatively accept (d, h) or not, the RSDA-RQ mechanism checks whether
X ′+(d, h) is semi-hospital-feasible or not. Goto, Iwasaki, Kawasaki, Kurata,
Yasuda, and Yokoo (2016) introduce a computationally efficient method to

38To be more precise, Goto, Iwasaki, Kawasaki, Kurata, Yasuda, and Yokoo (2016) deal
with a more generalized model where regional maximum quotas are imposed as well as
regional minimum quotas. Throughout this section, we consider a simplified setting where
only regional minimum quotas exist.
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check semi-hospital-feasibility. The matching obtained by the RSDA-RQ
mechanism is fair and weakly nonwasteful.

Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo (2016) present a mech-
anism based on the deferred acceptance mechanism called Extended Seat
Deferred Acceptance (ESDA) mechanism. The ESDA mechanism is a spe-
cial case of the RSDA-RQ mechanism for an environment in which minimal
quotas are imposed only on individual hospitals. Thus, the ESDA mechanism
is fair and weakly nonwasteful in that setting.

C.2.5 Representation in our model

In the face of nontrivial minimum quotas, the family of hospital-feasible
sets of contracts cannot be a matroid. This is because ∅ is not hospital-
feasible. Also, since hospital-feasibility requires that |X ′| = |D| holds, no
proper subset of X ′ can be hospital-feasible. Thus, conditions 1 and 2 in
Definition 4 are violated. Here, we consider the family of semi-hospital-
feasible sets of contracts. By definition, the family of semi-hospital-feasible
sets of contracts satisfies conditions 1 and 2 in Definition 4.

We create a network flow problem (Cormen, Leiserson, Rivest, and Stein,
2009) that represents these regional constraints as follows. For notational
simplicity, let qr denote

∑
h∈r qh.

• We set the set of start vertexes as X.

• There exists a unique terminal vertex t.

• For each h, we create an intermediate vertex v-h. There exists a di-
rected edge from each (d, h) to this vertex, whose capacity is 1. Also,
from v-h, there exists a directed edge to t, whose capacity is ph.

• For each r, we create one intermediate vertex v-r. There exists a di-
rected edge from each v-r′, where r′ ∈ children(r), to v-r, whose ca-
pacity is qr′ − pr′ . From v-r, there exists a directed edge to t, whose
capacity is pr −

∑
r′∈children(r) pr′ .

We assume f̂(X ′) = 0 if there exists a valid network flow from X ′, i.e., a
flow from X ′ to the terminal vertex t that satisfies capacity constraints of
edges, and otherwise, −∞.

To illustrate our construction, consider the following example. Assume
there are four hospitals h1, . . . , h4. Their maximum and minimum quotas
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Figure 2: Example of regional minimum quotas (a) and an associated network
flow problem (b)

are 3 and 1, respectively. They are divided into two regions r1, r2. Their
minimum quotas are 3. Thus, we require at least one doctor is assigned to
both h1 and h2, and one additional doctor is assigned to either h1 or h2.
There are 8 doctors. Thus, pH is set at 8 (Figure 2 (a)).

Now we are ready to illustrate our construction of the associated network
flow problem. For h1, we create one intermediate vertex v-h1. There exists
a directed edge from each contract related with h1 to v-h1. Also, from v-h1,
there exists a directed edge to the terminal node t, whose capacity is ph1 = 1.
Similarly, for h2, we create one intermediate vertex v-h2. There exists a
directed edge from each contract related to h2 to v-h2. Also, from v-h2, there
exists a directed edge to the terminal node t, whose capacity is ph2 = 1. The
construction related to h3 and h4 is symmetric.

Furthermore, for r1, we create one intermediate vertex v-r1. There ex-
ist edges from nodes representing hospitals in children(r1), i.e., v-h1 and
v-h2, whose capacities are qh1 − ph1 = qh2 − ph2 = 2. Also, from v-r1,
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there exists a directed edge to the terminal node t, whose capacity is pr1 −∑
r′∈children(r1) pr′ = 3 − (1 + 1) = 1. The construction related to r2 is sym-

metric. Also, for H, we create one intermediate node v-H. There exists a
directed edge from v-r1 (which is in children(H)) to v-H, whose capacity is
qr1 − pr1 = 3+ 3− 3 = 3. Similarly, there exists a directed edge from v-r2 to
v-H, whose capacity is 3. There exists a directed edge from v-H to t, whose
capacity is |D| −

∑
r∈children(H) pr = 8− (3 + 3) = 2.

Figure 2 (b) shows the network flow problem of this example. Here, the
number associated to a directed edge represents its capacity.

The following proposition holds.

Proposition 8. X ′ is feasible if and only if f̂(X ′) = 0 and |X ′| = |D|. X ′

is semi-hospital-feasible if and only if f̂(X ′) = 0.

Proof. First, we show that X ′ is feasible if and only if f̂(X ′) = 0 and |X ′| =
|D|. Assume X ′ is feasible. From the fact X ′ is hospital-feasible, |X ′| = |D|
holds. Let us define a flow in which X ′ is the source as follows. For each edge
from (d, h) ∈ X ′ to v-h, we set its flow as 1. Since X ′ is hospital feasible,
ph ≤ |X ′

h| ≤ qh holds. Thus, the total input flow to v-h is at least ph and
at most qh. Then, for each h ∈ H, we set the flow from v-h to t as ph,
and the flow from v-h to its parent r as |X ′

h| − ph. This is at most qh − ph.
Thus, it is within the capacity. Also, for each r ∈ R − H, the total input
flow to v-r is |X ′

r| −
∑

r′∈children(r) pr′ , which is at least pr −
∑

r′∈children(r) pr′

and at most qr −
∑

r′∈children(r) pr′ . Then, we set the flow from v-r to t as

pr−
∑

r′∈children(r) pr′ , and the flow from v-r to its parent region r′ as |X ′
r|−pr.

This is at most qr − pr. Thus, it is within the capacity. Finally, for H, the
total input flow to v-H is |D| −

∑
r∈children(H) pr. Then, we set the flow from

v-H to t as |D| −
∑

r∈children(H) pr. It is clear that the flow defined as above

is valid. Thus, f̂(X ′) = 0 holds.

Next, we show that if f̂(X ′) = 0 and |X ′| = |D|, then X ′ is hospital-
feasible. The total capacity of edges toward t is (|D| −

∑
r∈children(H) pr) +∑

r∈R−H(pr −
∑

r′∈children(r) pr′) +
∑

h∈H ph = |D|. Thus, if f̂(X ′) = 0 and

|X ′| = |D|, each of these edges is saturated, i.e., its flow is equal to its
capacity. Thus, for each hospital h ∈ H, |X ′

h| is at least ph since the edge
from v-h to t is saturated. Also, since the flow is valid, at the edge from v-h
to r, where r is h’s parent region, its flow is at most qh− ph. Thus, |X ′

h| is at
most qh. Similarly, for each region r ∈ R, we can recursively show that |X ′

r|
is at least pr and at most qr. Thus, X

′ is feasible.
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For matroid (X,F), recall that we say X ′ ∈ F is a base if there exists
no X ′′ ∈ F such that X ′′ ⊃ X ′, i.e., X ′ is maximal. From Definition 4, it is
clear that all bases have the same size. Also, since we assume every doctor
is acceptable for all hospitals, the size of a base is |D|.

Now, let us show that if f̂(X ′) = 0, X ′ is semi-hospital-feasible. We have

already shown that if f̂(X ′) = 0 and |X ′| = |D|, then X ′ is hospital-feasible.

If f̂(X ′) = 0 and |X ′| < |D|, let us choose a base X ′′ such that X ′′ ⊃ X ′

holds. Then, |X ′′| = |D| and f̂(X ′′) = 0. Thus, X ′′ is hospital-feasible and
hence X ′ is semi-hospital-feasible.

Finally, let us show that if X ′ is semi-hospital-feasible, then f̂(X ′) =
0. Since X ′ is semi-hospital-feasible, there exists X ′′ ⊇ X ′ such that X ′′

is hospital-feasible. Then, f̂(X ′′) = 0 and from Definition 4, f̂(X ′) = 0
holds.

Define f̃(X ′) in the same way as in equation (1) in Section 5.1.5. Then,

from Property 3, (X, dom f̂) is a matroid. Thus, we can apply Condition 2.
With the help of these results, we are ready to show the following claim.

Proposition 9. HM-stability implies fairness and weak nonwastefulness.

Proof. Suppose X ′ is HM-stable. If doctor d prefers (d, h) to X ′
d, then no

(d′, h) with (d, h) ≻h (d′, h) is in X ′ by the definition of HM-stability and the
definition of the payoff function f . Thus, HM-stability implies fairness. Also,
if doctor d prefers (d, h′) to (d, h) and (d, h) ∈ X ′ while X ′− (d, h)+(d, h′) is
feasible, then |X ′

h|−|X ′
h′ | ≤ 1 must hold, i.e., moving d from h to h′ does not

strictly decrease the imbalance of doctors between h and h′, by the definition
of HM-stability and the construction of f . Thus, HM-stability implies weak
nonwastefulness.

We note that fairness and weak nonwastefulness do not imply HM-stability.
To see this, let us consider the following case. There are three hospitals h1, h2

and h3 and two doctors d1 and d2. The minimum quota of h1 is 1 and the
minimum quotas of the other hospitals are 0. No regional minimum quota
is imposed. We assume h1 ≻d1 h2 ≻d1 h3 and h2 ≻d2 h3 ≻d2 h1 hold.
The round-robin ordering over hospitals is defined as h1, h2, h3. All hospi-
tals prefer d1 over d2. We assume the individual maximum quota of each
hospital is large enough. X ′ = {(d1, h1), (d2, h3)} is fair and weakly non-
wasteful. In particular, (d2, h2) satisfies conditions (i) and (ii) for strongly
claiming an empty seat, but condition (iii) does not hold since |X ′

h3
| = 1 and
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|X ′
h2
| = 0. However, X ′ is not HM-stable since (d2, h2) ∈ ChD(X

′ + (d2, h2))
and (d2, h2) ∈ ChH(X

′ + (d2, h2)) hold.
The RSDA-RQ mechanism is identical to the generalized DA mechanism

where ChH is defined as the maximizer of f described above. The ESDA
is identical to the generalized DA mechanism where ChH is defined as the
maximizer of f described above, when minimal quotas are imposed only on
individual hospitals.

C.3 Controlled school choice (Ehlers, Hafalir, Yenmez,
and Yildirim, 2014)

C.3.1 Model

This section studies a model of matching with diversity constraints. Although
the original contribution by Ehlers, Hafalir, Yenmez, and Yildirim (2014)
frames the model in the context of student placement in schools, we stick to
our terminology of doctors and hospitals.

A market is a tuple (D,H,X, (≻d)d∈D, (≻h)h∈H , (qh)h∈H , T, τ, (q
T
h
)h∈H , (q

T
h )h∈H).

The definitions ofD,H,X,≻d,≻h, and qh are identical to the standard model.
One major difference between this model and the standard ones is that

we assume each doctor d has her type τ(d) ∈ T = {t1, . . . , tk}. A type of
a doctor may represent race, income, gender, or any socioeconomic status.
Furthermore, each hospital has soft minimum and maximum bounds for each
type t, i.e., (qT

h
)h∈H and (qTh )h∈H , where q

T
h
= (qt

h
)t∈T and qTh = (qth)t∈T . Each

qt
h
and qth represent minimum and maximum bounds for type t at hospital

h. We assume
∑

t∈T qt
h
≤ qh holds, i.e., the minimum bounds for all types in

h can be satisfied without violating the maximum quota of the hospital. For
X ′ ⊆ X, let X ′

h,t denote {(d, h) ∈ X ′ | d ∈ D, τ(d) = t}.

C.3.2 Feasibility

The bounds qt
h
and qth are soft bounds and do not affect feasibility. We say

X ′ ⊆ X is hospital-feasible if |X ′
h| ≤ qh for all h. We say X ′ ⊆ X is doctor-

feasible if X ′
d is acceptable for all d. Then, we say X ′ is feasible if it is doctor-

and hospital-feasible.
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C.3.3 Stability

Ehlers, Hafalir, Yenmez, and Yildirim (2014) introduce a stability concept,
which we call Ehlers-Hafalir-Yenmez-Yildirim (EHYY)-stability. For a match-
ing X ′, we say (d, h) ∈ X \ X ′ is an EHYY-blocking pair, where τ(d) = t,
if (d, h) is acceptable for d and (d, h) ≻d X ′

d, and any one of the following
conditions holds:

(i) |X ′
h| < qh,

(ii) |X ′
h,t| < qt

h
, or

(iii) there exists another doctor d′, such that (d′, h) ∈ X ′ and τ(d′) = t′

hold, and any one of the following conditions holds:

(a) t = t′ and (d, h) ≻h (d′, h),

(b) t ̸= t′, qt
h
≤ |X ′

h,t| < qth, q
t′

h
< |X ′

h,t′| ≤ qt
′

h , and (d, h) ≻h (d′, h),

(c) t ̸= t′, qt
h
≤ |X ′

h,t| < qth, and |X ′
h,t′| > qt

′

h , or

(d) t ̸= t′, |X ′
h,t| ≥ qth, |X ′

h,t′ | > qt
′

h , and (d, h) ≻h (d′, h).

We say a matching X ′ is EHYY-stable if there exists no EHYY-blocking
pair.

Intuitively, this stability concept means that for each type t, up to qt
h

doctors of type t can be assigned to hospital h without competing against
doctors of other types. Then, if more type t doctors hope to be assigned to
h, they can be assigned up to qth but these doctors must compete against
doctors of other types. Furthermore, if more type t doctors beyond qth hope
to be assigned to h, they can be assigned only when qh is not filled yet by
accepting doctors of type t′ ̸= t up to qt

′

h .

C.3.4 Mechanism

Ehlers, Hafalir, Yenmez, and Yildirim (2014) present a mechanism called the
Deferred Acceptance Algorithm with Soft Bounds (DAASB), whose outcome
satisfies EHYY-stability. The DAASB mechanism is defined as follows.

Mechanism 6 (DAASB).
Apply the following stages from k = 1.

Stage k ≥ 1
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Step 1 Each doctor applies to her most preferred hospital by which she has
not been rejected before Stage k. If no remaining hospital is acceptable
for d, d does not apply to any hospital. Reset X ′ as ∅.

Step 2 For each hospital h, iterate the following procedure until all doctors
applying to h are either tentatively accepted or rejected:

Phase 1: 1. Choose doctor d who is applying to h and is not tenta-
tively accepted, rejected, or postponed to the next phase yet,
and has the highest priority according to ≻h among current
applicants to h. If there exists no such doctor, then go to the
procedure for the next phase.

2. If |X ′
h,τ(d)| < qτ(d)

h
, then d is tentatively accepted by h and

(d, h) is added to X ′. Then go to the procedure for the next
doctor.

3. Otherwise, the decision on d is postponed to the next phase.
Go to the procedure for the next doctor.

Phase 2: 1. Choose doctor d who is applying to h and is not tenta-
tively accepted, rejected, or postponed to the next phase yet,
and has the highest priority according to ≻h among current
applicants to h. If there exists no such doctor, then go to the
procedure for the next phase.

2. If |X ′
h| = qh then reject all doctors applying to h who have

not been tentatively accepted yet. Go to the procedure for
the next hospital. If |X ′

h,τ(d)| < q
τ(d)
h , then d is tentatively

accepted by h and (d, h) is added to X ′. Then go to the
procedure for the next doctor.

3. Otherwise, the decision on d is postponed to the next phase.
Go to the procedure for the next doctor.

Phase 3: 1. Choose doctor d who is applying to h and is not tenta-
tively accepted, or rejected yet, and has the highest priority
according to ≻h among current applicants to h. If there exists
no such doctor, then go to the procedure for the next hospital.

2. If |X ′
h| = qh then reject all doctors applying to h who are not

tentatively accepted yet. Go to the procedure for the next
hospital.
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3. Otherwise, d is tentatively accepted by h and (d, h) is added
to X ′. Then go to the procedure for the next doctor.

Step 3 If all the doctors are tentatively accepted in Step 2, then let X ′ be a
final matching and terminate the mechanism. Otherwise, go to Stage
k + 1.

C.3.5 Representation in our model

Let us consider an extended market (D,H, X̃, (≻̃d)d∈D, f). Here, a contract
x ∈ X̃ is represented as (d, h, s), where d ∈ D, h ∈ H, and s ∈ {0, 1, 2}.
s = 0, 1, 2 are interpreted to mean that doctor d is accepted at hospital h
for type τ(d)’s priority seat, normal seat, and extended seat, respectively.
As described later, we introduce such a seat distinction to satisfy EHYY-
stability. From the matching in the extended market X̃ ′, the matching in
the original marketX ′ is obtained by mapping each contract (d, h, s) to (d, h).
Let X̃ ′

h,t,s denote {(d, h, s) ∈ X̃ ′ | d ∈ D, τ(d) = t}.
We define the modified preference of each doctor d, denoted ≻̃d such that

(d, h, s)≻̃d(d, h
′, s′) holds for any h ̸= h′, s, and s′ if (d, h) ≻d (d, h′), and

(d, h, 0)≻̃d(d, h, 1)≻̃d(d, h, 2) holds for any h, i.e., for each h, doctor d prefers
h’s priority seat over its normal seat, and its normal seat over its extended
seat.

For the extended market, let us assume for each x, its value v(x) is defined.
We assume v((d, h, 0)) > v((d′, h, 1)) and v((d, h, 1)) > v((d′, h, 2)) hold for
any d, d′, and h, i.e., hospitals first try to fill their priority seats, then normal
seats, and finally extended seats. Also, we assume v((d, h, s)) > v((d′, h, s))
if (d, h) ≻h (d′, h), i.e., the preference of an individual hospital over doctors
is respected, as long as doctors have the same type of seat.

Let us define f̂(X̃ ′) as 0 when |X̃ ′
h| ≤ qh, |X̃ ′

h,t,0| ≤ qt
h
, and |X̃ ′

h,t,1| ≤
qth − qt

h
hold for all h ∈ H and t ∈ T , and otherwise, −∞. Intuitively, these

definitions mean that the number of priority seats of hospital h for type t
doctors is qt

h
, and the number of normal seats is qth − qt

h
.

Also, let us define f̃(X̃ ′) as
∑

x∈X̃′ v(x). (X̃, dom f̂) is a laminar matroid,

since T = {X̃h,t,s | h ∈ H, t ∈ T, s ∈ {0, 1, 2}} ∪ {X̃h | h ∈ H} is a laminar
family of X̃. Thus, we can apply Condition 1. The matching obtained by
the DAASB mechanism is identical to the matching in the original market
mapped from the outcome of the generalized DA mechanism where ChH is
defined as the maximizer of function f .
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The following proposition holds.

Proposition 10. HM-stability of X̃ ′ in the extended market implies EHYY-
stability of X ′ in the original market.

Proof. Assume (d, h) is an EHYY-blocking pair in the original market, where
τ(d) = t. If condition (i) of an EHYY-blocking pair holds, by choosing x =
(d, h, 2), x ∈ ChD(X̃ ′ + x) and x ∈ ChH(X̃ ′ + x) hold. Also, if condition (ii)
holds, |X̃ ′

h,t,0| < qt
h
holds. Thus, by choosing x = (d, h, 0), x ∈ ChD(X̃ ′ + x)

and x ∈ ChH(X̃ ′ + x) hold. Then, in either case, X̃ ′ is not HM-stable.
Assume condition (iii) holds, so there exists another doctor d′ such that

τ(d′) = t′ and d′ is assigned to h. If condition (a) holds, (d′, h, s) ∈ X̃ ′

and v((d, h, s)) > v((d′, h, s)) must hold. Thus, x ∈ ChD(X̃ ′ + x) and x ∈
ChH(X̃ ′ + x) hold. If condition (b) holds, (d′, h, 1) ∈ X̃ ′, |X̃ ′

h,t,1| < qth − qt
h
,

and v((d, h, 1)) > v((d′, h, 1)) must hold. Thus, by choosing x = (d, h, 1), x ∈
ChD(X̃ ′+x) and x ∈ ChH(X̃ ′+x) hold. If condition (c) holds, (d′, h, 2) ∈ X̃ ′,
|X̃ ′

h,t,1| < qth−qt
h
, and v((d, h, 1)) > v((d′, h, 2)) must hold. Thus, by choosing

x = (d, h, 1), x ∈ ChD(X̃ ′ + x) and x ∈ ChH(X̃ ′ + x) hold. If condition (d)
holds, (d′, h, 2) ∈ X̃ ′ and v((d, h, 2)) > v((d′, h, 2)) must hold. Thus, by
choosing x = (d, h, 2), x ∈ ChD(X̃ ′ + x) and x ∈ ChH(X̃ ′ + x) hold. Thus,
in any of these cases, X̃ ′ is not HM-stable.

For a matching in the extended market, the corresponding matching in
the original market is uniquely determined, but multiple matchings in the
extended market can be mapped onto an identical matching in the original
market. Thus, whether EHYY-stability in the original market implies HM-
stability in the extended market or not depends on how to determine the
mapping from the original market to the extended market. However, since
the generalized DA mechanism is identical to the DAASB mechanism, it
obtains the doctor-optimal EHYY-stable matching.

C.4 Student-project allocation (Abraham, Irving, and
Manlove, 2007)

C.4.1 Model

In the Student-Project Allocation (SPA) problem, a market is represented
as a tuple (S, P, L,X, (≻s)s∈S, (≻l)l∈L, (ql)l∈L, (qp)p∈P ). S is a finite set of
students, P is a finite set of projects, and L is a finite set of lecturers. Each
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project p ∈ P is offered by some lecturer l ∈ L. Let Pl denote the set of
projects offered by lecturer l. Each contract x ∈ X is a pair (s, p), which
represents the assignment of student s to project p. For X ′ ⊆ X, let X ′

s

denote {(s, p) ∈ X ′ | p ∈ P} and X ′
l denote {(s, p) ∈ X ′ | s ∈ S, p ∈ Pl}.

For each s ∈ S, ≻s represents the preference of student s over acceptable
contracts in Xs. For each l ∈ L, ≻l represents the preference of lecturer l
over S, and ql represents the maximum quota of lecturer l. For each p ∈ P ,
qp represents the maximum quota of project p.

C.4.2 Feasibility

We say X ′ ⊆ X is student-feasible if X ′
s is acceptable for each s ∈ S. We say

X ′ ⊆ X is lecturer-feasible if |X ′
l | ≤ ql holds for all l ∈ L, and |X ′

p| ≤ qp holds
for all p ∈ P . Then, we say X ′ is feasible if it is student- and lecturer-feasible.

C.4.3 Stability

For a matching X ′, a contract (s, p) ∈ X \X ′, where p ∈ Pl, is an Abraham-
Irving-Manlove (AIM) blocking pair of X ′ if (i) (s, p) is acceptable for
s, (ii) (s, p) ≻s X

′
s, and (iii) one of the following conditions holds:

(a) |X ′
p| < qp and |X ′

l | < ql.

(b) |X ′
p| < qp and |X ′

l | = ql, and either X ′
s = {(s, p′)} and p′ ∈ Pl, or there

exists (s′, p′′) ∈ X ′, such that p′′ ∈ Pl and s ≻l s
′.

(c) |X ′
p| = qp and there exists (s′, p) ∈ X ′, such that s ≻l s

′.

We say a matching X ′ is Abraham-Irving-Manlove (AIM)-stable if
it has no AIM-blocking pair.

C.4.4 Mechanism

Abraham, Irving, and Manlove (2007) present two mechanisms based on the
DA mechanism. One is called SPA-student, in which students make offers,
and the other is called SPA-lecturer, in which lecturers make offers. Both
mechanisms produce AIM-stable matchings. Although Abraham, Irving, and
Manlove (2007) do not examine strategyproofness, the SPA-student is strat-
egyproof for students. The SPA-student is defined as follows.
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Mechanism 7 (SPA-student).
Apply the following stages from k = 1.

Stage k ≥ 1

Step 1 Each student s applies to her most preferred project by which she has
not been rejected before Stage k. If no remaining project is acceptable
for s, s does not apply to any project. Reset X ′ as ∅.

Step 2 For each lecturer l, iterate the following procedure until all students
applying to projects in Pl are either tentatively accepted or rejected:

1. Choose s, where s is applying to some project p ∈ Pl, s has not
been tentatively accepted or rejected yet in any previous step of
this stage, and s has the highest priority according to ≻l among
the students currently applying to some project offered by lecturer
l.

2. If |X ′
p| < qp and |X ′

l | < ql, s is tentatively accepted by p and (s, p)
is added to X ′. Then go to the procedure for the next student.

3. Otherwise, s is rejected by p. Then go to the procedure for the
next student.

Step 3 If all the students are tentatively accepted in Step 2, then let X ′ be
a final matching and terminate the mechanism. Otherwise, go to Stage
k + 1.

C.4.5 Representation in our model

Let us define f̂(X ′) as 0 if X ′ is lecturer-feasible, i.e., |X ′
p| ≤ qp for all p ∈ P

and |X ′
l | ≤ ql for all l ∈ L, and otherwise, −∞. Then, (X, dom f̂) is a

laminar matroid, since T = {Xl1 , Xl2 , . . . , Xp1 , Xp2 , . . .} is a laminar family
of X.

Let us assume there exists an ordering p1, p2, . . . among projects within
Pl. Then, let us define a positive value v(x) for each x ∈ X with the following
properties: for every p, p′ ∈ Pl, v((s, p)) > v((s′, p′)) if s ≻l s

′, and v((s, p)) >
v((s, p′)) if p appears earlier than p′ in the above ordering over Pl.

Let us assume f̃(X ′) is given as
∑

x∈X′ v(x). Then, we can apply Condi-
tion 1. SPA-student is identical to the generalized DA mechanism where the
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choice function of the lecturers ChL is defined as the maximizer of function
f .

The following proposition establishes a connection between HM-stability
and AIM-stability.

Proposition 11. AIM-stability implies HM-stability.

Proof. If X ′ is AIM-stable, then the first condition for HM-stability, namely
X ′ = ChL(X

′) = ChS(X
′), is obvious. We show that if there exists (s, p) ∈

X \X ′ such that (s, p) ∈ ChL(X
′+(s, p)) and (s, p) ∈ ChS(X

′+(s, p)) hold,
then (s, p) is an AIM-blocking pair.

By way of contradiction, let us assume (s, p) is not an AIM-blocking pair.
From the fact that (s, p) ∈ ChS(X

′ + (s, p)), (s, p) is acceptable for s. Also,
either (s, p) ≻s (s, p

′) holds where (s, p′) ∈ X ′, or X ′
s = ∅.

Assume p ∈ Pl. Since (s, p) is not an AIM-blocking pair, either |X ′
p| = qp

or |X ′
l | = ql holds. Since (s, p) ∈ ChL(X

′ + (s, p)), there exists (s′, p′) ∈ X ′

such that (s′, p′) ̸∈ ChL(X
′+(s, p)) and p′ ∈ Pl hold (otherwise, |X ′

p| < qp and
|X ′

l | < ql hold). Since (s
′, p′) ̸∈ ChL(X

′+(s, p)) and (s, p) ∈ ChL(X
′+(s, p)),

s ≻l s
′ or s = s′ hold. In either case, (s, p) becomes an AIM-blocking pair.

This is a contradiction.

We note that there exist cases in which a matching X ′ is HM-stable
but not AIM-stable. To see this, assume there exist one student s and two
projects p1 and p2, and both projects are provided by the same lecturer l.
The order on Pl is p2, p1. s prefers p1 to p2. In this example, X ′ = {(s, p2)}
is stable, since ChL(X

′ + (s, p1)) = X ′, but it is not AIM-stable since (s, p1)
is an AIM-blocking pair under the definition of AIM-stability. However, the
following proposition holds.

Proposition 12. The generalized DA mechanism obtains the doctor-optimal
AIM-stable matching.

Proof. Since the generalized DAmechanism obtains the student-optimal HM-
stable matching and AIM-stability implies HM-stability, it suffices to show
that the student-optimal HM-stable matching satisfies AIM-stability. To
show the latter, let us assume by way of contradiction that X ′ is the student-
optimal HM-stable matching but it is not AIM-stable, i.e., there is an AIM-
blocking pair (s, p) ∈ X \ X ′. Let p ∈ Pl. Since X ′ is HM-stable, cases (a)
and (c) in the definition of an AIM-blocking pair in Section C.4.3 are not
possible. Thus the only possibility is that |X ′

p| < qp, |X ′
l | = ql, X

′
s = {(s, p′)},
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and p′ ∈ Pl hold, i.e., s is assigned to project p′, although s prefers another
project p, while p′ and p are held by the same lecturer l and p is not full. Let
X ′′ = X ′− (s, p′)+ (s, p). It is clear that X ′′ is HM-stable, s prefers X ′′ over
X ′, and other students are indifferent between X ′′ and X ′. This contradicts
the assumption that X ′ is the student-optimal HM-stable matching.

In the above example, the generalized DA mechanism returns {(s, p1)},
which is AIM-stable.

C.5 Cadet-branch matching (Sönmez and Switzer, 2013)

C.5.1 Model

A market is a tuple (I, B, T,X, (≻i)i∈I ,≻B, (qb)b∈B, (pb)b∈B). I is a finite set
of cadets and B is a finite set of branches of the military. T = {t0, t+} is
a pair of terms, where t0 means that a cadet serves for a standard term,
and t+ means that a cadet serves for an extended term, which is longer
than the standard term. X := I ×B × T is the set of contracts. A contract
x = (i, b, t) means i is matched with b with term t. For X ′ ⊆ X, let X ′

i denote
{(i, b, t) ∈ X ′ | t ∈ T, b ∈ B} and X ′

b denote {(i, b, t) ∈ X ′ | i ∈ I, t ∈ T}.
For each i ∈ I, ≻i represents the preference of cadet i over acceptable

contracts in Xi. ≻B is the priority ordering (master-list) over the cadets,
which is common to all branches. For each b ∈ B, qb represents the maximum
quota of branch b, and pb < qb represents the reserved quota for extended-
term contracts at branch b.

C.5.2 Feasibility

We say X ′ ⊆ X is cadet-feasible if X ′
i is acceptable for all i. We say X ′ ⊆ X

is branch-feasible if |X ′
b| ≤ qb holds for all b ∈ B. Then, we say X ′ is feasible

if it is cadet- and branch-feasible.

C.5.3 Stability

We say a matching X ′ is fair if for each pair of contracts (i, b, t), (i′, b′, t′) ∈
X ′, (i, b′, t′) ≻i (i, b, t) implies i′ ≻B i (Sönmez and Switzer, 2013). In other
words, fairness requires that a higher-priority cadet never envies the assign-
ment of a lower-priority cadet.
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C.5.4 Mechanism

Sönmez and Switzer (2013) present a mechanism called the Cadet-Optimal
Stable Mechanism (COSM), which is defined as follows.39 The COSM always
produces a fair matching.

Mechanism 8 (COSM).
Apply the following stages from k = 1.

Stage k ≥ 1

Step 1 Each cadet i chooses her most preferred contract (i, b, t) which has
not been rejected before Stage k and applies to b with term t. If no
remaining contract is acceptable for i, i does not apply to any branch.
Reset X ′ as ∅.

Step 2 For each b, iterate the following procedure until all cadets applying
to b are either tentatively accepted or rejected:

Phase 1: Choose cadet i such that i has the highest priority according
to ≻B among the applicants to b, who are applying to b with term
t (t can be either t0 or t+) and are not tentatively accepted yet. If
there exists no such cadet, then go to the procedure for the next
branch. If |X ′

b| < qb − pb, tentatively accept i to b and add (i, b, t)
to X ′, and go to the procedure for the next cadet. Otherwise, go
to the procedure for the next phase.

Phase 2: Choose cadet i such that i has the highest priority according
to ≻B among the applicants to b, who are applying to b with
the extended term t+ and are not tentatively accepted yet. If
there exists no such cadet, then go to the next phase. If |X ′

b| <
qb, tentatively accept i to b, add (i, b, t+) to X ′, and go to the

39To be more precise, the COSM presented in Sönmez and Switzer (2013) is slightly
different from the one presented here. The difference would matter when branch b han-
dles two contracts offered by the same cadet i, i.e., (i, b, t0) and (i, b, t+). However, this
difference does not matter since b handles cadet-feasible contracts only. Allowing multiple
contracts between the same pair of agents, as is done in the present paper, enables the
preference to satisfy substitutability. This technique has been used in Kamada and Kojima
(2015, 2017a) and Goto, Iwasaki, Kawasaki, Yasuda, and Yokoo (2014) in the context of
matching with constraints. See also Hatfield and Kominers (2009, 2014) who study this
issue further.
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procedure for the next cadet. Otherwise, reject all cadets applying
to b who are not tentatively accepted yet. Go to the procedure
for the next branch.

Phase 3: Choose cadet i such that i has the highest priority according
to ≻B among the applicants to b, who are applying to b with the
standard term t0 and are not tentatively accepted yet. If there
exists no such cadet, then go to the procedure for the next branch.
If |X ′

b| < qb, tentatively accept i to b, add (i, b, t0) to X ′, and go
to the procedure for the next cadet. Otherwise, reject all cadets
applying to b who are not tentatively accepted yet. Go to the
procedure for the next branch.

Step 3 If all the cadets are tentatively accepted in Step 2, then let X ′ be a
final matching and terminate the mechanism. Otherwise, go to Stage
k + 1.

C.5.5 Representation in our model

Let us consider an extended market (I, B, T, X̃, ≻̃I , f). For each contract
(i, b, t+) in X, we create two contracts (i, b, t+, 0) and (i, b, t+, 1) in the ex-
tended market. Here, (i, b, t+, 0) and (i, b, t+, 1) are interpreted to mean i
is accepted to b for its priority seat and normal seat, respectively. For each
contract (i, b, t0), we create a single contract (i, b, t0, 1) in the extended mar-
ket.

We obtain the modified preference of each cadet i, denoted ≻̃i, such that
(i, b, t, s)≻̃i(i, b

′, t′, s′) holds for any b, b′, s, s′, t, and t′, if (i, b, t) ≻i (i, b
′, t′),

and (i, b, t+, 1)≻̃i(i, b, t+, 0) holds for any b (as long as (i, b, t+) is acceptable
for i).

From the matching in the extended market X̃ ′, the matching in the origi-
nal market X ′ is obtained by mapping each contract (i, b, t, s) to (i, b, t). For
X̃ ′ ⊆ X̃, let X̃ ′

b,s denote {(i, b, t, s) ∈ X̃ ′ | i ∈ I, t ∈ T}.
For each x ∈ X̃, we define its value v(x). We assume v(·) respects ≻B

in the sense that if i ≻B i′, v((i, b, t, s)) > v((i′, b, t, s)) holds for all b, t, and
s. Also assume v((i, b, t+, 0)) > v((i′, b′, t, 1)) for all i, i′, b, b′, and t, i.e., a
contract for a priority seat has a larger value than any contract for a normal
seat.

Let us define f̂(X̃ ′) as 0 when |X̃ ′
b| ≤ qb and |X̃ ′

b,0| ≤ pb hold for all

b ∈ B, and −∞ otherwise. Also, let us define f̃(X̃ ′) as
∑

x∈X̃′ v(x). Then,
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(X̃, dom f̂) is a laminar matroid, since T = {X̃b,s | b ∈ B, s ∈ {0, 1}} ∪ {X̃b |
b ∈ B} is a laminar family of X̃. Thus, we can apply Condition 1. COSM
is identical to the generalized DA mechanism where the choice function of
branches ChB is defined as the maximizer of function f .

The following proposition holds.

Proposition 13. HM-stability of X̃ ′ in the extended market implies fairness
of X ′ in the original market.

Proof. Assume X ′ is not fair, i.e., there exist (i, b, t), (i′, b′, t′) ∈ X ′ such
that (i, b′, t′) ≻i (i, b, t) and i ≻B i′ hold. Consider the case where t′ = t+
and (i′, b′, t+, s) ∈ X̃ ′. Then, if we choose x = (i, b′, t+, s), it is clear that
x ∈ ChI(X̃

′ + x) and x ∈ ChB(X̃
′ + x) because v(i, b′, t+, s) > v(i′, b′, t+, s).

Consider the case where t′ = t0 and (i′, b′, t0, 1) ∈ X̃ ′. Then, if we choose
x = (i, b′, t0, 1), it is clear that x ∈ ChI(X̃

′+x) and x ∈ ChB(X̃
′+x) because

v(i, b′, t0, 1) > v(i′, b′, t0, 1).

On the other hand, HM-stability is not implied by fairness. To see this,
let a cadet i hope to be assigned branch b with term t+ but she is not accepted
by b in X ′, while |X ′

b,0| < pb. Then X ′ is not HM-stable, even if each cadet
assigned to b has a higher priority than i (thus X ′ is fair).

Fairness as defined in Section C.5.3 is a mild requirement, and the cadet-
optimal fair matching does not always exist. Thus, neither the generalized
DA mechanism nor the COSM always produce the cadet-optimal fair match-
ing.

C.6 Regional maximum quotas with regionally priori-
tized doctors

In this subsection, instead of examining an existing application, we consider
a new application. Specifically, we study a situation where several different
constraints must be satisfied simultaneously.

Assume hospitals are partitioned into regions as in Section 5.1, each with
a regional maximum quota. In addition, each region is associated with “re-
gionally prioritized doctors” who are granted priority for placement in that
region over other doctors. More specifically, each hospital in the region is
required to accept the regionally prioritized doctors up to a certain number
even if the hospital prefers other doctors.
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A case in point is Japanese medical residency matching. As described ear-
lier, the Japanese government imposes a regional maximum quota on each
region of the country for medical residency matching. Furthermore, there is
a discussion on giving priorities to residents who received regional scholar-
ships. More specifically, some regions have scholarship programs to medical
students. If a student who received the scholarship from a region becomes a
medical resident in that region, she does not need to pay back the scholar-
ship. However, if she fails be a medical resident in that region (even if she
wanted to), she needs to pay back the scholarship. Given this nature of the
scholarship, there is a discussion among policymakers to give some priority
to such students for positions in that region.

Another possible example is centralized admission to public universities.
Assume each region has regional maximum quotas due to its budget lim-
itation, for instance. At the same time, the region gives some priority to
students who live in the region.

In this subsection, we show how to model such situations in our frame-
work. A market is a tuple

(D,H,X,R, (≻d)d∈D,≻H , (ph)h∈H , (qh)h∈H , (qr)r∈R, τ).

The definitions of D,H,X,R,≻d, qh, and qr are identical to the model pre-
sented in Section 5.1. τ : D → R ∪ {∅} returns the region where doctor d is
regionally prioritized. If τ(d) = ∅, it means that no region regionally prefers
d.

For X ′ ⊆ X, let X ′
r,h denote {(d, h) | (d, h) ∈ X ′, h ∈ r, r = τ(d)},

i.e., the subset of contracts in X ′ involving doctors prioritized in region r
and h ∈ r. Each hospital h ∈ r has a minimum quota ph for regionally
prioritized doctors of region r. As in Section C.3, these minimum quotas are
soft bounds and do not affect feasibility. We assume

∑
h∈r ph ≤ qr holds for

all r ∈ R, i.e., the regional maximum quota of r is large enough to satisfy
the minimum quotas of regionally prioritized doctors for all h ∈ r. As in the
case of contract-order stability, we assume there exists a total order ≻H over
X.

We say X ′ is doctor-feasible if X ′
d is acceptable for all d. We say X ′ is

hospital-feasible if |X ′
h| ≤ qh and |X ′

r| ≤ qr hold for all h ∈ H and r ∈ R.
Then, we say X ′ is feasible if it is doctor- and hospital-feasible.

For a matching X ′, we say (d, h) ∈ X\X ′ (where h ∈ r) is a blocking pair,
if (d, h) is acceptable for d and (d, h) ≻d X ′

d, and any one of the following
conditions holds:
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(i) τ(d) = r and |X ′
r,h| < ph,

(ii) |X ′
h| < qh and |X ′

r| < qr,

(iii) |X ′
h| < qh, |X ′

r| = qr, there exists h′ ∈ r such that (d, h′) ∈ X ′,
(d, h) ≻H (d, h′), and either (iii-a) τ(d) = r and |X ′

r,h′ | > ph′ , or (iii-b)
τ(d) ̸= r holds, or

(iv) there exists (d′, h) ∈ X ′, such that (d, h) ≻H (d′, h), and any one of the
following conditions holds:

(iv-a) τ(d′) ̸= r,

(iv-b) τ(d) = τ(d′) = r, or

(iv-c) τ(d) ̸= r, τ(d′) = r, and |X ′
r,h| > ph.

We say a matching X ′ is stable if there exists no blocking pair according to
the above definition.

In this definition, conditions (i)-(iv) list the cases in which the formation
of a matching between doctor d and hospital h is regarded as a “legitimate”
blocking in the presence of constraints. More specifically, (i) is a case in
which d is a regionally prioritized doctor in r and there is an available seat
reserved for regionally prioritized doctors in h; (ii) is a case in which h has
an empty seat and its region r has room for another doctor; (iii) is a case in
which the region r is full, but d is currently matched with another hospital h′

in r, H prefers (d, h) over (d, h′), and moving d away from h′ will not cause
the minimum quota for regionally prioritized doctors at h′ to be violated;
(iv) is a case in which h is currently matched with a less preferred doctor d′,
and moving d′ away from h will not cause the minimum quota for regionally
prioritized doctors at h to be violated.

To represent this problem using our framework, let us consider an ex-
tended market given by tuple

(D,H, X̃, R, (≻̃d)D, ≻̃H , (ph)h∈H , (qh)h∈H , (qr)r∈R, τ).

Each contract x ∈ X̃ is represented as a triple (d, h, t) where d ∈ D, h ∈ H,
and t ∈ {0, 1}. We assume that contracts of the form (d, h, 0) are available
only to a regionally prioritized doctor such that h ∈ τ(d). The triple (d, h, 0)
is interpreted as a contract in which d ∈ D is assigned to a priority seat of
hospital h, and (d, h, 1) is interpreted as a contract in which d is assigned to
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a normal seat of hospital h. For d ∈ D, ≻̃d is obtained from ≻d such that
for any h, h′ ∈ H, (d, h, 1)≻̃d(d, h

′, 1) if and only if (d, h) ≻d (d, h′). Also,
for each h ∈ τ(d), (d, h, 0)≻̃d(d, h, 1) holds. Furthermore, for any d ∈ D and
any h, h′ ∈ τ(d), (d, h, 0)≻̃d(d, h

′, 0) if and only if (d, h) ≻d (d, h′). ≻̃H is
obtained from ≻H such that for any h, h′, d, d′, and t, (d, h, t)≻̃H(d

′, h′, t) if
and only if (d, h) ≻H (d′, h′) holds, and (d, h, 0)≻̃H(d

′, h′, 1) holds for any
h, h′, d and d′, where h ∈ τ(d). Let v(x) denote the value of contract x which
respects ≻̃H , i.e., v(x) > v(x′) holds if and only if x≻̃Hx

′. Let X̃ ′
h,t denote

{(d, h, t) ∈ X ′ | d ∈ D}.
Let us define f̂(X̃ ′) as 0 when |X̃ ′

h| ≤ qh, |X̃ ′
r| ≤ qr, and |X̃ ′

h,0| ≤ ph hold

for all h ∈ H and r ∈ R, and −∞ otherwise. Also, let us define f̃(X̃ ′) as∑
x∈X̃′ v(x).

Then, (X̃, dom f̂) is a laminar matroid since T = {X̃h,t | h ∈ H, t ∈
{0, 1}} ∪ {X̃h | h ∈ H} ∪ {X̃r | r ∈ R} is a laminar family of X̃. Thus, we
can apply Condition 1.

From the matching in the extended market X̃ ′, the matching in the orig-
inal market X ′ is obtained by mapping each contract (d, h, t) to (d, h). The
following proposition holds.

Proposition 14. HM-stability of X̃ ′ in the extended market implies that
there exists no blocking pair in the original market.

Proof. Assume (d, h) is a blocking pair and condition (i) holds. Then, by
choosing x = (d, h, 0), x ∈ ChH(X̃

′ + x) and x ∈ ChD(X̃
′ + x) hold. If

condition (ii) holds, by choosing x = (d, h, 1), x ∈ ChH(X̃
′ + x) and x ∈

ChD(X̃
′ + x) hold since X̃ ′ + x is feasible.

Assume condition (iii) holds. If (iii-a) holds, then there exists at least
one regionally prioritized doctor d′ in r, who is assigned to a normal seat
of h′, i.e., (d′, h′, 1) is included in X̃ ′, and (d, h, 1)≻̃H(d

′, h′, 1) hold. By
choosing x = (d, h, 1), x ∈ ChH(X̃

′ + x) and x ∈ ChD(X̃
′ + x) hold since

(d, h, 1)≻̃H(d
′, h′, 1) holds. If (iii-b) holds, (d, h′, 1) is included in X̃ ′. By

choosing x = (d, h, 1), x ∈ ChH(X̃
′ + x) and x ∈ ChD(X̃

′ + x) hold since
(d, h, 1)≻̃H(d, h

′, 1) holds.
Next, assume condition (iv) holds, i.e., there exists (d′, h) ∈ X ′ such that

(d, h) ≻H (d′, h) holds. If condition (iv-a) holds, then (d′, h, 1) ∈ X̃ ′ and
(d, h, 1)≻̃H(d

′, h, 1) hold. Thus, if we choose x = (d, h, 1), x ∈ ChH(X̃
′ + x)

and x ∈ ChD(X̃
′ + x) hold. If condition (iv-b) holds, then (d′, h, t) ∈ X̃ ′

(where t can be either 0 or 1) and (d, h, t)≻̃H(d
′, h, t) hold. Thus, if we choose
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x = (d, h, t), x ∈ ChH(X̃
′ + x) and x ∈ ChD(X̃

′ + x) hold. If condition (iv-
c) holds, then there exists at least one regionally prioritized doctor d′′ in r
(d′′ can be equal to d′), who is assigned to a normal seat of h in X̃ ′ and
(d, h, 1)≻̃H(d

′′, h, 1) hold. Thus, if we choose x = (d, h, 1), x ∈ ChH(X̃
′ + x)

and x ∈ ChD(X̃
′ + x) hold.

Thus, if there exists a blocking pair, X̃ ′ is not HM-stable.

D Discussions

D.1 Relations between applications

The SPA problem in Section C.4 can be represented using the regional max-
imum quota model in Section 5.1, by letting projects provided by the same
lecturer Pl form a region and its regional maximum quota be set at ql. In
the SPA problem, individual projects in Pl do not have their own prefer-
ences over students; one can interpret that all projects in Pl use a common
preference ≻l. As a result, AIM-stability implies strong stability defined in
Section 5.1. Thus, AIM-stability is stronger than KK-stability or contract-
order-stability.40

The model presented in Section 4 of Biro, Fleiner, Irving, and Manlove
(2010) can be regarded as a generalization of the SPA problem, where the
constraints have a laminar structure and maximum quotas are imposed at
each element of the laminar family. Biro, Fleiner, Irving, and Manlove (2010)
show that a stable matching always exists and a modification of the stan-
dard DA mechanism obtains a stable matching. Clearly, our analysis in
Section C.4 can be generalized to this environment.

D.2 Aggregation of individual hospital preferences

Recall the model of matching with regional maximum quotas in Section 5.1.
As illustrated there, there may be several alternative methods for aggregating
the preferences of individual hospitals into a single preference of the hospitals.
One method is to introduce an order over hospitals to determine a preference

40AIM-stability does not coincide with strong stability or KK-stability or contract-order
stability in general. Thus our analysis of the SPA problem is not subsumed by our analysis
of regional maximum quotas.
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over the numbers of accepted contracts at each hospital (as used in KK-
stability). Then, which contracts should be accepted at each hospital is
determined by the individual preference of the hospital. Another method
is to generate an ordering among contracts that respects the preferences of
individual hospitals (as in contract-order stability). As seen in Section 5.1,
both types of aggregated hospital preferences can be represented by M♮-
concave functions.

Of course, what preference aggregation employ depends on what stability
concept one adopts as the solution concept. This amounts to deciding a
criterion for socially desirable outcomes. Recommending one criterion over
another is not the goal of the present paper, because the decision would
involve a value judgment by the members of the society, and it is likely to
depend on specific applied contexts. Our contribution is to provide a tool
for achieving a desirable outcome given societal preferences, and we aimed
to accommodate as wide a range of constraints and societal preferences as
possible.

In this regard, one advantage of our methodology is that it is general and
flexible enough to subsume a wide class of aggregated preferences including
both those corresponding to KK-stability and contract-order stability. Recall
the function f̃ representing the hospitals’ soft preferences as in KK-stability,

f̃(X ′) =
∑
h∈H

Vh(|X ′
h|) +

∑
x∈X′

v(x), (7)

where Vh(k) =
∑k

j=1 vh(j) and vhi
(j) = C(C−|H|·j−i) with a constant C >

0. Contrary to the case in KK-stability, however, let us relax the assumption
C ≫ v(x), and allow for arbitrary relations between vhi

(j) and v(x). Even

under this relaxation, by Condition 2, it follows that function f = f̂ + f̃
as defined in Section 5.1.5 is M♮-concave, and thus all our results hold with
respect to this function f , including the existence of an HM-stable matching
and strategyproofness for doctors of the generalized DA mechanism.

As mentioned above, the function f̃ in equation (7) generalizes the func-
tion corresponding to KK-stability. Moreover, contract-order stability cor-
responds to HM-stability with respect to equation (7) for the case in which

v(x)− v(x′) ≫ C for all x ̸= x′: with this assumption, f̃ primarily values ac-
cepting a contract with a high value. Thus, this paper’s methodology enables
us to generalize and unify Kamada and Kojima (2015) and Goto, Iwasaki,
Kawasaki, Yasuda, and Yokoo (2014) in a straightforward manner.
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The additional generality of our methodology also enables us to accom-
modate other possible societal preferences. For instance, consider a situation
in which the hospitals mostly try to equalize the numbers of assigned doc-
tors across hospitals as in KK-stability, but some special matchings are given
priority. Suppose, for example, a particular hospital h has urgent needs for
pediatricians, so matching pediatricians to h takes priority. Such a case can
be accommodated by equation (7) if v(x) is very small for most contracts,41

but v(x) is sufficiently large for any x which represents a matching of a
pediatrician to the hospital h.

Another example is a situation in which there is a target capacity for each
hospital that needs to be achieved first, but beyond the target capacities,
applications are accepted according to a common preference ordering ≻H .
This criterion can be expressed by equation (7) by setting vh(j) ≫ v(x)
for any h, x, and j as long as j is at most the target capacity for h, while
vh(j) ≪ v(x) for any j that is strictly larger than the target capacity.

Both of these cases can be expressed by equation (7), and the function

f = f̂+f̃ is M♮-concave by the preceding argument. Therefore the generalized
DA mechanism is strategyproof for doctors and produces the doctor-optimal
HM-stable matching. Beyond these specific examples, the major advantage
of our methodology is to provide the policy maker with a general and flexible
method to set a policy goal and immediately verify if such a goal is achievable
and, if achievable, provide an off-the-shelf mechanism that produces a desired
outcome.

D.3 Algorithms for finding a maximal matroid

As mentioned in the main text, in some extreme cases, Algorithm 1 may
produce undesirable matroids. To see this point, assume there exists only
one element B ∈ F such that |B| = max{|Y | | Y ∈ F}, i.e., B = {B}. Then,
B̂ obtained by Algorithm 1 is {B}. Thus, the family of hospital-feasible
contracts contains only B and its subsets. In summary, in Algorithm 1, the
number of bases can be small (while the size of a base can be large).

To address this concern, let us introduce an alternative algorithm to find
a maximal family. It starts from a family that contains the smallest element,
i.e., an empty set, and gradually expands it by adding larger elements. For
a family of sets of contracts F and a nonnegative integer k, let Fk denote

41More formally, vhi
(j) = C(C − |H| · j − i), C ≫ v(x) as in the case of KK-stability.

83



{X ′ ∈ F | |X ′| = k} (we define F̂k in a similar way). Given F , the following

algorithm returns F̂ ⊆ F , which forms a matroid.

Algorithm 2.

Step 1: Set F̂ to {∅}, k to 1, and Y to F1.

Step 2: If Y = ∅, return F̂ .

Step 3: If there exists Y ∈ Y which satisfies either (a) there exists Y ′ ⊊ Y

such that |Y ′| = k − 1 and Y ′ ̸∈ F̂k−1, or (b) there exists Z ∈ F̂k−1,
such that for all x ∈ Y \ Z, x+ Z ̸∈ Y , then remove Y from Y . Go to
Step 2.

Step 4: Otherwise, set F̂ to F̂ ∪ Y , Y to Fk+1, and k to k+1. Go to Step
2.

In this algorithm, initially, F̂ contains only ∅. Then, it is gradually
expanded by adding larger sets of contracts. When k = 1, for each Y ∈ Y
(where |Y | = 1), in Step 3 of Algorithm 2, no Y is removed. Thus, F̂ includes
all originally hospital-feasible contracts that contain exactly one contract.

The following proposition holds.

Proposition 15. The family of subsets F̂ obtained by Algorithm 2 is a ma-
troid and maximal.

Proof. It is clear that F̂ is a matroid, by the way of adding new sets of
contracts in Steps 3-4. To show it is maximal, assume for a contradiction
that there exists F ′ ⊋ F̂ , such that F ′ ⊊ F and F ′ forms a matroid. Let X ′

be an element of F ′\F̂ , where |X ′| is smallest. Then, X ′ must be removed in
Step 3 of Algorithm 2. However, this contradicts with the assumption that
F ′ is a matroid.

Although this algorithm may perform better than Algorithm 1 in some
cases, it does not always performs well. To see this, assume {x} ∈ F and
for each X ′ ∈ F such that X ′ ̸= {x}, x ̸∈ X ′ holds, i.e., x is included only
in {x}. Then, in Algorithm 2, nothing can be added for k ≥ 2. Thus, For

each X ′ ∈ F̂ , |X ′| ≤ 1 holds, i.e., at most one contract can be accepted. In
summary, in Algorithm 2, the size of a base can be small (while the number
of bases can be large).
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Neither of our algorithms is guaranteed to “work well” in all situations.
We think this is somewhat unavoidable. Among other things, our model
is ordinal and does not have any intuitive measure of how “good” a given
constraint is, except the one based on set inclusion–and in fact, both of our
algorithms perform “best” in this sense.

That said, to be useful in practice, it would be important for us to offer a
variety of algorithms that could perform reasonably well in all cases. For this
purpose, we consider combining Algorithms 1 and 2 to obtain an intermediate
result. First, we choose k′ ≤ k. Next, we apply Algorithm 1 for B = {Y |
Y ∈ F , |Y | = k′} and obtain B̂. Then, we apply Algorithm 2, while we set

F̂ = {X ′ | X ′ ⊆ B ∈ B̂} and k to k′ + 1 in Step 1. It is obvious that we
obtain a maximal matroid. By setting an appropriate k′, both of the size of
a base and the number of bases can be sufficiently large.

Admittedly, one could find an extreme example in which even these hybrid
mechanisms fail to perform well. However, even in such cases, since a vast
literature on matroid theory has identified a variety of constraints that form
a matroid (e.g., a laminar matroid in Definition 10), we expect that finding
a good transformation would not be too difficult, as we illustrated for the
case of non-laminar regions.
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