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Cournot tatonnement and Nash equilibrium
in binary status games

Nikolai S. Kukushkin∗ Pierre H.M. von Mouche†

January 28, 2018

Abstract

We study a rather simplified game model of competition for status. Each player chooses
a scalar variable (say, the level of conspicuous consumption), and then those who chose
the highest level obtain the “high” status, while everybody else remains with the “low”
status. Each player strictly prefers the high status, but they also have intrinsic preferences
over their choices. The set of all feasible choices may be continuous or discrete, whereas
the strategy sets of different players can only differ in their upper and lower bounds. The
resulting strategic game with discontinuous utilities does not satisfy the assumptions of any
general theorem known as of today. Nonetheless, the existence of a (pure strategy) Nash
equilibrium, as well as the “finite best response improvement property,” are established.
JEL Classification Number: C 72.
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1 Introduction

There exists a considerable literature on the modeling of social status, which started with Veblen
(1899) and has grown steadily, especially during the last four decades. An important step was
made by Akerlof (1997). Meanwhile, some empirical literature is also appearing, see, e.g.,
Immorlica et al. (2017) and references therein. Status relates to the observation that people
care about their relative standing in society. It is not so clear how “status” should be defined,
let alone how to measure it. Various discussions about the nature of status are going on. In
this article we shall not interfere in this debate. Our goal is more technical: we address the
problem of the existence of pure Nash equilibrium in the game model of Haagsma and von
Mouche (2010), further referred to as the HvM game. To achieve a positive result, we have to
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simplify the notion of the status of an agent in the model; hence the “binary status games.”
Simultaneously, we generalize the model in another aspect.

The model of Haagsma and von Mouche (2010) is a strategic, non-cooperative game. It
is abstract in the sense that it does not rely on any specific interpretation of the actions of
the players. On the other hand, it can be linked to the intertemporal model of social status
recently developed by Haagsma (2018). That latter model can provide formal explanations of
the Easterlin Paradox (Easterlin, 1974) and the Kuznets (1942) consumption puzzle.

In contrast to the main bulk of the previous literature, the HvM game assumes a finite set of
players, rather than a continuum, sharing this feature with Immorlica et al. (2017). Obviously,
this assumption cannot be called unrealistic. While creating some technical problems absent in
the continual models, it agrees with the standard approach of the theory of strategic games.

Another specific feature of the HvM game is its ordinal approach: The status of a player is
determined by the comparisons with other players’ actions rather than differences between them.
This feature makes inevitable “bad” discontinuities of the utility functions, i.e., discontinuities
in the choices of other players.

There are various Nash equilibrium existence results for strategic games with discontinuous
utility functions, the most well-known being that of Reny (1999). However, this result is not
applicable to the HvM game since it presupposes that each player’s utility function is quasi-
concave in own strategy. The quasi-concavity assumption was relaxed by McLennan et al.
(2011), and even further by Reny (2016). It remains unclear whether their theorems could be
applied to this game; anyway, nobody has shown such possibility so far. The strategy sets in
the HvM game are linearly ordered, but there is neither strategic complements, nor strategic
substitutes. Thus, the most recent results of Prokopovych and Yannelis (2017) or Kukushkin
(2018) also cannot help.

In the present paper, we take another route, somewhat related to the notion of potential
games (Monderer and Shapley, 1996). We start with simplifying the model: the status of a player
may be either “high” or “low,” without any subtler gradations. On the other hand, we generalize
the model, allowing the set of all feasible choices to be discrete; after that modification, the
theorem of Reny (2016), which presupposes convex strategy sets, becomes clearly inapplicable.

We achieve our goal by studying the behavior of the “Cournot tâtonnement paths,” i.e.,
results of consecutive unilateral best response improvements by the players. It turns out that
every binary status game admits a “Cournot potential” (Kukushkin, 2004, 2015). Moreover,
every Cournot path, regardless of where it was started and in what order the players made their
improvements, inevitably reaches a Nash equilibrium after a finite number of steps. This prop-
erty of a strategic game was observed (in an absolutely unrelated context) and named the “finite
best response improvement property” by Milchtaich (1996). From a purely technical viewpoint,
the fact that such a property is discovered in a class of infinite games is very interesting.

As far as we know, the present article is the first in the status literature where potentials
are used. The prospects for extending our theorem to the HvM game in general remain unclear
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at the moment.

Section 2 contains basic definitions and notations associated with a strategic game. Section 3
provides a formal description of our binary status model as well as a comparison with the
HvM game. Section 4 contains definitions related to the Cournot tâtonnement process and the
formulation of our main theorem. Its proof is in Section 5.

2 Strategic games

We start with the standard model of a strategic game. It is defined by a finite set of players N ,
and strategy sets Xi and utility functions ui : XN → R, where XN =

∏
i∈N Xi, for all i ∈ N . We

assume that #N ≥ 2 and denote X−i =
∏

j∈N\{i}Xj for each i ∈ N . Given a strategy profile
xN ∈ XN and i ∈ N , we denote xi and x−i its projections to Xi and X−i, respectively; a pair
(xi, x−i) uniquely determines xN .

We define the best response correspondence Ri : X−i → 2Xi for each i ∈ N in the usual way,

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i).

In the games we consider here, Ri(x−i) ̸= ∅ for every x−i ∈ X−i although models where the
best responses may fail to exist are not unusual.

A strategy profile x0
N ∈ X0

N is a (pure strategy) Nash equilibrium if the inequality ui(x
0
i , x

0
−i) ≥

ui(xi, x
0
−i) holds for all i ∈ N and xi ∈ Xi. An equivalent definition of a Nash equilibrium is

x0
i ∈ Ri(x

0
−i)

for all i ∈ N .

3 Binary status games

A binary status game is a strategic game satisfying these additional requirements: (i) There is
a closed subset X ⊆ R (“conceivable strategies”) and there are ai ≤ bi in R for each i ∈ N
such that Xi = [ai, bi] ∩X; hence each Xi is compact. (ii) Each player’s utility depends on her
strategy xi ∈ Xi and her status si ∈ S := {0, 1}, which, in turn, is determined by a mapping
pi : XN → S:

pi(xN) :=

{
1, xi = maxj∈N xj;

0, xi < maxj∈N xj.

To be more precise, there is a function Ui : Xi × S → R such that ui(xN) = Ui(xi, pi(xN)) for
all i ∈ N and xN ∈ XN . (iii) Each function Ui(xi, s) is strictly increasing in s, and upper
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semicontinuous in xi; moreover, there are x̂s
i ∈ Xi for all i ∈ N and s ∈ S such that Ui(xi, s)

strictly increases when xi ≤ x̂s
i and strictly decreases when xi ≥ x̂s

i .

A comparison with the HvM game is in order. First, the rank of a player in that model
is determined by the number of players with greater strategies (the fewer, the better). Thus,
there are #N potential ranks; the players with xi = maxj∈N xj are still of the highest rank,
but there may be distinctions between the other players. Note that, when there are just two
players, both ways to define their ranks coincide. Second, the strategy sets in the HvM game
are closed intervals, while here we allow essentially arbitrary subsets of R. It is not that such
arbitrariness is needed in economic or social models, but the possibility to restrict the possible
strategies to, say, integers, may come handy in some contexts.

For each i ∈ N , we denote x̄1
i := sup{xi ∈ Xi | Ui(xi, 1) > Ui(x̂

0
i , 0)} and X1

i := {xi ∈ Xi |
x̂1
i ≤ xi ≤ x̄1

i }; the upper semicontinuity implies that Ui(x̄
1
i , 1) ≥ Ui(x̂

0
i , 0). The best response

correspondence Ri (i ∈ N) is essentially the same as in the two-person case of the HvM game:
If maxj ̸=i xj ≤ x̂1

i , then Ri(x−i) = {x̂1
i }; if x̂1

i ≤ maxj ̸=i xj < x̄1
i , then Ri(x−i) = {maxj ̸=i xj};

if maxj ̸=i xj = x̄1
i , then either Ri(x−i) = {x̄1

i } or Ri(x−i) = {x̄1
i , x̂

0
i }; if maxj ̸=i xj > x̄1

i , then
Ri(x−i) = {x̂0

i }.

Remark. Unlike Haagsma and von Mouche (2010), we do not assume that Ui(maxXi, 1) <
Ui(x̂

0
i , 0) for each i. In particular, it is possible that X1

i = Xi for some i ∈ N . The situation of
Ri(x−i) = {x̄1

i } when maxj ̸=i xj = x̄1
i was impossible in that paper because functions Ui(xi, s)

were continuous in xi while strategy sets were intervals.

4 Cournot paths and potentials

A best response improvement path, or, for brevity, a Cournot path, in a strategic game is a
finite or infinite sequence of strategy profiles ⟨xk

N⟩k=0,1,... such that xk
N and xk+1

N only differ in
the strategy of one player, i(k) ∈ N , and that player chooses a best response to the strategies
of others, xk+1

i(k) ∈ Ri(x
k
−i(k)) = Ri(x

k+1
−i(k)), whereas her previous choice was not optimal, i.e.,

xk
i(k) /∈ Ri(x

k
−i(k)). A game has the finite best response improvement property (FBRP) if it

admits no infinite Cournot path. Then every Cournot path, if extended whenever possible, ends
at a Nash equilibrium.

The FBRP was introduced in Milchtaich (1996) although only for finite games. The prop-
erty is stronger than the mere existence of a Nash equilibrium, but weaker than the finite
improvement property (FIP) of Monderer and Shapley (1996).

Remark. The FBRP implies the existence of a Nash equilibrium only when the best responses
exist everywhere (as is the case here). We do not discuss the question of how the FBRP “should”
be defined when Ri(x−i) may be empty for some i ∈ N , x−i ∈ X−i.

Now we are ready to formulate our main result.

4



Theorem. Every binary status game has the FBRP, and hence possesses a Nash equilibrium.

The proof is deferred to Section 5.

It is technically convenient to reformulate the definition of Cournot paths with the help of
these binary relations on XN (i ∈ N , yN , xN ∈ XN):

yN ◃BR
i xN 
 [y−i = x−i & xi /∈ Ri(x−i) ∋ yi];

yN ◃BR xN 
 ∃i ∈ N [yN ◃BR
i xN ].

Now the defining property of a Cournot path is xk+1
N ◃BR

i(k) xk
N whenever k ≥ 0 and xk+1

N is
defined.

A Cournot potential (Kukushkin, 2004, 2015) is an irreflexive and transitive binary relation
≻ on XN such that

∀xN , yN ∈ XN

[
yN ◃BR xN ⇒ yN ≻ xN

]
. (1)

The existence of a Cournot potential means that XN can be partially ordered in such a way
that every Cournot path goes upwards. This property is equivalent to the absence of Cournot
cycles, i.e., Cournot paths ⟨x0

N , x
1
N , . . . , x

m
N⟩ such that m > 0 and x0

N = xm
N . For a finite game,

it implies, actually, is equivalent to, the FBRP. Example 1 of Kukushkin (2011) shows that a
compact-continuous game may admit a Cournot potential and still possess no Nash equilibrium,
to say nothing of the FBRP. Nonetheless, an important part of the proof of our theorem consists
in constructing a Cournot potential for an arbitrary binary status game.

5 Proof

Given a strategy profile xN ∈ XN , we denote m(xN) := maxi∈N xi and M(xN) :=
Argmaxi∈N xi ⊆ N . Then we define a number of auxiliary constructions (sets, functions, bi-
nary relations): M1(xN) := {i ∈ M(xN) | xi ∈ X1

i }; M+(xN) := {i ∈ M(xN) | xi = x̂1
i };

M0(xN) := {i ∈ N | xi = x̂0
i };

η(xN) :=

{
1, M+(xN) ̸= ∅ or #M1(xN) > 1;

0, otherwise;

yN ≽M xN 

[
M1(yN) ⊃ M1(xN) or

(
M1(yN) = M1(xN) & M0(yN) ⊇ M0(xN)

)]
.

Clearly, ≽M is a preorder, i.e., a reflexive and transitive binary relation on XN ; its asymmetric
and symmetric components are, respectively,
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yN ≻M xN 

[
M1(yN) ⊃ M1(xN) or

(
M1(yN) = M1(xN) & M0(yN) ⊃ M0(xN)

)]
and

yN ∼M xN 

[
M1(yN) = M1(xN) & M0(yN) = M0(xN)

]
.

Finally, we define our presumptive Cournot potential:

yN ≻ xN 

[
η(yN) > η(xN) or[

η(yN) = η(xN) = 1 &
(
m(yN) > m(xN) or [m(yN) = m(xN) & yN ≻M xN ]

)]
or

[
η(yN) = η(xN) = 0 &

(
yN ≻M xN or [yN ∼M xN & m(yN) < m(xN)]

)] ]
. (2)

≻ is obviously irreflexive and transitive.

Claim 5.1. The relation ≻ defined by (2) is a Cournot potential of the game.

An informal explanation of these constructions may be helpful in following the proof below.
If i ∈ M+(xN), then player i enjoys the absolute maximum of her utility and hence is not
interested in any changes. If i, j ∈ M1(xN) and i ̸= j, then players i and j may be better off
with lesser choices, but making such a choice unilaterally, either of them would only lose the
“high” status. Thus, η(xN) = 1 means that m(xN) cannot go down. Moreover, any increase in
m(xN) can only happen when someone chooses yi = x̂1

i ; so once η has reached the level 1, it will
remain at that level forever. The meaning of ≽M is clear by itself.

Proof. We have to check (1). Let yN , xN ∈ XN , i ∈ N , and yN ◃BR
i xN ; we have to show

yN ≻ xN . Let us consider several alternatives.

A. Let pi(yN) = 0. Then i /∈ M1(xN) and yi = x̂0
i ; hence M0(yN) ⊃ M0(xN). We consider

two alternatives.

A.1. Let M(xN) = {i}. Then m(yN) < m(xN) and M1(xN) = ∅; hence η(xN) = 0. Now
if η(yN) = 1, then yN ≻ xN by the first disjunctive term in (2). If η(yN) = 0, then yN ≽M xN ,
and hence yN ≻ xN by the last disjunctive term in (2).

A.2. Let M(xN) ̸= {i}. Then m(yN) = m(xN), M1(yN) = M1(xN), and M0(yN) ⊃
M0(xN); hence η(yN) = η(xN) and yN ≻M xN . Now we have yN ≻ xN by either the middle or
the last disjunctive term in (2).

B. Let pi(yN) = 1; then yi ∈ X1
i and hence i ∈ M1(yN). We consider two alternatives.

B.1. Let yi < xi. Then m(yN) < m(xN) and M(xN) = {i}; hence η(xN) = 0. Further, we
have M1(yN) ⊇ M1(xN) and M0(yN) ⊇ M0(xN). Thus, yN ≻ xN for exactly the same reason
as in the case A.1.

B.2. Let yi > xi. Then m(yN) ≥ m(xN) and we again consider two alternatives. If
m(yN) > m(xN) then M(yN) = {i} = M+(yN); hence η(yN) = 1 ≥ η(xN). Now yN ≻ xN
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by the first or the middle disjunctive term in (2). Finally, if m(yN) = m(xN), then we have
η(yN) ≥ η(xN) and M1(yN) ⊃ M1(xN); hence yN ≻M xN and we have yN ≻ xN again.

Claim 5.2. There is no infinite Cournot path in the game.

Proof. Obviously, the function η(xN) can only increase once. Trying to imagine an infinite
Cournot path ⟨xk

N⟩k=0,1,..., therefore, we may impose an assumption that either η(xk
N) = 1 for

all k ∈ N, or η(xk
N) = 0 for all k ∈ N. The relation ≻M, being defined in terms of subsets of a

finite set, also admits only a finite number of consecutive improvements. Therefore, there must
hold m(xk+1

N ) > m(xk
N) for an infinite number of k ∈ N in the first case, or m(xk+1

N ) < m(xk
N)

for an infinite number of k ∈ N in the second case.

Let us start with the case of η(xk
N) = 1 for all k ∈ N. The condition m(xk+1

N ) > m(xk
N)

implies that m(xk+1
N ) = xk+1

i(k) = x̂1
i(k); hence each player i can play such a role only once. Since

the set of players is finite, the sequence ⟨xk
N⟩k=0,1,... cannot be infinite.

The analysis of the case of η(xk
N) = 0 for all k ∈ N is a bit more complicated. Let ⟨xk

N⟩k=0,1,...

be an infinite Cournot path such that η(xk
N) = 0 for each k. As noted in the preceding paragraph,

the inequality m(xk+1
N ) > m(xk

N) would immediately imply xk+1
i(k) = x̂1

i(k), and hence η(xk+1
N ) = 1;

therefore, m(xk+1
N ) ≤ m(xk

N) for all k, while m(xk+1
N ) < m(xk

N) for an infinite number of them.
Furthermore, on each step k ∈ N, we must have one of these two cases: either pi(k)(x

k+1
N ) = 0 and

xk+1
i(k) = x̂0

i(k), or pi(k)(x
k+1
N ) = 1 and xk+1

i(k) ∈ X1
i(k) \ {x̂1

i(k)}; in the latter case, xk+1
i(k) = m(xk+1

N ) =

xk
j for some j ∈ N . Denoting µ := infk m(xk

N) [= limk→∞m(xk
N)] and Y := [µ,m(x0

N)] ∩∪
i∈N{x0

i , x̂
0
i }, we immediately see that m(xk

N) ∈ Y for all k ∈ N. Since Y is finite, we must
have an infinite monotone sequence in a finite set, which is clearly impossible.
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