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Abstract 

 

This paper assesses how the integration of ICT in education has affected the 

mathematics test scores for Italian students measured by the Programme for 

International Student Assessment 2012 data. The problem of endogeneity that affects 

survey data in this area, is addressed by applying the Bayesian Additive Regression 

Trees (BART) methodology as in Cabras & Tena Tena Horrillo (2016). The BART 

methodology needs a prior and likelihood functions using the Markov Chain Monte 

Carlo (MCMC) algorithm to obtain the posterior distribution. Controlling for socio-

economic, demographic and school factors, the predicted posterior distribution implies 

an increase, on average, of 16 points in the test scores. The result indicates that the use 

of ICT at school has a positive and strong impact on mathematic test scores.  
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1. Introduction 

Since the beginning of the 1990s, Information and Communication Technology (ICT) 

and its impact on students’ achievements have interested educators and policy makers. 

Alike with the aim to improve digital skills among students, the Organization for 

Economic-Cooperation and Development (OECD 2010, p. 102) has advanced its use 

with the argument that there is “a significant influence or effect of ICT on the measured 

or perceived quality of (parts of) education”.  

The United Nations Educational, Scientific and Cultural Organization (UNESCO) 

states that “ICT adds value to the processes of learning, and in the organization and 

management of learning institutions. The Internet is a driving force for much 

development and innovation in both developed and developing countries” (UNESCO, 

2002, p. 9). ICT may indeed be seen as important for the quality of the education 

systems. Through education, a country creates human capital needed to lead to a higher 

economic growth (Barro, 2001; Hanushek & Kimko, 2000).  

Following the OECD guidelines, European countries has made substantial investments 

in ICT for educational purposes (OECD, 2015). The European Commission 

highlighted the use of ICT for work, leisure and communication as among the key 

abilities and strengths that students need to improve (European Commission, 2006). 

According to the PISA results from 2009, one computer was available for every two 

students within schools for most of the OECD countries except for Italy. The disparity 

within the Italian country is high and only one computer was available up to eight 

students. In 2012, the gap had decreased and the students-computer ratio was 4.1 to 1 

meaning one computer available at school for every four students (Eurydice, 2011 

Figure E3, OECD, 2015). 

The European Union (EU) has also advised its Member States to invest in digital 

technologies within their education systems. The Member States agreed to promote 

the use of new ICT tools within the first cycle of the Strategic Framework for 

Education and Training known as 'ET 2020' (Eurydice, 2011). This initiative followed 

the eLearning initiative promoted in 2000 by the European Commission (2000) with 

the goal to improve the effectiveness of European education systems, and also the 
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competitiveness of the European economy. The integration of ICT at school has seen 

as a powerful tool to improve technology-related competencies for all students.  

The literature regarding the impact of ICT on students’ achievements is quite 

extensive. Several meta-analyses, experimental and parametric studies have been 

produced but the literature is not unanimous with regard to the effect of ICT on 

educational outcomes. Cheung & Slavin (2013) provide a meta-analysis study showing 

that the use of technological applications in education have, in general, a positive 

impact on students’ outcome. Another study from Germany adopting the Programme 

for International Students Assessment (PISA) survey shows that there is no effect of 

the use of ICT on PISA test scores (Wittwer & Senkbeil, 2008). The divergent 

outcomes of those studies suggest that new evidences and approaches are warranted.  

This paper assessed whether the use of ICT have had an impact on test scores using 

large-scale data such as OECD-PISA survey by a new flexible nonparametric model. 

PISA 2012 survey is a very rich data which also contains questions on the use of ICT 

among students. As Rojano (1996) states in her work, technology allows students to 

have the perception of owning the subject. Using a computer with the appropriate 

software, students can present and observe solutions in real time, for example, how the 

shape of a geometric object can change.  

The paper contributes to the literature by providing new evidences with the application 

of a new non-parametric methodology compared to what previous researchers have 

applied (Angrist & Lavy 2002; Cheung & Slavin 2013; Machin et al. 2007). Moreover, 

students from 32 OECD countries included Italy, who participated in the PISA 2012 

Paper-Based Assessment (PBA) were also invited to take a reading and mathematics 

test on computers1. The case of Italy is interesting given the results of Italian PISA 

2012 test scores above the OECD average using the Computer-Based Assessment 

(CBA) compared to the results that students obtained in PISA 2012 using the Paper-

Based Assessment (PBA). It is worth to mention that Italian PISA scores using PBA 

test have usually been below the OECD average in all different set of tests such as 

reading, mathematics and science (OECD, 2015). 

                                                           
1 Computer-Based Assessment for PISA 2012 did not include science literacy. 

https://www.sciencedirect.com/science/article/pii/S0360131514000463#bib1
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The paper uses a new nonparametric methodology known as Bayesian Additive 

Regression Trees (BART). The BART model was developed by Chipman et al. (2010) 

and Hill (2011) and, first applied by Cabras & Tena Horrillo (2016) using Spanish 

PISA 2012 data. It is a new flexible econometric model which makes it possible to 

deal with the problem of endogeneity that arises using surveys such as PISA. From an 

econometric perspective, student and school characteristics may be correlated and the 

omission of some variables may generate endogeneity bias.  

The motivation to adopt the BART model in the field of economics of education is, 

mainly related to the fact that learning processes are complex, unknown and very 

heterogeneous. The model relaxes the parametric assumptions and addresses the 

sample selection problems in survey data as PISA data. The BART model has the aim 

of providing new results on a single country perspective and stimulate further debates 

among researchers. The focus, then, on student performance in mathematics is highly 

correlated to results in reading so that the results presented for mathematic test score 

can be generalized also to reading.  

The rest of the paper is organised as follows. Section 2 reviews the literature, Section 

3 presents a review of the Bart Additive Regression Trees and data used in the 

empirical study, Section 4 provides the main estimation results and robustness check, 

and Section 5 summarises the results.  

 

2. Literature 

The study of the impact of ICT use on mathematics test score in primary and secondary 

schools has gained interest in the academic literature since the beginning of the ‘90s. 

Meta-analyses and single studies have been published but, results are still mixed as 

several studies have shown (Hatlevik et al. 2015a, 2015b; Rutten et al. 2012; Luu & 

Freeman, 2011; Tamin et al. 2011; Balanskat et al. 2006; Pedrò, 2006; Hakkarainen 

et al., 2000; Kulik & Kulik, 1991).   

The existing literature can be grouped into three main areas according to the 

methodology applied in the study. Some studies have adopted parametric models 

(Machin et al., 2007; Goolsbee & Guryan, 2006, Angrist & Lavy, 2002), a study was 
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conducted through experiment as in Banerjee et al. (2007) while others adopted non-

parametric models (Cabras & Tena Horrillo, 2016; Spiezia, 2010; Fuchs & 

Woessman, 2004). This literature review, however, provides a short survey of the 

numerous studies on the topic.  

Angrist & Lavy (2002) adopt Ordinary Least Squared and the Instrumental Variables 

(IV) strategy using test scores for Israeli for 1998. They find a negative impact for 

mathematic test scores after the introduction of computers at school. In the UK, 

Machin et al. (2007) also using IV strategy show that higher investment in ICT leads 

to better educational outcomes for reading and science but not for mathematics. 

Regarding studies using experiment, Banerjee et al. (2007) conduct a randomized 

experiment in India to study the causal impact of computers on students’ performance. 

They compare the change in the test scores among students who received the treatment 

and students who did not receive it represented by the use of a computer. They find 

that students who were able to use a computer have also higher mathematic test score 

compared to their peers.  

Among some studies that have applied non-parametric methods and PISA data, there 

are works by Spiezia (2010), Fuchs & Woesmann (2004), Shewbridge et al. (2005). 

Using PISA 2006 for science score in OECD 33 countries, Spieza (2010) shows a 

positive correlation between the availability of computers at school and school 

performance. He estimates an endogenous treatment model where the frequency of 

computer use is modelled on specific students’ characteristics. In their study, Fuchs 

& Woessmann (2004) control for numerous variables with a known impact on 

achievement using PISA 2000 and two stage least squares. They show that there is a 

positive correlation of the home computer use but this effect is almost neutral or even 

negative for the use of computer at school.  

In their studies, Shewbridge et al. (2005) find no effect of the use of ICT at school 

and PISA 2003 test scores such as reading, mathematics and science. A new flexible 

non-parametric approach from the Bayesian family, has been employed with PISA 

data by Cabras & Tena Horrillo (2016). They study the causal impact of ICT on 

educational outcomes adopting a new model from the Bayesian models for Spanish 

PISA 2012 data that represent a general survey for the whole student population 

including a rich collection of information on individual, family and school levels. 
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The BART model allows them to overcome the endogeneity problem that arises from 

the survey and using some control variables, their findings show that the use of ICT 

has a strong positive effect on students’ achievements. This paper follows the 

methodology in Cabras & Tena Horrillo (2016) for Italian data.  

In Italy, the investment in ICTs and its introduction at all levels of compulsory 

education, is crucial for the development of digital skills (Annali della Pubblica 

Istruzione, 2012). The Ministry of Education have released a survey known as 

‘Teaching Multimedia Equipment Survey’ to individuate technological instruments 

adopted by schools such as the use of the Internet, amount and speed of Internet 

connections, ratio of classrooms equipped with wireless connectivity, total number of 

computers (desktop and laptop), mobile devices. The data are available and uploaded 

on the “Scuola in Chiaro platform”. Despite of the geographical gap between North 

and South, the Italian National Statistics Office (Istat, 2015) showed that the gap is 

also present in digital infrastructures but, it underlines that during last years the 

Southern regions received specific funds from the National Operational Program 

showing a reduction in the gap. A detailed study of the Italian Strategy for Digital 

Schools can be found in Avvisati et al. (2013).  

The Italian literature in education has been focused mainly on the Family Background 

effects, school level peer effects and also on the causes of the regional disparities using 

PISA data or INVALSI administrative data (Checchi 2004; Bratti et al. 2007; 

Montanaro 2007, Agasisti & Vittadini 2012). Focusing on both the use of computer at 

home and at school with PISA 2006 data, Ponzo (2011) shows that students’ 

achievements are negatively affected when students use computer at school compared 

to using a computer at home. A more recent study that focuses on the impact of ICT 

on students’ outcome which includes Italian data is by Agasisti et al. (2017). They 

employ data from the OECD-PISA 2012 for 15 European countries. Despite they focus 

mainly on the effect of using ICT at home for school related tasks, they also show that 

for higher values of ICT used at school, there is a decrease in the test score. 
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3. Research Method  

 

This section discusses data collection and the research design represented by the 

econometric model for estimating the causal effect of some treatment variables 

identified with the use of computer or laptop or tablet at school, on students’ 

mathematic test scores. It also includes the data analysis and all variables used in the 

study. 

 

3.1 Participants 

This article uses the fifth wave of PISA survey conducted by the OECD in 2012. PISA 

survey is administrated by the Italian National Evaluation Committee (INVALSI) and 

subsequentially is elaborated by the OECD. The PISA survey is a cross-national 

survey, carried out every three years and since 2000, its main goal is to assess 15 year-

old students’ performance in reading, mathematics and science literacy as well as 

problem-solving skills.  

Since 2009, the survey contains a questionnaire on students’ familiarity with ICT 

where students give information on which kinds of technology they have at their 

disposal at home and also at school; whether they use them and how often they use 

them and for what purposes. The survey also contains questions for self-assessment, 

in other words it askes the level of proficiency and confidence of students using a ICT 

tool. The database contains detailed information on students’ characteristics as well as 

on family and schools characteristics.  

The Italian PISA results are interesting to study because, in 2012, the survey was also 

conducted by CBA test and Italian students improved their test scores compare to the 

PBA test). Results from PISA 2012 survey showed an improvement of students’ 

scores:  504 points for reading and 499 for mathematics in the CBA test against 490 

points for reading and 485 points for mathematics in the PBA test (OECD, 2015). It 

is, hence, interesting to conduct this study on Italian case. A description of PBA and 

CBA scores are presented in Table 1.  
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 Table 1: Italian PISA 2012 test scores  

  Source: OECD-PISA 2012 

Notes: In 2012, the Computer-Based Assessment (CBA) was only for reading, mathematics 

and problem    solving.  

 

 

3.2 Research design (Review of Bayesian Additive Regression Trees) 

Causality defines the causal relationship in terms of potential outcome frameworks for 

describing what would happen to a given individual in a hypothetical comparison of 

alternative scenarios. In the first case, there is the factual situation while in the other 

case the counterfactual situation. In this paper, counterfactual situations are 

operationalized by using the notation suggested by Rubin (1978). The potential 

outcomes are: 

 

Potential outcome = {
𝑌1𝑖 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖𝑓 𝑡𝑟𝑒𝑎𝑡𝑒𝑑

𝑌0𝑖 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖𝑓 𝑛𝑜𝑡 𝑡𝑟𝑒𝑎𝑡𝑒𝑑
}        (1) 

The dependent variable is the OECD-PISA mathematic test score, while the treatment 

is a binary variable expressed by 𝑍 = 1 whether a student uses a computer, a laptop or 

a tablet at school or 𝑍 = 0 otherwise. The potential outcome 𝑌1𝑖 measures the 

mathematics test scores where the subscript 1 indicates whether the computer, laptop, 

tablet exist and are in use at school for the individual i while 𝑌0𝑖 where the subscript 0 

indicates whether the computer, laptop, tablet exist and are not used at school. In other 

words, 𝑌1𝑖 and 𝑌0𝑖 are the potential outcomes for individual i and the casual effect of 

the treatment variable Z for using ICT at school, on test scores.  

The observed outcome 𝑌𝑖 can also be expressed by 𝑌𝑖 = 𝑌0𝑖 + (𝑌1𝑖 − 𝑌0𝑖) 𝑍𝑖 in terms of 

potential outcomes and treatment effect, where 𝑍𝑖  is a treatment dummy variable. In 

studies as OECD-PISA survey, scholars face the endogeneity problem because 

potential results are not independent from the treatment variable. An endogeneity 

 Math SE Reading SE Science SE 

Paper-Based Assessment  485 2.0 490 2.0 494 1.9 

OECD Average 494 0.5 496 0.5 501 0.5 

Computer-Based Assessment 499 4.2 504 4.3 --- --- 

OECD Average 497 0.7 497 0.7 --- --- 
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problem may arise, for example, when families with high socio-economic status enrol 

their children in schools that have better and well-equipped informatics rooms 

compared to families with low socio-economic status who can decide to enrol their 

children in schools that invest less in informatics infrastructures. Therefore, it is more 

likely that family decisions and socio-economic status affect students’ test scores.  

To overcome the endogeneity problem and assuming independency among outcomes 

and treatment variables, several covariates should be included in the model controlling 

for some individual characteristics. The recent use of non-parametric methodologies 

like the BART model discussed in sub-section 3.2, avoid to have several different 

models to capture the endogeneity as classical approaches such as linear regression 

models or propensity score do not allow, indeed, to overcome the problem as treatment 

and not treatment are not observable for a specific characteristic of the individual 

indicated with X. Given that treatment and no treatment are not observable for the same 

value of X, the estimation of the score assigned to each individual becomes difficult 

and as alternative, the nonparametric methods are more flexible compared with linear 

models.    

The Average Treatment Effect (ATE) is computed as the difference between 𝑌1𝑖 − 𝑌0𝑖 

cannot be computed as direct measure because 𝑌1𝑖 and 𝑌0𝑖 are not directly observable. 

For a given treatment and control condition, each student i can have two potential 

outcomes: 𝑌(0) and 𝑌(1) where 𝑌(𝑍 = 1) = 𝑌(1) if students receive the treatment 

while 𝑌(𝑍 = 0) = 𝑌(0) otherwise. The ATE equals 𝐸 (𝑌(1) − 𝑌(0) ) and it defines 

the expected value with respect to the probability distribution of the dependent variable 

for all the individuals. The variables of interest is the expected value of potential 

outcomes conditional to the treatment 𝐸(𝑌(1) − 𝑌(0)|𝑍 = 1). To address a possible 

bias, the model uses the Conditional Independence Assumption (CIA) conditional on 

observed individual characteristics indicated by 𝑋𝑖.  

Looking at individuals with the same characteristics, {𝑌1𝑖, 𝑌0𝑖} and the treatment 𝑍𝑖 , 

the dependent variable Y is conditional independent:  

                                  {𝑌1𝑖; 𝑌0𝑖} independent of 𝑍𝑖, conditional on 𝑋𝑖                     (2) 
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The Bayesian Additive Regression Trees (BART) provides a framework for flexible 

nonparametric modelling of the relationships of covariates to outcomes and it is a tree-

based variable selection making use of the internals of the decision tree structure.  

 

3.3 Estimation of the model BART 

 

Decision tree ensembles have become a popular tool for obtaining high quality 

predictions in nonparametric regression problems, also motivated by the success of 

methodological approaches such as boosting (Chipman et al. 2010; Denison et al. 

1998). They use an algorithm to learn the relationship between the response and its 

predictors (Breiman, 2001) assuming that the data-generating process is complex and 

unknown. In this framework, the approach of the BART model allows to estimate the 

response outcome and the counterfactual result using an extension of a non-parametric 

Bayesian model that performs conditional inference without making any pre-

assumption on the distribution as classical inference does.  

The BART model consists of a collection of regression tree models. Considering 𝑦𝑖 as 

the outcome and 𝑥𝑖 as a vector of covariates where their relationship is given by the 

function 𝑦𝑖 = 𝑔(𝑥𝑖; 𝑇, 𝑀) +  𝜀𝑖 where 𝑔(𝑥𝑖; 𝑇, 𝑀) is a binary tree function, T indicates 

the tree structure that consists of two sets of nodes: an interior and a terminal node and, 

a branch decision rule at each interior node. The branch decision rule is typically a 

binary split based on a single component of the covariate vector. The second tree 

component is 𝑀 = {𝜇1, … ,𝜇𝑏} is made up of the function values at the terminal nodes. 

An example is provided in Figure 1.  

Figure 1: Example of single binary tree with branch decision rules (circles) and 

terminal nodes (rectangular)  

 

 

 no yes 

                                    𝜇𝑖𝑗1 

 

          no yes 

𝑥1 < 0.9 

𝑥2 < 0.4 

𝜇𝑖𝑗3
 

𝜇𝑖𝑗2
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This paper follows the application of the BART methodology for Spanish PISA data 

in the study by Cabras & Tena Horrillo (2016). Their study is the first that applies a 

non-parametric model within the framework of Bayesian models in educational 

studies. The aim of BART is to estimate the posterior probability distribution of the 

causal effect conditional to some covariates π (ATE|X) using its flexibility in high non-

linear response surfaces even with a large number of predictors (with great out-of-

sample prediction properties).  

 

For this BART model, there are a sum of trees with a prior distribution over the depth 

of the splits and the values at the leaf nodes. The a sum of trees is fitted in the context 

of the rest and on the iterative algorithm and each tree is modified one by one based 

on the residuals from the generation of previous trees (unlike random forests, where 

each tree is independent). This means that there is an informative prior and allows 

BART to better captures additive effects.  

Formally, all observations begin in a single root node and then, the root node’s splitting 

rule is chosen by the algorithm and consists of a splitting variable 𝑥𝑘 and a split point 

c. The observations in the root node are split into two groups, based on whether the 

splitting variable is greater or smaller than the split point 𝑥𝑘 ≥ 𝑐 or 𝑥𝑘 < 𝑐. The two 

groups become a right daughter node and a left daughter node while within each of the 

two nodes, additional binary splits can be chosen.  

The equation for the basic BART model also defined as likelihood function is the 

following:  

                                            𝑌 =  ∑ 𝑔(𝑥𝑘, 𝑧; 𝑇𝑗 , 𝑀𝑗)𝑚
𝑗=1                                          (3) 

 

where 𝑔(𝑥𝑘) is a Bayesian decision tree model as described in Chipman et al. (2010, 

1998) with 𝑥𝑘 as splitting variables, z is the treatment effect that belongs to the 

individual whose response is Y and have the error term normally distributed 

𝜀~𝑁(0, 𝜎2) where 𝜎2  the residual variance. The term 𝑇𝑗 refers to decision tree where 

j refers to the number of trees which goes from 1 to m, where m is the total number of 

trees in the model while 𝑀𝑗 is the function values at the terminal nodes.  
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The Additive Regression Trees employs an ensemble of such trees in an additive 

fashion, that is, it is the sum of m trees where m is typically large such as 200, 500, or 

1000. The model is fitted via a back-fitting Gibbs sampler that draws from the joint 

posterior distribution of all the trees and terminal node parameters and the standard 

deviation, given the data (Chipman et al., 2010). Each tree 𝑇𝑗 is iteratively fitted and 

based on the residuals generated from the previous trees, at the current iteration of the 

Gibbs sampler until a predetermined number of iterations is reached. The prior on 𝑇𝑗 

and 𝑀𝑗 strongly favours small trees and leaf parameters that are near zero, constraining 

each term in the sum to be a “weak learner”.  

 

Starting from the root node, the probability that a node at depth d splits (is not terminal) 

is given by 𝛼(1 + 𝑑)−𝛽  where 𝛼 ∈ (0.1), 𝛽 ∈ [0, ∞) where d is the depth of internal 

node i and, α, β are parameters that determine both the size and shape of the trees. This 

paper employs the standard values with α = 0.95 and β = 5 as indicated in Chipman et 

al. (2010) and in Cabras & Tena Horrillo (2016). Such values assure that trees do not 

grow too much and each tree with more than 5 terminal nodes has a probability of 3 

per cent. The model also uses the Markov Chain Monte Carlo (MCMC) and the 

Metropolis Hastings within Gibbs for simulating samples from the posterior 

distribution with a non-excessive computational effort. For this study, m = 200 trees 

and 5000 MCMC steps after an initial burn-in of 1000 steps are used. Interactions are 

estimated from the data by the 500th tree and they are not specified in the model a 

priori. For the estimation, R software was used and the package “bartMachine” 

recently developed by Kapalner & Bleich (2016).  

 

 

3.4 Data analysis  

The sample consists of 21,520 observations and 925 variables. The final PISA sample 

was chosen randomly and the selection probabilities of students vary so weights must 

be used to be sure that the sample represents correctly the full PISA population 

(OECD, 2014). The final sample consists of 21,520 observations and 17 variables 

chosen for the study. It is a sub-sample created to estimate the prediction model for the 

dependent variable that it is the PISA test score in mathematics defined as plausible 

values (pv1math).  
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The estimation uses variables related to students’ characteristics such as gender, 

relative age related to whether the student is born before the first half of the year 

(before June) or after, whether the student attended or not the pre-primary school, the 

immigration status, family structure and how much time a student spend using internet 

(time internet). The socio-economic status of students is also included and it is 

expressed in the ESCS index constituted of several indicators: International Socio-

Economic Index of Occupational Status (ISEI), the Highest level of education of the 

student’s parents (HISCED), converted into years of schooling. It also includes the 

index of family wealth (WEALTH), the index of Home Educational Resources 

(HEDRES) and, the index of possessions related to classical culture in the family home 

(Home Possession).  

Other variables are included to control school characteristics such as the quality of 

educational resources at school expressed by the variable school_resources, the 

student-teacher ratio, whether the school is a public or private school. Then, the index 

of availability of computers with the variable computer_ratio obtained by dividing the 

number of computers at school by the number of students at school, class size related 

to the number of students in each class and mathematics teacher-students ratio. 

Descriptive statistics are summarised in Table 2 in Appendix A. 

The treatment variable is the use of computer, laptop, tablet at school indicated by the 

variable “Treatment” that has value 1 if the student use, at least, a computer, a laptop 

or a tablet at school. The treatment variable is used to compute the causal effect on the 

dependent variable, the mathematic test score. The sample histogram for the dependent 

variable (math test score) for students who use or not use a computer, laptop, tablet 

(treatment variable) is shown in Figure 2.  
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Fig. 2: Histogram for distribution of PISA scores conditional to the treatment Z

 

Source: OECD-PISA data 2012 for Italy  

Notes: Author’s calculation. The treatment Z = 1 indicates students who use a computer, laptop or tablet 

at school, while Z = 0 indicates students who do not use a computer, laptop or tablet. 

 

 

The histogram shows the distribution of the use of computer, laptop or tablet among 

students at school. The treatment variable 𝑍 = 1 indicates 14,937 students who use it 

and 6,583 students who do not use it. Therefore, 14,937 out of 21,520 students use ICT 

and it is an unbalanced sample that classical parametric approaches can estimate 

without problems.  

 

4. Estimation results 

This section presents the main results of the impact of the ICT on Italian mathematic 

test scores using PISA 2012 data and the flexible BART model discussed in Section 

3. After the construction of trees, the fitted values are assigned to each terminal node. 

The fitted values will be the average of response values for the regression tree and the 

majority class for the node in the classification trees. Figure 3 shows three steps in the 

growth of a classification tree for response y with levels “0” and “1” and predictor Z.  



15 
 

Figure 3: Three Steps in the growing process of a classification tree 

 

Notes: Author’s own calculation. 

Source: PISA 2012 data 

 

The classification tree above shows how the root - that is the starting point of the tree 

- is splitted. If half of students use a computer at school (>=0.5) the predicted number 

of test scores will be 2 with probability of 66.1%. For the other half of students who 

do not use a computer at school, there is no final prediction but rather there is another 

split. The process continues until there are no splitting points. The end part of the tree 

consists of “leaves”. In between root and leaves, there are decision nodes from where 

new splits are generated. The percentages represents the percentage of the total sample 

which must be 100%.   

The posterior distribution of the marginal causal effect in Figure 4 is derived by the 

simulated differences between the mean of the posterior predictive distribution for 

students that use or not use a computer or laptop, or tablet at school at school. The 

approximation is generated by means of MCMC draws, of the posterior distribution 

π(ATE|D). The posterior distribution for the Italian case shows a positive effect of 

99%. The size of the posterior distribution is given by the ratio of the posterior 

probability and its magnitude which indicates that it is on average, 16 times more likely 



16 
 

that ICT, such as the use of a computer or a laptop or a tablet at school, has a positive 

impact on educational outcomes. 

 

                         Figure 4: Approximation of the posterior distribution for Italy 

 

                            Source: OECD-PISA data 2012 

                           Notes: Elaboration by author using R software 

 

In particular, taking a closer look at the confident interval at 99%, results also show 

that the effect of ICT is within the interval 2.97 and 9.23 meaning that the effect is 

substantially strong positive. For the immigration status, meaning whether ICT is more 

beneficial for native or immigrants students, estimating the ATE and the posterior 

distribution for both of them the effect is around 99.8% for non-native students and 

99.7% for native students. Students who are not natives have also beneficial effects 

from the use of ICT. It is possible to say that the ICT has anyway a strong impact on 

immigrants and may be helpful for them for filling some gaps.  

 

The final model aggregates four post-burn-in chains for the four cores indicated in the 

parameter that yields the 1,000 total post-burn-in-samples. This gives the drawback of 

effectively running the burn-in serially and add the benefit to reduce auto-correlation 

of the sum-of-trees samples in the posterior distribution since the chains are 

independent giving a greater predictive performance. The pseudo-R2 for in-sample is 
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0.53 and higher compared to 0.24 of the parametric study adopting the Ordinary Least 

Squared (Table A2 – Appendix A). Figure 5 illustrates that predictive performance 

levels off around m = 20 with an improvement with the further trees.  

 

Figure 5: Out-of-Sample predictive performance by number of tree  

  

Source:  OECD-PISA 2012 

Notes: The starting point is set to m=200 as in Chipman et al. (2010) and not m=500 as in Cabras 

and Tena Horrillos (2016) to reduce computational time and memory requirements. Performance 

results are very similar. 

 

 

The summary of the posterior distribution in Figure 6 shows the p-value for Shapiro-

Wilk test of normality of residuals. Figure 5 displays that the predictive performance 

levels are off around 50 trees and there is a stationary trend. 

 

Figure 6: Assessment of Normality  

 

Notes: Author’s calculation 
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Figure 6 shows that the assumption of normality is not violated. To check also the 

convergence of the Gibbs sampler, Figure 7 displays four plots which features the 

convergence diagnostics.  

 

Figure 7: Convergence diagnostic  

 

Notes: Author’s calculation 

 

The first panel on the top-left is the sigma-squared by MCMC iteration and the plot 

shows five boxes. The first box on the left indicates burn-in from the first computing 

core’s MCMC chain while the following four plots show the post-burn-in iterations 

from each of the four computing cores. The second plot on the top-right indicates the 

percent acceptance of Metropolis-Hastings proposals for all trees where each point 

represents one iteration. It is possible to see two boxes: the box on the left illustrates 

burn-in iterations and points after illustrate post-burn-in iterations. For last two plots 

on the bottom, the plot on the bottom-left shows the average number of leaves across 

the m trees by iteration while the plot on the bottom-right shows the average tree depth 

across the m trees by iteration. It is visible that the model has burned-in quite nicely 

and each plots exhibits a stationary process.  
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In conclusion, it is possible to check which variables are the most important in the 

model counting how many times a variable appear in a tree indicating which variables 

have a more important role in affecting students’ results. Figure 8 indicates the average 

variable inclusion proportions. 

 

Figure 8: Average inclusion proportion 

 

Notes: Author’s calculation using R software. 

 

 

This figure shows the results after assessing the splitting rules in the m trees across the 

post-burn-in MCMC iterations. This process is also known as inclusion proportions 

(Chipman et al. 2010) and it represents for a given predictor or covariate, the 

proportion of times that the variable has been chosen as a splitting rule out of all 

splitting rules among the posterior draws of the sum-of-trees model. 

 

For this study, the variable which appears several times and is the most important for 

explaining the response is the variable determining whether school is a public or 

private school. In this study, the variable assumes dummy characteristics with public 

school taking value 1. It is possible to conclude that public school variable has more 

weight in predicting results in test score. A robustness check is presented comparing 

the BART model with the traditional parametric model such as the linear regression. 

Estimation results of the linear regression are presented in Table 2.A in Appendix A. 

Results indicate that the use of ICT at school increase PISA test scores for 6.5 points 
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but the goodness-of-fit model is low. The interpretation for the low value compared to 

what the Bayesian analysis computed, shows the low power of the linear model to fit 

all variables.  

 

The analysis and interpretation of the results from the Bayesian analysis suggest the 

positive impact of the ICT on students’ test scores and the predictive power of the 

model to explain the causal effect. 

 

 

                                   

5. Conclusion 

 

This paper studies the impact of ICT expressed as the use of a computer, laptop or 

tablet at school on the mathematic test scores for Italian students. The Italian PISA 

2012 data was employed and the BART model was applied. The Italian case was an 

interesting case to study after the improvement of Italian students’ scores in reading 

and mathematics when the Computer-Based Assessment test was carried out by 

OECD, in 2012. Italian PISA scores have usually been below the OECD average as 

confirmed by OECD reports (2007, 2010, 2016). The BART model was applied as 

flexible Bayesian methodology with some advantages compared with other classical 

parametric model such as: (i) overcomes the problem of endogeneity and (ii) uses less 

assumptions in the specification of the model. Moreover, as Cabras and Tena Horrillo 

(2016) say in their study, the interpretation of the coefficient in the Ordinary Least 

Squares is challenging because of the difficulty to introduce in the model, all relevant 

covariates with all the interactions.  

The analysis has shown that computer use does increase student performance. This 

study is also innovative in that because it moves beyond the descriptive analysis of the 

country. The study applies a different econometric model that is not based on 

parametric assumptions. As in Cabras & Tena Horrillo (2016) who used BART model 

for Spanish PISA 2012 data showing a positive effect of the use of ICT on Spanish 

students’ outcomes, the posterior distribution ATE for Italian data in Figure 4 

underlined the positive and strong effect of the treatment variable – use of computer 

or laptop or table at school - on mathematic test scores. The impact can be computed 

in almost 16 times more likely for students who use ICT to improve their test score. In 
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this respect, results from this study are in line with those in Cabras & Tena Horrillo 

(2016).  

The paper shows that using ICT at school leads to better learning and knowledge 

acquisition among students and leads to better results among the students’ mathematics 

scores. The non-parametric analysis as the Bayesian analysis is able to overcome the 

issue in PISA when the number of potential confounding variables is large. As it does 

not require any subjective decision by the scholar expect for the indication of the 

treated variable, BART allows to be also implemented also in different contexts.  

Analysis of normality but also the analysis of the converge diagnostics showed that 

BART and the burned-in MCMC iterations provided a good approximate posterior 

distribution. A robustness check using the parametric model is also presented showing 

the effect of the treatment, on the sample of Italian students. The positive sign of the 

treatment variable is statistically significant at 1 per cent level but the coefficient of 

determination is lower compared to what the Bayesian analysis showed. However, as 

Cabras and Tena Horrillo (2016) pointed out, the interpretation of the coefficient in 

the Ordinary Least Squares is challenging because the difficulty in introducing all 

relevant covariates with all the interactions in the model. The BART model seems, 

hence, an effective model for causal inference as Hill (2011) showed as there is no 

need to estimate several models as traditional parametric analysis such as propensity 

score matching can require. However, BART model can be demanding in terms of 

computational algorithm and there is a need for further applications and improvement 

of the model using also different data.  
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Appendix A 

 

Table A.1 Descriptive Statistics 

 Use of computer = 1 Use of computer = 0 

 Obs Mean S.D. Min Max Obs Mean S.D. Min Max 

Relative age 14,937 0.50 0.50 0 1 6,583 0.49 0.50 0 1 

Gender 14,937 0.49 0.50 0 1 6,583 0.53 0.50 0 1 

Attended pre-

primary school 

14,937 0.96 0.19 0 1 6,583 0.97 0.17 0 1 

ESCS 14,937 -0.08 0.93 -0.75 2.70 6,583 0.12 0.97 -4.7 2.7 

Family structure 14,937 0.90 0.30 0 1 6,583 0.90 0.30 0 1 

Immigration 

status 

14,937 1.10 0.42 1 3 6,583 1.09 0.40 1 3 

Time spent on 

internet 

(TIMEINT) 

14,937 40.44 33.68 0 206 6,583 37.46 32.94 0 206 

Resources at 

school 

(SCMATEDU) 

14,937 0.09 0.88 -3.59 1.98 6,583 -0.12 0.87 -3.59 1.98 

Teacher-student 

ratio 

(STRATIO) 

14,937 9.62 3.82 0.63 72.54 6,583 10.78 3.30 0.63 28.18 

School type 14,937 0.97 0.16 0 1 6,583 0.98 0.13 0 1 

Computer-

student ratio 

(RATCOMP) 

14,937 0.59 0.45 0 4.5 6,583 0.41 0.33 0 4.5 

Mathematic 

teacher-student 

ratio 

(SMRATIO) 

14,937 92,74 38.82 5.65 651 6,583 90.63 34.90 5.65 335 

Source: OECD-PISA 2012 
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                   Table A.2. Linear Regression analysis  

 

Variables (2.1) 

 

Relative age       6.891*** 

(1.061) 

Gender (female=1)    -22.290*** 

(1.069) 

Pre-primary school (yes=1)     33.994*** 

(2.933) 

ESCS     19.831*** 

(0.579) 

Family structure (nuclear=1) 0.172 

(1.775) 

Immigration status (native=1)      -9.033*** 

(0.646) 

Time spent on internet (TIMEINT)     -0.275*** 

(0.016) 

Resources at school (SCMATEDU)       9.469*** 

(0.646) 

Teacher-student ratio (STRATIO)       8.251*** 

(0.179) 

School type (public=1)     39.511*** 

(3.801) 

Computer – student ratio (RATCOMP)      8.251*** 

(0.179) 

Student-Teacher mathematics ratio 

(SMRATIO) 

    -0.312*** 

(0.014) 

Treatment variable as use of ICT (yes=1)       6.499*** 

(1.224) 

No. obs 21,520 

R-squared                           0.24 
  

                 Source: OECD-PISA 2012 data   

                 Note: Result of linear regression with mathematic test score as the dependent variable.            

Cells show the marginal effects evaluated at the means of all explanatory variables. 

Robust standard errors are shown in brackets below. Superscripts ***, **, * denote 

statistical significance at the 1, 5 and 10 per cent levels respectively.  

 


