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Abstract

We consider a symmetric three-players zero-sum game with two strate-
gic variables. Three players are Players A, B and C. Two strategic vari-
ables are t; and s;, i = A, B,C. They are related by invertible functions.
Using the minimax theorem by Sion (1958) and the fixed point theorem
by Glicksberg (1952) we will show that Nash equilibria in the following
four states are equivalent.

1. All players, Players A, B and C choose t;, i« = A, B,C, (as their
strategic variables).

2. Two players choose t¢;’s, and one player chooses s;.
3. One player chooses t;, and two players choose s;’s.
4. All players, Players A, B and C choose s;, i = A, B, C.
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1 Introduction

We consider a symmetric three-players zero-sum game with two strategic vari-
ables. Three players are Players A, B and C. Two strategic variables are t; and
s, @ = A, B,C. They are related by invertible functions. Using the minimax
theorem by Sion (1958) and the fixed point theorem by Glicksberg (1952) we
will show that Nash equilibria in the following four states are equivalent.

1. All players, Players A, B and C choose t;, i = A, B, C, (as their strategic
variables).

2. Two players choose t;’s, and one player chooses s;.
3. One player chooses t;, and two players choose s;’s.

4. All players, Players A, B and C choose s;, i = A, B,C.

In the next section we present a model of this paper and prove some pre-
liminary results which are variations of Sion’s minimax theorem. In Section 3
we will show the main results. An example of three-players zero-sum game is a
relative profit maximization game in a three firms oligopoly with differentiated
goods. See Section 4.

2 The model and the minimax theorem

We consider a symmetric three-players zero-sum game with two strategic vari-
ables. Three players are Players A, B and C. Two strategic variables are t;
and s;, i = A, B,C. t; is chosen from T; and s; is chosen from S;. T; and S;
are convex and compact sets in linear topological spaces, respectively, for each
i € {A, B,C}. The relations of the strategic variables are represented by

S; = fi(tA7tB7tC)7 1= AaBaCa
and
t; = gi(sa,sp,8¢c), i = A, B,C.

(fa, [B, fc) and (ga, 9B, gc) are continuous invertible functions, and so they are
one-to-one and onto functions. When one of the players, for example, Player C
chooses s¢, to is determined according to

tc = gc(fa(ta,ts,to), fB(ta,ts,tc),sc0)-

We denote this tc by te(ta,ts, sc).
When two players, for example, Player B and C choose sp and s¢, tg and
tc are determined according to

tg = gB(falta,ts,tc),sB,5¢)
tc = go(falta,ts,tc),sB, s0).



We denote these tg and tc by tg(ta, sp,sc) and te(ta, sp, sc).
When all players choose s4, sp and s¢, ta, tp and t¢ are determined ac-
cording to

ta=ga(sa,sB,sc), ts =gB(sa,sB,5c), tc = gc(sa,sm, sc).

Denote these t 4, tg and to by ta(sa, sp, sc), ts(sa, ss,sc) and tc(sa, sp, Sc).
The payoff function of Player i is u;, i = A, B, C. It is written as

ui(tAa tBa tC)
We assume

u; for each ¢ € {A, B,C} is continuous on T} X Ty x T3. Thus,
it is continuous on S X Sy x S3 through f;, i = A, B,C. It is
quasi-concave on T; and S; for a strategy of each other player, and
quasi-convex on T}, j # ¢ and S;, j # i for each ¢; and s;.

We do not assume differentiability of the payoff functions.

Symmetry of the game means that the payoff functions of all players are
symmetric and in the payoff function of each Player i, Players j and k, j, k # 1,
are interchangeable. f4, fp and fc are symmetric, and g4, gg and gc are also
symmetric. Since the game is a zero-sum game, the sum of the values of the
payoff functions of the players is zero. All T;’s are identical, and all S;’s are
identical. Denote them by T and S.

Sion’s minimax theorem (Sion (1958), Komiya (1988), Kindler (2005)) for
a continuous function is stated as follows.

Lemma 1. Let X and Y be non-void convex and compact subsets of two linear
topological spaces, and let f : X XY — R be a function that is continuous
and quasi-concave in the first variable and continuous and quasi-convex in the
second variable. Then

g fx,y) = min max f(x,y).

We follow the description of Sion’s theorem in Kindler (2005).
Applying this lemma to the situation of this paper, we have the following
relations.

max min ua(ta,tp,tc) = min maxua(ta,tp,tc), max min ug(fta,tp,tc) = min maxup(ta,tn,tc).
ta€T tp€eT (ta:ts,tc) tpET tAET (tasts,to), tpET ts€T (ta:ts,tc) ta€TtpeTl (tasts,to)

max min, ua(ta,tp,tc(ta,tp,sc)) = Inin max ua(ta,te, to(ta,ts, sc)),

gfgglg%w(m,tB,tc(tA7tB7 s¢)) = trﬁlg% trglgf’%UB(tAatBatC(tA;tB; 50))-



max min uc(ta,tp,te(ta,tp, sc)) = min max uc(ta,tp,tc(ta, ts, sc)),

SCEStAET tA€ET scE€S
max min uA(ta,tg,tc(ta,tp, s = min maxua(ta,tp.tc(ta,tp,sc)).
tACT seES ( ) 3 C( ) ) C)) scEStacT ( ) ) C( ) ’ C))

max min uc(ta,tg(ta, ss,sc),tc(ta, sp,sc)) = min max uc(ta,tg(ta, ss,sc),tc(ta,ss, sc)),

SCEStAET tA€ET scES

max min ua(ta,ts(ta,ss,sc),tc(ta,sp,sc)) = min maxua(ta,tp(ta,ss,sc),tc(ta, ss,sc)).

ta€T sc €S SCEStAET

max min uc(ta,tp,to(ta,ts, sc)) = min max uc(ta,tp, te(ta,ts, sc)),

ScEStpeT tp€T scES
max min ug(ta,tp,tc(ta,tp,sc)) = min max ug(ta,tp,.tc(ta,tB,sc)).
tRET spes ( ) 3 ( 5 ) )) seES tpeT ( 3 ) ( ) ) ))

max min UC(tA(SA,tB,Sc),tB,tc(SA,tB,Sc)) = min ma)éuC(tA(SA,tB,Sc),tB,tc(SA,tB,Sc)),

sceStgeT tp€T sc€

max min up(ta(sa,tp,sc),tp,tc(sa,tp,8¢)) = min max up(ta(sa,tn,sc),ts,tc(sa,tsp,sc)).

tg€T scES ScEStpeT

max min us(ta,ts(ta,ss,sc),tc(ta,sp,sc)) = min maxua(ta,tp(ta,ss,sc),tc(ta,ss,sc)),

ta€T sg€eS SBEStaET

max min up(ta,tp(ta,ss,sc),tc(ta,ss,sc)) = min max ug(ta,ts(ta,ss, sc),tc(ta, ss,sc)).

SBEStaET tAa€ET speS

Also, relations which are symmetric to them hold.

Further we show the following results.

Lemma 2.

max min uc(ta,tp,tc) = max min uc(ta,tp,tc(ta,ts, sc))

tc€T ta€eT SCEStAET
= min max uc(ta,tp,tc(ta,tp, s¢)) = min max uc(ta,ts, to),
tAa€T sc€S ta€T tceT

and

max min uc(ta,tp,tc) = max min uc(ta,tp,to(ta,ts, sc))

tc€StpeT sceEStpeT
= min max uc(ta,tp,tc(ta,tp,sc)) = min maxuc(ta,tn, to).
tpeT sc€S (tarts,to(ta,ts, sc)) tpeT tcES (ta,t5.tc)

Proof. ming ,eruc(ta,tp,tc(ta,tp, sc)) is the minimum of ue with respect to
ta given tp and sc. Let ta(s¢) = argming, er uc(ta,tp,te(ta,ts, sc)), and

fix the value of to at

t& = go(fa(ta(sc),ts, &), f(ta(sc),ts, t), sc). (1)
Then, we have

min uc(tA,tB,t%) < uC(l?A(Sc),tB,t%) = min uC(tA,tB,tc(tA,tB,Sc)),
ta€eT taeT



where ming , cr uc(ta, tp, t%) is the minimum of uc with respect to t 4 given the
value of tc at t2,. We assume that £4(sc) = argming , er uc(ta, ts, to(ta, ts, sc))
is single-valued. By the maximum theorem and continuity of uc, t4(s¢) is con-
tinuous. Then, any value of t& can be realized by appropriately choosing sc
given tp according to (1). Therefore,
max min uc(ts,tp,to) < max min uc(ta, ts, to(ta;ts, sc))- (2)
On the other hand, min; ,eruc(ta,ts, tc) is the minimum of ue with re-
spect to ta given tp and to. Let t4(tc) = argming,er uc(ta,ts, tc), and fix
the value of s¢ at
s¢ = fo(ta(to),ts, to). (3)
Then, we have

min uC(tA,tB,tc(tA,tB,SOC)) < UC(EA(tc),tB,tc(tA,tB,SOC)) = min uc(tA,tB,tc),
taeT taeT

where min; e uc(ta,tp, tc(ta,tp, s&)) is the minimum of uc with respect to

t 4 given the value of sc at s. We assume that {4 (tc) = argming , er uc(ta,ts, tc)
is single-valued. By the maximum theorem and continuity of uc, t4(tc) is con-
tinuous. Then, any value of s can be realized by appropriately choosing tc
given tp according to (3). Therefore,

. - . '
max min uc(ta,tp,to(ta,ts, sc))) < max min uc(ta,tp,tc) (4)

Combining (2) and (4), we get

max min uc(ta,tp,tc(ta,tp, s¢)) = max min uc(ta,ts, tc).
SCEStaET tc €T tpaeT

Since any value of s¢ can be realized by appropriately choosing t¢ given ¢4 and
tp, we have

Ecl%}éuC(tA,tB,tC(tAth, SC)) = trgg%guC(tAatBatC)'

Thus,
min max uc(ta,tB,tc(ta,tB,sc)) = min max uc(ta,ts,tc).
tAET scES (tasts,to(la,ts, sc)) ta€T teET (ta,ts,tc)
Therefore,
max min uc(ta,tg,tc) = max min uc(ta,tp,tc(ta, tp, s
toET ta€T ctasts te) SCEStAET c(tasts to(ta,ts, sc))
= min max uc(ta,tp,tc(ta,tp, sc)) = min max uc(ta,ts, to),
ta€T sc€S ta€T tceT
given .

By similar procedures, we can show

max min uc(ta,tp,tc) = max min uc(ta,tp, tc(ta,ts, sc))

te€T tpeT sceStpel
= min max uc(ta,tp, tc(ta,tp, sc)) = min max uc(ta,tp, to),
tp€T sc €S tp€eT tceT
given t4. U



Lemma 3.

min max ua(ta,tp,tc) = min maxua(ta,tp,tc(ta,ts, sc
teceT tacT (ta,ts,tc) SCEStAET (ta,tp,to(ta, ts, sc))

= max min ug(ta,tg,tc(ta,tp,s = max min u(ta,tn,tc
ta€T scE€S (tartp, to(ta s, sc)) ta€T tceT (tasts,to),

and

min max ug(ta,tn,tc) = min maxupg(ta,tn,tc(ta,tp, sc
tceT tpeT (ta,ts,tc) scEStpeT (ta,ts,to(la,ts, sc))

= max min ug(ta,tg,tc(ta,tp, s = max min up(ta,tp,tc).
tpET scES (tartp, to(ta s, sc)) tp€T teeT (ta,ts,tc)

Proof. max;,erua(ta,tp,tc(ta,tns, sc)) is the maximum of u 4 with respect to
ta given tp and sc. Let tA(Sc) = argmaxy,cr uA(tA,tB,tc(tA,tB,Sc)), and
fix the value of t¢ at

tOC = gC(fA(EA(SC)7tB7t%)afB(gA(SC)7tB7tOC)7tC(tA7thSC))' (5)

Then, we have

max ua(ta,tp, te) > ua(ta(sc), tp, t&) = maxua(ta,tp,te(ta, ts, sc)),
ta€eT ta€T
where max; , erua(ta,ts, t%) is the maximum of u, with respect to t 4 given the
value of to at t%. We assume that £ 4(s¢) = argmax; ,er ua(ta,tp,to(ta, ts, sc))
is single-valued. By the maximum theorem and continuity of w4, ta (s¢) is con-
tinuous. Then, any value of t&, can be realized by appropriately choosing sc
given tp according to (5). Therefore,

i tatg, te) > mi ta,tp, to(ta,t . 6

trélér%g%ufx( Astpito) > Sréne%trilg},}ufl( Astito(ta,ts, sc)) (6)

On the other hand, max; ,er ua(ta,tp,tc) is the maximum of uy with re-

spect to t4 given tp and to. Let ta(tc) = argmaxy, crua(ta,ts, tc), and fix
the value of s¢ at

s& = fo(ta(te),ts, to). (7)

Then, we have

max ua(ta,tp, to(ta, tp, s¢&)) = ualta(sc),tp, te(ta, tp, s&)) = maxua(ta, tp, tc),
ta€T ta€T

where max; , e ua(ta,tn, to(ta,ts, soc)) is the maximum of u4 with respect to

t 4 given the value of s¢ at SOC. We assume that £ 4 (tc) = argmax; ,er ua(ta,tp,tc)

is single-valued. By the maximum theorem and continuity of u 4, ta (te) is con-
tinuous. Then, any value of s can be realized by appropriately choosing tc
given tp according to (7). Therefore,

i tp, to(ta,t > mi ta,tp. to).
Srgllensglg%uA(tA, B, tc(ta,tp,sc)) _tfélgég%wx( A,tB,tc) (8)



Combining (6) and (8), we get

min max ua(ta,tg,tc(ta,tp, s = min max ua(ta,tn,tc).
Inin max A(ta,tp,tc(ta,tp, sc)) min max Alta,ts,tco)

Since any value of s¢ can be realized by appropriately choosing ¢t given ¢4 and
tp, we have

i ta,tg, to(ta,t = mi tatp, to).
SIEIGI}SU'A( Arte,te(ta,ts, sc)) gggéufx( YR 7:87e)

Thus,
max min ua(ta,tg,tc(ta,tn, s = max min ua(ta,tn,tc).
ta€T sc€S (tastp to(ta,ts, sc)) ta€T to€S (ta,tp,tc)
Therefore,
min max ua(ta,tp,tc) = min maxua(ta,tB,tc(ta,tp, s
[oin max (ta,ts,tc) Inin max (ta,ts,tc(tasts, sc)),
=max min ua(ta,tn,tc(ta.tp,s = max min ua(ta,tp,t
max i, Alta,tp,te(ta,tp, sc)) max mi, Alta,ts,to),
given tp.

By similar procedures, we can show

min max ug(ta,tp,tc) = min maxug(ta,tp,tc(ta,tn, s
tc€T tp €T (ta;ts,tc) scEStpeT (tasts,to(tasts, sc)),

=max min up(ta,tp,tc(ta,tp, sc)) = max min ug(ta,ts, tc),
tp€T scES tpeT tceT
given t4. O

Similarly, we obtain the following results.

Lemma 4.

max min uc(ta,tp(ta,sp,tc),tc) = max min uc(ta,tp(ta, sp,sc),tc(ta, sp, sc))

tc€T ta€eT ScEStaET

= min max uc(ta,tg(ta,sg,sc),tc(ta,sp, s = min max uc(ta,tg(ta, s, tc),t
tAeT sces C( ) ( ) ) C)a C( ) ) C)) tacTteeT C( ) ( ) ) C)a C)7

and

tlgléelzlg trélg% uc(ta(sa,tp,te),tp, tc) = ?22)5 tlglg% uc(ta(sa,tp,sc),te,tc(sa,tp,sc))

= tr;lg; max uc(ta(sa,tp,sc),tp,tc(sa,tp, sc)) = trélg% max uc(ta(sastp,tc),tp,to).

Proof. See Appendix A. O

Lemma 5.

[nin max ua(ta,ts(ta,sp,tc),tc) = Inin max ua(ta,ts(ta,ss,sc),tc(ta, s, sc))

= max Jéléns ua(ta,tp(ta,ss,sc) tc(ta, sp,sc)) = glg)T(tIgg%UA(tA,tB(tA, sp,tc),tc),



and

min max up(ta(sa,tp,tc),tp,tc) = min max ug(ta(sa,ts, sc),ts,tc(sa,ts, sc))

tce€T tpeT scEStpeT

= max min ug(ta(sa,tp,sc),tg,tc(sa,tp,sc)) = max min ug(ta(sa,tp,tc),tn,tc).
tp€T sc€S (ta(sa,ts, sc) s, to(sa, tp, sc)) tpeT tceT (ta(satp.te), s to)

Proof. See Appendix B. O

Also, relations which are symmetric to these lemmas hold.

3 The main results

In this section we present the main results of this paper. First we show

Theorem 1. The equilibrium where all players choose t;’s is equivalent to the
equilibrium where one player (Player C) chooses s¢ and two players (Players
A and B) choose t;’s as their strategic variables.

Proof. 1. Consider a situation (t4,tp,tc) = (t,t,t). Let
sO(t) = fo(t,t,t).
By symmetry of the game

tr}’qlg}ig uA (tAv tv t) = gg?} up (tv th t) = }22’}7& uC(tv tu tC)v

and

argglaem%guA(tmt,t) = argtrgréuTcuB(t,tB,t) = argtrg.g)TcuC(t,t,tc) eT.

Consider the following function.

t— argglg%guA(tA,t,t).

Since this function is continuous and T is compact, there exists a fixed
point. Denote it by t*. Then,

t* — argmax ua(ta,t” t*).
m Tu ( A )
We have

xR\ gk gk * *\ ok gk * gk _ * kg
tIilg)](ﬂUA(tA,t,t)—'U:A(t,t,t)—gg)%UB(t,tB,t)—UB(t,t,t)—gg?ﬂuc(t,t7tC)—uC(t,t,t



2. Because the game is zero-sum,
UA(tAa t*a t*) +up (tAa t*7 t*) + UC(tAa t*a t*) = 0.
By symmetry ug(ta,t*,t*) = uc(ta, t*,t*). Thus,

uA(tA,t*,t*) + 2UC(tA,t*,t*) =0.

This means
ua(ta,t™, t") = —2uc(ta,t™,t"),
and
g\lg¥uA(tA,t*,t*) = thTér%uc(tA,t*,t*).

From this we get

argg?TcuA(tA’t*’t*) = argfj‘é%“C(tAat*,t*) —

By symmetry of the game
ta,t",t") = arg min ua(t*,t%,tc) = t*.
arggléa}TcuA( At ") g min, A yte)
We have

gg}T(uA(tA,t*,t*) = trélér%uA(t*,t*,tc) =uy(t',t*,t") =0.

Then,

min max us(ta,t™, tc) < maxua(ta,t™,t*) = min ua(t*, %, tc) < max min ua(ta,t™, tc).
tc €T ta€T ta€eT tc€eT ta€T tceT

From Lemma 3 we obtain
i ta t* to) = ta, 5, ¢*) = mi et

ggg}{gg%w( At te) ggm( A, t5, %) trélér%m( 5 te) 9)

= i ta, t* tc) = mi ta t to(ta, t”, = i ta, t* to(ta, t”, =0
gg?;gggm( At te) sréuerggg);m( A, te(ta, t™, sc)) glg%gsrgg%m( A c(ta,t™,sc))

3. Since any value of s¢ can be realized by appropriately choosing t¢,

b?gé%uA(t*»t*atC(t*at*,SC)) = trélér%uA(t*J*,td =uu(t',t*,t") =0.
(10)
Then,
arg min w4 (t*,t*, to(t*,t*, s¢)) = s°(t%).
sc€S

(9) and (10) mean

Srgie%gilg%uA(tAat*7tC(tAat*7SC)) = srgie%uA(t*at*vtC(t*7t*vSC)) =0.
(11)



And we have

ma%guA(tA,t*,tc(tA,t*,sc)) >ua(t™, " to(t*, t%, so)).
ta€

Then,

argsrgie%gg}%uA(tAat*vtC(tAat*vSC)) = argsIgie%UA(t*,t*,tC(t*,t*, SC)) = So(t*)

Thus, by (11)

min max ua(ta,t™, tc(ta,t*, s¢)) = max uA(tA,t*,tc(t*,t*,so(t*))) = uA(t*,t*,tc(t*,t*,so(t*))) =0.
SCcEStAET ta€eT

Therefore,
arg max u(ta,t*, to(ta, t*, (%)) = t*. (12)
taeT

By symmetry of the game,

arg max ug(t*, tg, to(t*, tg, s°(t*))) = t*. (13)
tp€eT

On the other hand, because any value of s¢ is realized by appropriately
choosing t¢,

t ot te(tT T = th " to) = t*, 7 t") = 0.
;’I;%)éuc( ) 70( ) 750)) £2§UC( ) 70) uC( s by )

Therefore,

arg max uc(t', 1%, to(t, ¢, 50)) = "(t°) = fo(t",+7,¢7).  (14)
sc€

From (12), (13) and (14), (t*,t*, tc(t*,t*,s%(t*))) is a Nash equilibrium
which is equivalent to (¢*,¢*,¢*).
O

Now we assume

Assumption 1. At the equilibrium such that t4 = tg = t* and s¢ = s°(t*),
where tc = t*, the responses of up and uc to a small change in t4 have the
same Sign.

w4 is maximized at t4 = t* given tg = t* and s¢ = s°(t*).
Using this assumption we show the following result.

Theorem 2. The equilibrium where all players choose t;’s is equivalent to the
equilibrium where one player (Player A) chooses t and two players (Players B
and C) choose sp and sc.

10



Proof. By Theorem 1
arg max u(ta, t*, to(ta, t*, s°(t%))) = arg max up(t*, tp, to(t*, tg, s* (t*))) = t*,
ta€T tpeT
arg max uc (t*, t*, to(t*,t*,s0)) = s°(t*).
SCcES
Since any value of tg is realized by appropriately choosing sg, we get
maéuB(t*,tB(t*,sB,so(t*)),tc(t*,sB,SO(t*))) = Pa§u3(t*,t3,tc(t*,t3,so(t*))) =up(t*, t*, to(t*, tp,s* (t)
SBE BE

and
arg max up (t*,tp(t", s, 8" (t)), to(t", s, s°(t7))) = 5°(£"). (15)
sBE€
By symmetry

max uc (t*, tp(t*, s°(t*), sc), to(t”, sU(t*), s¢)) = max uc (t*, t*, to (t*, 1%, s¢)),
sc€ES sc€S

and
arg max uc(t*, tp(t*,s°(t%), so), te(t*, s°(t°), s¢)) = s°(t%). (16)
sc€

Since the game is zero-sum,

up(ta, t*, to(ta, t*,sO(t)) +up(ta, t*, to(ta, t*,s°(t)) + uc(ta, t*, te(ta, t*, s°(t*))) = 0,
and so

wa(ta, t* to(ta, t*,s°(t")) = —(up(ta, t* to(ta, t*, s°(t*))fuc(ta, t* to(ta, t*, s°(t%)))).

Thus,

max ua(ta,t*,to(ta, t*,s°(t%))) = — min[up(ta, t*, to(ta, t*,8°(1%)) + uc(ta, %, tc(ta, 1, s°(t%)))]
ta€eT ta€eT
= uA(t*vt*vtC(tAvt*v so(t*))) =0.
By Assumption 1 since ua(ta,t*, to(ta,t*,s°(t*))) <0,
uB(tAat*vtC(tAat*vso(t*))) Z Oa U,C(tA,t*,tc(tA,t*,SO(t*))) Z 0’

in any neighborhood of (t*,t*,tc(t*,t*,s%(t*))). Thus, we have

min up(ta,t*, to(ta,t*, s°(t*))) =0, (17a)
ta€eT
argtmérilruB(tA,t*,tc(tA,t*,so(t*))) =t", (17b)
A

mix%uc(tA,t*,tc(tA,t*, s9(t*))) = 0,

ta€
and

arg min UC(tAyt*atC(tAat*a So(t*))) =t
ta€T

11



By symmetry (17a) and (17b) mean

. * * 0/ % _
tI;léI%UA(t ,tB,tC(t 7ths (t ))) _0’

arg min ua(t*, tp, to(t*,tp, s°(t%))) = t*.
tp€eT
Thus,

max ua(ta, t*, to(ta, t*,s°(t")) = min ua(t*, tp, te(t*, tp, s0(t*)) = ua(t*, t*, to(t*, t*, s°(t%))) = 0.
ta€eT tp€eT

Then,

. O/ < * * O/px
tgé%gg%”A(tAvthtC(tAth7S (t ))) = glg},](,uA(tA7t 7tC(tA7t y S (t )))

_ . * * 0 /% < : 0 /% )
tréléf%uA(t i, to(t' tp, s (7)) < gggtrgg%m(m,tB,tc(tA,tB,8 ("))

From Lemma 5, interchanging B and C, we obtain

3 0% _ * x 0/p%
tgg%gg}%ufl(tfhtBatC(tA7tB75 (t ))) *gg}%uA(tAﬂt ,tc(tA,t ) S (t )))
(18)

= i ta,tp to(ta,tp, s(t"))) = mi ta,tp(t YY), to(t O
glg}T(tI;lgilpUA(m B.to(ta,tp, s (t%))) slzllensglg?UA(A, B(ta,ss,s (t")),tc(ta,sp,s (t)))

— : 0 (% 0px _ : * * (U _
7£2¥512é%uA(tA7tB(tA’SB7S (t*),tc(ta, sp,s (t7))) 7&%}“‘4@ g, te(t*, tg,s (t*))) = 0.

Since any value of tp is realized by appropriately choosing sp,

tmir%uA(t*,tB,tc(t*,tB,sO(t*))) = minSuA(t*,tB(t*,sB,so(t*))),tc(t*,sB,so(t*))) =0.
BE

sBE
(19)
Thus,
arg mir}guA(t*,tB(t*,sB,so(t*))),tc(t*,sB, sO(t%))) = s°(t%).
sB€
From (18) and (19)
i tatp(t Ot*), te(t o 20
min maxus(ta,te(ta, sp,s” (1)) to(ta, sp,5° (1)) (20)
= miréuA(t*,tB(t*,sB,so(t*))),tc(t*,sB,SO(t*))) =0.
sBE

And we have

ma>T<uA(tA,tB(tA,sB,so(t*)),tC(tA,sB,so(t*))) > ua(ta,tp(ta,s®(t*),s?(t), to(ta, s°(t%), s°(t%))).

tac

Then,
arg min max u(ta,tp(ta,sp,s (t%)), to(ta, sp,s°(t)))
spEStAET
=arg min ua(t", tp(t, 55, 5" (t))), to (", 55, 5°(t7)) = s"(t").
SBE

12



Thus, by (20)

min max u4(ta,tp(ta,sp, s’ (t*)), to(ta, sp,s°(t*))) = max ua(ta,tp(ta, s°(t*), s°(t*)), to(ta,

SBEStAET ta€T
=u,(t*, tp(t, sO(t7), s° (")), to(t*, s (t%), s°(t*))) = 0.
Therefore,
arg tm?jiuA(tA,tB(tA, sO(t%), s°(t%)), to(ta, s° (%), s° () = t*. (21)
A

From (15), (16) and (21) (t*,tp(t*, s%(t*), sO(t*)), to(t*, s°(t*), s°(%))) is a
Nash equilibrium which is equivalent to (t*,t*, to(t*, t*, O(t* )), and hence it is
equivalent to (¢*,t*,¢*). O

Since any value of ¢4 is realized by appropriately choosing s4, (21) means
tr?g;TcuA(tA,tB(tA, s(t), s°(t)), to(ta, s° (1), s°(9)))
= max ug(ta(sa, s' (1), s°(t%)), tp (s, 8°(¢°), 8% (7)), te (s, s°(17), °(17)))
= ua(t* tp(t*, 8" (1), s°(t")), te (t*, 82 (1), s°(t7))),
and

ma}éuA(tA(sAv So(t*)v so(t*))vtB(sA7 So(t*)a So(t*))atC(sAa So(t*)a So(t*))) = So(t*)'

Therefore, (£(°(1°), (), 8°(£°)). £ (s*(¢"). £°(47), (), e (s°(), 8°(#),5°()))

s
is a Nash equilibrium which is equivalent to (t*,t*, tc(t*,t*, s%(t*))) and (t*, t*, t*).
Summarizing the results we have shown

Theorem 3. Nash equilibria in the following four states are equivalent.
1. All players, Players A, B and C choose t;, i = A, B,C.
2. Two players choose t;’s, and one player chooses s;.
3. One player chooses t;, and two players choose s;’s.

4. All players, Players A, B and C choose s;, i = A, B,C.

4 Example of an asymmetric three-players zero-
sum game

Consider a relative profit maximization game in an oligopoly with three firms
producing differentiated goods'. It is an example of three-players zero-sum game
with two strategic variables. The firms are A, B and C. The strategic variables
are the outputs and the prices of the goods of the firms.

We consider the following four cases.

I About relative profit maximization under imperfect competition please see Matsumura,
Matsushima and Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh
and Tanaka (2014b), Tanaka (2013a), Tanaka (2013b) and Vega-Redondo (1997)
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1. Case 1: All firms determine their outputs.

The inverse demand functions are
pa=a—xy4—brp—brc,
pB=a—zp —bra —bxc,

and
pc =a—xc —bry —bxp,

where 0 < b < 1. pa, pp and p¢ are the prices of the goods of Firm A, B
and C, and z 4, xp and z¢ are the outputs of them.

2. Case 2: Firms A and B determine their outputs, and Firm C determines
the price of its good.

From the inverse demand functions,
4= (1—=Dba+b*xp —brp+b*rs — x4+ bpo,

pg=(1l—bla+ blxp — g+ b2xa — bra + bpe,
and
ro =a—brxp —bry — po
are derived.
3. Case 3: Firms B and C determine the prices of their goods, and Firm A
determines its output.

Also, from the above inverse demand functions, we obtain

(1—b)a+2b%x —brs —xA+ bpo +pr

ba= 1+b
. _(1—b)a—|—b2$A—be—|—bpc—pB
B (1—0b)(1+0) ’
and
. (1 —b)a+b?xs —bra —pc + bpp
c=

(1=0)(1+0d
4. Case 4: All firms determine the prices of their goods.

From the inverse demand functions the direct demand functions are de-
rived as follows;

_(I=b)a—(1+b)pa+bpa+pc)
vA= (1 fb)(1+2b) ’
(I =b)a—(1+b)ps +blps +pc)
B = (1—b)(1+20) !
and
o (L= 0= (14 b)pc + b(pa +5)

(I-0)(1+2b)

14



The (absolute) profits of the firms are
TA=DPATA — CATA,

T™B = PBTB — CBIR,
and
T =PcrTc — Ccxe-

ca, cp and co are the constant marginal costs of Firm A, B and C. The relative
profits of the firms are

B + TC
QDA:TA_Tv
TA+TC
$B=TB—~ —F5
2
and
TA+ TR
Yomme T Ty

The firms determine the values of their strategic variables to maximize the
relative profits. We see

eatept+ec=0,
so the game is zero-sum.

We compare the the equilibrium outputs of Firm B in four cases. Denote

the value of x5 in each case by z%, 2%, 2% and x%. Then, we get

(4 —b)a+bcc —beg — 4ep + bea
(4-0)(2+0D) ’

zh =

8(2 — b)a — 3b3cc — bco + 4beo + Tb%cp — 16¢p + 5b%cy + 4bey + 3ab® — 11ab?

2 _
¥ = (4—b)(1—b)(2+ b)(4 + 3b) ’
B 8(1 +2b)a — b3ce + 3b%cc + 4bee + 4b3cp + Th%cp — 16beg — 16¢p + 2b3ca + 9b%cy + 4bcy — bab® — 19
B (1—0)(b+2)(b+4)(5b+4)
and
s (4 + b)a + 2b%cc + beg + b2cp — 3beg — dep + 2b%ca + bea — Sab?
B = )

(1=0)(2+b)(4+ 5b)
When co = cy4, they are

(4 —b) — abcg — 4cp + 2bcy
(4-0)(2+0D) ’

vy =

8(2 — b)a + Th?cp — 16¢cp — 3b3ca + 4b%c s + 8bcy + 3ab® — 11ab?
(4-0)(1—0)(2+b)(4+3b) ’

8(2 + b)a + 4b3cp + Tb%cp — 16bcg — 16¢p + b3ca + 12b%c4 + 8bca — Hab® — 19ab?

(1—b)(2+ b)(4 + b)(4 + 5b) ’

T =

2 =

15



and
(4+b)a + b*cg — 3bcg — 4cp + 4b%ca + 2bca — Hab?

(1—b)(2+ b)(4 + 5b)

Further when c¢c = cg = ca, we get

T =

a— Cp
240

vh =2} = o =k =

We can show the same result for the equilibrium outputs of the other firms.
Thus, in a fully symmetric game the four cases are equivalent.

5 Concluding Remarks

In this paper we have shown that a symmetric three-players zero-sum game
with two strategic variables, choice of strategic variables is irrelevant to the
Nash equilibrium. We want to extend this result to a general multi-person zero-
sum game. In an asymmetric situation the Nash equilibrium depends on the

choice of strategic variables by players other than two-players case?.
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Appendices
A Proof of Lemma 4

Proof. ming ,eruc(ta,ts(ta,ss,sc),tc(ta, sp,sc)) is the minimum of ue with
respect to t 4 given sp and s¢. Let ta(s¢) = argming , er uc(ta, ts(ta, s, sc), tc(ta, sp,sc)),
and fix the value of ¢ at the value which is derived from the following equations.

{ t% = g(fa(ta(so), th, &), sB,50) (22)
tOC = gc(fA(tA(SC)7t%7t%)a33750)-

Then, we have

tmél}uc(tAatB(tAaSthOC)atOC) S UC(EA(SC),tB(t/MsBat%)7tOC) = tmél}uc(tAvtB(tAaSB,SC)atC(tAaSBaSC))v
A LA

where ming , e uc(ta, tp(ta, sp,t%),t%) is the minimum of uc with respect to
ta given the value of tc at t2,. We assume that {4 (sc) = argming , er uc(ta, ts(ta, sp, sc), tc(ta, sp,sc))

2 About two-players case please see Satoh and Tanaka (2017).
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is single-valued. By the maximum theorem and continuity of uc, t4(s¢) is con-
tinuous. Then, any value of t& can be realized by appropriately choosing sc
given sp according to (22). Therefore,

max min uc(ta,tp(ta, sp,tc),tc) < max min uc(ta,tp(ta, s, sc),tc(ta, s, sc)).
tce€T taceT ScEStaET
(23)

On the other hand, ming , 7 uc(ta,t5(ta, sB,tc), tc) is the minimum of ue

with respect to t 4 given sp and to. Let t4(t¢) = argming , e uc(ta, tp(ta, s, tc), to),
and fix the value of s¢ at the value which is derived from the following equations.

{ 894 = fA(tA(tC)agB(S(.)AaSB7SOC)>tC) (24)
s& = fe(ta(te), 98(s%, s, sL), tc).

Then, we have

fmé%UC(tAatB@Aa537500>7t0<(ﬁA;3375%))) <wuc(ta(sc) tp(ta,sp, s&),to(ta, sp, &) = tmgjl,uc(ﬁAatB(tAys
LA A

where ming , e uc(ta,ts(ta, ss, 5%), to(ta, ss, 5%)) is the minimum of u¢c with

respect to t 4 given the value of s¢ at soc. We assume that £ 4 (tc) = argming , e7 uc(ta, tp(ta, sB,tc), tc)
is single-valued. By the maximum theorem and continuity of uc, £4(tc) is con-

tinuous. Then, any value of s¢ can be realized by appropriately choosing t¢

given sp according to (24). Therefore,

i ta,tp(t to(t < 1 ta,tp(t t to).
gggglg%uc( A,tB(ta,sp,sc),te(ta,sp,sc)) < {Iclgétrilg%uc( A,t(ta,sp,tc),tc)
(25)

Combining (23) and (25), we get
i ta,tp(t to(t = i ta,tp(t t tc).
g%tglg%UC( Astp(ta, sp,sc),tc(ta, sp,sc)) ggégguc( A te(ta,sp,to),tc)

Since any value of s¢ can be realized by appropriately choosing to given ¢4 and
sp, we have

max uc(ta,ts(ta, s, sc),tc(ta, sB,s¢)) = maxuc(ta,ts(ta, s, to), te).

sc€E tceT
Thus,
Join, grclié)éuc(tAth(tA, sB,sc) te(ta,sp,sc)) = [nin max uc(ta,tp(ta,ss.te),te).
Therefore,

gg}%tlilél%uc(tA;tB(tA, sp,to) to) = Zrclfgé tfilgilp uc(ta,tp(ta,ss,sc),tc(ta,ss,sc))
= in. glclégéuc(tA,tB,tc(tA,tB, s0)) = Jnin gg%uc(tA,tB(tA, sp,to), to)-

By similar procedures, we can show

max min uc(ta(sa,tp, te),tp,tc) = max min uc(ta(sa,ts, sc),ts,tc(sa, ts, sc))

tcESteT ScESteT
= ffélgjl, max uc(ta(sa,ts,sc) te,tc(sa,ts,sc)) = tILI?lgilp max uc(ta(sa,ts,to) ts, te).

O
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B Proof of Lemma 5

Proof. max;,crua(ta,tp(ta,ss,sc),tc(ta,sn,sc)) is the maximum of uy with

respect to t4 given sp and s¢. Let ta(s¢) = argmaxy ,er va(ta,tp(ta, s, sc),tc(ta, sB, sc)),
and fix the value of {¢ at the value which is derived from the following equations.

{ tOB = gB(fA(tA(SC)7tOB7tOC)7SB7SC) (26)
te = gc(falta(sc) th,t&), s, sc)-

Then, we have
tlng)ngA(tA;tB(tAa $Byte) te) > ua(ta(sc),te(ta, sp, te),te) = trng)jiuA(tA;tB(tA» sB,5c),tc(ta,sB,5¢c)),
A A

where max; , e ua(ta,tp(ta, ss, t%), t%) is the maximum of u4 with respect to

t 4 given the value of t- at t%. We assume that t 4 (s¢) = argmax; , er ua(ta,ts(ta, ss, sc),tc(ta, ss, sc))
is single-valued. By the maximum theorem and continuity of w4, t4(s¢) is con-

tinuous. Then, any value of t& can be realized by appropriately choosing sc

given sp according to (26). Therefore,

i ta,tp(t to),to) > mi ta, tp(t tol(t .
gggg‘%w( A,te(ta,sp,to),tc) > srglensglg)TcuA( a,te(ta,ss,sc),tc(ta, sp, sc))
(27)

On the other hand, max; ,er ua(ta,t5(ta, sB,tc), te) is the maximum of u 4
with respect to t 4 given sp and tc. Let t4(tc) = argmax; e ua(ta,ts(ta, s, tc),to),
and fix the value of s¢ at the value which is derived from the following equations.

{ $% = faltate), 95(s%, sB, s2), tc) (28)
s& = fe(talte), 98(s%, s, sL), te).

Then, we have

glg)T(uA(tA’tB(tA’ 5B,5%),tc(ta,s8,5%)) > ua(ta(sc),tp(ta,sp,s%),tc(ta, sp,8%)) = gllg}j(ﬂuA(tA,tB(tA7 SB
where max; ,er ua(ta,tp(ta, ss, sOC), to(ta, ss, sOC)) is the maximum of u 4 with

respect to t 4 given the value of s¢ at soc. We assume that t 4 (tc) = argmax; , 7 ua(ta, sB,tc)

is single-valued. By the maximum theorem and continuity of w4, £4(tc) is con-

tinuous. Then, any value of s can be realized by appropriately choosing tc

given sp according to (28). Therefore,

. > mi .
nin, glg);UA(tAytB(tAwSBaSC)atC(tAwSB’SC)) > min max ua(ta,tp(ta,ss.tc), tc)
(29)

Combining (27) and (29), we get

Inin max ua(ta,te(ta,ss,sc) tc(ta,sp,sc)) = [nin max ua(ta,te(ta, s, to), tc).

Since any value of s¢ can be realized by appropriately choosing t¢ given ¢4 and
sp, we have

min us(ta,ts(ta, ss,sc),sc) = min ua(ta,ts(ta,ss,tc), tc).
scES tc €S
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Thus,
max J?le“s ua(ta,ts(ta,ss,sc),tc(ta,sp,sc)) = max t%lé% ua(ta,te(ta, s, to), tc).

Therefore,

min max ua(ta(sa,ts,tc),tp,tc) = min max ua(ta(sa,ts, sc) ts,tc(sa,ts, sc)),

tc€T taeT SCEStAET
=max min ua(ta(sa,tp,sc),tp,sc) = max min ua(ta(sa,tp,tc),tp, tc).
ta€T scES (ta(sa,tp, sc)its,5¢) ta€T teeT (ta(sastp o) s, to)

By similar procedures, we can show

min max up(ta(sa,tp,tc),tp,tc) = min max up(ta(sa,ts, sc),ts,tc(sa,tp, sc)),

tc€T tpeT scEStpeT
= max min up(ta(sa,ts,sc),te,tc(sa,ts, sc)) = max min up(ta(sa,tp,tc),ts,tc).
O
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