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Abstract

We consider a symmetric three-players zero-sum game with two strate-
gic variables. Three players are Players A, B and C. Two strategic vari-
ables are ti and si, i = A;B;C. They are related by invertible functions.
Using the minimax theorem by Sion (1958) and the �xed point theorem
by Glicksberg (1952) we will show that Nash equilibria in the following
four states are equivalent.

1. All players, Players A, B and C choose ti; i = A;B;C, (as their
strategic variables).

2. Two players choose ti�s, and one player chooses si.

3. One player chooses ti, and two players choose si�s.

4. All players, Players A, B and C choose si; i = A;B;C.
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1 Introduction

We consider a symmetric three-players zero-sum game with two strategic vari-
ables. Three players are Players A, B and C. Two strategic variables are ti and
si, i = A;B;C. They are related by invertible functions. Using the minimax
theorem by Sion (1958) and the �xed point theorem by Glicksberg (1952) we
will show that Nash equilibria in the following four states are equivalent.

1. All players, Players A, B and C choose ti; i = A;B;C, (as their strategic
variables).

2. Two players choose ti�s, and one player chooses si.

3. One player chooses ti, and two players choose si�s.

4. All players, Players A, B and C choose si; i = A;B;C.

In the next section we present a model of this paper and prove some pre-
liminary results which are variations of Sion�s minimax theorem. In Section 3
we will show the main results. An example of three-players zero-sum game is a
relative pro�t maximization game in a three �rms oligopoly with di¤erentiated
goods. See Section 4.

2 The model and the minimax theorem

We consider a symmetric three-players zero-sum game with two strategic vari-
ables. Three players are Players A, B and C. Two strategic variables are ti
and si, i = A;B;C. ti is chosen from Ti and si is chosen from Si. Ti and Si
are convex and compact sets in linear topological spaces, respectively, for each
i 2 fA;B;Cg. The relations of the strategic variables are represented by

si = fi(tA; tB ; tC); i = A;B;C;

and
ti = gi(sA; sB ; sC); i = A;B;C:

(fA; fB ; fC) and (gA; gB ; gC) are continuous invertible functions, and so they are
one-to-one and onto functions. When one of the players, for example, Player C
chooses sC , tC is determined according to

tC = gC(fA(tA; tB ; tC); fB(tA; tB ; tC); sC):

We denote this tC by tC(tA; tB ; sC).
When two players, for example, Player B and C choose sB and sC , tB and

tC are determined according to�
tB = gB(fA(tA; tB ; tC); sB ; sC)
tC = gC(fA(tA; tB ; tC); sB ; sC):
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We denote these tB and tC by tB(tA; sB ; sC) and tC(tA; sB ; sC).
When all players choose sA, sB and sC , tA, tB and tC are determined ac-

cording to

tA = gA(sA; sB ; sC); tB = gB(sA; sB ; sC); tC = gC(sA; sB ; sC):

Denote these tA, tB and tC by tA(sA; sB ; sC), tB(sA; sB ; sC) and tC(sA; sB ; sC).
The payo¤ function of Player i is ui; i = A;B;C. It is written as

ui(tA; tB ; tC):

We assume

ui for each i 2 fA;B;Cg is continuous on T1 � T2 � T3. Thus,
it is continuous on S1 � S2 � S3 through fi; i = A;B;C. It is
quasi-concave on Ti and Si for a strategy of each other player, and
quasi-convex on Tj ; j 6= i and Sj ; j 6= i for each ti and si.

We do not assume di¤erentiability of the payo¤ functions.
Symmetry of the game means that the payo¤ functions of all players are

symmetric and in the payo¤ function of each Player i, Players j and k; j; k 6= i,
are interchangeable. fA, fB and fC are symmetric, and gA, gB and gC are also
symmetric. Since the game is a zero-sum game, the sum of the values of the
payo¤ functions of the players is zero. All Ti�s are identical, and all Si�s are
identical. Denote them by T and S.
Sion�s minimax theorem (Sion (1958), Komiya (1988), Kindler (2005)) for

a continuous function is stated as follows.

Lemma 1. Let X and Y be non-void convex and compact subsets of two linear
topological spaces, and let f : X � Y ! R be a function that is continuous
and quasi-concave in the �rst variable and continuous and quasi-convex in the
second variable. Then

max
x2X

min
y2Y

f(x; y) = min
y2Y

max
x2X

f(x; y):

We follow the description of Sion�s theorem in Kindler (2005).
Applying this lemma to the situation of this paper, we have the following

relations.

max
tA2T

min
tB2T

uA(tA; tB ; tC) = min
tB2T

max
tA2T

uA(tA; tB ; tC); max
tB2T

min
tA2T

uB(tA; tB ; tC) = min
tA2T

max
tB2T

uB(tA; tB ; tC):

max
tA2T

min
tB2T

uA(tA; tB ; tC(tA; tB ; sC)) = min
tB2T

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC));

max
tB2T

min
tA2T

uB(tA; tB ; tC(tA; tB ; sC)) = min
tA2T

max
tB2T

uB(tA; tB ; tC(tA; tB ; sC)):
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max
sC2S

min
tA2T

uC(tA; tB ; tC(tA; tB ; sC)) = min
tA2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC));

max
tA2T

min
sC2S

uA(tA; tB ; tC(tA; tB ; sC)) = min
sC2S

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC)):

max
sC2S

min
tA2T

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
tA2T

max
sC2S

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC));

max
tA2T

min
sC2S

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
sC2S

max
tA2T

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)):

max
sC2S

min
tB2T

uC(tA; tB ; tC(tA; tB ; sC)) = min
tB2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC));

max
tB2T

min
sC2S

uB(tA; tB ; tC(tA; tB ; sC)) = min
sC2S

max
tB2T

uB(tA; tB ; tC(tA; tB ; sC)):

max
sC2S

min
tB2T

uC(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC)) = min
tB2T

max
sC2S

uC(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC));

max
tB2T

min
sC2S

uB(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC)) = min
sC2S

max
tB2T

uB(tA(sA; tB ; sC); tB ; tC(sA; tsB ; sC)):

max
tA2T

min
sB2S

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
sB2S

max
tA2T

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC));

max
sB2S

min
tA2T

uB(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
tA2T

max
sB2S

uB(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)):

Also, relations which are symmetric to them hold.
Further we show the following results.

Lemma 2.

max
tC2T

min
tA2T

uC(tA; tB ; tC) = max
sC2S

min
tA2T

uC(tA; tB ; tC(tA; tB ; sC))

= min
tA2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = min
tA2T

max
tC2T

uC(tA; tB ; tC);

and

max
tC2S

min
tB2T

uC(tA; tB ; tC) = max
sC2S

min
tB2T

uC(tA; tB ; tC(tA; tB ; sC))

= min
tB2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = min
tB2T

max
tC2S

uC(tA; tB ; tC):

Proof. mintA2T uC(tA; tB ; tC(tA; tB ; sC)) is the minimum of uC with respect to
tA given tB and sC . Let ~tA(sC) = argmintA2T uC(tA; tB ; tC(tA; tB ; sC)), and
�x the value of tC at

t0C = gC(fA(~tA(sC); tB ; t
0
C); fB(~tA(sC); tB ; t

0
C); sC): (1)

Then, we have

min
tA2T

uC(tA; tB ; t
0
C) � uC(~tA(sC); tB ; t0C) = min

tA2T
uC(tA; tB ; tC(tA; tB ; sC));
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where mintA2T uC(tA; tB ; t
0
C) is the minimum of uC with respect to tA given the

value of tC at t0C . We assume that ~tA(sC) = argmintA2T uC(tA; tB ; tC(tA; tB ; sC))
is single-valued. By the maximum theorem and continuity of uC , ~tA(sC) is con-
tinuous. Then, any value of t0C can be realized by appropriately choosing sC
given tB according to (1). Therefore,

max
tC2T

min
tA2T

uC(tA; tB ; tC) � max
sC2S

min
tA2T

uC(tA; tB ; tC(tA; tB ; sC)): (2)

On the other hand, mintA2T uC(tA; tB ; tC) is the minimum of uC with re-
spect to tA given tB and tC . Let ~tA(tC) = argmintA2T uC(tA; tB ; tC), and �x
the value of sC at

s0C = fC(~tA(tC); tB ; tC): (3)

Then, we have

min
tA2T

uC(tA; tB ; tC(tA; tB ; s
0
C)) � uC(~tA(tC); tB ; tC(tA; tB ; s0C)) = min

tA2T
uC(tA; tB ; tC);

where mintA2T uC(tA; tB ; tC(tA; tB ; s
0
C)) is the minimum of uC with respect to

tA given the value of sC at s0C . We assume that ~tA(tC) = argmintA2T uC(tA; tB ; tC)
is single-valued. By the maximum theorem and continuity of uC , ~tA(tC) is con-
tinuous. Then, any value of s0C can be realized by appropriately choosing tC
given tB according to (3). Therefore,

max
sC2S

min
tA2T

uC(tA; tB ; tC(tA; tB ; sC))) � max
tC2S

min
tA2T

uC(tA; tB ; tC): (4)

Combining (2) and (4), we get

max
sC2S

min
tA2T

uC(tA; tB ; tC(tA; tB ; sC)) = max
tC2T

min
tA2T

uC(tA; tB ; tC):

Since any value of sC can be realized by appropriately choosing tC given tA and
tB , we have

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = max
tC2T

uC(tA; tB ; tC):

Thus,

min
tA2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = min
tA2T

max
tC2T

uC(tA; tB ; tC):

Therefore,

max
tC2T

min
tA2T

uC(tA; tB ; tC) = max
sC2S

min
tA2T

uC(tA; tB ; tC(tA; tB ; sC))

= min
tA2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = min
tA2T

max
tC2T

uC(tA; tB ; tC);

given tB .
By similar procedures, we can show

max
tC2T

min
tB2T

uC(tA; tB ; tC) = max
sC2S

min
tB2T

uC(tA; tB ; tC(tA; tB ; sC))

= min
tB2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = min
tB2T

max
tC2T

uC(tA; tB ; tC);

given tA.
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Lemma 3.

min
tC2T

max
tA2T

uA(tA; tB ; tC) = min
sC2S

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC))

= max
tA2T

min
sC2S

uA(tA; tB ; tC(tA; tB ; sC)) = max
tA2T

min
tC2T

uA(tA; tB ; tC);

and

min
tC2T

max
tB2T

uB(tA; tB ; tC) = min
sC2S

max
tB2T

uB(tA; tB ; tC(tA; tB ; sC))

= max
tB2T

min
sC2S

uB(tA; tB ; tC(tA; tB ; sC)) = max
tB2T

min
tC2T

uB(tA; tB ; tC):

Proof. maxtA2T uA(tA; tB ; tC(tA; tB ; sC)) is the maximum of uA with respect to
tA given tB and sC . Let ~tA(sC) = argmaxtA2T uA(tA; tB ; tC(tA; tB ; sC)), and
�x the value of tC at

t0C = gC(fA(~tA(sC); tB ; t
0
C); fB(~tA(sC); tB ; t

0
C); tC(tA; tB ; sC)): (5)

Then, we have

max
tA2T

uA(tA; tB ; t
0
C) � uA(~tA(sC); tB ; t0C) = max

tA2T
uA(tA; tB ; tC(tA; tB ; sC));

wheremaxtA2T uA(tA; tB ; t
0
C) is the maximum of uA with respect to tA given the

value of tC at t0C . We assume that ~tA(sC) = argmaxtA2T uA(tA; tB ; tC(tA; tB ; sC))
is single-valued. By the maximum theorem and continuity of uA, ~tA(sC) is con-
tinuous. Then, any value of t0C can be realized by appropriately choosing sC
given tB according to (5). Therefore,

min
tC2T

max
tA2T

uA(tA; tB ; tC) � min
sC2S

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC)): (6)

On the other hand, maxtA2T uA(tA; tB ; tC) is the maximum of uA with re-
spect to tA given tB and tC . Let ~tA(tC) = argmaxtA2T uA(tA; tB ; tC), and �x
the value of sC at

s0C = fC(~tA(tC); tB ; tC): (7)

Then, we have

max
tA2T

uA(tA; tB ; tC(tA; tB ; s
0
C)) � uA(~tA(sC); tB ; tC(tA; tB ; s0C)) = max

tA2T
uA(tA; tB ; tC);

where maxtA2T uA(tA; tB ; tC(tA; tB ; s
0
C)) is the maximum of uA with respect to

tA given the value of sC at s0C . We assume that ~tA(tC) = argmaxtA2T uA(tA; tB ; tC)
is single-valued. By the maximum theorem and continuity of uA, ~tA(tC) is con-
tinuous. Then, any value of s0C can be realized by appropriately choosing tC
given tB according to (7). Therefore,

min
sC2S

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC)) � min
tC2S

max
tA2T

uA(tA; tB ; tC): (8)
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Combining (6) and (8), we get

min
sC2S

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC)) = min
tC2S

max
tA2T

uA(tA; tB ; tC):

Since any value of sC can be realized by appropriately choosing tC given tA and
tB , we have

min
sC2S

uA(tA; tB ; tC(tA; tB ; sC)) = min
tC2S

uA(tA; tB ; tC):

Thus,

max
tA2T

min
sC2S

uA(tA; tB ; tC(tA; tB ; sC)) = max
tA2T

min
tC2S

uA(tA; tB ; tC):

Therefore,

min
tC2T

max
tA2T

uA(tA; tB ; tC) = min
sC2S

max
tA2T

uA(tA; tB ; tC(tA; tB ; sC));

=max
tA2T

min
sC2S

uA(tA; tB ; tC(tA; tB ; sC)) = max
tA2T

min
tC2T

uA(tA; tB ; tC);

given tB .
By similar procedures, we can show

min
tC2T

max
tB2T

uB(tA; tB ; tC) = min
sC2S

max
tB2T

uB(tA; tB ; tC(tA; tB ; sC));

= max
tB2T

min
sC2S

uB(tA; tB ; tC(tA; tB ; sC)) = max
tB2T

min
tC2T

uB(tA; tB ; tC);

given tA.

Similarly, we obtain the following results.

Lemma 4.

max
tC2T

min
tA2T

uC(tA; tB(tA; sB ; tC); tC) = max
sC2S

min
tA2T

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC))

= min
tA2T

max
sC2S

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
tA2T

max
tC2T

uC(tA; tB(tA; sB ; tC); tC);

and

max
tC2T

min
tB2T

uC(tA(sA; tB ; tC); tB ; tC) = max
sC2S

min
tB2T

uC(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC))

= min
tB2T

max
sC2S

uC(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC)) = min
tB2T

max
tC2T

uC(tA(sA; tB ; tC); tB ; tC):

Proof. See Appendix A.

Lemma 5.

min
tC2T

max
tA2T

uA(tA; tB(tA; sB ; tC); tC) = min
sC2S

max
tA2T

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC))

= max
tA2T

min
sC2S

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = max
tA2T

min
tC2T

uA(tA; tB(tA; sB ; tC); tC);

7



and

min
tC2T

max
tB2T

uB(tA(sA; tB ; tC); tB ; tC) = min
sC2S

max
tB2T

uB(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC))

= max
tB2T

min
sC2S

uB(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC)) = max
tB2T

min
tC2T

uB(tA(sA; tB ; tC); tB ; tC):

Proof. See Appendix B.

Also, relations which are symmetric to these lemmas hold.

3 The main results

In this section we present the main results of this paper. First we show

Theorem 1. The equilibrium where all players choose ti�s is equivalent to the
equilibrium where one player (Player C) chooses sC and two players (Players
A and B) choose ti�s as their strategic variables.

Proof. 1. Consider a situation (tA; tB ; tC) = (t; t; t). Let

s0(t) = fC(t; t; t):

By symmetry of the game

max
tA2T

uA(tA; t; t) = max
tB2T

uB(t; tB ; t) = max
tC2T

uC(t; t; tC);

and

arg max
tA2T

uA(tA; t; t) = arg max
tB2T

uB(t; tB ; t) = arg max
tC2T

uC(t; t; tC) 2 T:

Consider the following function.

t! arg max
tA2T

uA(tA; t; t):

Since this function is continuous and T is compact, there exists a �xed
point. Denote it by t�. Then,

t� ! arg max
tA2T

uA(tA; t
�; t�):

We have

max
tA2T

uA(tA; t
�; t�) = uA(t

�; t�; t�) = max
tB2T

uB(t
�; tB ; t

�) = uB(t
�; t�; t�) = max

tC2T
uC(t

�; t�; tC) = uC(t
�; t�; t�) = 0:
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2. Because the game is zero-sum,

uA(tA; t
�; t�) + uB(tA; t

�; t�) + uC(tA; t
�; t�) = 0:

By symmetry uB(tA; t�; t�) = uC(tA; t�; t�). Thus,

uA(tA; t
�; t�) + 2uC(tA; t

�; t�) = 0:

This means
uA(tA; t

�; t�) = �2uC(tA; t�; t�);

and
max
tA2T

uA(tA; t
�; t�) = �2 min

tA2T
uC(tA; t

�; t�):

From this we get

arg max
tA2T

uA(tA; t
�; t�) = arg min

tA2T
uC(tA; t

�; t�) = t�:

By symmetry of the game

arg max
tA2T

uA(tA; t
�; t�) = arg min

tC2T
uA(t

�; t�; tC) = t
�:

We have

max
tA2T

uA(tA; t
�; t�) = min

tC2T
uA(t

�; t�; tC) = uA(t
�; t�; t�) = 0:

Then,

min
tC2T

max
tA2T

uA(tA; t
�; tC) � max

tA2T
uA(tA; t

�; t�) = min
tC2T

uA(t
�; t�; tC) � max

tA2T
min
tC2T

uA(tA; t
�; tC):

From Lemma 3 we obtain

min
tC2T

max
tA2T

uA(tA; t
�; tC) = max

tA2T
uA(tA; t

�; t�) = min
tC2T

uA(t
�; t�; tC) (9)

= max
tA2T

min
tC2T

uA(tA; t
�; tC) = min

sC2S
max
tA2T

uA(tA; t
�; tC(tA; t

�; sC)) = max
tA2T

min
sC2T

uA(tA; t
�; tC(tA; t

�; sC)) = 0:

3. Since any value of sC can be realized by appropriately choosing tC ,

min
sC2S

uA(t
�; t�; tC(t

�; t�; sC)) = min
tC2T

uA(t
�; t�; tC) = uA(t

�; t�; t�) = 0:

(10)
Then,

arg min
sC2S

uA(t
�; t�; tC(t

�; t�; sC)) = s
0(t�):

(9) and (10) mean

min
sC2S

max
tA2T

uA(tA; t
�; tC(tA; t

�; sC)) = min
sC2S

uA(t
�; t�; tC(t

�; t�; sC)) = 0:

(11)

9



And we have

max
tA2T

uA(tA; t
�; tC(tA; t

�; sC)) � uA(t�; t�; tC(t�; t�; sC)):

Then,

arg min
sC2S

max
tA2T

uA(tA; t
�; tC(tA; t

�; sC)) = arg min
sC2S

uA(t
�; t�; tC(t

�; t�; sC)) = s
0(t�)

Thus, by (11)

min
sC2S

max
tA2T

uA(tA; t
�; tC(tA; t

�; sC)) = max
tA2T

uA(tA; t
�; tC(t

�; t�; s0(t�))) = uA(t
�; t�; tC(t

�; t�; s0(t�))) = 0:

Therefore,
arg max

tA2T
uA(tA; t

�; tC(tA; t
�; s0(t�))) = t�: (12)

By symmetry of the game,

arg max
tB2T

uB(t
�; tB ; tC(t

�; tB ; s
0(t�))) = t�: (13)

On the other hand, because any value of sC is realized by appropriately
choosing tC ,

max
sC2S

uC(t
�; t�; tC(t

�; t�; sC)) = max
tC2T

uC(t
�; t�; tC) = uC(t

�; t�; t�) = 0:

Therefore,

arg max
sC2S

uC(t
�; t�; tC(t

�; t�; sC)) = s
0(t�) = fC(t

�; t�; t�): (14)

From (12), (13) and (14), (t�; t�; tC(t�; t�; s0(t�))) is a Nash equilibrium
which is equivalent to (t�; t�; t�).

Now we assume

Assumption 1. At the equilibrium such that tA = tB = t� and sC = s0(t�),
where tC = t�, the responses of uB and uC to a small change in tA have the
same sign.

uA is maximized at tA = t� given tB = t� and sC = s0(t�).

Using this assumption we show the following result.

Theorem 2. The equilibrium where all players choose ti�s is equivalent to the
equilibrium where one player (Player A) chooses tA and two players (Players B
and C) choose sB and sC .

10



Proof. By Theorem 1

arg max
tA2T

uA(tA; t
�; tC(tA; t

�; s0(t�))) = arg max
tB2T

uB(t
�; tB ; tC(t

�; tB ; s
0(t�))) = t�;

arg max
sC2S

uC(t
�; t�; tC(t

�; t�; sC)) = s
0(t�):

Since any value of tB is realized by appropriately choosing sB , we get

max
sB2S

uB(t
�; tB(t

�; sB ; s
0(t�)); tC(t

�; sB ; s
0(t�))) = max

tB2T
uB(t

�; tB ; tC(t
�; tB ; s

0(t�))) = uB(t
�; t�; tC(t

�; tB ; s
0(t�)));

and
arg max

sB2S
uB(t

�; tB(t
�; sB ; s

0(t�)); tC(t
�; sB ; s

0(t�))) = s0(t�): (15)

By symmetry

max
sC2S

uC(t
�; tB(t

�; s0(t�); sC); tC(t
�; s0(t�); sC)) = max

sC2S
uC(t

�; t�; tC(t
�; t�; sC));

and
arg max

sC2S
uC(t

�; tB(t
�; s0(t�); sC); tC(t

�; s0(t�); sC)) = s
0(t�): (16)

Since the game is zero-sum,

uA(tA; t
�; tC(tA; t

�; s0(t�))) + uB(tA; t
�; tC(tA; t

�; s0(t�))) + uC(tA; t
�; tC(tA; t

�; s0(t�))) = 0;

and so

uA(tA; t
�; tC(tA; t

�; s0(t�))) = �(uB(tA; t�; tC(tA; t�; s0(t�)))+uC(tA; t�; tC(tA; t�; s0(t�)))):

Thus,

max
tA2T

uA(tA; t
�; tC(tA; t

�; s0(t�))) = � min
tA2T

[uB(tA; t
�; tC(tA; t

�; s0(t�))) + uC(tA; t
�; tC(tA; t

�; s0(t�)))]

= uA(t
�; t�; tC(tA; t

�; s0(t�))) = 0:

By Assumption 1 since uA(tA; t�; tC(tA; t�; s0(t�))) � 0,

uB(tA; t
�; tC(tA; t

�; s0(t�))) � 0; uC(tA; t�; tC(tA; t�; s0(t�))) � 0;

in any neighborhood of (t�; t�; tC(t�; t�; s0(t�))). Thus, we have

min
tA2T

uB(tA; t
�; tC(tA; t

�; s0(t�))) = 0; (17a)

arg min
tA2T

uB(tA; t
�; tC(tA; t

�; s0(t�))) = t�; (17b)

min
tA2T

uC(tA; t
�; tC(tA; t

�; s0(t�))) = 0;

and
arg min

tA2T
uC(tA; t

�; tC(tA; t
�; s0(t�))) = t�:

11



By symmetry (17a) and (17b) mean

min
tB2T

uA(t
�; tB ; tC(t

�; tB ; s
0(t�))) = 0;

arg min
tB2T

uA(t
�; tB ; tC(t

�; tB ; s
0(t�))) = t�:

Thus,

max
tA2T

uA(tA; t
�; tC(tA; t

�; s0(t�))) = min
tB2T

uA(t
�; tB ; tC(t

�; tB ; s
0(t�))) = uA(t

�; t�; tC(t
�; t�; s0(t�))) = 0:

Then,

min
tB2T

max
tA2T

uA(tA; tB ; tC(tA; tB ; s
0(t�))) � max

tA2T
uA(tA; t

�; tC(tA; t
�; s0(t�)))

= min
tB2T

uA(t
�; tB ; tC(t

�; tB ; s
0(t�))) � max

tA2T
min
tB2T

uA(tA; tB ; tC(tA; tB ; s
0(t�))):

From Lemma 5, interchanging B and C, we obtain

min
tB2T

max
tA2T

uA(tA; tB ; tC(tA; tB ; s
0(t�))) = max

tA2T
uA(tA; t

�; tC(tA; t
�; s0(t�)))

(18)

=max
tA2T

min
tB2T

uA(tA; tB ; tC(tA; tB ; s
0(t�))) = min

sB2S
max
tA2T

uA(tA; tB(tA; sB ; s
0(t�)); tC(tA; sB ; s

0(t�)))

= max
tA2T

min
sB2S

uA(tA; tB(tA; sB ; s
0(t�)); tC(tA; sB ; s

0(t�))) = min
tB2T

uA(t
�; tB ; tC(t

�; tB ; s
0(t�))) = 0:

Since any value of tB is realized by appropriately choosing sB ,

min
tB2T

uA(t
�; tB ; tC(t

�; tB ; s
0(t�))) = min

sB2S
uA(t

�; tB(t
�; sB ; s

0(t�))); tC(t
�; sB ; s

0(t�))) = 0:

(19)
Thus,

arg min
sB2S

uA(t
�; tB(t

�; sB ; s
0(t�))); tC(t

�; sB ; s
0(t�))) = s0(t�):

From (18) and (19)

min
sB2S

max
tA2T

uA(tA; tB(tA; sB ; s
0(t�)); tC(tA; sB ; s

0(t�))) (20)

= min
sB2S

uA(t
�; tB(t

�; sB ; s
0(t�))); tC(t

�; sB ; s
0(t�))) = 0:

And we have

max
tA2T

uA(tA; tB(tA; sB ; s
0(t�)); tC(tA; sB ; s

0(t�))) � uA(tA; tB(tA; s0(t�); s0(t�)); tC(tA; s0(t�); s0(t�))):

Then,

arg min
sB2S

max
tA2T

uA(tA; tB(tA; sB ; s
0(t�)); tC(tA; sB ; s

0(t�)))

= arg min
sB2S

uA(t
�; tB(t

�; sB ; s
0(t�))); tC(t

�; sB ; s
0(t�))) = s0(t�):

12



Thus, by (20)

min
sB2S

max
tA2T

uA(tA; tB(tA; sB ; s
0(t�)); tC(tA; sB ; s

0(t�))) = max
tA2T

uA(tA; tB(tA; s
0(t�); s0(t�)); tC(tA; s

0(t�); s0(t�)))

=uA(t
�; tB(t

�; s0(t�); s0(t�)); tC(t
�; s0(t�); s0(t�))) = 0:

Therefore,

arg max
tA2T

uA(tA; tB(tA; s
0(t�); s0(t�)); tC(tA; s

0(t�); s0(t�))) = t�: (21)

From (15), (16) and (21) (t�; tB(t�; s0(t�); s0(t�)); tC(t�; s0(t�); s0(t�))) is a
Nash equilibrium which is equivalent to (t�; t�; tC(t�; t�; s0(t�))), and hence it is
equivalent to (t�; t�; t�).

Since any value of tA is realized by appropriately choosing sA, (21) means

max
tA2T

uA(tA; tB(tA; s
0(t�); s0(t�)); tC(tA; s

0(t�); s0(t�)))

= max
sA2S

uA(tA(sA; s
0(t�); s0(t�)); tB(sA; s

0(t�); s0(t�)); tC(sA; s
0(t�); s0(t�)))

= uA(t
�; tB(t

�; s0(t�); s0(t�)); tC(t
�; s0(t�); s0(t�)));

and

max
sA2S

uA(tA(sA; s
0(t�); s0(t�)); tB(sA; s

0(t�); s0(t�)); tC(sA; s
0(t�); s0(t�))) = s0(t�):

Therefore, (tA(s0(t�); s0(t�); s0(t�)); tB(s0(t�); s0(t�); s0(t�)); tC(s0(t�); s0(t�); s0(t�)))
is a Nash equilibrium which is equivalent to (t�; t�; tC(t�; t�; s0(t�))) and (t�; t�; t�).
Summarizing the results we have shown

Theorem 3. Nash equilibria in the following four states are equivalent.

1. All players, Players A, B and C choose ti; i = A;B;C.

2. Two players choose ti�s, and one player chooses si.

3. One player chooses ti, and two players choose si�s.

4. All players, Players A, B and C choose si; i = A;B;C.

4 Example of an asymmetric three-players zero-
sum game

Consider a relative pro�t maximization game in an oligopoly with three �rms
producing di¤erentiated goods1 . It is an example of three-players zero-sum game
with two strategic variables. The �rms are A, B and C. The strategic variables
are the outputs and the prices of the goods of the �rms.
We consider the following four cases.
1About relative pro�t maximization under imperfect competition please see Matsumura,

Matsushima and Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh
and Tanaka (2014b), Tanaka (2013a), Tanaka (2013b) and Vega-Redondo (1997)
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1. Case 1: All �rms determine their outputs.

The inverse demand functions are

pA = a� xA � bxB � bxC ;

pB = a� xB � bxA � bxC ;
and

pC = a� xC � bxA � bxB ;
where 0 < b < 1. pA, pB and pC are the prices of the goods of Firm A, B
and C, and xA, xB and xC are the outputs of them.

2. Case 2: Firms A and B determine their outputs, and Firm C determines
the price of its good.

From the inverse demand functions,

pA = (1� b)a+ b2xB � bxB + b2xA � xA + bpC ;

pB = (1� b)a+ b2xB � xB + b2xA � bxA + bpC ;
and

xC = a� bxB � bxA � pC
are derived.

3. Case 3: Firms B and C determine the prices of their goods, and Firm A
determines its output.

Also, from the above inverse demand functions, we obtain

pA =
(1� b)a+ 2b2xA � bxA � xA + bpC + bpB

1 + b
;

xB =
(1� b)a+ b2xA � bxA + bpC � pB

(1� b)(1 + b) ;

and

xC =
(1� b)a+ b2xA � bxA � pC + bpB

(1� b)(1 + b :

4. Case 4: All �rms determine the prices of their goods.

From the inverse demand functions the direct demand functions are de-
rived as follows;

xA =
(1� b)a� (1 + b)pA + b(pA + pC)

(1� b)(1 + 2b) ;

xB =
(1� b)a� (1 + b)pB + b(pB + pC)

(1� b)(1 + 2b) ;

and

xC =
(1� b)a� (1 + b)pC + b(pA + pB)

(1� b)(1 + 2b) :

14



The (absolute) pro�ts of the �rms are

�A = pAxA � cAxA;

�B = pBxB � cBxB ;

and
�C = pCxC � cCxC :

cA, cB and cC are the constant marginal costs of Firm A, B and C. The relative
pro�ts of the �rms are

'A = �A �
�B + �C

2
;

'B = �B �
�A + �C

2
;

and
'C = �C �

�A + �B
2

:

The �rms determine the values of their strategic variables to maximize the
relative pro�ts. We see

'A + 'B + 'C = 0;

so the game is zero-sum.
We compare the the equilibrium outputs of Firm B in four cases. Denote

the value of xB in each case by x1B ; x
2
B ; x

3
B and x

4
B . Then, we get

x1B =
(4� b)a+ bcC � bcB � 4cB + bcA

(4� b)(2 + b) ;

x2B =
8(2� b)a� 3b3cC � b2cC + 4bcC + 7b2cB � 16cB + 5b2cA + 4bcA + 3ab3 � 11ab2

(4� b)(1� b)(2 + b)(4 + 3b) ;

x3B =
8(1 + 2b)a� b3cC + 3b2cC + 4bcC + 4b3cB + 7b2cB � 16bcB � 16cB + 2b3cA + 9b2cA + 4bcA � 5ab3 � 19ab2

(1� b)(b+ 2)(b+ 4)(5b+ 4) ;

and

x4B =
(4 + b)a+ 2b2cC + bcC + b

2cB � 3bcB � 4cB + 2b2cA + bcA � 5ab2
(1� b)(2 + b)(4 + 5b) :

When cC = cA, they are

x1B =
(4� b)� abcB � 4cB + 2bcA

(4� b)(2 + b) ;

x2B =
8(2� b)a+ 7b2cB � 16cB � 3b3cA + 4b2cA + 8bcA + 3ab3 � 11ab2

(4� b)(1� b)(2 + b)(4 + 3b) ;

x3B =
8(2 + b)a+ 4b3cB + 7b

2cB � 16bcB � 16cB + b3cA + 12b2cA + 8bcA � 5ab3 � 19ab2
(1� b)(2 + b)(4 + b)(4 + 5b) ;
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and

x4B =
(4 + b)a+ b2cB � 3bcB � 4cB + 4b2cA + 2bcA � 5ab2

(1� b)(2 + b)(4 + 5b) :

Further when cC = cB = cA, we get

x1B = x
2
B = x

3
B = x

4
B =

a� cA
2 + b

:

We can show the same result for the equilibrium outputs of the other �rms.
Thus, in a fully symmetric game the four cases are equivalent.

5 Concluding Remarks

In this paper we have shown that a symmetric three-players zero-sum game
with two strategic variables, choice of strategic variables is irrelevant to the
Nash equilibrium. We want to extend this result to a general multi-person zero-
sum game. In an asymmetric situation the Nash equilibrium depends on the
choice of strategic variables by players other than two-players case2 .
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Appendices

A Proof of Lemma 4

Proof. mintA2T uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) is the minimum of uC with
respect to tA given sB and sC . Let ~tA(sC) = argmintA2T uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)),
and �x the value of tC at the value which is derived from the following equations.�

t0B = gB(fA(tA(sC); t
0
B ; t

0
C); sB ; sC)

t0C = gC(fA(tA(sC); t
0
B ; t

0
C); sB ; sC):

(22)

Then, we have

min
tA2T

uC(tA; tB(tA; sB ; t
0
C); t

0
C) � uC(~tA(sC); tB(tA; sB ; t0C); t0C) = min

tA2T
uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC));

where mintA2T uC(tA; tB(tA; sB ; t
0
C); t

0
C) is the minimum of uC with respect to

tA given the value of tC at t0C . We assume that ~tA(sC) = argmintA2T uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC))

2About two-players case please see Satoh and Tanaka (2017).
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is single-valued. By the maximum theorem and continuity of uC , ~tA(sC) is con-
tinuous. Then, any value of t0C can be realized by appropriately choosing sC
given sB according to (22). Therefore,

max
tC2T

min
tA2T

uC(tA; tB(tA; sB ; tC); tC) � max
sC2S

min
tA2T

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)):

(23)
On the other hand, mintA2T uC(tA; tB(tA; sB ; tC); tC) is the minimum of uC

with respect to tA given sB and tC . Let ~tA(tC) = argmintA2T uC(tA; tB(tA; sB ; tC); tC),
and �x the value of sC at the value which is derived from the following equations.�

s0A = fA(tA(tC); gB(s
0
A; sB ; s

0
C); tC)

s0C = fC(tA(tC); gB(s
0
A; sB ; s

0
C); tC):

(24)

Then, we have

min
tA2T

uC(tA; tB(tA; sB ; s
0
C); tC((tA; sB ; s

0
C))) � uC(~tA(sC); tB(tA; sB ; s0C); tC(tA; sB ; s0C)) = min

tA2T
uC(tA; tB(tA; sB ; tC); tC);

where mintA2T uC(tA; tB(tA; sB ; s
0
C); tC(tA; sB ; s

0
C)) is the minimum of uC with

respect to tA given the value of sC at s0C . We assume that ~tA(tC) = argmintA2T uC(tA; tB(tA; sB ; tC); tC)
is single-valued. By the maximum theorem and continuity of uC , ~tA(tC) is con-
tinuous. Then, any value of sC can be realized by appropriately choosing tC
given sB according to (24). Therefore,

max
sC2S

min
tA2T

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) � max
tC2S

min
tA2T

uC(tA; tB(tA; sB ; tC); tC):

(25)
Combining (23) and (25), we get

max
sC2S

min
tA2T

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = max
tC2S

min
tA2T

uC(tA; tB(tA; sB ; tC); tC):

Since any value of sC can be realized by appropriately choosing tC given tA and
sB , we have

max
sC2S

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = max
tC2T

uC(tA; tB(tA; sB ; tC); tC):

Thus,

min
tA2T

max
sC2S

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
tA2T

max
tC2T

uC(tA; tB(tA; sB ; tC); tC):

Therefore,

max
tC2T

min
tA2T

uC(tA; tB(tA; sB ; tC); tC) = max
sC2S

min
tA2T

uC(tA; tB(tA; sB ; sC); tC(tA; sB ; sC))

= min
tA2T

max
sC2S

uC(tA; tB ; tC(tA; tB ; sC)) = min
tA2T

max
tC2T

uC(tA; tB(tA; sB ; tC); tC):

By similar procedures, we can show

max
tC2S

min
tB2T

uC(tA(sA; tB ; tC); tB ; tC) = max
sC2S

min
tB2T

uC(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC))

= min
tB2T

max
sC2S

uC(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC)) = min
tB2T

max
tC2S

uC(tA(sA; tB ; tC); tB ; tC):
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B Proof of Lemma 5

Proof. maxtA2T uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) is the maximum of uA with
respect to tA given sB and sC . Let ~tA(sC) = argmaxtA2T uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)),
and �x the value of tC at the value which is derived from the following equations.�

t0B = gB(fA(tA(sC); t
0
B ; t

0
C); sB ; sC)

t0C = gC(fA(tA(sC); t
0
B ; t

0
C); sB ; sC):

(26)

Then, we have

max
tA2T

uA(tA; tB(tA; sB ; t
0
C); t

0
C) � uA(~tA(sC); tB(tA; sB ; t0C); t0C) = max

tA2T
uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC));

where maxtA2T uA(tA; tB(tA; sB ; t
0
C); t

0
C) is the maximum of uA with respect to

tA given the value of tC at t0C . We assume that ~tA(sC) = argmaxtA2T uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC))
is single-valued. By the maximum theorem and continuity of uA, ~tA(sC) is con-
tinuous. Then, any value of t0C can be realized by appropriately choosing sC
given sB according to (26). Therefore,

min
tC2T

max
tA2T

uA(tA; tB(tA; sB ; tC); tC) � min
sC2S

max
tA2T

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)):

(27)
On the other hand, maxtA2T uA(tA; tB(tA; sB ; tC); tC) is the maximum of uA

with respect to tA given sB and tC . Let ~tA(tC) = argmaxtA2T uA(tA; tB(tA; sB ; tC); tC),
and �x the value of sC at the value which is derived from the following equations.�

s0A = fA(tA(tC); gB(s
0
A; sB ; s

0
C); tC)

s0C = fC(tA(tC); gB(s
0
A; sB ; s

0
C); tC):

(28)

Then, we have

max
tA2T

uA(tA; tB(tA; sB ; s
0
C); tC(tA; sB ; s

0
C)) � uA(~tA(sC); tB(tA; sB ; s0C); tC(tA; sB ; s0C)) = max

tA2T
uA(tA; tB(tA; sB ; tC); tC);

wheremaxtA2T uA(tA; tB(tA; sB ; s
0
C); tC(tA; sB ; s

0
C)) is the maximum of uA with

respect to tA given the value of sC at s0C . We assume that ~tA(tC) = argmaxtA2T uA(tA; sB ; tC)
is single-valued. By the maximum theorem and continuity of uA, ~tA(tC) is con-
tinuous. Then, any value of s0C can be realized by appropriately choosing tC
given sB according to (28). Therefore,

min
sC2S

max
tA2T

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) � min
tC2S

max
tA2T

uA(tA; tB(tA; sB ; tC); tC):

(29)
Combining (27) and (29), we get

min
sC2S

max
tA2T

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = min
tC2S

max
tA2T

uA(tA; tB(tA; sB ; tC); tC):

Since any value of sC can be realized by appropriately choosing tC given tA and
sB , we have

min
sC2S

uA(tA; tB(tA; sB ; sC); sC) = min
tC2S

uA(tA; tB(tA; sB ; tC); tC):
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Thus,

max
tA2T

min
sC2S

uA(tA; tB(tA; sB ; sC); tC(tA; sB ; sC)) = max
tA2T

min
tC2S

uA(tA; tB(tA; sB ; tC); tC):

Therefore,

min
tC2T

max
tA2T

uA(tA(sA; tB ; tC); tB ; tC) = min
sC2S

max
tA2T

uA(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC));

=max
tA2T

min
sC2S

uA(tA(sA; tB ; sC); tB ; sC) = max
tA2T

min
tC2T

uA(tA(sA; tB ; tC); tB ; tC):

By similar procedures, we can show

min
tC2T

max
tB2T

uB(tA(sA; tB ; tC); tB ; tC) = min
sC2S

max
tB2T

uB(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC));

= max
tB2T

min
sC2S

uB(tA(sA; tB ; sC); tB ; tC(sA; tB ; sC)) = max
tB2T

min
tC2T

uB(tA(sA; tB ; tC); tB ; tC):
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