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Abstract

Generally, determining the size and magnitude of the omitted variable bias (OVB) in regres-

sion models is challenging when multiple included and omitted variables are present. Here, I

describe a convenient OVB formula for treatment effect models with potentially many included

and omitted variables. I show that in these circumstances it is simple to infer the direction, and

potentially the magnitude, of the bias. In a simple setting, this OVB is based onmutually exclusive

binary variables, however I provide an extension which loosens the need for mutual exclusivity of

variables, and derives the bias in difference-in-differences style models with an arbitrary number

of included and excluded “treatment” indicators.
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1 Introduction

The omitted variable bias (OVB) is a staple of econometrics courses, and applied research across all
fields of economics, appearing as early as Theil (1957). In its most basic form, the omission of a
single relevant explanatory variable in a linear model leads to an elegant bias formula providing a
simple link between parameter estimates, true values, and underlying relationships between variables.
This formula is often amenable to analysis using intuition from economic models. However, once
outside a simple text-book case, the omitted variable bias can become increasingly complex, such that
inferring even the direction of bias is impossible.1 As laid out in Clarke (2005), this has the extreme
consequence where the inclusion of a greater or smaller number of a partial set of the full controls in
a model has an indeterminate effect on the bias.

In this paper I provide a convenient representation of the omitted variable bias in a model with
arbitrarily many included and omitted variables, with an intuitive link to the underlying economic
process described by the model. The convenience of this representation comes at the cost of the class
of models for which it serves. This representation is provided for models based on a series of mutually
exclusive binary “treatment” variables. After documenting the bias for a case where potentially many
treatment variables are included and excluded in a linear model, I then provide an extension to a
more complicated treatment effect model: the difference-in-differences model. In this setting, while
treatment effect indicators may be mutually exclusive among themselves, common fixed effects (for
example for time) are shared. I document in this case that the simple OVB formula holds, and follows
the same logic as in the simple static models.

While this is a restrictive model, it is nonetheless frequently observed in empirical applications.
Models designed to estimate treatment effects with multiple treatment statuses—where a population
is split into various treatment groups and a control group—are often encountered. A number of such
cases are found in (Kremer, 2003; Banerjee et al., 2007), (and indeed, these are referred to as “cross-
cutting designs” in Duflo et al. (2007)) and also in areas outside of economics, for example in medicine
(Baron et al., 2013). This is particularly relevant in cases where concerns exist about imperfect ob-
servation of treatment status, for example where treatment externalities occur (Miguel and Kremer,
2004), or where environmental or other shocks may diffuse over space (Almond et al., 2009) compli-
cating the precise definition of treatment. Finally, the OVB derived here extends to any model based
on mutually exclusive (or largely mutually exclusive) binary independent variables, such as models

1For example, consider the presentation of Greene (2002, p. 180) in his widely studied text-book, who states, “if
more than one [omitted] variable is included, then the terms in the omitted variable formula involve multiple regression
coefficients, which themselves have the signs of partial, not simple, correlations. …This requirement might not be obvious,
and it would become even less so as more regressors were added to the equation.”
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with a large number of fixed effects.

In what follows, I very briefly describe the traditional omitted variable bias, before describing the
simplified convenient OVB formula for treatment effects models. I then document that this bias can
be generalised to more complicated cases, namely difference-in-differences models, without losing its
simple interpretation.

2 The Traditional Omitted Variable Bias in Linear Models

To illustrate the traditional omitted variable biasmodel, consider a correctly specified regressionmodel
of the form:

y = X1β1 +X2β2 + ε (1)

Here the independent variables X = [X1 X2] are split into two matrices. The X1 matrix consists
of 1 + k1 variables (a constant plus k1 other independent variables) and X2 consists of k2 variables.
The stochastic error term ε in the full model is orthogonal to each column ofX in 1. In what remains
of this paper, in the case that we are working with particular variables, rather than matrices, these are
denoted in lower-case letters. Thus,X1 refers to the full set of included variables (which includes the
constant terms), while x1 refers to a single included variable, called x1.

If the dependent variable y is regressed only on X1 the expectation of the OLS estimator of the
parameter β1 is:

E[β̂ovb
1 |X] = β1 + (X ′

1X1)
−1X ′

1X2β2. (2)

This is the well-known omitted variable bias formula. Here the bias term of (X ′
1X1)

−1X ′
1X2β2 is

sometimes written as δβ2, where δ ≡ (X ′
1X1)

−1X ′
1X2 is a (1 + k1) × k2 matrix from the regression

of each variable in X2 on the full set of X1 variables. This “textbook” omitted variable bias has a
very simple interpretation in the case where k1 = 1 and k2 = 1: it is the product of the simple
correlation betweenX1 andX2 (δ) and the direct effect ofX2 on y in the data generating process (β2).
However, this formula can quickly become unwieldy when k1 > 1 as each element of the β̂ovb

1 vector
differs from β1 in expectation depending on the partial correlation between the relevant variable in
X1, conditional on the remainder of X1. Economic models and intuition often have less to say about
partial correlations between variables, especially when conditioning on many relevant variables.
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3 AConvenient Omitted Variable Bias Formula forMutually Ex-

clusive Variables

Consider nowmodel 1, where each element ofX is a binary variable. This is what we refer to here as a
treatment effect model which examines the impact of multiple “treatments” on an outcome of interest.
Further, assume that each variable is mutually exclusive. Such a model is common in cases where a
pool of subjects are split into various treatment groups and a control group, each receiving at most one
treatment. While this mutual exclusivity assumption may appear limiting, it is actually more flexible
than it may first appear, given that receipt of multiple treatments can be considered as a treatment
unto itself.2 In this case, we can show that the omitted variable bias above has a very convenient and
intuitive form, and is easily linked to economic theory, even in cases where an arbitrary number of
included and omitted variables exist. At the end of this section, we then loosen the assumption that
each variable is mutually exclusive.

3.1 A Single Omitted Variable and Included Variable

In the most simple case of a single omitted variable (an N × 1 vector x2) and single included ex-
planatory variable (an N × 1 vector x1), plus an intercept term, the omitted variable bias is easily
interpretable as per equation 2. Nonetheless, I briefly document an alternative interpretation of the
bias in this simple setting, before moving to the more complicated multivariate setting in sections 3.2
and 3.3.

Consider the bias term of equation 2. This can be further simplified if we invert the (X ′
1X1) and

multiply byX ′
1X2β2. Given that each of x1 and x2 are binary, we denote Nx1 and Nx2 as the quantity

of observations for which x1 and x2 equal 1 respectively. This results in the following matrices for
X ′

1X1 and X ′
1X2:

(X ′
1X1) =

[
N Nx1

Nx1 Nx1

]
(X ′

1X2) =

[
Nx2

0

]
,

and inverting (X ′
1X1) gives:

(X ′
1X1)

−1 =

 1
N−Nx1

− 1
N−Nx1

− 1
N−Nx1

N
Nx1 (N−Nx1 )

 .

2This is laid out explicitly in Duflo et al. (2007) who states “If a researcher is cross-cutting interventions A and B,
each of which has a comparison group, she obtains four groups: no interventions (pure control); A only; B only; and A
and B together (full intervention)” It is important to note, that these four groups are mutually exclusive.
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From equation 2, we can thus express the OVB formula for the included explanatory variable x1 as3 :

E[β̂ovb
1 |X] = β1 − β2

Nx2

N −Nx1

. (3)

This simple omitted variable bias also has a simple interpretation when cast in terms of treatment
effect models. If x2 (a treatment indicator) is omitted from the model, this group will be confounded
with the true controls. Thus, the treatment effect on x1 will be biased by any non-zero impact of x2 on
y (β2), multiplied by the degree to which these x2 units dilute the true control group: Nx2/(N −Nx1).

3.2 An Arbitrary Quantity of Omitted and Excluded Variables

While this simple OVB formula is intuitive, it is more interesting to be able to generalise this rep-
resentation to a case with multiple omitted and included variables, which are much less frequently
amenable to a clear interpretation using the original OVB formula, and simple economic logic. To do
so, we extend to a case with an arbitrary quantity of included and excluded variables. Here we denote
each of the k1 variables in X1 as xk

1∀k = 1, . . . , k1, (a constant is also included in X1) and similarly,
each of the k2 variables in X2 as xk

2∀k = 1, . . . , k2. Thus, (X ′
1X1) and (X ′

1X2) are given:

(X ′
1X1) =



N Nx1
1

Nx2
1

· · · N
x
k1
1

Nx1
1

Nx1
1

0 · · · 0

Nx2
1

0 Nx2
1

· · · 0
...

...
... . . . ...

N
x
k1
1

0 0 · · · N
x
k1
1


(X ′

1X2) =



Nx1
2

Nx2
2

· · · N
x
k2
2

0 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0


.

Here the matrix (X ′
1X1) consists of non-zero entries its main diagonal, first column and first row, and

zeros elsewhere. The general class of matrices of this form (arrowhead matrices) has a simple inverse
formula (Najafi et al., 2014), and based on this formula (refer to the Supplemental Appendix of the

3Note that given that this is a univariate regression model, this can also be derived using simply the covariance and
variance, rather than matrices. In this case, we start with the simple bivariate version of the OVB. As each variable is
binary, the covariance and variance have the simple closed form solutions below, where Nx1x2

refers to the quantity of
observations for which both x1 = 1 and x2 = 1 (which is 0). As in 3, this gives:

Eβ̂ovb
1 |X] = β1 + β2

(
Cov(x1, x2)

V ar(x1)

)
= β1 + β2

(
(Nx1x2 ·N −Nx1Nx2)/N

2

Nx1
(N −Nx1

)/N2

)
= β1 + β2

(
Nx2

N −Nx1

)
.

5



paper for full algebra), the inverse of (X ′
1X1) is given as:

(X ′
1X1)

−1 =



1
λ

− 1
λ

− 1
λ

· · · − 1
λ

− 1
λ

1
N

x11

+ 1
λ

1
λ

· · · 1
λ

− 1
λ

1
λ

1
N

x21

+ 1
λ

· · · 1
λ

...
...

... . . . ...
− 1

λ
1
λ

1
λ

· · · 1
N

x
k1
1

+ 1
λ


, (4)

where λ = N −Nx1
1
−Nx2

1
− · · · −N

x
k1
1
.

This leads to the multivariate generalisation of 3. In this case, each of the coefficients on the k1
included variables has the expected value:

E[β̂k,ovb
1 |X] = βk

1 − β1
2

(
NX1

2

λ

)
− β2

2

(
NX2

2

λ

)
− · · · − βk2

2

(
N

X
k2
2

λ

)
. (5)

We note two things about this omitted variable bias. Firstly, it is identical for each of βk
1 terms.

Secondly, as in the univariate case, this has an intuitive explanation when cast in terms of treatment
effects. The treatment effect on each included variable will be biased by any non-zero impact of each
excluded treatment group (the βk

2 terms), multiplied by the degree that each of these omitted treatment
indicators biases the formation of the control group (Nxk

2
/(N − Nx1

1
− · · · − N

x
k1
1
)). In certain cir-

cumstances this formula will lead to clear upper or lower bounds on treatment effects. If each omitted
treatment effect has the same sign as included treatment effects (this may be the case, for example, in
spillovers of environmental shocks), estimated effects will be universally attenuated. Alternatively, if
excluded treatments have opposite effects to included treatments, estimated effects will be consistently
overstated in magnitude.

3.3 Extension to Alternative Treatment Models

Equation 5 provides an intuitive solution to the omitted variable bias in treatment effect models with
multiple treatments, however only holds under the somewhat restrictive assumptions that each treat-
ment (each variable) is mutually exclusive. Here we show that the omitted variable bias derived
above can be logically extended to certain important extensions. To do this, we focus on the case of
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difference-in-differences style models. Consider the correctly specified model:

yi,t = β0 + βtt+ β1X1i,1 + β2X1i,t + γ1X2i,1 + γ2X2i,t + εi,t (6)

Here we add a temporal component t ∈ {0, 1}, where observations are observed in two periods.
Treatment takes a value of 1 for a subset of observations in time period t = 1, and 0 for all observations
in time period t = 0. Treatment effects are thus estimated using time-varying indicatorsX1i,t andX2i,t,
and baseline differences in treated and untreated individuals are captured by the fixed effectX1i,1 and
X2i,1. Any generalised temporal impacts are captured by the time fixed effect βt. This multi-group
difference-in-differences model is similar to that laid out in Imbens and Wooldridge (2009).

Suppose we estimate this model, omitting the vectors X2i,t and corresponding fixed effect X2i,1.
We denote this vector X2 = [X2i,1 X2i,t], and denote the vector X1 = [1 X1i,1 X1i,t t]. We
define k1 as the quantity of treatment variables X1i,t in X1, and k2 the quantity of treatment variables
in X2. Here, the traditional OVB formula is given as:

E[β̂ovb|X] = β + (X ′
1X1)

−1X ′
1X2γ. (7)

In what remains of this section I document the same convenient OVB formula as in sections 3.1-3.2
for this difference-in-differences model. To do so, first I consider the case of a single included and
omitted treatment variable (and corresponding fixed effects), before extending to the case with an
arbitrary quantity of included and omitted variables.

Given that X1 is a Boolean matrix, and various columns are mutually exclusive, we can write
X ′

1X1 and X ′
1X2 as:

(X ′
1X1) =


N Nx1 Nx1t Nt

Nx1 Nx1 0 0

Nx1t 0 Nx1t Nx1t

Nt 0 Nx1t Nt

 X ′
1X2 = X ′

1[x2i,1 X2i,t] =


Nx2 Nx2t

0 0

0 0

0 Nx2t

 .

As before, N refers to the number of observations, Nx1 to those for which X1,i1 = 1, Nx1t to the
quantity for which X1,it = 1, and similarly for Nx2 and Nx2t. Additionally Nt is equal to the number
of observations for which t = 1.

Although the (X ′
1X1) matrix is now more complex than in the static treatment model, once again

we can show that it has a reasonably simple closed form solution for the inverse. As it is a 2× 2 block

7



matrix, it can be inverted (full details are available in the Supplemental Appendix of this paper and
Lu and Shiou (2002)) resulting in:

(X ′
1X1)

−1 =


1

N−Nt−Nx1
− 1

N−Nt−Nx1
0 0

− 1
N−Nt−Nx1

N−Nt

Nx1 (N−Nt−Nx1 )
− 1

N−Nt−Nx1

1
N−Nt−Nx1

0 − 1
(N−Nx1−Nt)

Nt

Nx1t (Nt−Nx1t )
−1

Nt−Nx1t

0 1
(N−Nx1−Nt)

−1
Nt−Nx1t

N−Nx1−Nx1t

(N−Nx1−Nt)(Nt−Nx1t )

 . (8)

Putting this together following equation 7 results in the following omitted variable formula for the
time-varying element of a difference-in-differences model:

E[β̂ovb
2 |X] = β2 − γ2

(
Nx2t

Nt −Nx2T

)
. (9)

In this case, we thus have that the OVB follows virtually the same logic as in equation 3, however
now conditional on treatment occurring in the second period. The omission of a relevant treatment
indicator in difference-in-differences models thus biases included treatment effects by any effect that
this treatment indicator has on the outcome of interest, multiplied by the proportion of the “control
group” that are actually treated, and hence should have been included in the regression.

Finally, note that this OVB formula can be resolved in this way even in the extreme case of multiple
included and multiple omitted treatment indicators. To see this, we return to equation 6, where both
k1 > 1 and k2 > 1. Following the notation above, we can thus write the X ′

1X1 (at left) and X ′
1X2 (at

right) matrices as:

N Nx1
1

Nx2
1

. . . N
x
k1
1

Nx1
1t

Nx2
1t

. . . N
x
k1
1t

Nt

Nx1
1

Nx1
1

0 . . . 0 0 0 . . . 0 0

Nx2
1

0 Nx2
1

. . . 0 0 0 . . . 0 0
...

...
... . . . ...

...
... . . . ...

...
N

x
k1
1

0 0 . . . N
x
k1
1

0 0 . . . 0 0

Nx1
1t

0 0 . . . 0 Nx1
1t

0 . . . 0 Nx1
1t

Nx2
1t

0 0 . . . 0 0 Nx2
1t

. . . 0 Nx2
1t...

...
... . . . ...

...
... . . . ...

...
N

x
k1
1t

0 0 . . . 0 0 0 . . . N
x
k1
1t

N
x
k1
1t

Nt 0 0 . . . 0 Nx1
1t

Nx2
1t

. . . N
x
k1
1t

Nt





X1
2 . . . Xk2

2 X1
2t . . . Xk2

2t

0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
... . . . ...

... . . . ...
0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
... . . . ...

... . . . ...
0 . . . 0 0 . . . 0

0 . . . 0 X1
2t . . . Xk2

2t



.

Once again,X ′
1X1 is a 2×2 block matrix, with each block of dimension (1+k1)×(1+k1). The blocks

8



on the principal diagonal are each arrowhead matrices, and have a known inverse, and the blocks on
the off-diagonal have values in the first row and column respectively, with the remainder of entries
equal to zero. Thus, each block of the X ′

1X1 matrix is invertible, as is the underlying matrix. Full
algebra is available in Supplemental Information to this paper. The inverse of X ′

1X1 is thus written:

(X ′
1X1)

−1 =



1
θ

1
θ

1
θ

. . . −1
θ

0 0 . . . 0 0

1
θ

θ+N
x11

θN
x11

1
θ

. . . −1
θ

0 0 . . . 0 0

1
θ

1
θ

θ+N
x21

θN
x21

. . . −1
θ

0 0 . . . 0 0

...
...

... . . . ...
...

... . . . ...
...

−1
θ

−1
θ

−1
θ

. . .
θ+N

x
k1
1

θN
x
k1
1

−1
θ

−1
θ

. . . −1
θ

1
θ

0 0 0 . . . −1
θ

θt+N
x11t

θtNx11t

1
θt

. . . 1
θt

− 1
θt

0 0 0 . . . −1
θ

1
θt

θt+N
x21t

θtNx21t

. . . 1
θt

− 1
θt

...
...

... . . . ...
...

... . . . ...
...

0 0 0 . . . −1
θ

1
θt

1
θt

. . .
θt+N

x
k1
1t

θtN
x
k1
1t

− 1
θt

0 0 0 . . . 1
θ

− 1
θt

− 1
θt

. . . − 1
θt

θt+θ
θtθ



(10)

where θ = N − Nt − Nx1
1
− Nx2

1
− · · · − N

x
k1
1

and θt = Nt − Nx1
1t
− Nx2

1t
− · · · − N

x
k1
1t
. Note

that the inverse in equation 8 is just a special case of the above, where k1 = 1. Now, to determine
the omitted variable bias on each included variable where potentially multiple treatment variables are
included and excluded in the difference-in-differences model, we return to equation 7. From this, and
the preceding matrices, we have that the OVB formula on each treatment effect in time-varying X1i,t

is:

E[β̂k,ovb
2 |X] = βk

2 − γ1
2

Nx1
2t

θt
− γ2

2

Nx2
2t

θt
− γk2

2

N
x
k2
2t

θt
∀k ∈ 1, . . . , k1. (11)

This bias term is once again intuitive in the treatment effects framework. Here each binary treat-
ment indicator which was omitted from the estimation is incorrectly included in the control group,
and hence produces a bias in the estimated treatment effects of included variables. This bias consists
of the true treatment effect of non-included treatment variables (γk

2 ) scaled by the degree to which
this treatment group contaminates the naive control group (Nxk

2t
/(Nt − Nx1

1t
− Nx2

1t
− · · · − N

x
k1
1t
)).

If a researcher has prior information to suggest that non-included treatment units are related in some
way to included treatment units, this may allow an even finer consideration of this bias. As discussed
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previously, if the impact of treatment is of the same direction on included and non-included treatment
units, the derivation in 11 proves an attenuation bias, while if non-included treatment units are thought
to be of the opposite direction as the included treatment units, estimates from the incorrectly specified
model will consistently overstate the true treatment impacts on included variables.

4 Discussion and Conclusion

The Omitted Variable Bias is frequently encountered in economics. While it is the base of a range
of useful derivations, in the case where multiple omitted variables are considered in regressions, it is
often presented as an ex-post test of model stability, rather than as providing a simple ex-ante formula
for determining parameter bounds. An ex-post derivation of this type is provided by Gelbach (2016).

In this paper I provide a simple and intuitive formula for the OVB in treatment effects models,
where a variable of interest is regressed on multiple binary treatment variables (and subject to multiple
other omitted treatment variables). This OVB is likely to be particularly convenient in situations where
multiple treatments or multiple levels of treatment exist, but assignation to treatment is imperfectly
observed. Such cases are particularly common in natural experiments where treatment is not under
the precise control of a human experimenter. As these natural experiments are often analysed using
difference-in-differences models, I document that this simple OVB formula has a logical extension to
these models, without complicating the intuition (or the algebra) behind the formula.

I show that the OVB formula consists of two elements: the degree to which omitted treatment
indicators are incorrectly included in the control group of regression models, and the impact that these
omitted treatment indicators have on outcomes of interest. This is, by definition, the counterpart to the
textbook OVB formula, however potentially leads to much simpler formation of hypotheses regarding
the degree or magnitude of this omitted bias.
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SUPPLEMENTAL APPENDIX
A Convenient Omitted Variable Bias Formula for Treatment Effect

Models
Damian Clarke

A Inverting theArrowheadMatrix in theMultivariate Treatment

Effects Model

In equation 4 of the paper, the inverse of the X ′
1X1 matrix is found following the known inverse

formula for arrowhead matrices. This formula assumes a J × J arrowhead matrix of the form:

A =

[
α z′

z D

]

where α is a scalar, z a vector with J − 1 elements, and D a diagonal J − 1 × J − 1 matrix with
zeros on the off-diagonal. If each of the diagonal terms is non-zero (an assumption which is met by
construction provided that each treatment variable has at least treated observation), the inverse is equal
to

A−1 =

[
0 0

0 D−1

]
+ ρuu′

where u = [−1 D−1z]′ and ρ = 1
α−z′D−1z

.

In this case, the X ′
1X1 matrix is equal to:

(X ′
1X1) =



N Nx1
1

Nx2
1

· · · N
x
k1
1

Nx1
1

Nx1
1

0 · · · 0

Nx2
1

0 Nx2
1

· · · 0
...

...
... . . . ...

N
x
k1
1

0 0 · · · N
x
k1
1


implying that α = N , z = [Nx1

1
Nx2

1
· · · N

x
k1
1
]′ and D is the matrix contained in from row 2 to

1



J and column 2 to J of (X ′
1X1). Putting this together gives that:

(X ′
1X1)

−1 =



0 0 0 · · · 0

0 1/Nx1
1

0 · · · 0

0 0 1/Nx2
1

· · · 0
...

...
... . . . ...

0 0 0 · · · 1/N
x
k1
1


+

1

λ



1 −1 −1 · · · −1

−1 1 1 · · · 1

−1 1 1 · · · 1
...

...
... . . . ...

−1 1 1 · · · 1


where λ = N −Nx1

1
−Nx2

1
− · · · −N

x
k1
1
, and resolving gives:

(X ′
1X1)

−1 =



1
λ

− 1
λ

− 1
λ

· · · − 1
λ

− 1
λ

1
N

x11

+ 1
λ

1
λ

· · · 1
λ

− 1
λ

1
λ

1
N

x21

+ 1
λ

· · · 1
λ

...
...

... . . . ...
− 1

λ
1
λ

1
λ

· · · 1
N

x
k1
1

+ 1
λ


,

as documented in equation 4.

B Inverting the 2×2 BlockMatrix for OVB in Simple Difference-

in-Differences

In order to calculate the omitted variable bias in a difference-in-differences model with one included
and one excluded treatment indicator (plus corresponding fixed effects), we must invert X ′

1X1, as
displayed in equation 8. This matrix is a symmetric block matrix, and so can be re-written as:

A =

[
A11 A12

A′
12 A22

]
A−1 =

[
B11 B12

B′
12 B22

]

where each of A11, A12 and A22 are the 2× 2 matrices in each corner of (X ′
1X1). The formula for the

inverse of a 2× 2 block matrix, and the algebra corresponding to X ′
1X1 implies that each element of

the inverse has the formula given below (see for example Lu and Shiou (2002)):

B11 = (A11 − A12A
−1
22 A

′
12)

−1

2



=
1

Nx1(N −Nt −Nx1)

[
Nx1 −Nx1

−Nx1 N −Nt

]
(12)

B22 = (A22 − A′
12A

−1
11 A12)

−1

=
1

(Nt −Nx1t)

 Nt

Nx1t
−1

−1
N−Nx1−Nx1t

(N−Nx1−Nt)

 (13)

B12 = −A−1
22 A

′
12(A11 − A12A

−1
22 A

′
12)

−1

=

[
0 0

− 1
N−Nt−Nx1

1
N−Nt−Nx1

]
(14)

B′
12 = −A−1

11 A12(A22 − A′
12A

−1
11 A12)

−1

=

0 − 1
(N−Nx1−Nt)

0 1
(N−Nx1−Nt)

 . (15)

The first line of each expression above is from the inverse formula for 2× 2 block matrices, while the
second line for each sub-matrix is resolved by linear algebra.Putting the four elements of B together
gives:

A−1 = (X ′
1X1)

−1 =


1

N−Nt−Nx1
− 1

N−Nt−Nx1
0 0

− 1
N−Nt−Nx1

N−Nt

Nx1 (N−Nt−Nx1 )
− 1

N−Nt−Nx1

1
N−Nt−Nx1

0 − 1
(N−Nx1−Nt)

Nt

Nx1t (Nt−Nx1t )
−1

Nt−Nx1t

0 1
(N−Nx1−Nt)

−1
Nt−Nx1t

N−Nx1−Nx1t

(N−Nx1−Nt)(Nt−Nx1t )

 .

as indicated in equation 8 in the paper.

C Inverting theX ′
1X1Matrix in aDifference-in-DifferencesModel

with Multiple Included and Excluded Treatment Indicators

In a case with k1 included treatment indicators, determining the inverse of the X ′
1X1 matrix requires

inverting a (2+2k1)× (2+2k1)matrix, based on the k1 treatment indicators, and identical number of

3



fixed effects, an intercept term, and a time dummy. Given that this is once again a 2× 2 block matrix,
we can use the identical formula as in section B for the inverse of each block ofX ′

1X1. However, now
each block is of dimension (k1 + 1)× (k1 + 1). Fortunately, the blocks on the principal diagonal are
arrowhead matrices, and the blocks on the off-diagonal have elements only in row 1 or column 1, and
zeros elsewhere. Thus in each case, the required matrices are easily invertible using the arrowhead
matrix formula (see Najafi et al. (2014) for discussion), and in the case of B22, the final inverse is
found using the bordering method for symmetric matrices.

Each element of the inverse is documented below:

B11 = (A11 − A12A
−1
22 A

′
12)

−1 =



1
θ

1
θ

1
θ

. . . −1
θ

1
θ

θ+N
x11

θ0Nx11

1
θ

. . . −1
θ

1
θ

1
θ

θ+N
x21

θ0Nx21

. . . −1
θ

...
...

... . . . ...

−1
θ

−1
θ

−1
θ

. . .
θ+N

x
k1
1

θN
x
k1
1


(16)

where θ = N −Nt −Nx1
1
−Nx1

1
− · · · −N

x
k1
1
,

and

B22 = (A22 − A′
12A

−1
11 A12)

−1 =



θt+N
x11t

θtNx11t

1
θt

. . . 1
θt

− 1
θt

1
θt

θt+N
x21t

θtNx21t

. . . 1
θt

− 1
θt

...
... . . . ...

...
1
θt

1
θt

. . .
θt+N

x
k1
1t

θtN
x
k1
1t

− 1
θt

− 1
θt

− 1
θt

. . . − 1
θt

θ+θt
θtθ


(17)

where θt = Nt −Nx1
1t
−Nx2

1t
− · · · −N

x
k1
1t

for the diagonal blocks, and

B12 = −A−1
22 A

′
12(A11 − A12A

−1
22 A

′
12)

−1 =



0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 0

−1
θ

−1
θ

−1
θ

. . . 1
θ


(18)
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and

B′
12 = −A−1

11 A12(A22 − A′
12A

−1
11 A12)

−1 =



0 0 . . . 0 −1
θ

0 0 . . . 0 −1
θ

...
... . . . ...

...
0 0 . . . 0 −1

θ

0 0 . . . 0 1
θ


. (19)

for the off-diagonal terms.

Combining 16-19 gives the following for (X ′
1X1)

−1:

(X ′
1X1)

−1 =



1
θ

1
θ

1
θ

. . . −1
θ

0 0 . . . 0 0

1
θ

θ+N
x11

θN
x11

1
θ

. . . −1
θ

0 0 . . . 0 0

1
θ

1
θ

θ+N
x21

θN
x21

. . . −1
θ

0 0 . . . 0 0

...
...

... . . . ...
...

... . . . ...
...

−1
θ

−1
θ

−1
θ

. . .
θ+N

x
k1
1

θN
x
k1
1

−1
θ

−1
θ

. . . −1
θ

1
θ

0 0 0 . . . −1
θ

θt+N
x11t

θtNx11t

1
θt

. . . 1
θt

− 1
θt

0 0 0 . . . −1
θ

1
θt

θt+N
x21t

θtNx21t

. . . 1
θt

− 1
θt

...
...

... . . . ...
...

... . . . ...
...

0 0 0 . . . −1
θ

1
θt

1
θt

. . .
θt+N

x
k1
1t

θtN
x
k1
1t

− 1
θt

0 0 0 . . . 1
θ

− 1
θt

− 1
θt

. . . − 1
θt

θt+θ
θtθ


as laid out in equation 10 of the paper.
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