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Abstract: Numerous studies in management, sociology, and economics have documented that the 

architecture of collaboration networks affects the innovation performance of individuals, firms, and 

regions. Little is known though about whether the association between collaboration patterns and 

innovation outcomes depends on the network geographical boundaries chosen by the researcher. This 

issue is crucial for both policy-makers and firms that rely on innovation. This article compares the 

association between collaboration networks and future patenting between regional and country-level 

collaboration networks. If we relate future innovation to the global, country-wide network our statistical 

analysis reproduces the findings of the previous literature. However, we find systematically less 

important effects of regional innovation patterns on subsequent patenting of innovators. Hence, 

managers and policy makers should choose the boundaries of the innovation networks that they look at 

carefully, aiming for integration into larger-scale collaboration communities. 
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1. Introduction 

Innovation activities usually take place under a framework of cooperative links between agents. Some 

innovators still operate in an isolated way, but nowadays innovative companies, universities and 

research centers increasingly share information and resources in cooperative R&D projects, aiming to 

obtain collective synergies and individual advantages from strategic collaborations (Wuchty et al., 

2007; Jones et al., 2008). Previous research in various disciplines has shown that collaboration patterns 

represent a crucial aspect of innovation processes and determine the success of individual agents and 

territories (see, e.g. Allen, 1983; Saxenian, 1994; Brusco, 1999). Applying social network analysis, 

more recent literature characterizes the particular structural properties of innovation networks that 

enhance or inhibit both present and future R&D outcomes (see e.g. Fleming et al. (2007) for analysis 

of regional performance and Schilling and Phelps (2007) for firm-level analysis; see also Section 2). 

Therefore, companies willing to improve their innovation outcomes should take into account the 

structure of their collaboration patterns while performing research activities with other agents. At the 

same time, policymakers who seek to encourage innovation should consider how to enhance or inhibit 

certain features of collaboration networks within and across regions to maximize the knowledge 

spillovers. 

However, innovators typically cooperate simultaneously at different geographical levels, developing 

projects with other local actors while simultaneously collaborating with players located in distant 

regions or even in other countries. This poses the question of what network managers or policy makers 

should look at when designing policies for enhancing innovation. Do regional networks influence 

innovation outputs in a different way than larger-scale networks? Should managers and policy makers 

aim for local integration or should they rather enhance integration into national or international research 

networks?  

To address these questions, we first characterize collaboration networks using all the European patents 

submitted to the Spanish Patent Office between 1978 and 2008. The nodes in our networks are patent 

applicants and the links represent collaborative relationships among them (Wal and Boschma, 2009; 
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see below for details). We then break the networks down into the three most important regions in terms 

of patenting outcomes and apply econometric techniques to contrast how the structure and the position 

in the full Spanish network compares to the regional networks in affecting future patenting by 

organizations.   

This study is particularly interested in the network boundary problem (Lauman et al., 1989) within the 

framework of innovation networks. As a result, we follow a particularly strategy. To ensure 

comparability with previous studies, this research reproduces as far as possible one existing approach 

modeling the influence of networks on firms’ innovation outputs (Ahuja, 2000; Fleming et al., 2007; 

Schilling and Phelps, 2007). However, we do not—purposefully—follow the literature that employs 

both local and global network features within one unique estimation framework (Bathlelt et al., 2004; 

Whittington et al., 2009, or Breschi and Lenzi, 2016). Our strategy thus enables to test directly the 

boundary specification problem: Is the way in which past collaboration patterns shape future 

innovations robust to considering regional vs. national innovation networks?  

We observe that the associations between the properties of collaboration networks and subsequent 

patenting detected in the above literature are reproduced using our national network. This makes us 

confident that any differences between the national and regional networks cannot be attributed to the 

particular nature of the Spanish innovation market.  

The individual, node-level position within the regional and national networks seems to affect future 

innovations similarly. However, the associations detected using the country-wide Spanish network are 

not robust to considering the regional collaboration patterns. Consequently, network boundaries seem 

to play a crucial role in assessing how innovation networks affect future patenting.   

Our findings may inform firm-level management policies about what positions to seek in what networks 

to improve innovation outcomes, and inform policy makers about what aspects of collaboration patterns 

to promote and at what geographical levels. We also contribute to the understanding of the interaction 

between geography at different levels and collaboration patterns, a research agenda initiated recently 

(see Section 2). The classic innovation literature typically assumes local knowledge externalities (e.g. 

Glaeser et al., 1992), but the network approach to knowledge creation—including the present study—
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document important non-localized externalities embedded in the overall architecture of collaboration 

patterns.  

The rest of the paper is structured as follows. Section 2 introduces the theoretical framework and 

proposes our hypotheses. Section 3 describes the data and the methodology of our research. Section 4 

presents the results and Section 5 concludes. 

 

2. Innovation, Networks, and Geography 

Knowledge creation is commonly analyzed from two perspectives. Economic sociology emphasizes the 

role of collaborative activities and the resulting structure or network of collaborations (Allen, 1983; 

Saxenian, 1994; Ahuja, 2000), while economic geography rather stresses the advantages of spatial 

proximity and clustering as a key determinant of knowledge creation (Jaffe et al., 1993). Since inventors 

and firms are naturally embedded in both social and geographical spaces, the interplay of these two 

perspectives has more recently received attention (e.g. Lobo and Strumsky, 2008; Breschi and Lissoni, 

2009; Whittington et al., 2009; Coffano et al., 2017).  

 

2.1. Networks and Innovation Performance 

On the one hand, research collaborations provide access to relevant information and knowledge, can 

reduce opportunistic behavior, contribute to the division of risks and cost sharing, help in the division 

of labor, provide access to a specialized labor force, and may result in a higher market diversification 

of firms (Katz and Martin, 1997; Nelson and Winter, 1982). On the other hand, such collaborations 

might have negative influences by increasing the transaction costs and generating lock-in situations 

(Koput, 1997; Fritsch, 2004). Hence, not all forms of collaborations have to be beneficial. 

The structure of research collaborations may be viewed as a network, in which nodes represent 

innovators (firms or researchers) and a link between two innovators exists if they have collaborated in 

a research activity. The literature initially used the term collaboration network as a metaphor for 
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interdependencies and interactions between firms (see e.g. de Faria et al., 2010; Almeida et al., 2011). 

However, recent work presents collaboration networks as the sets of nodes and links, applying social 

network analysis to characterize collaboration patterns. In particular, a growing body of research 

analyzes the impact of collaboration networks on the innovation outputs of organizations and territories 

(see Pippel (2012) or Phelps et al. (2012) for critical reviews).  

In this study, we focus on several network features that have received particular attention in the literature 

from two basic approaches: node-level and network-wide perspective. Node-level approach 

considers that the relative position of each node in the network can influence its innovation 

results (Ahuja, 2000; Burt, 2000; Owen-Smith and Powel, 2004; Whittington et al., 2009). In 

particular, node centrality and connection to large components may facilitate knowledge 

access, generating positive impacts on their innovation activities. The network-wide approach 

rather focuses on the patterns describing the whole architecture of interactions among all nodes. 

From this perspective, several studies found that certain network topologies can impact 

innovation outputs (Galaso, 2018).  

The first network characteristic that we analyze is network closeness, which facilitates information 

transfers, increasing its accessibility and reliability. Indeed, positive impacts of being close to other 

network members on innovation have been documented (Fritsch and Kauffeld-Monz, 2010; Fleming et 

al, 2007).  

Another network property widely studied in relation to innovations is the clustering coefficient. Highly 

clustered networks facilitate the dissemination of tacit, non-codified, complex knowledge, allowing the 

members of the cluster to pose any potential questions regarding the information shared (Monge et al., 

2008; Fritsch and Kauffeld-Monz, 2010; Fleming et al., 2007). In addition, highly connected 

neighborhoods facilitate trust between nodes and impulse collaborative solutions, as they reduce the 

possibility of free-riding (Schilling and Phelps, 2007; Uzzi and Spiro, 2005; Cowan and Jonard, 2008). 

The small world property – the combination of high levels of clustering with short distances among 

nodes (Watts and Strogatz, 1999) – combines the advantages of increased clustering and network 
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closeness, because clustering facilitates cooperation and information sharing within clusters and short 

distances across clusters enhance the transfer of more diverse, non-redundant information across 

clusters. This hypothesis has been confirmed in some studies (Cowan and Jonard, 2003; Uzzi and Spiro, 

2005; Schilling and Phelps, 2007; Uzzi, 2008) but has been shown to be less robust in others (Fleming 

et al., 2007). 

Third, high degrees of decentralisation, favored by the existence of different hubs and structural holes 

in networks, separates non-redundant sources of information, sources that are more additive than 

overlapping (Burt, 2000).5 This property may facilitate the creation of diverse ideas within relatively 

separate parts of networks (Schilling and Phelps, 2007; Monge et al., 2008), avoiding collective 

stalemate (Wal, 2008), and therefore fostering innovation. On the other hand, centralized networks 

might be efficient structures to setup interoperability among the actors, reducing system disfuctions and 

enhancing diffusion (Crespo et al., 2015).  

Lastly, several studies detect a positive impact of the size of the largest connected component on 

regional performance (Bettencourt et al., 2007; Coffano et al., 2017; Fleming et al., 2007). According 

to these studies, the interconnection of nodes in larger components enhances information flows, 

knowledge spillovers and cross-disciplinary fertilization, because in networks with smaller and isolated 

groups new ideas remain unknown outside local contexts, opportunities remain unexploited and, 

therefore, innovation will be constrained. We thus include a few measures related to the largest 

component into our analysis.  

 

2.2. Geography and Innovation 

The early literature on knowledge spillovers and consequently the growth theories are built on the 

assumption that knowledge spills over only locally (Glaeser et al., 1992). Extensive literature has indeed 

                                                           
5Decentralization and clustering are opposing properties from an individual perspective: if one particular node 

presents high levels of clustering it cannot, simultaneously, act as a bridge over structural holes, and vice versa 

(see Phelps et al., 2012 on conflicting results related to clustering and structural holes). However, from a global 

perspective, networks may combine clusters of nodes and high levels of decentralization. Small world networks 

are a case in point. 
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reported considerable advantages of geographic agglomeration in many types of economic activities, 

including knowledge creation (Jaffe et al., 1993; Almeida and Kogut, 1999; Glaeser, 1999; Bettencourt 

et al., 2007). In certain activities such as transportation or trade, economies of scale apply naturally. As 

for innovation, physical proximity of firms and industries provides access to a pool of inventors who 

are embedded in dense network of social relations that span the boundaries of individual firms. Fleming 

et al. (2007) document direct effects of labor mobility on innovation. Moreover, agglomerations of 

innovative entities are traditionally located close to non-private research institutions such as 

universities, leading to additional spillovers (Whittington et al., 2009). All these features facilitate 

localized knowledge flows. Indeed, innovation is closely linked to urban areas (Carlino et al., 2007) 

and Bettencourt et al. (2007) provide evidence that the advantages of such spatial clustering scale up 

superlinearly with the population size of cities and agglomerations. 

 

2.3. Innovation Networks at Different Geographical Levels 

The research on innovation systems has traditionally distinguished between national innovation systems 

and regional innovation systems (e.g. Carlsson et al., 2002) and therefore pays—despite indirectly—

attention to geographic boundaries in innovation and its diffusion. The national innovation system 

approach analyzes the network of public and private organizations whose activities and interactions 

initiate, import, modify and diffuse new technologies (Freeman, 1987) and are “either located within or 

rooted inside the borders of a nation state” (Lundvall, 1992; p. 2). From this perspective, key processes 

in the creation and diffusion of knowledge take place mainly at a national level (Edquist and Johnson, 

1997). The regional innovation system approach rather assumes the existence of relevant differences 

within countries, placing regions (i.e. geographical areas within countries) at the core of the analysis. 

According to this literature, spatial concentration and collaboration among actors, as well as 

institutional and cultural aspects of regions are crucial for knowledge creation and diffusion (Cooke, 
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1996; Cooke et al., 1997).6 Nevertheless, both perspectives are typically disconnected and built on 

different assumptions, lack any unifying empirical support, and differ in policy recommendations. 

There are only few recent studies that have investigated the interaction between the geography and 

network perspectives directly. Each of them typically asks one particular question, but their results 

suggest the role of collaboration networks on innovation cannot be fully understood from a local 

perspective only. Most of them have taken a region or a city as the unit of observation and asked what 

determines their innovation outcomes (Bettencourt et al., 2007; Lobo and Strumsky, 2008; Breschi and 

Lenzi, 2016). Bettencourt et al. (2007) report that collaboration networks cannot fully explain the 

superlinear association between innovation and population of U.S. cities. Lobo and Strumsky (2008) 

directly contrast the relative importance of the non-network features of urban areas against the local 

structural properties of co-patenting networks, concluding that the former is more important than the 

latter. Breschi and Lenzi (2016) ask whether short distances are important at the local or global level, 

or whether they interact. They report that social proximity within regions and to inventors in other cities 

reinforce each other in the determination of the area-level innovation.  

The study most closely related to ours is Whitington et al. (2009). First of all, their analysis is at the 

level of inventors (i.e. individuals and firms). Second, Whittington et al. (2009) analyze the interplay 

between geographical and network closeness, reporting complementary but contingent impacts of both 

dimensions on firm-level innovation outcomes. They additionally show that the centrality of an 

organization within both global and local networks has similar effects on its innovation rates. We 

complement this part of their analysis by studying whether this holds not only for centrality but also 

other node-level characteristics and whether this is still true for network-level measures.  

All this evidence notwithstanding, the existing studies do not answer the main question of our work: 

May the selection of geographical boundaries of collaboration networks determine the way networks 

affect collaboration outcomes? 

                                                           
6 The regional innovation system approach is complementary to other streams of research in regional studies 

such as innovative milieus (Maillat, 1995), industrial districts (Becattini, 2004), regional clusters (Porter, 2000), 

or new industrial spaces (Scott and Storper, 1992; Saxenian, 1994). 
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The discussed literature offers potentially contrasting hypotheses to this question. On the one hand, the 

purely geographical perspective argues that knowledge mostly spills over locally, suggesting that local 

collaboration patterns should foster or inhibit firm-level patenting more than applying the country-level 

networks. Under such view, more distant features of collaboration should exert smaller or even 

negligible influence in innovation outcomes of firms. Hence, the first hypothesis is:  

Hypothesis 1: The effect of network organization and positioning on innovation is stronger for the local, 

regional networks than for the state-level networks. 

On the other hand, the literature analyzing the interaction between geography and collaboration 

structures indirectly suggests that both local and longer-distance interactions matter for innovation as 

this research line rarely raises the question of whether this depends on network boundary (Whitington 

et al., 2009; Breschi and Lenzi, 2016). Hence, an alternative hypothesis may be: 

Hypothesis 2: Both the local, regional network organization and the state-level one stimulate innovation 

equally.  

In contrast to the above, there also exist good arguments for a third hypothesis. Since many actors 

collaborate with both local and more-distant innovators, looking at regional structures only provides an 

incomplete picture of the market, an issue known as network boundary specification problem in network 

theory (Laumann et al., 1989). Since it has been shown that non-local collaborations do affect 

innovation performance (Breschi and Lenzi, 2008; Whittington et al., 2009), a purely local analysis of 

the innovation systems without taking into account such long-distance collaboration may lead to the 

attenuation biases. That is, using regional collaboration structures might make network properties look 

as less important than they actually are.7 The second set of arguments relates to the development of 

communication and transport technologies that radically lowered the costs of long-distance 

collaboration (Cairncross, 2001). Indeed, it has been observed that such technologies reduce the 

geographical barriers in innovation activities (Kaufman et al., 2003).  Such a reduction might thus 

enhance the role of larger-scale collaboration networks, compared to that of the regional structures. As 

                                                           
7 In fact, since links are not missing at random, there may be even inconsistency issues caused by setting the 

network boundary inappropriately (Chandrasekhar and Lewis, 2016).  
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a consequence, we propose a hypothesis that is not directly suggested by the existing innovation 

literature but which actually receives support in our data: 

Hypothesis 3: The state-level network organization stimulates innovation more than the local, regional 

network organization. 

The main goal of the following sections is to contrast the differing effect across the two geographical 

levels. 

 

3. Data and Methodology 

To measure innovation and research collaborations, we use all the European patents registered at the 

Spanish Patent Office from 1978 to 2008. We have constructed a detailed database which enables us to 

identify the following information on each patent: (1) the date of application; (2) the names of the 

companies which applied for the patent, which are referred to as innovators throughout the study; (3) 

the names of the inventors; and (4) the locations of both the innovators and the inventors. We use the 

European patent applications because these data include the addresses of innovators (applicants) and 

inventors, while the Spanish patent applications only register the address of the innovators. As explained 

below, we need both addresses to locate geographically the networks. Regarding the time period, our 

data covers the period from the starting year of European patent records in Spain to the moment, at 

which we collected the data.  

Previous research using patent data have focused on two different types of collaboration networks, 

depending on the nodes they consider: networks of inventors (Balconi et al., 2004; Fleming et al., 2004, 

2006) and networks of applicants or innovators (Breshi and Lissoni, 2003; Singh, 2003, 2005; Cantner 

and Graf, 2006; Graf and Hening, 2008). We follow the second perspective and trace our networks as 

follows: 

 Nodes: The innovators or applicants who register the patent and hold the right to use it. These 

are mostly private companies, but research institutes, universities, and individuals can also be 

found among the nodes of our network. 
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 Links: Following Cantner and Graf (2006) and Graf and Hening (2009), we trace a link between 

two innovators when they jointly apply for a patent or when the same inventor work for them 

in different patents. These links are based on the idea that firms or research institutes are related 

when they work on joint projects or their employees move from one organization to the other. 

As in Wal and Boschma (2009) and Graf (2009), we use the addresses of both the innovators and 

inventors to locate the nodes and links geographically.  As a result, some innovators appear in more 

than one region if either they operate in different regions or if the inventors developing their patents 

report an address in a different region. We believe that this approach reflects local-level interactions 

better than disregarding the activities of innovators in multiple regions. See Section 3.4 and Figure 1 

for more details. 

We use the application date for each patent to determine the timing of collaboration because such date 

reflects the timing of the collaboration better than the granting date. This information is used to classify 

the trends in collaboration patterns over time. In our analysis, we split our data into six five-year periods. 

For each period, we consider only the nodes and links active in the corresponding five years.8 This is a 

crucial aspect of our strategy to relate networks to future patenting rates.  

To answer our main question, we break the national Spanish network down into regional networks.  The 

geographical boundaries considered to delimit the regions correspond to the NUTS-3 territorial division 

proposed by the European Union (Eurostat, 2015). We focus on the three largest regions in terms of 

innovation outcomes: Barcelona, Madrid and Valencia.9 The objective is to contrast the association 

between network and patenting at different geographical levels. To that end, we model the link between 

a set of both node-level and network-level characteristics and the number of patents that companies 

register in the subsequent period. As mentioned above, the independent variables were carefully 

selected to reproduce as far as possible the econometric models in the literature (e.g. Ahuja, 2000; 

Fleming et al., 2007; Schilling and Phelps, 2007; Whittington et al., 2009). The contribution of this 

                                                           
8 We choose this time distribution in order to have enough periods with significant data to observe the changes in 

networks over time. The results are robust to considering different time windows. 
9 It should be pointed out that to compute the network characteristic at national level we use the whole network 

including the innovators from regions other than the three under scrutiny, but the subsequent econometric 

analysis only focuses on inventors from the three regions. 
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analysis is that the network variables are computed from the national as well as the three regional 

networks and their effects on future patenting are compared. 

 

3.1.Dependent variable 

We follow the literature and use the number of registered patents as a measure of novel invention. Patent 

data present a good indicator of the innovation activities taking place in a given economy (Griliches, 

1990; Archibugi, 1992; Andersen, 2001) but also entail several difficulties (see Flemming et al. (2007) 

or Schilling and Phelps (2007) for a discussion). As explained below, some of the difficulties can be 

addressed, such as patenting differences across time and space (by considering the location of the nodes 

and periods) and firm-specific differences (by controlling for past patenting).10 

The idea is to observe how the network architecture influences future innovation results. Hence, to 

differentiate between current and subsequent outcomes we label our dependent variable Future Patentsit 

throughout the analysis. Note that Future Patentsit is defined as the number of patent applications by 

organization i in period t + 1 and thus corresponds to Patentsit+1. It is a discrete ordinal variable. 

 

3.2.Independent variables 

All our explanatory variables refer to network properties.11 Two of them (Betweenness and In Giant) 

measure individual characteristics of nodes based on their positions in the network. Therefore, these 

individual variables take different values for each actor.  

The remaining variables (Density, Centralization, Clustering, Reach, Small World, Giant Share and 

Giant Size) are indicators of the network as a whole, i.e. they measure structural properties reflecting 

                                                           
10We cannot control for industry-level differences in patenting, but we hope that past patenting will capture a large 

part of the variation due to differing patenting cultures in different industries. Since our results corroborate the 

previous literature that controls for industrial differences, we are confident that they are not driven by different 

patenting rates across industries.   
11 To save on space, we do not include the formal definitions of the variables. They can be found in e.g. Fleming 

et al. (2007) and Schilling and Phelps (2007). 
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general patterns of collaboration between all actors. Consequently, these global variables take the same 

value for each member of one network. 

Betweenness centrality  

The betweenness centrality of agent i measures the number of shortest paths between all pairs of nodes 

in a network (other than i) that pass through i.12 Betweenness is one measure of a firm’s access to the 

information available on the network. However, maintaining links that enable it to remain in the 

geodesic of a large number of nodes may be costly in terms of time and resources. Consequently, this 

variable can be either positively or negatively correlated with Future Patents, but the literature finds 

that it generally has a positive impact on future patenting. 

In-Giant 

The variable labeled as In-Giantit is a binary variable that takes a value of 1 if node i belongs to the 

giant component of the network and 0 otherwise. It reflects whether a firm is at least indirectly 

connected to the largest group of innovators. We posit that belonging to this group improves future 

innovation at the firm as it facilitates access to information and potential sources of collaboration. 

Density 

Network density measures the number of actual links as a proportion of all the n(n-2)/2 possible 

connections in a network of n nodes. Nodes in denser networks are more interconnected than nodes in 

less dense networks. Density may increase information dissemination and make it more trustworthy 

(Fritsch and Kauffeld-Monz, 2010), but high density can lead to the circulation of homogeneous and 

redundant information (Bettencourt et al., 2007; Lobo and Strumsky, 2008). Consequently, density may 

both stimulate and inhibit innovation. 

 

 

                                                           
12 We also repeated the whole analysis using the variable Degree (instead of Betweenness), which measures the 

number of collaboration partners of each node. The results were almost the same. We focus on betweenness in 

the final regression because it reflects the position of an agent in the whole network better than the simple local 

degree.  



14 

 

Centralization 

Centralization compares the degree distribution of the network in relation to the most centralized star-

shaped network.13 This property can affect patenting activity in two different ways. First, a centralized 

network has shorter distances between its nodes, facilitating information flow and stimulating 

innovation (Schilling and Phelps, 2007) and additionally enhancing coordination mechanisms among 

the different components of the network (Crespo et al., 2015). 14  However, in highly centralized 

networks activity is unevenly distributed and too concentrated in the hands of a small proportion of 

nodes. This provides them with monopoly power over the flow of information and may reduce the 

aggregate patent production. Therefore, the positive effects of centralization might reach a threshold 

beyond which higher centralization reduces innovation outputs. Due to the high levels of centralization 

shown by the Spanish network, we expect this variable to be negatively correlated with the response 

variable. 

Clustering 

The clustering coefficient of a network describes the extent to which a network contains highly 

interconnected groups of nodes. In particular, the average clustering coefficient is the fraction of 

neighbors of the nodes that are also mutually connected, averaged over the whole population. Again, 

this can affect innovation in several ways, depending on the levels of network clustering. Under low 

clustering, an increase in this coefficient may improve innovation results by accelerating the circulation 

of information. However, when a network is already highly clustered a further increase in clustering 

might lead to the circulation of homogeneous and redundant information and thus limit positive cross-

cluster collaborations (Cowan and Jonard, 2003; Uzzi and Spiro, 2005). Since clustering is generally 

low in our networks, we expect it to affect our dependent variable positively. 

 

                                                           
13 A star-shaped network is an architecture in which one node is connected to all other nodes and all other nodes 

are connected only to the central node. 
14 Rather than a centralization index, Crespo et al. apply the slope of the degree distribution, which essentially 

measures centralization. 
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Reach 

The Reach of a network is the average inverse distance between two nodes in the network (Schilling 

and Phelps, 2007). This variable reflects how close to each other the network members are. If they are 

closer, the reach is high, and viceversa. A higher reach may improve innovation outputs by facilitating 

communication and the flow of information between agents; however, if too high a further increase may 

lead to homogeneity of information (Uzzi and Spiro, 2005; Uzzi, 2008). The reach is low in our 

networks, so we expect Reach to have a positive impact on our dependent variable. 

Small world  

Computed as the product of the average clustering and the reach (Schilling and Phelps, 2007), the small-

world property represents the degree to which the network can combine high levels of clustering with 

short distances between nodes. In line with the above arguments, high clustering and high reach may 

improve the innovation activities in a given network by itself, but the small-world property can show 

whether the two characteristics reinforce each other. More precisely, clustering may enhance 

cooperation more when the different clusters are not far from each other (i.e. when reach is high) and 

the benefits from higher reach might increase when there are close-knit clusters in the network (i.e. 

when clustering is high); see Cowan and Jonard (2003) and Uzzi and Spiro (2005). Hence, we 

hypothesize that this variable may be positively associated with future patenting. 

Giant Share 

Giant Share, the fraction of nodes in the giant component, reflects the relative importance of the main 

group of innovators a given network. If the majority of agents belong to the giant component, then 

large-scale dissemination of knowledge is possible (Fleming et al., 2007). Consequently, we expect this 

variable to have a positive influence on the dependent variable. 

Giant Size 

Rather than the fraction, this variable measures the number of nodes in the giant component. As it rises, 

the potential for information dissemination and collaboration between its members increases, 

potentially enhancing innovative activities. 
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3.3.Control variables 

The propensity to patent may of course vary due to non-network firm characteristics or other factors. 

To account for these possibilities, our modeling approach includes the following control variables: 

(Current) Patents 

To assess the role of collaboration patterns on future patenting we control for the current innovation 

outcome of each innovator. The variable Patents accounts for a large part of the unobserved 

heterogeneity in firms’ propensity to innovate, such as size, management, industry, etc. 

Region Dummies 

Different regions naturally provide different innovation and collaboration opportunities. Hence, it is 

imperative to account for this in the regression analysis. To that end our models include two dummies, 

one for Madrid and one for Valencia. Their estimated parameters illustrate the different propensities to 

innovate in these regions, compared to the Barcelona area.  

Period Fixed Effects 

Finally, we control for period fixed effects in our model to reflect potential different propensities to 

innovate over time. These differences may arise because of macroeconomic, political, or other factors 

that influence innovation. 

 

3.4.Regional vs. National Boundaries 

Given the objective of this study, all network-related variables have been computed using both the 

regional and national networks. This provides an opportunity to study the influence of regional vs. 

national collaboration patterns on future innovation outcomes. 

Figure 1 illustrates the construction of the regional networks from a hypothetical national innovation 

structure. Figure 1A represents the national network. The black (grey) circles represent the innovators 

in Region 1 (2). Hence, these agents are represented in the regional networks in Figures 1B and 1C. The 

empty circles are innovators who operate in regions that are not analyzed. They are accounted for in the 
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derivation of network measures in the national network, but they are not included in the regional 

analysis. Naturally, the same would happen to local policy makers or managers, who solely focus on 

the regional innovation. Lastly, the triangles in Figure 1 correspond to innovators who operate in both 

Region 1 and Region 2. This may be due to two reasons.  Either such innovators have branches in both 

regions or the innovator and the inventor report different addresses, one in Region 1 and the other in 

Region 2. We believe that including such innovators provides a more complete picture of the 

geographical radius of operation of innovators.  

Figure 1: The construction of the regional networks from the global national network 

A. National network 
 

 
 

Geographical location of nodes: 

 
 

B. Region 1 
 

 
 

C. Region 2 
 

 
 

 

 

Region 1
Region 2

Regions 1 and 2

Other locations
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Therefore, innovators operating in one of the regions analyzed (or in both of them) may be influenced 

by the architecture and their position in the national and/or regional networks. Comparing the influence 

of these networks on innovator’s outputs is the aim of our regression analysis.15   

 

3.5.Model Specification 

Our dependent variable, Future Patents, is a count variable that takes integer non-negative values. As 

a result, a linear regression model is inadequate because it assumes homoskedastic, normally distributed 

errors, an assumption that is violated in count data. Poisson regression is more appropriate (Hausman 

et al., 1984) but it assumes the equality of the mean and the variance of the variable. Nevertheless, 

patent data typically present overdispersion and this is also our case. Hence, applying the Poisson model 

may underestimate the standard errors of coefficients, leading to spuriously high levels of significance 

(Cameron and Trivedi, 2005). We thus estimate a negative binomial model, which generalizes 

the Poisson model by incorporating individual, unobserved effects into the conditional mean, allowing 

for such overdispersion (Hausman et al. 1984). This approach is also taken in the related literature 

analyzing patent data (Fleming et al., 2007; Schilling and Phelps, 2007; Whittington et al., 2009). We 

follow these studies closely. 

We propose the following general model specification: 

Future Patents = f(Betweenness, Density, Centralization, Clustering, Reach, Small World, Giant Share, 

Giant Size, In Giant, Patents, Region, Period) 

This general specification omits the indices for innovators, time, and regions, as they differ depending 

on whether the model is estimated using the national or regional network characteristics. 

 

 

                                                           
15 In case of innovators in multiple regions we estimate, separately, the impact of each regional network on their 

performance. We assume all of them may be relevant for its innovative activities. 
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4. Results 

Table 1 presents the general network statistics for our networks. Figure 2 provides a view of the giant 

component of the Spanish network in the period under scrutiny and Figure 3 illustrates the three regional 

networks. Almost 60% of innovators (nodes) and collaborations (links) can be found in all three regions 

under study. Barcelona is the largest regional network in terms of both nodes and links. There are 

substantial regional differences in the organization of innovation activities. Barcelona has fewer isolated 

innovators, a lower density, a smaller share of innovators in the giant component, and more inequality 

in the number of collaborators. In contrast, Valencia and Madrid show larger proportions of isolates, 

larger shares of nodes in the main component, and more concentration.16  

 

                                                           
16 The high levels of centralization in Madrid’s network can be partially explained by the presence of the Spanish 

National Research Council (Consejo Superior de Investigaciones Científicas), which mainly operates in this 

region. It is possible to identify this node in Figure 3, as the most central hub, connected to many other nodes. 
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Figure 2: Giant component of the Spanish Innovation Network (1977-2008).  

 

 

The nodes are innovators and the links represent both direct and indirect links that took place at some time between 1978 and 2008. The giant components in 

each period are obviously smaller but they tend to grow significantly over time. 
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Figure 3: Giant components of the three regional innovation networks: Barcelona, Madrid and Valencia (1977-2008). 

 

 

 
Barcelona Madrid  Valencia 

  

 

 

 

    
The nodes are innovators located in each region and the links represent both direct and indirect links that took place at some time between 1978 and 2008. We 

observe that there are major differences in how the regional innovation systems are organized. 
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We estimate several variations of the proposed model and report four of them here.17 Importantly, we 

run each regression twice. First, we relate future patenting to the collaboration patterns in the whole 

country and, second, we repeat each estimation with the regional collaboration structures. Our models 

account for 385 observations. That is, there were 385 innovators that appeared in any of the 

networks during at least two consecutive periods. 

Table 1: Basic Network Properties in Spain (1977-2008) 

  Spain Barcelona Madrid Valencia 

Network size 
Nodes 8,215 2,459 1,614 604 

Links 5,475 1,558 1,114 458 

Density (%) 0.02 0.05 0.09 0.25 

Degree 
Av. 1.33 1.27 1.38 1.51 

St. Dev. 4.44 2.33 5.25 3.24 

Giant 
component 

Size 852 208 278 67 

% of total 10.37 8.46 17.22 11.09 

Second largest 
Size 17 16 10 11 

% of total 0.21 0.65 0.62 1.82 

Isolates 
Number 4,139 1,203 811 300 

% of total 50.38 48.92 50.25 49.67 

Diameter 11 12 9 5 

 

Table 2 reports the regression results. In what follows, we highlight the main conclusions drawn from 

our analysis.  

First, most network variables influence future innovation in at least one model. Hence, the patterns of 

collaboration are a major determinant of innovation in our data.  

An important question is whether our results are specific to the Spanish innovation system. To that end 

it is worth pointing out that, using the Spanish-wide network, the estimated effects are in harmony with 

the literature analyzing U.S. patent data (Fleming et al., 2007; Schilling and Phelps, 2007; Uzzi and 

Spiro, 2008; Whittington et al., 2009): Centralization is bad for innovation whereas higher clustering 

and higher reach enhance patenting activities. We detect no effect of the small-world property on 

                                                           
17 Other variations of the model are available upon request from the authors. 
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innovation. Even though these findings contrast with e.g. Cowan and Jonard (2003), Uzzi and Spiro 

(2005) and Schilling and Phelps (2007), they are backed up by studies that do not find a robust effect 

of the interaction of high clustering and smaller distance (Fleming et al., 2007). Hence, we can conclude 

that our results are not an artifact of the Spanish market for patents. 

By contrast, these effects are not generally observed in our analysis using the regional networks. The 

two node-specific characteristics, Betweenness and In Giant, matter for innovation and they both matter 

similarly in the regional and national networks, suggesting that the individual positions of actors in the 

network are highly relevant for innovation regardless of the geographical boundaries. This corroborates 

Whittington et al. (2009) with respect to centrality. Our analysis shows that their findings seem to 

extend to other node-level characteristics. 

Nevertheless, there are important differences between the regional and national architectures in the 

effects of the network-level properties on innovation. Overall, the Spanish network plays a larger role 

in patenting than the regional structures. More precisely, networks which are too centralized lower 

innovation but this effect disappears for the regional networks if more controls are set in place. Three 

more variables are found to be significant in models 2 and 4, but only at national level: Clustering, 

Reach, and Density. The results suggest that local density, measured by the average clustering 

coefficient, and reach within the country-wide network enhance the creation of cooperative patterns and 

the circulation of information among actors and higher reach facilitate fast, reliable dissemination. Such 

effects have previously been detected by Schilling and Phelps (2007) and Uzzi and Spiro (2008).  

However, these two structural properties are only relevant at the national level in our data. Lastly, 

network density affects innovation negatively but only if Clustering and Reach are included in the 

model (Models 2 and 4) and again only using the Spanish network.  

Hence, the role of the collaboration structure in innovation activities is highly sensitive to the 

geographical boundaries of the network. That is, despite the previous research on innovation networks, 

we reject both Hypotheses 1 and 2 and rather accept Hypothesis 3.  
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Table 2: Negative Binomial Regression Models. Dependent variable: Future patents. 

 
* p <0.10, **p< 0.05, ***p< 0.01, the models estimated with period fixed effects.

Independent  

Variables 
Betweenness -0.046 *** -0.001 *** -0.005 *** -0.001 *** -0.004 *** -0.001 *** -0.004 *** -0.001 *** 
Density -3.943 -51.225 82.483 -4441.040 * -24.362 -346.414 10.132 -4410.416 * 
Centralization -7.551 ** 0.705 -0.824 -176.684 * -22.283 * -103.253 * -8.672 -176.882 * 
Clustering - - 2.150 11.840 * - - 2.646 11.375 * 
Reach - - -117.275 5038.596 * - - -162.649 5017.437 * 
Small World - - - - - - 188.504 ommited 
Giant Share - - - - 0.007 -0.016 15.661 ommited 
Giant Size - - - - 15.814 117.087 -0.007 ommited 
In Giant - - - - 0.499 *** 0.588 *** 0.498 *** 0.588 *** 

Control  

Variables 
Patents 0.044 *** 0.056 *** 0.047 *** 0.056 *** 0.040 *** 0.052 *** 0.041 *** 0.052 *** 
Madrid 0.377 * 0.063 0.449 * 0.063 0.215 0.020 0.323 0.020 
Valencia 0.078 -0.108 0.047 -0.108 -0.022 -0.085 -0.001 -0.085 
Constant 1.284 ** 1.038 *** 1.241 * 0.415 0.904 0.679 1.802 0.480 

Model  

validity 
Log Likelihood 
Number of obs. 
Wald chi2 
Prob > chi2 0.0000 0.0000 0.0000 0.0000 

146.83 177.09 150.06 177.09 
0.0000 0.0000 0.0000 0.0000 

385 385 385 385 
120.55 133.45 125.87 133.45 

-913.09 -910.04 -912.54 -910.04 
385 385 385 385 

Coef. Coef. Coef. Coef. 

-917.92 -915.94 -916.97 -915.94 

Regional National Regional National 
Coef. Coef. Coef. Coef. 

Model 1 Model 2 Model 3 Model 4 
Regional National Regional National 
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5. Discussion 

Previous research reports that the patterns of collaboration in research activities influences future 

innovation. However, the literature typically sets one particular geographic boundary to characterize 

the collaboration network in one region, state or country and it is natural to ask whether these findings 

are robust to considering different geographic boundaries. We argue that this question is of crucial 

importance for policy makers and business management, especially in knowledge-intensive industries 

(Owen-Smith and Powell, 2004; Wittington et al., 2009). Policy-makers aim to promote innovation by 

financing public and private research directly as well as indirectly by stimulating collaboration, and this 

happens at different geographic levels. In a similar vein, firms relying on innovation strategically choose 

their collaboration partners in their innovation activities and the question is whether they should 

consider bringing in potential partners in regional, national, and even worldwide collaboration networks 

and which of them provide the most advantage for their future innovation. 

We test these issues using the Spanish patent data from 1978 to 2008, contrasting the role of regional 

and national collaboration patterns. Our results highlight that the conclusions in the literature may be 

specific to the geographical boundary that the researcher, policy maker or manager selects for the 

analysis. Our results corroborate the previous studies mostly applied to U.S. data in many respects 

(Fleming et al., 2007; Schilling and Phelps, 2007; Uzzi and Spiro, 2008; Whittington et al., 2009) when 

the country-wide network is analyzed. Even if no differences are found between the regional and 

nationwide networks in the influence of the node-level characteristics on innovation, the network-level 

properties of regional networks show less effect on innovation performance than those of the nationwide 

networks. Consequently, the association between innovation and network-level collaboration patterns 

may be sensitive to the geographic area set for analysis.  

These findings have important implications. First, they corroborate that networks of collaboration 

impact future patenting and that this extends to less knowledge-intensive economies such as Spain, 

since when national collaboration patterns are used the effects detected of the network structural 

properties on innovation are relatively similar to those found in other studies (Schilling and Phelps, 

2007; Whittington et al., 2009).  
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Second, our findings illustrate that scholars should be well aware that focusing on particular regions, 

such as Silicon Valley or the Boston Area, might mean missing an important part of the general picture 

of collaboration systems, leading to an overestimation or underestimation of the significance of the 

collaboration structure. 

Third, our results offer an alternative view to the two hypotheses based on the existing evidence. 

The geographical perspective typically assume that knowledge only spills over locally, while the 

network approach has abstracted from the role of network boundary and operated as if the boundary did 

not matter. We show that, in contrast to both views, the boundary matters and the externalities embedded 

in collaboration networks may be stronger in larger-scale systems than in geographically localized 

areas. This has important implications for future empirical and theoretical modeling of innovations 

systems. 

Fourth, we inform both policy-makers and managers about what type of innovation patterns and what 

type of integration they should promote. In particular, they should look beyond their regional innovation 

systems and aim for integration at higher geographic levels. Our results additionally suggest that 

country-level and regional policy makers should align their goals regarding research and innovation 

while promoting collaboration and targeting collaboration patterns.  

Needless to say, this study has several limitations. The most important one is the country under study: 

Spain’s economy is less knowledge-intensive economy than that of other countries and more systematic 

patenting has been observed only recently. This explains why the number of observations is relatively 

low in the regression analysis, and why only three regions are important in terms of innovation 

outcomes; it also limits the span of the data. This calls for a robustness analysis using e.g. U.S. data so 

as to prevent other researchers from drawing too general conclusions from our analysis. However, the 

internationalization of research activities and globalization lead us to believe that our main conclusion 

would remain valid in comparisons of e.g. the Spanish vs. the European collaboration network and even 

in comparisons of the European or the U.S. networks with worldwide collaboration patterns. These 

hypotheses represent a major question for future research.  
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