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The discrete Kuhn-Tucker theorem

and its application to auctions

Koji Yokote∗

January 10, 2018

Abstract

Using a notion of convexity in discrete convex analysis, we introduce a discrete

analogue of the Kuhn-Tucker theorem. We apply it to an auction model and show that

existing iterative auctions can be viewed as the process of finding a saddle point of the

Lagrange function.

JEL classification: C78, D44

1 Introduction

Economists often encounter a maximization problem under constraints. To solve this

problem, the Kuhn-Tucker theorem (henceforth KT theorem) is a fundamental mathemat-

ical tool. This theorem is applicable to functions with continuous variables, but recent

economic problems often deal with discrete variables. Examples include iterative auctions

(see Cramton et al. (2006) for a survey) and matching problems (see Roth and Sotomayor

(1990) and Kojima (2015) for surveys). The purpose of the present paper is to introduce a

discrete analogue of the KT theorem.

The key idea of the KT theorem is to translate a solution to the maximization problem

under constraints into a saddle point of the Lagrange function. This translation is possible if

both the objective and the constraint functions satisfy the convexity assumption. To describe

a convexity assumption in discrete settings, we utilize the notion of M \-concavity in discrete

convex analysis (Murota 2003). We first consider a maximization problem under constraints

with discrete variables where the objective and constraint functions are M\-concave. It
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turns out that a discrete version of the KT theorem does not hold for this problem. To

overcome this difficulty, we make additional assumptions on constraint functions. Our main

result shows that the discrete KT theorem holds under the following two conditions: (i) the

objective function is M\-concave; and (ii) the set of the constraint functions is a hierarchical

set of affine functions. More specifically, the constraint functions are of the form x 7→ a−b·x,

with a being a constant and b being a characteristic vector, and the characteristic vectors

form a discrete structure called hierarchy. The notion of a hierarchy was previously employed

by Budish et al. (2013), who considered the problme of randomly allocating indivisible items

under constraints. They prove that if the constraints have a hierarchical structure, any

random allocation is implementable. They also provide real-world examples in which the

constraints have a hierarchical structure. We reinforce the advantage of a hierarchy by

showing that it is sufficient to recover a discrete KT theorem.

We apply the discrete KT theorem to an auction model of Gul and Stacchetti (1999).1

Consider the problem of maximizing the sum of utilities of agents under the constraint that

each item has a single unit. We show that the Lagrange function corresponding to this

problem coincides with the Lyapunov function proposed by Ausubel (2006). In particular,

the competitive price vectors appear as a solution to minimizing the Lagrange function, i.e.,

a Lagrangian multiplier. Our result provides a mathematical foundation to Ausubel’s (2006)

auction, which proceeds by minimizing the Lyapunov function. Moreover, as many existing

iterative auctions can be embedded into Ausubel’s (2006) auction (see Murota et al. (2016)),

our result provides a unified approach to existing auctions.

The rest of the paper is organized as follows. Section 2 presents preliminaries. Section 3

presents the KT theorem for continuous and discrete cases. Section 4 presents an application

of the discrete KT theorem to auctions. Section 5 concludes. All proofs are provided in

Section 6.

2 Preliminaries

Let K be a finite set. Let RK denote the real vector space indexed by the elements in

K. Let ZK ⊆ RK be the set of vectors with integer coordinates. For a function f : RK →
R ∪ {−∞}, we define the effective domain of f by

domf = {x ∈ RK : f(x) > −∞}.

1This model is a special case of the Kelso and Crawford (1982) model of job matching.
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For each A ⊆ K, let χA ∈ {0, 1}K denote the characteristic vector of A, i.e.,

(χA)k =

1 if k ∈ A,

0 otherwise.

For a singleton set {k} ⊆ K, we write χk for χ{k}.

For x ∈ ZK , we define

supp+x = {k ∈ K : xk > 0}, supp−x = {k ∈ K : xk < 0}.

A function f : RK → R ∪ {−∞} with domf 6= ∅ is concave if, for any x, y ∈ RK and

λ ∈ (0, 1), we have

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y).

A function f : ZK → Z ∪ {−∞} with domf 6= ∅ is M\-concave (Murota 2003) if, for any

x, y ∈ ZK and k ∈ supp+(x− y), we have

(i) f(x) + f(y) ≤ f(x− χk) + f(y + χk), or

(ii) there exists ` ∈ supp−(x− y) such that f(x) + f(y) ≤ f(x−χk +χ`) + f(y+χk−χ`).

For an interpretation of M\-concavity, see Section 3 of Kojima et al. (2017).

3 Kuhn-Tucker theorem

For X ⊆ RK , let ri(X) denote the relative interior of X. We begin with the KT theorem

with continuous variables.

Theorem (Kuhn-Tucker theorem). Let f : RK → R ∪ {−∞} be a concave function and

g1, . . . , gq : RK → R be concave functions. Suppose there exists x ∈ RK such that

x ∈ ri(domf) and gj(x) > 0 for all j = 1, . . . , q.

Then, for x∗ ∈ RK, the following are equivalent:

1. x∗ is a solution to max f(x) subject to gj(x) ≥ 0 for all j = 1, . . . , q.

2. There exists (λ∗1, . . . , λ
∗
q) ∈ Rq

+ such that

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) for all x ∈ RK , λ ∈ Rq
+,
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where L(·, ·) : RK × Rq
+ → R ∪ {−∞} is given by

L(x, λ) = f(x) +

q∑
j=1

λjgj(x) for all x ∈ RK , λ ∈ Rq
+.

Keeping this theorem in mind, a discrete KT theorem is a statement that replaces all of

the “R” with “Z”, and “concave” with some notion of discrete concavity. One may consider

assuming that f and g1, . . . , gq are M\-concave, but this does not work, as shown in the next

counterexample.

Example 1. Let K = {1, 2, 3} and f(x) = x1 + x2 + x3 for all x ∈ ZK . Consider three

constraint functions given by

g1(x) = 2− x1 − x2, g2(x) = 2− x1 − x3, g3(x) = 2− x2 − x3 for all x ∈ ZK .

We remark that f and g1, g2, g3 are M\-concave.

One easily verifies that x∗ = (1, 1, 1) is a solution to max f(x) subject to gj(x) ≥ 0 for

j = 1, 2, 3. Consider the Lagrange function: for all x ∈ ZK
+ and λ ∈ Z3

+,

L(x, λ) = x1 + x2 + x3 + λ1(2− x1 − x2) + λ2(2− x1 − x3) + λ3(2− x2 − x3). (1)

Suppose there exists λ∗ ∈ Z3
+ such that L(x, λ∗) ≤ L(x∗, λ∗) for all x ∈ ZK

+ . This is true

only if the coefficients for x1, x2, x3 in (1) are 0, i.e.,

1− λ∗1 − λ∗2 = 0, 1− λ∗1 − λ∗3 = 0, 1− λ∗2 − λ∗3 = 0.

This is true only if λ∗ = (1
2
, 1
2
, 1
2
), a contradiction to λ∗ ∈ Z3

+.

This example illustrates that a discrete KT theorem does not hold, even if each constraint

function gj(·) is given by an affine function gj(x) = a − x · χA for some a ∈ Z and A ⊆ K.

We further restrict the class of constraint functions by using a concept in the combinatorial

optimization literature.

We say that A ⊆ 2K is a hierarchy if, for every pair of elements A and A′ in A, we have

A ⊆ A′ or A′ ⊆ A or A ∩ A′ = ∅.2 We say that a set of functions g1, . . . , gq : ZK → Z is a

hierarchical set of affine functions if

1. For each j = 1, . . . , q, there exist aj ∈ Z and Aj ⊆ K with Aj 6= ∅ such that gj(x) =

aj − x · χAj
for all x ∈ ZK ; and

2. The set {Aj : j = 1, . . . , q} is a hierarchy.

2Hierarchies are also called laminar families in the literature.
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The constraint functions in Example 1 violate this condition because
{
{1, 2}, {1, 3}, {2, 3}

}
is not a hierarchy. We are in a position to state our main result.

Theorem 1 (Discrete Kuhn-Tucker theorem). Let f : ZK → Z ∪ {−∞} be an M\-concave

function and g1, . . . , gq : ZK → Z be a hierarchical set of affine functions. Then, for x∗ ∈ ZK
+ ,

the following are equivalent:

1. x∗ is a solution to max f(x) subject to gj(x) ≥ 0 for all j = 1, . . . , q.

2. There exists (λ∗1, . . . , λ
∗
q) ∈ Zq

+ such that

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) for all x ∈ ZK , λ ∈ Zq
+, (2)

where L(·, ·) : ZK × Zq
+ → Z ∪ {−∞} is given by

L(x, λ) = f(x) +

q∑
j=1

λjgj(x) for all x ∈ ZK , λ ∈ Zq
+. (3)

The proof is provided in Section 6.

4 Application to an auction model

We apply the discrete KT theorem to an auction model. Let K be a set of items and N

be a set of agents. Each agent i ∈ N has a valuation function vi : {0, 1}K → Z; we identify

a subset of items A ⊆ K with a characteristic vector χA ∈ {0, 1}K .

For each i ∈ N , we define the demand correspondence Di : RK
+ → {0, 1}K by

Di(p) =
{
x ∈ {0, 1}K : vi(x)− p · x ≥ vi(y)− p · y for all y ∈ {0, 1}K

}
for all p ∈ RK

+ .

We say that vi is monotonic if for any A,A′ ⊆ K with A ⊆ A′, we have v(χA) ≤ v(χA′).

We say that vi satisfies the gross substitutes condition (Kelso and Crawford 1982) if for

any p, q ∈ RK
+ with p ≤ q and x ∈ Di(p), there exists y ∈ Di(q) such that xk ≤ yk if pk = qk.

Lemma 1 (Fujishige and Yang 2003). Suppose v is monotonic. Then v satisfies the gross

substitutes condition if and only if v is M\-concave.

For each i ∈ N , we define the indirect utility function Vi : RK
+ → Z by

Vi(p) = max
x∈{0,1}K

(
vi(x)− p · x

)
for all p ∈ RK

+
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We define the Lyapunov function (Ausubel 2006) L : ZK
+ → Z by

L(p) =
∑
i∈N

Vi(p) + p · χK for all p ∈ ZK
+ .

We consider the set of |N × K|-dimensional 0-1 vectors {0, 1}N×K . For x ∈ {0, 1}N×K

and (i, k) ∈ N ×K, x(i,k) = 1 is intended to mean that agent i consumes one unit of item k.

For x ∈ {0, 1}N×K and i ∈ N , let xi denote the projection of x on {0, 1}{i}×K .

We define f : ZK → Z by

f(x1, . . . , xn) =


∑

i∈N vi(xi) if (x1, . . . , xn) ∈ {0, 1}N×K ,

−∞ otherwise.

As recognized in the literature, if vi is M\-concave for all i ∈ N , f(·) is also M\-concave.3

We consider the problem of maximizing f(·) (i.e., the sum of valuations) under the

constraint that, for each item k, the total amount consumed over agent is at most 1. To

describe this constraint, consider gk : {0, 1}N×K → Z defined by

gk(x) = 1− x · χN×{k} for all x ∈ {0, 1}N×K ,

where χN×{k} ∈ {0, 1}N×K is the characteristic vector defined by

(χN×{k})(i,k′) =

1 if k′ = k,

0 otherwise.

Let x∗ ∈ {0, 1}N×K be a solution to the maximization problem. As the set {χN×{k} : k ∈ K}
is a hierarchy, we can apply the discrete KT theorem. There exists p∗ ∈ ZK

+ such that (x∗, p∗)

3This preservation of M\-concavity was previously discussed by Fujishige and Tamura (2007) (see equa-
tion (15)).
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is a saddle point of the Lagrange function,4 i.e.,

L(x∗, p∗) = min
p∈ZK

max
x∈{0,1}N×K

L(x, p)

= min
p∈ZK

max
x∈{0,1}N×K

{∑
i∈N

vi(xi) +
∑
k∈K

pkgk(x)
}

= min
p∈ZK

max
x∈{0,1}N×K

{∑
i∈N

vi(xi) +
∑
k∈K

pk −
∑
k∈K

pk
∑
i∈N

(xi)k

}
= min

p∈ZK
max

x∈{0,1}N×K

{∑
i∈N

vi(xi) +
∑
k∈K

pk −
∑
i∈N

p · xi
}

= min
p∈ZK

max
x∈{0,1}N×K

{∑
i∈N

(
vi(xi)− p · xi

)
+
∑
k∈K

pk

}
= min

p∈ZK

{
Vi(p) +

∑
k∈K

pk

}
= min

p∈ZK
L(p).

This means that finding a saddle point of the Lagrange function corresponds to Ausubel’s

(2006) auction, the process of finding a minimizer of the Lyapunov function. Note that the

above argument implies that p∗ is a competitive price vector if and only if p∗ minimizes L(·),
which was previously proved by Ausubel (2006).

5 Conclusion

A maximization problem under constraints requires us to consider many functions (objec-

tive and constraint functions) at the same time, which makes the problem complicated. The

usefulness of the KT theorem is to simplify the problem by aggregating relevant information

into one function (Lagrange function). Note that Ausubel’s (2006) Lyapunov function also

plays a similar role in the context of auctions. The original problem of finding a competitive

price vector concerns agents’ valuations and the capacity of items, which are all aggregated

into the minimization of the Lyapunof function. The contrast between the two provides

some intuition for why the auction algorithm is connected to the KT theorem.

We can expand the Lagrange function approach to the Kelso and Crawford (1982) model

of job matching and provide new insight into the competitive price vectors. We will discuss

this issue in an updated version of this paper.

4We remark that any saddle point (x∗, p∗) satisfies L(x∗, p∗) = maxx minp L(x, p) = minp maxx L(x, p).
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6 Proof of Theorem 1

6.1 Preliminaries

We enumerate the definitions, theorems and claims used in the proof.

Definition 1. For x ∈ ZK and A ⊆ K, we define x(A) =
∑

k∈A xk.

Definition 2. We say that X ⊆ ZK with X 6= ∅ is an M\-convex set (Murota 2003) if,

for any x, y ∈ X and k ∈ supp+(x− y), we have

(i) x− χk ∈ X, y + χk ∈ X, or

(ii) there exists ` ∈ supp−(x− y) such that x− χk + χ` ∈ X, y + χk − χ` ∈ X.

Definition 3. We say that X ⊆ ZK with X 6= ∅ is an L\-convex set (Murota 2003) if, for

any x, y ∈ X with supp+(x− y) 6= ∅, we have

x− χA ∈ X and y + χA ∈ X for A = arg max
k∈A

{xk − yk}.

Definition 4. A set function ρ : 2K → R ∪ {+∞} is submodular if

ρ(A) + ρ(A′) ≥ ρ(A ∪ A′) + ρ(A ∩ A′) for all A,A′ ∈ 2K .

Definition 5. For X ⊆ RK , we define the indicator function of X, δX : RK → Z∪{−∞},
by

δX(x) =

0 if x ∈ X,

−∞ otherwise.

Definition 6. For f : ZK → Z ∪ {−∞} and x∗ ∈ domf , we define the supergradient of

f at x∗ (in Z) by

∂Zf(x∗) = {x̂ ∈ ZK : f(x∗) + x̂ · (x− x∗) ≥ f(x) for all x ∈ ZK}.

For f : RK → R ∪ {−∞} and x∗ ∈ domf , we define the supergradient of f at x∗ (in R)

by

∂Rf(x∗) = {x̂ ∈ RK : f(x∗) + x̂ · (x− x∗) ≥ f(x) for all x ∈ RK}.
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Definition 7. For X, Y ⊆ RK , we define

−X = {x ∈ RK : −x ∈ X}, X − Y = {x− y ∈ RK : x ∈ X, y ∈ Y }.

Definition 8. For X ⊆ ZK , let X ⊆ RK denote the convex hull of X.

Definition 9. Let K ⊆ 2K . We define the cone generated by (χA)A∈K (in Z) by

coneZ(K) =
{
x ∈ ZK : x =

∑
A∈K

λA · χA for some (λA)A∈K ∈ ZK+
}
.

We define the cone generated by (χA)A∈K (in R) by

coneR(K) =
{
x ∈ RK : x =

∑
A∈K

λA · χA for some (λA)A∈K ∈ RK+
}
.

Definition 10. For X ⊆ ZK , we define the polar of X by

X◦ = {y ∈ ZK : y · x ≤ 0 for all x ∈ X}.

Theorem 2 (Murota 2003, p.117). Let X ⊆ ZK be such that

X = {x ∈ ZK : x(A) ≤ ρ(A) for all A ⊆ K}

for some submodular set function ρ with ρ(∅) = 0. Then, X is an M\-convex set.

Theorem 3 (Murota 2003, Theorem 8.17 (M\-concave intersection theorem)). For M\-

concave functions f1, f2 : ZK → Z ∪ {−∞} and a point x∗ ∈ domf1 ∩ domf2, we have

f1(x
∗) + f2(x

∗) ≤ f1(x) + f2(x) for all x ∈ ZK

if and only if there exists x̂ ∈ ZK such that

x̂ ∈ ∂Zf1(x∗) and − x̂ ∈ ∂Zf2(x∗).

Theorem 4 (Murota 2003, (5.8) (Convexity in intersection for L\-convex sets)). For L\-

convex sets X1, X2 ⊆ ZK , we have

X1 ∩X2 6= ∅ =⇒ X1 ∩X2 6= ∅.
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Claim 1. Let K ⊆ 2K be a hierarchy and (aA)A∈K ∈ ZK. Then, the set

X = {x ∈ ZK : x(A) ≤ aA for all A ∈ K}

is an M\-convex set.

Proof. We define ρ : 2K → Z ∪ {+∞} by

ρ(A) =


0 if A = ∅,

aj if A = Aj,

aj + aj′ if A = Aj ∪ Aj′ for some j, j′ ∈ {1, . . . , q} with j 6= j′,

+∞ otherwise.

Then, ρ is submodular and

X = {x ∈ ZK : x(A) ≤ ρ(A) for all A ⊆ K}.

By Theorem 2, X is an M\-convex set.

Claim 2. Let K ∈ 2K be a hierarchy. Then, the set

coneR(K) ∩ ZK

is an L\-convex set.

Proof. This theorem follows from Claim 1 and the discrete conjugacy theorem (see Murota

(2003), Theorem 8.12).

Claim 3. Let K ∈ 2K . Then,

coneZ(K) = coneR(K).

Proof. We define the |K|-dimensional unit simplex by

∆ =
{
µ ∈ R|K|+1 : µj ≥ 0 for all j = 1, . . . , |K|+ 1,

|K|+1∑
j=1

µj = 1
}
.

Proof of ⊆: Let x ∈ coneZ(K). By Carathéodory’s theorem, there exist x1, . . . , x|K|+1 ∈
coneZ(K) and µ ∈ ∆ such that x =

∑
j µjxj. For each xj ∈ coneZ(K) with j = 1, . . . , |K|+1,
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there exists (λA,j)A∈A ∈ ZK+ such that xj =
∑

A∈K λA,jχA. Then,

x =

|K|+1∑
j=1

µj

∑
A∈K

λA,jχA =
∑
A∈K

|K|+1∑
j=1

(µj · λA,j)χA.

Hence, x ∈ coneR(K).

Proof of ⊇: Let x ∈ coneR(K). Then, there exists (λA)A∈K ∈ RK+ such that x =∑
A∈K λAχA. For each A ∈ K, by RK+ = ZK+ and Carathéodory’s theorem, there exist

zA,1, . . . , zA,|K|+1 ∈ Z+ and µ ∈ ∆ such that λA =
∑

j µjzA,j. Then,

x =
∑
A∈K

(|K|+1∑
j=1

µjzA,j

)
χA =

|K|+1∑
j=1

µj

∑
A∈K

zA,jχA.

Hence, x ∈ coneZ(K).

Claim 4. For any hierarchy K ⊆ 2K ,

coneR(K) ∩ ZK = coneZ(K).

Proof. One easily verifies that ⊇ holds. We prove ⊆ by induction on |K|.
induction base: Suppose |K| = 1. Let x ∈ coneR(K)∩ZK . Assuming K = {A}, x = λA ·χA

for some λA ∈ R+. Since x ∈ ZK , λA ∈ Z+. Hence, x ∈ coneZ(K).

Induction step: Suppose the result holds for |K| = t, and we prove the result for |K| = t+1,

where t ≥ 1.

Let x ∈ coneR(K) ∩ ZK and A′ ∈ K. Then, there exists (λA)A∈K ∈ RK+ such that

x =
∑

A∈K\{A′}

λA · χA + λA′ · χA′ .

This implies that

coneR(K\{A′}) ∩
(
{x} − coneR({A′})

)
6= ∅. (4)

By Claim 3,

coneR(K\{A′}) = coneZ(K\{A′}). (5)
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We also have

{x} − coneR({A′}) = {x} − coneZ({A′})
= {x} − coneZ({A′}), (6)

where the first inequality follows from Claim 3 and the second inequality follows from Propo-

sition 3.17(4) of Murota (2003).

By (4)-(6),

coneZ(K\{A′}) ∩ {x} − coneZ({A′}) 6= ∅.

By the induction hypothesis and Claim 2, coneZ(K\{A′}) is L\-convex. One easily verifies

that {x} − coneZ({A′}) is also L\-convex. By Theorem 4,

coneZ(K\{A′}) ∩
(
{x} − coneZ({A′})

)
6= ∅.

This implies that x ∈ coneZ(K).

6.2 Proof of 2⇒ 1:

We mimic the proof of the KT theorem (for continuous settings) by Tiel (1984, p.103).

By the latter inequality in (2), L(x∗, λ∗) ≤ L(x∗, λ) for all λ ∈ Zq
+. Together with (3),

q∑
j=1

λ∗jgj(x
∗) ≤

q∑
j=1

λjgj(x
∗) for all λ ∈ Zq

+,

0 ≤
q∑

j=1

(λj − λ∗j)gj(x∗) for all λ ∈ Zq
+. (7)

Since (7) holds for all λ ∈ Zq
+,

gj(x
∗) ≥ 0 for all j = 1, . . . , q. (8)

Letting λ = 0 in (7),

q∑
j=1

λ∗jgj(x
∗) ≤ 0.
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Combining this inequality with (8) yields

q∑
j=1

λ∗jgj(x
∗) = 0.

This equation and the former inequality in (2), L(x, λ∗) ≤ L(x∗, λ∗) for all x ∈ ZK , imply

f(x) +

q∑
j=1

λ∗jgj(x) ≤ f(x∗) for all x ∈ ZK .

This means that f(x) ≤ f(x∗) whenever gj(x) ≥ 0 for all j = 1, . . . , q. Together with (8),

we obtain the desired condition.

6.3 Proof of 1⇒ 2:

By assumption, for all j = 1, . . . , q, there exist aj ∈ Z and Aj ⊆ K with Aj 6= ∅ such

that

gj(x) = aj − x(Aj) for all x ∈ ZK .

Our purpose is to find λ∗ ∈ Zq
+ that satisfies the statement in 2. Suppose Aj = Aj′ for some

j, j′ ∈ {1, . . . , q} with aj ≤ aj′ . Then, gj′(·) is a redundant constraint function. In the proof

below, we can ignore such j′ by letting λ∗j′ = 0. Hence, w.l.o.g., we assume

Aj 6= Aj′ for all j, j′ ∈ {1, . . . , q}.

Set C = {x ∈ ZK : gj(x) ≥ 0 for all j = 1, . . . , q}. By Claim 1, δC(·) is an M\-concave

function. Since x∗ is a solution to the maximization problem under constraints,

f(x∗) + δC(x∗) ≥ f(x) + δC(x) for all x ∈ ZK .

By Theorem 3, there exists x̂ ∈ ZK such that

x̂ ∈ ∂Zf(x∗), (9)

−x̂ ∈ ∂ZδC(x∗). (10)

By (10) and the definition of a supergradient, −x̂ ∈ ∂RδC(x∗). As recognized in the literature

on convex analysis (see, for example, Rockafellar (1970), Section 23), −∂RδC(x∗) is the normal
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cone to C̄ at x∗. i.e.,

−∂RδC(x∗) = {y ∈ ZK : y · (x− x∗) ≤ 0 for all x ∈ C}.

By Proposition 5.2.4 of Hiriart-Urruty and Lemaréchal (2001), the normal cone is the polar

of the tangent cone. This fact and (10) imply x̂ ∈ coneR(K), where

K =
{
A ⊆ K : A = Aj for some j ∈ {1, . . . , q} with gj(x

∗) = 0
}
.

Since K is hierarchy, by Claim 4, x̂ ∈ coneZ(K). Hence, there exists (λ∗A)A∈K ∈ ZK+ such that

x̂ =
∑
A∈K

λ∗AχA.

For each j ∈ {1, . . . , q} with gj(x
∗) = 0, set λ∗j = λ∗Aj

for Aj ∈ K. For each j ∈ {1, . . . , q}
with gj(x

∗) > 0, set λ∗j = 0.

We prove that (x∗, λ∗) is a saddle point of L(·, ·) defined by (3). We first fix λ∗ and regard

L(·, λ∗) as a function on RK . Then,

∂ZL(x∗, λ∗) = ∂Z

(
f(x∗) +

q∑
j=1

λ∗jgj(x
∗)
)

= ∂Zf(x∗)−
q∑

j=1

λjχAj

3 x̂− x̂
= 0,

where the second equality, the decomposition of the supergradient, follows from the fact that

gj(·), j = 1, . . . , q, are affine functions. This means that L(·, λ∗) is maximized at x∗.

Next fix x∗ and regard L(x∗, ·) as a function on Zq
+. As x∗ satisfies the constraints,

gj(x
∗) ≥ 0 for all j = 1, . . . , q. Hence, for any λ ∈ Zq

+,

q∑
j=1

λjgj(x
∗) ≥ 0. (11)

Moreover, by the construction of λ∗,

q∑
j=1

λ∗jgj(x
∗) = 0. (12)

14



We conclude

L(x∗, λ) = f(x∗) +

q∑
j=1

λjgj(x
∗) ≥ f(x∗) +

q∑
j=1

λ∗jgj(x
∗) = L(x∗, λ∗) for all λ ∈ Zq

+,

where the inequality follows from (11) and (12).
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