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1 Introduction

Sun, Carroll & Li (2009) and Lin, Li & Sun (2014) study the following semiparametric functional-
coefficient fixed-effects panel data model:

yit = g′iθ (zit) + x′itβ(zit) + µi + uit, i = 1, . . . , n, t = 1, . . . , T, (1.1)

where yit is the (scalar) outcome variable of interest; gi and xit are the time-invariant and time-
varying explanatory variables of dimensions dg and dx, respectively; zit is a continuously distributed
univariate random variable; and θ (·) and β (·) are the dg×1 and dx×1 vectors of unknown functions
to be estimated. The unobserved fixed effects µi are allowed to correlate with the strictly exogenous
covariates gi, xit and zit, but are assumed to be uncorrelated with the idiosyncratic error uit, which
is i.i.d. with zero mean and finite variance σ2u. Both Sun et al. (2009) and Lin et al. (2014) restrict
their models to the case of dg ≤ 1.

The above semiparametric model has proven to be a popular specification among practitioners.
Not only can the model in (1.1) be conveniently applied to reduce the “curse-of-dimensionality”
problem, but it also nests purely nonparametric fixed-effects panel data models as well as partially
linear fixed-effects panel data models studied by Henderson, Carroll & Li (2008), Qian & Wang
(2012) and Li & Liang (2015), who all however focus on a rather restrictive case of dg = 0.

In this paper, we seek to generalize model (1.1) further to the case with spatial dependence in
the data. We do so by including the spatial lag of the outcome variable as an additional explanatory
variable and allowing the corresponding spatial multiplier to vary with respect to the contextual
covariate zit. That is, we consider the following functional-coefficient spatial autoregressive (SAR)
fixed-effects panel data model:

yit = ρ(zit)
∑
j 6=i

wijyjt + g′iθ (zit) + x′itβ(zit) + µi + uit, i = 1, . . . , n, t = 1, . . . , T, (1.2)

where
∑

j 6=iwijyjt is called the “spatial lag” term; wij is the (i, j)-th element of an n × n pre-
determined non-stochastic time-invariant spatial weighting matrix W0 such that wii = 0 for all
i = 1, . . . , n; and yit is spatially stationary.1 Further, ρ(·) is usually referred to as the “spatial mul-
tiplier” or “spatial lag parameter”, which is an unknown function to be estimated. For instance,
when the SAR model is game-theoretically rationalized as a “reaction function” (e.g., Brueckner,
2003), the spatial multiplier ρ(·) can be conveniently interpreted as the “reaction” parameter, which
our model permits to meaningfully vary with some contextual factor zit. Since the spatial multiplier
captures the direct impact of other units’ actions/outcomes on the ith unit’s action/outcome, ex-
tending (1.1) to model (1.2) enables us to test whether there is spatial/economic externality across
individual units. Also note that, when ρ (z) ≡ ρ0, θ (z) ≡ 0dg and β(z) ≡ β0, our semiparametric
model (1.2) collapses to Lee & Yu’s (2010a) fully parametric SAR fixed-effects panel data model.

Some potential applications of our model, for instance, include the estimation of growth mod-
els that explicitly account for technological interdependence between countries in the presence of
spillover effects. Such a technological interdependence is usually formulated in the form of spa-
tial externalities (e.g., see Ertur & Koch, 2007). However, the intensity of knowledge spillovers
is naturally expected to greatly depend on institutional and cultural compatibility of neighboring
countries (Kelejian, Murrell & Shepotylo, 2013). Our functional-coefficient model presents a prac-
tical method to allow for such indirect effects of institutions on the degree of spatial dependence in
the cross-country conditional convergence regressions via a contextual variable zit. The estimation

1We delay the discussion of the spatial stationarity condition to Section 2.
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of hedonic house price functions is another application, where it is imperative to allow for potential
spatial dependence in the data. House prices are widely believed to be spatially autoregressive
because residential property values tend to reflect shared local amenities as well as observed and
unobserved neighborhood characteristics. While these characteristics can be partly controlled for
using locality fixed effects, such an approach may be unsatisfactory since it does not let charac-
teristics of neighboring houses affect the price of a given house (Anselin & Lozano-Gracia, 2009).
However, by including the spatial lag in a house pricing function, one is able to accommodate such
cross-neighbor effects.

In recent decades, the econometric literature has seen a rapid development in the theory of non-
parametric estimation and testing of fixed-effects panel data models. For instance, see Sun, Zhang
& Li (2015) for an excellent survey on the nonparametric panel data analysis. However, the intro-
duction of nonparametric structure to models with spatial dependence (and spatial autoregressive
models, in particular) in the panel data setup still lacks enough attention and progress, although
significantly more visible advances have been made in the development of parametric spatial models
(e.g., Lee & Yu, 2010a,b, 2012, 2014; Yu, de Jong & Lee, 2012). Our work therefore aims to fill
this research gap in the literature.

Few existing nonparametric studies, all of which focus on a purely cross-sectional setup, include
the works of Su & Jin (2010), Su (2012) and Zhang (2013), who consider a Robinson-type partially
linear semiparametric SAR model, whereas Sun, Yan, Zhang & Lu (2014) and Malikov & Sun (2017)
study fully and/or partially linear functional-coefficient SAR models. The spatial autoregressive
models in which spatial weights are specified in the form of unknown nonparametric functions of
some geographic or economic distance are examined by Pinkse, Slade & Brett (2002) and Sun
(2016).

For a large n and fixed T , we develop an innovative way of estimating model (1.2). We first
propose a two-stage kernel estimation method to estimate ρ (·) and β (·), after removing the un-
observed fixed effects from the model via first differencing. Our approach transforms the model
into a semiparametric additive panel data model from which a consistent estimator is usually con-
structed using either the backfitting (Henderson et al., 2008; Mammen, Støve & Tjøstheim, 2009;
Li & Liang, 2015) or marginal integration techniques (Qian & Wang, 2012).2 Unlike a more con-
ventional model (1.1), our model of interest in (1.2) naturally suffers from the endogeneity problem
due to the presence of the spatial lag term in the equation. We therefore resort to a nonparametric
instrumental variable approach in order to construct consistent estimators of the unknown coeffi-
cient curves ρ (·) and β (·). However, when based on both localized linear and quadratic moments,
the nonparametric GMM estimator has no analytic expression. Consequently, both the backfitting
and marginal integration techniques can be computationally challenging in the calculation of such
an estimator for model (1.2). Therefore, we propose a new estimator that is significantly simpler
to implement than the backfitting and marginal integration estimators.

Having consistently estimated ρ (·) and β (·) at the conventional nonparametric convergence
rate in the second stage, we next propose a third-stage sieve estimator to consistently estimate
unknown functional curves θ (·) for time-invariant regressors gi. Importantly, the estimator we
propose in this paper can be used to estimate functional coefficients θ (·) even when the number
of time-invariant regressors is greater than one, i.e., dg > 1. The methodology that we develop
can also be used to estimate the traditional functional-coefficient fixed-effects panel data models
with time-invariant covariates like the one in (1.1). This makes a significant improvement over the
existing estimation methods that are applicable to the case of dg ≤ 1 only (as in Sun et al., 2009).

2Where all these articles consider purely nonparametric fixed-effects panel data models with exogenous covariates
and no spatial dependence.
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Given that our semiparametric spatial autoregressive model (1.2) nests a more traditional
functional-coefficient fixed-effects model in (1.1) as a special case, one may naturally wish to for-
mally discriminate between the two models. Therefore, we also propose a consistent residual-based
L2-type test statistic to test for relevance of the spatial lag term in the model. The proposed is,
essentially, the test for spatial endogeneity. Our specification test belongs to the family of similar
nonparametric residual-based tests considered for independent data (e.g., Zheng, 1996; Li & Wang,
1998), weakly dependent time series data (e.g., Fan & Li, 1999; Li, 1999), integrated time series
data (e.g., Wang & Phillips, 2012; Sun, Cai & Li, 2015) and, more recently, for spatial data (e.g.,
Su & Qu, 2017; Malikov & Sun, 2017).

The rest of the paper is organized as follows. Section 2 explains the model of interest along
with the spatial stationarity condition. We derive the consistency and asymptotic normality results
for the first-difference kernel estimator of ρ (·) and β (·) in Section 3, whereas the limiting results
for a sieve estimator of θ (·) are discussed in Section 4. Section 5 contains a further discussion of
the estimation issues. Section 6 presents a consistent nonparametric test statistic to test for the
presence of spatial endogeneity in the model. Section 7 reports a small Monte Carlo simulation
study to asses the small sample performance of our proposed estimators and the test statistic. We
conclude in Section 8. All mathematical proofs are relegated to the Appendix.

Before anything else, we summarize our notation. Boldface letters are reserved for vectors and
matrices. (i) Throughout this paper, we denote an [n(T − 1)]× dω matrix ω = [ω′2, . . . ,ω

′
T ]′ with

an n× dω vector ωt = [ω1t, . . . ,ωnt]
′ for any t = 2, . . . , T , where ωit is a dω × 1 vector. (ii) Let iT

be a T × 1 vector of ones, 0q be a q × 1 vector of zeros, Im be an m×m identity matrix and 0q×p
be a q × p zero matrix. (iii) ‖·‖ refers to the Euclidian norm, and ‖A‖1 = max1≤j≤n

∑n
i=1 |aij |

and ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij | are the column and row sum matrix norms, respectively. (iv)
Let λj (A), λmin (A) and λmax (A) respectively be the jth, smallest and largest eigenvalue of some

m×m matrix A = (aij)
m
i,j=1, and ‖A‖sp = max‖ω‖=1,ω 6=0 ‖Aω‖ = λ

1/2
max (A′A) defines the spectral

norm. For any vector a, we see ‖a‖ = ‖a‖sp. (v) We denote As = A + A′ for any square matrix
A. (vi) An = Oe (1) means that each and every element of a random matrix An is of order Op (1)

not op (1). (vii) An
d
= Bn means that An and Bn have the same distribution asymptotically. (viii)

We use C to denote a generic constant that can take different values at different places.

2 The Model

We rewrite model (1.2) in matrix form:

yt = ρ (zt) W0yt + g′θ (zt) + φ′tβ(zt) + µ+ ut, t = 1, . . . , T, (2.1)

where ρ (zt) = diag {ρ (z1t) , . . . , ρ (znt)} is an n × n diagonal matrix of spatial autoregressive pa-
rameter functions; β (zt) =

[
β (z1t)

′ , . . . ,β (znt)
′]′ and θ (zt) =

[
θ (z1t)

′ , . . . ,θ (znt)
′]′ are (ndx)×1

and (ndg)× 1 vectors of functional coefficients, respectively; φt = diag {x1t, . . . ,xnt} is a (ndx)×n
matrix; g = diag {g1, . . . ,gn} is a (ndg) × n matrix; and µ = [µ1, . . . , µn]′ is an n × 1 vector of
unobserved individual-specific fixed effects. The reduced form of model (2.1) is given by

yt = Sn (zt)
[
g′θ (zt) + φ′tβ(zt) + µ+ ut

]
, t = 1, . . . , T (2.2)

provided that Sn (zt) = [In − ρ (zt) W0]
−1 exists.3 This means that, if

max
1≤j≤n,1≤t≤T

|λj {In − ρ(zt)W0}| < 1 (2.3)

3By Property 19.15 in Seber (2008, p.421),
∑∞

i=0 A
i
n converges to (In −An)−1 if limk→∞Ak

n = 0 or
max1≤j≤n |λj (An)| < 1, where An is an n× n matrix.
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holds almost surely, model (2.2) can be rewritten as

yt =

∞∑
k=0

[ρ (zt) W0]
k [g′θ (zt) + φ′tβ(zt) + µ+ ut

]
, t = 1, . . . , T. (2.4)

For any given t, condition (2.3) implies that the spatial weight [ρ (zt) W0]
k becomes smaller in

magnitude and less important as k increases. This is analogous to the time-series case of an AR(1)
process, e.g., st = ρst−1+vt, becomes stationary if |ρ| < 1, under which condition st =

∑∞
k=0 ρ

kvt−k.
Hence, we say that {yit} is spatially stationary if (2.3) holds true. Throughout this paper, we assume
(2.3) holds. Further discussion of this condition is delayed until Section 5.2.

Next, we note that, in the presence of unobserved fixed effects µ, the functional coefficients
θ (zit) of time-invariant regressors gi are not identifiable from θ0 + θ1 (zit), where θ0 is a vector of
constants. Therefore, we normalize these coefficients such that θ (0) = 0dg holds true. This is a
reasonable normalization, since g′iθ0 can always be attributed to time-invariant fixed effects.

3 The First-Difference Kernel Estimator of ρ (z) and β (z)

We propose a two-stage kernel estimation method to estimate model (1.2), removing unobserved
fixed effects from the model via the first-difference transformation. We opt to cancel fixed effects
out by transforming the model as opposed to “concentrate” them out by employing Sun et al.’s
(2009) smoothed dummy variable approach due to infeasibility of the latter in the GMM setup.4

Define two (dx + 1) × 1 vectors: mit =
[∑

j 6=iwijyjt,x
′
it

]′
and γ(zit) = [ρ(zit),β(zit)

′]′. Then,

applying the first-difference transformation to model (1.2) gives

∆yit = g′i [θ (zit)− θ (zi,t−1)]+m′itγ(zit)−m′i,t−1γ(zi,t−1)+∆uit, i = 1, . . . , n, t = 2, . . . , T (3.1)

where ∆yit = yit − yi,t−1 and ∆uit = uit − ui,t−1.
Further, since the spatial lag term in (1.2) is endogenous, we assume there exist dq ≥ 1 valid

instruments for
∑

j 6=iwijyjt denoted by qit such that

E [qituis|xi, zi,gi] = 0dq ∀ i, s, t almost surely, (3.2)

where xi = [x′i1, . . . ,x
′
iT ]′ and zi = [zi1, . . . , ziT ]′, which implies that qit is strictly exogenous.

Applying the Taylor expansion to θ (zit) and γ (zit) at an interior point z1 and to θ (zi,t−1) and
γ (zi,t−1) at an interior point z2 6= z1, we approximate (3.1) by

∆yit ≈ g′i [θ (z1)− θ (z2)] + m′itγ(z1)−m′i,t−1γ(z2) + ∆uit

= g′iθ̇ (z) + ξ′m′itγ (z) + ∆uit (3.3)

for a given (i, t) such that |zit − z1| = o (1) and |zi,t−1 − z2| = o (1), where z = [z1, z2]
′, ξ = [1,−1]′,

mit = diag {mit,mi,t−1}, θ̇ (z) = θ (z1) − θ (z2) and γ (z) =
[
γ (z1)

′ ,γ (z2)
′]′. Note that, due to

the time invariance of gi, we can only identify θ̇ (z) and not θ (z1) and θ (z2) individually.

Equations (3.2) and (3.3) imply the following localized orthogonal moment conditions:

E
[
Qit

(
∆yit − g′iθ̇ (z)− ξ′m′itγ (z)

)
kit(h, z)

]
≈ 0d (3.4)

4See the discussion in Section 5.3.
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for i = 1, . . . , n, t = 2, . . . , T , where d = dg+2 (dq + dx), Qit =
[
g′i, ξ

′m̆′it
]′

, m̆it = diag {m̆it, m̆i,t−1},
m̆it = [q′it,x

′
it]
′, kit(h, z) = k((zit − z1) /h)k((zi,t−1 − z2) /h) with k (·) being a kernel function and

h being the bandwidth. Note that we use a bivariate product kernel function because (3.3) involves
a two-dimensional approximation, which we employ in order to avoid estimating θ (·) and γ (·)
via the backfitting (iterative) technique that would explicitly accommodate the additive structure
of the first-differenced model. Thus, our methodology involves a two-dimensional semiparametric
estimation which, expectedly, will be less efficient than iterative calculation methods. To improve
the estimation accuracy, we therefore provide a second-stage estimator in Section 3.1.

If xit, gi and zit are all relevant in predicting yit, a selection of linearly independent variables
from W0xt, W0zt,W0 [g1, . . . ,gn]′, W2

0xt, W2
0zt, W2

0 [g1, . . . ,gn]′ , . . . will serve as a set of good
instruments for the spatially endogenous variable W0yt appearing in (2.1). Since we only seek to
obtain a consistent nonparametric GMM estimator without pursuing the optimal estimator, we can
use qit =

∑
j 6=iwij [x

′
jt, zjt,g

′
j ]
′ as our instrument, having removed any redundant terms. However,

if xit, gi and zit are all irrelevant or weak in predicting yit, qit is not going to be a good instrument.
Without pre-testing the relevance of exogenous covariates in a purely cross-sectional version of
model (1.2), Malikov & Sun (2017) show that combining both linear and quadratic moments can
be used to consistently estimate unknown coefficient curves regardless of whether the exogenous
covariates are relevant in predicting the dependent variable. We expect similar results to hold in
our panel data setup.5

Different from parametric spatial panel data models with fixed effects, the first-differenced
model in (3.1) and its local approximation in (3.3) are no longer SAR models. However, we are
still able to construct quadratic moment conditions using Pn,l = IT−1 ⊗

[
Wl

0 − n−1tr
{
Wl

0

}
In
]

for l = 1, 2, . . . L, where L is a finite integer. For an [n(T − 1)] × 1 vector of transformed errors
∆u = [∆u′2, . . . ,∆u′T ]′, it is readily seen that E [∆u′Pn,l∆u] = tr {Pn,lE [∆u∆u′]} = 0 because
E [∆u∆u′] = σ2uΣ ⊗ In, where Σ = 2IT−1 − JT−1 (0) − JT−1 (0)′ is a (T − 1) × (T − 1) matrix,
and JT−1 (0) defines a Jordan block matrix with zeros along the main diagonal and ones along the
superdiagonal. Therefore, we obtain the following local quadratic moments:

E
[(

∆y −MΘ(z)
)′

Kh(z)Pn,lKh(z)
(
∆y −MΘ(z))

)]
≈ 0, (3.5)

where ∆y = [∆y′2, . . . ,∆y′T ]′ is an [n (T − 1)] × 1 vector; M = [M′
2, . . . ,M

′
T ]′ is a [n (T − 1)] ×

[2 (dx + 1) + dg] data matrix with Mt = [M1t, . . . ,Mnt]
′ and Mit =

[
g′i, ξ

′m′it
]′

; Θ(z) =
[
θ̇ (z)′ ,γ(z)′

]′
is of dimension 2 (dx + 1) + dg; and Kh(z) = diag {K2(z), . . . ,KT (z)} is an [n(T − 1)]× [n(T − 1)]
diagonal matrix of kernel weights with Kt(z) = diag {k1t(h, z), . . . , knt(h, z)}.

Then, denoting

gn (ϑ) =



(
∆y −Mϑ

)′
Kh(z)Pn,1Kh(z)

(
∆y −Mϑ

)
...(

∆y −Mϑ
)′

Kh(z)Pn,LKh(z)
(
∆y −Mϑ

)
Q′Kh(z)

(
∆y −Mϑ

)

 (3.6)

for a [2 (dx + 1) + dg]×1 vector ϑ, where Q = [Q′2, . . . ,Q
′
T ]′ is an [n(T − 1)]×d instrument matrix

5Motivated by the maximum likelihood method for the parametric SAR model, Lee (2007) shows that combining
both the linear and quadratic moments could improve the GMM estimation efficiency. This idea is also applied in
Kelejian & Prucha (1999) and Lee & Yu (2014).
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with Qt = [Q1t, . . . ,Qnt]
′, we construct our initial nonparametric GMM estimator, i.e.,

Θ̂(z) = arg min
Θ(z)

gn (Θ(z))′ gn (Θ(z)) . (3.7)

Below, we list assumptions used to derive the limiting distribution of our proposed estimator.

Assumption 1 {(gi,xit, zit, uit)} is i.i.d. across index i, yit is generated from model (1.2) with
gi, xit and zit being strictly exogenous and all these variables have finite second moments. Also,

(i) E [uit|xi = x, zi = z,gi = g] = 0, E
[
u2it|xi = x, zi = z,gi = g

]
= σ2u > 0 for any x ∈ Sx ⊂

Rdx, z ∈ Sz ⊂ R and g ∈ Sg ⊂ Rdg and supx∈Sx,z∈Sz ,g∈Sg E
[
u4it|xi = x, zi = z, gi = g

]
≤ C

<∞, where Sz is a compact subset of R;

(ii) For all i, (zit, zi,t−1) and (zit, zi,t−1, zi,t−2) have a common joint pdf ft,t−1 (z1, z2) and ft,t−1,t−2 (z1,
z2, z3) with respect to the Lebesgue measure over their domains, respectively;

(iii) For any t, there exist a positive integer N and a constant cw ∈ (0, 1) such that for all n > N ,

max1≤j≤n |λj {ρ(zt)W0}| ≤ cw almost surely, ‖W0‖j ≤ C and
∥∥∥[In − ρ (zt) W0]

−1
∥∥∥
j
≤ C

for j = 1 and ∞;

(iv) Pn,l = IT−1 ⊗ Pn,l with Pn,l being an n × n matrix with finite row- and column-sum matrix
norm and tr{Pn,l} = 0 for all l = 1, . . . , L, where L ≥ 1 is a finite positive integer. Also,
diag {Pn,l} 6= 0 for at least one l.

Assumption 2 (i) In the neighborhood of an interior point z = [z1, z2]
′ with z1 6= z2, β (z), ρ (z),

ft,t−1 (z), E
[

(g′igi)
j |z
]

for j = 1, 2, E [gim̆
′
it|z], E [g′igim̆

′
itm̆it|z], E [mism̆

′
it|z], E [m̆ism̆

′
it|z],

E [m′ismism̆
′
itm̆it|z] and E [m̆′ism̆ism̆

′
itm̆it|z] are all twice continuously differentiable for all t

and s satisfying 0 ≤ |s− t| ≤ 1, and E
(
‖xit‖(2+δ1) |z

)
< C and E

(
‖gi‖(2+δ1) |z

)
< C for

some δ1 ≥ 2, where E [·|z] = E [·|zit = z1,zi,t−1 = z2];

(ii) In the neighborhood of an interior point ż = [z1, z2, z2]
′, ft,t−1,t−2 (ż), E

[
(g′igi)

j |ż
]

for j =
1, 2, E [gim̆

′
is|ż], E [m̆ism̆

′
it|ż] and E [m̆′ism̆ism̆

′
itm̆it|ż] are all twice continuously differentiable

for all t and s satisfying 0 ≤ |s− t| ≤ 1, where E [·|ż] = E [·|zit = z1,zi,t−1 = z2,zi,t−2 = z2];

(iii) κB (h, z) is a non-singular matrix, where κB (h, z) is defined in Lemma 2 in the Appendix.

Assumption 3 The kernel function k (u) is a symmetric probability density function with a com-
pact support [−1, 1]. Also, we denote υi,j (k) =

∫
ki (u)ujdu.

Assumption 4 As n→∞, h→ 0, and limn→∞ nh
6 = c > 0.

Assumptions 1–4 contain regularity conditions, where the assumption of compactness of Sz in
Assumption 1(i) and the bounded support of the kernel function in Assumption 3 are not essential
and are imposed to simplify our assumptions and mathematical proofs. Assumption 1(iii) and
the boundedness of ρ (z) in Assumption 2(i) parallel Assumption 1(iii)–(iv) in Su (2012). These
assumptions ensure spatial stationarity of the dependent variable and facilitate the limit result of
our estimator.

The compactness of Sz and Assumption 2 ensure that the functions listed in Assumption 2 are
all uniformly bounded for all t and s in the domain of z. Relaxing the i.i.d. over i assumption
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about {(gi,xit, zit, uit)} to independence with heteroskedasticity in Assumption 1 does not shed
extra light on our theory, so we maintain the current assumption to keep our formulae simple. In
addition, since our paper considers the case when T is a finite number, we do not impose serial
correlation assumptions on the panel data across time. Assumption 4 limits the speed at which
the bandwidth h approaches to zero as the sample size n increases in order to balance the squared
asymptotic bias and asymptotic variance of our estimator.

Theorem 1 Under Assumptions 1–4, at an interior point z = [z1, z2]
′, we have

√
nh2

(
Θ̂(z)−Θ(z)− κB (h, z)

−1 κA (h, z)
′
)

d→ N
(
02(dx+1)+dg

, σ2
uυ2,0 (k)κB (h, z)

−1
Ω (z)κB (h, z)

−1
)
,

where κA (h, z) = Op
(
h2
)
, κB (h, z), Ω (z) is a finite p.d.f. matrix, and all are defined in Lemmas

1–3 in the Appendix.

As noted earlier, qit may be an invalid instrument when xit, zit and gi are irrelevant in predicting
yit. Under such circumstances, the use of local quadratic moments in (3.5) will ensure the non-

singularity of κB (h, z) if E [ψs,l (h, z)] = 2
(
nh2

)−1∑n
i=1

∑T
t=2 pl,iiE

[
aii (zt−s) k

2
it (z) ∆uitui,t−s

]
converges to a non-zero constant for s = 0, 1, where aij (zt) and pl,ij are the (i, j)th elements
of W0Sn (zt) and Pn,l, respectively. Clearly, if one defines {Pn,l} such that diag {Pn,l} = 0 for all
l, then ψs,l (h, z) = 0 for s = 0, 1 implying that, in such a case, κB (h, z) will not be nonsingular in
large samples as shown in the remark below Lemma 2 in the Appendix.

Theorem 1 indicates that Θ̂(z) −Θ(z) = Op

(
h2 +

(
nh2

)−1/2)
which is in line with the con-

ventional kernel estimation theory keeping in mind that first differencing transforms the one-
dimensional estimation problem in (1.2) into a two-dimensional problem in (3.1). Evidently, the
asymptotic variance term is too large. Using Θ̂(z) as the initial consistent estimator of Θ(z), we
therefore construct the second-stage estimator of γ (z) in Section 3.1. We show that this estimator
of γ (z) is more efficient than the first-stage estimator and reaches the conventional convergence

rate of Op

(
h20 + (nh0)

−1/2
)

, where h0 is the bandwidth used in the second-stage estimation.

3.1 Second-Stage Estimator of γ (z)

To derive the second-stage estimator of γ (z), we rewrite the model in (3.1) as follows:

∆y†it = m′itγ(zit) + ∆uit, i = 1, . . . , n, t = 2, . . . , T, (3.8)

where ∆y†it ≡ ∆yit − g′iθ̇ (zit) + m′i,t−1γ(zi,t−1). The matrix form of model (3.8) is given by

∆y†t = ρ (zt) W0yt + φ′tβ(zt) + ∆ut, t = 2, . . . , T . (3.9)

From (2.2) and (3.9), it is also easy to see that the endogeneity in the above model arises from

E
[
∆u′tW0yt

]
= σ2utr {W0Sn (zt)} 6= 0 (3.10)

in general for t = 2, . . . , T .

We first note that the error term ∆ut in (3.9) is not homoskedastic because E [∆u∆u′] =
σ2uΣ ⊗ In. We can estimate (3.9) via a pooled local linear estimator without taking the serial
correlation in {∆ut} into consideration, or assuming “working independence”. However, in the
nonparametric literature on random-effects panel data models without the spatial lag term, it is
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well-known that the pooled local linear estimator is not asymptotically efficient in the presence
of cross-sectionally and/or serially correlated errors (e.g., Martins-Filho & Yao, 2009; Su, Ullah &
Wang, 2013). It then remains an open question whether we can improve the estimation efficiency
by modifying our model so that its new error term is rid of dependence. More concretely, define
this new error term as ∆ũ =

(
Σ−1/2 ⊗ In

)
∆u. Then, {∆ũit} is i.i.d. in index i and serially

uncorrelated in index t with zero mean and variance σ2u, where ∆ũit =
∑T

s=2 ϕts∆uis and ϕts is
the (t− 1, s− 1)th element of Σ−1/2 for t, s = 2, . . . , T . Motivated by Su et al. (2013), we modify
model (3.8) as follows:

Yt ≡
T∑
s=2

ϕts∆y†s +
T∑

s=2,s 6=t
ϕts
[
ρ(zs)W0ys + φ′sβ(zs)

]
= ϕtt

[
ρ(zt)W0yt + φ′tβ(zt)

]
+ ∆ũt, t = 2, . . . , T, (3.11)

where we move the regressors weighted by the off-diagonal elements of Σ−1/2 to the left-hand side of
(3.11). Clearly, model (3.11) has a homoskedastic error. In addition, we can see that the modified
model in (3.11) becomes model (3.9) when we set ϕtt = 1 and ϕts = 0 for all t 6= s.

Applying the Taylor expansion for γ(zit) at an interior point z, we approximate (3.11) by

Yit ≈ ϕttm′it [γ(z) +5γ(z) (zit − z)] + ∆ũit

= ϕttm
′
itΦ(z)Zit (z) + ∆ũit (3.12)

for a given (i, t) such that |zit − z| = o (1), where Zit (z) = [1, (zit − z) /h0]′, Φ(z) = [γ(z), h0∇γ(z)],
and ∇jγ(z) = ∂jγ(z)/∂zj denotes the jth partial derivative of γ(z) with respect to z. We then
have the following local linear orthogonal moment conditions:

E
[
Qt (z)′Kt(h0, z) (Yt −Mt (z) vec {Φ(z)})

]
≈ 02(dx+1) (3.13)

for t = 2, . . . , T , where Mt (z) = ϕtt [Z1t (z)⊗m1t, . . . ,Znt (z)⊗mnt]
′ is an n × [2 (dx + 1)] data

matrix, Qt (z) = [Z1t (z)⊗ q1t, . . . ,Znt (z)⊗ qnt]
′ is an n× [2 (dx + dq + 1)] instrument matrix with

qt = W0Sn (zt)

 g′1 x′1t z1t
...

...
...

g′n x′nt znt

 ≡
 q′1t

...
q′nt

 ,
and Kt(h0, z) = diag {k1t(h0, z), . . . , knt(h0, z)} with kernel weights now redefined as kit(h0, z) =
k ((zit − z) /h0).

Next, motivated by the endogeneity relation in (3.10), we see that setting Pn = diag {P2, . . . , PT }
with Pt = W0Sn (zt)− n−1tr {W0Sn (zt)} In implies that E [∆ũ′Pn∆ũ] = 0 because tr {Pn} = 0.
With this, we construct the following local quadratic orthogonal moment condition:

E
[
(Yt −Mt (z) vec {Φ(z)})′Kt(h0, z)PtKt(h0, z) (Yt −Mt (z) vec {Φ(z)})

]
≈ 0 (3.14)

for t = 2, . . . , T .

Since ∆y†it is unknown, we replace it with ∆ŷ†it = ∆yit − g′i
̂̇
θ (zit) + m′i,t−1γ̂(zi,t−1), wherê̇

θ (zit) and γ̂(zi,t−1) are calculated in the first stage via (3.7). Next, let Ŝn (zt) equal Sn (zt) with

ρ (zit) being replaced with its first-stage estimate ρ̂ (zit) and q̂it, q̂t and P̂t respectively equal qit,

qt and Pt with Sn (zt) being replaced with Ŝn (zt). Also, Ŷit ≡
∑

s ϕts∆ŷ
†
is −

∑
s 6=t ϕtsm

′
isγ̂(zis).
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Lastly, we define P̂n = diag
{
P̂2, . . . , P̂T

}
, Ŷ =

[
Ŷ′2, . . . , ŶT

]′
, M(z) =

[
M2 (z)′ , . . . ,MT (z)′

]′
,

Q̂(z) =
[
Q̂2 (z)′ , . . . , Q̂T (z)′

]′
and Kh0(z) = diag {K2(h0, z), . . . ,KT (h0, z)}. We then construct

our second-stage nonparametric GMM estimator as follows:

Φ̃(z) = arg min
Φ(z)

gn (Φ(z))′ gn (Φ(z)) , (3.15)

where we define

gn (ϑ) =

 (Ŷ −M(z)vec{ϑ}
)′

Kh0(z)P̂nKh0(z)
(
Ŷ −M(z)vec{ϑ}

)
Q̂(z)′Kh0(z)

(
Ŷ −M(z)vec{ϑ}

)  . (3.16)

The limiting results for the second-stage estimator require the following additional assumptions.

Assumption 5 maxz∈Sz×Sz

∥∥∥Θ̂(z)−Θ(z)
∥∥∥ = Op

(
h2 +

√
lnn/ (nh2)

)
.

Assumption 6 (i) zit has a common pdf ft (z) with respect to the Lebesgue measure over Sz;
(zit, zis) has a common pdf ft,s (z1, z2) with respect to the Lebesgue measure over Sz × Sz for
all t and s; (ii) in the neighborhood of an interior point z, β (z), ρ (z), ft (z), E [gim̆

′
it|zit = z],

E [g′igim̆
′
itm̆it|zit = z], E [mitm̆

′
it|zit = z], E [m′itmitm̆

′
itm̆it|zit = z], E [m̆itm̆

′
it|zit = z] and E [m̆′itm̆it

m̆′itm̆it|zit = z] are all twice continuously differentiable for all t; (iii) ft,s (z, z), E [m̆itm̆
′
is|z, z],

and E [m̆′itm̆itm̆
′
ism̆is|z, z] are all twice continuously differentiable for all s and t, where E [·|z, z] =

E [·|zit = z, zis = z]; (iv) κB (h0, z) is a non-singular defined in Lemma 6 in the Appendix.

Assumption 7 As n → ∞: (i) h0 → 0 and limn→∞ nh
5
0 = c0 > 0; (ii) h → 0, nh4 → ∞; (iii)

h/h0 → 0 and nh2h20/ lnn→∞.

Assumption 5 strengthens the pointwise convergence of Θ̂(z) to a uniform convergence, which
can be shown along the lines of Masry (1996). Assumption 6(i)–(iii) are regularity conditions
imposed in the local linear estimation, while Assumption 6(iv) ensures the existence of the pro-
posed estimator. Assumption 7(i) implies that the second-step bandwidth h0 is of order n−1/5,
Assumption 7(ii) is required for the derivation of Assumption 5, where the first-stage estimation
has an asymptotically ignorable impact on the second-stage estimator under Assumption 7(iii),
which implies that h = cn−α with 1/5 < α < 1/4 if we set h0 = c0n

−1/5.

Theorem 2 Under Assumptions 1–3 and 5–7, at an interior point z, we have√
nh0

[
γ̃ (z)− γ (z) − κB (h0, z)

−1 κA (h0, z)
′
]

d→ N
(
0dx+1, σ

2
uυ2,0 (k)κB (h0, z)

−1
Ω (z)κB (h0, z)

−1
)
,

where κA (h0, z) = Op
(
h2
)
, κB (h0, z) and Ω (z) are respectively defined in Lemmas 5–7 in the

Appendix.

By the proof of Theorem 2, we have γ̃ (z) − γ (z) = Op

(
h20 + (nh0)

−1/2
)

. The impact of the

initial first-stage estimator on the second-stage estimator vanishes asymptotically as h/h0 → 0
and nh2h20/ lnn → ∞ hold. Importantly, Theorem 2 holds true for dg ≥ 0. Again, the localized
quadratic moments have asymptotically non-ignorable contribution to κB (h0, z) if diag{Pn} 6= 0.
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By the proofs given in Lemmas 5–7, κA (h0, z), κB (h0, z) and Ω (z) all depend on {ϕtt},
which means that the derived estimator has the asymptotic bias and variance different from those
of the pooled local linear estimator. Unfortunately, it is difficult to conclude which estimator is
better due to the complexity of our formulas. This result differs from Su et al.’s (2013) findings
where, excluding the spatial lag term from models (3.9) and (3.11), they show that the local linear
estimator from the modified model (3.11) has the same asymptotic bias but smaller asymptotic
variance than the pooled local linear estimator. So far, our results indicate that, for the spatial
autoregressive panel data model with fixed effects, Su et al.’s (2013) method may or may not be
able to improve estimation efficiency over the pooled estimation under the “working independence”
assumption when the nonparametric IV-based GMM estimation method is concerned.

4 Sieve Estimator of θ (z)

Having estimated ρ (·) and β (·) consistently at the conventional convergence rate in the second
stage, we next discuss how to consistently estimate the unknown functional curves θ (·) in front of
the time-invariant regressors gi. Specifically, we consider the following regression model:

ẏit = g′iθ (zit) + µi + uit, i = 1, . . . , n, t = 1, . . . , T,

where ẏit ≡ yit −m′itγ (zit). Since ẏit is unknown, we replace it with ˜̇yit = yit −m′itγ̃ (zit), where
γ̃ (zit) is the second-stage GMM estimator. Hence, we suggest estimating θ (z) from˜̇yit ≈ g′iθ (zit) + µi + uit, i = 1, . . . , n, t = 1, . . . , T. (4.1)

We first note that applying the nonparametric smoothed least-squares dummy variable approach
developed by Sun et al. (2009) is infeasible for the estimation of θ (z); see the detailed discussion
in Section 5.3. We therefore choose to employ a series approximation method. Specifically, letting
{φ1 (·) , φ2 (·) , . . .} be a sequence of B-spline series, we approximate θl(z) by θ∗l (z) = ψ′lφLn

(z)
for l = 1, . . . , dg, where ψl is of dimension Ln and, for any integer κ > 0, we denote φκ (v)
= [φ1 (v) , . . . , φκ (v)]′. Then, g′iθ (zit) can be approximated by

g′iθ
∗ (zit) =

[
gi ⊗ φLn

(zit)
]′
ψ ≡ X ′itψ,

where ψ =
[
ψ′1, . . . ,ψ

′
dg

]′
and Xit ≡ gi ⊗φLn

(zit) are both (dgLn)× 1 vectors. Stacking up {X ′it}
in the ascending order of index i first then index t gives an (nT ) × (dgLn) data matrix X . The
series-based least-squares objective function is then given by

min
(µ,ψ)

(˜̇y −Xψ −Dµ
)′ (˜̇y −X ψ −Dµ

)
, (4.2)

where D = In ⊗ iT is an (nT )× n matrix, µ is as defined in Section 2, and ˜̇y is an (nT )× 1 vector
that stacks up ˜̇yit in the ascending order of index i first then index t. Applying the partitioned
OLS yields

ψ̃ =
(
X ′MDX

)−1X ′MD
˜̇y, (4.3)

where MD = InT −D (D′D)−1 D′ = InT −T−1In⊗(iT i′T ). Hence, our (third-stage) series estimator
of θ (z) is given by

θ̃ (z) =
[
ψ̃
′
1φLn

(z) , . . . , ψ̃
′
dgφLn

(z)
]′
. (4.4)

Below are some regularity assumptions required for our limiting results.
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Assumption 8 For every Ln, there exist constants c and c such that 0 < c ≤ λmin (Σφφ) ≤
λmax (Σφφ) ≤ c < ∞ , where Σφφ ≡

∑T
t=1 E

[
(gig

′
i)⊗

(
φLn

(zit)φLn
(zit)

′)] and φLn
(zit) =

φLn
(zit)− T−1

∑T
s=1φLn

(zis).

Assumption 9 For any l = 1, . . . , dg, there exists ψl such that

max
1≤l≤dg ,z∈Sz

∣∣θl (z)−ψ′lφLn
(z)
∣∣ ≤ CL−ξn (4.5)

for a sufficiently large Ln and ξ > 2.

Assumption 10 As n→∞, Ln →∞, Ln (logLn) /n→ 0 and nL−1−2ξn → 0.

Assumption 8 ensures that X ′MDX/n converges to a non-singular matrix Σφφ for a sufficiently
large n. Assumption 9 is similar to Assumption 3 in Newey (1997). In fact, if θl (·)’s and φl (·)’s
are all ξ-smooth,6 condition (4.5) holds over any compact support Sz by Theorem 1.1 in Dzyadyk
& Shevchuk (2008, p. 381). If we set Ln = cnr, Assumption 10 requires r ∈ (1/ (1 + 2ξ) , 1).

Theorem 3 Under Assumptions 1–10, and if max1≤t≤T E
[
|g′igi|

2+δ |uit|2+δ
]
≤ C for some δ > 0,

we have √
nΛ−1/2n (z)

[
θ̃ (z)− θ (z)

]
d→ N

(
0dg , σ

2
uIdg

)
, (4.6)

where Λn (z) =
[
Idg ⊗ φLn

(z)
]′

Σ−1φφ
[
Idg ⊗ φLn

(z)
]
.

Theorem 3 indicates that the sieve estimator θ̃ (z) is a consistent estimator of θ (z) and that the
first two stages of the estimation procedure have asymptotically negligible effects on the estimation
of θ (z). For any constant α 6= 0dg , we have |α′Λn (z)α| ≤ λ−1max (Σφφ)

∥∥[Idg ⊗ φLn
(z)
]
α
∥∥ ≤ CLn.

Therefore, θ̃ (z)− θ (z) = Op

(√
Ln/n

)
under Assumption 10.

5 Other Estimation Issues

This section provides brief arguments about an alternative estimator based on the within-groups
transformation in Section 5.1, the spatial stationarity condition in Section 5.2 and the infeasibility
of a nonparametric smoothed dummy variable approach in Section 5.3.

5.1 The Within-Groups Estimator of ρ (z) and β (z)

As an alternative to first-differencing transformation, one can remove the unobserved fixed effects
from model (1.2) by applying the within-groups transformation which yields

yit = g′i

T∑
s=1

ξstθ (zis) +
T∑
s=1

ξstm
′
isγ(zis) + uit, i = 1, . . . , n, t = 1, . . . , T, (5.1)

6A function h (·) is called p-smooth for some real value p > 0 if it is [p]-times continuously differentiable and∣∣∣∇[p]h (ω)−∇[p]h (ω′)
∣∣∣ ≤M |ω − ω′|p−[p]

for any ω ∈ R+ and ω′ ∈ R+, where [p] is the largest positive integer less

than p and ∇[p]h (ω) is the [p]th order derivative of h (·).
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where we denote ait = ait−T−1
∑T

s=1 ais for a = {y, u}, and ξst = 1−T−1 if s = t and −T−1 other-
wise. Following our first-differencing method, we notice that the first-stage estimation of model (5.1)
suffers from a more severe “curse-of-dimensionality” problem than the first-differencing method
when T > 2 as we need to approximate θ̇ (zi) =

∑T
s=1 ξstθ (zis) and γ (zi) =

[
γ (zi1)

′ , . . . ,γ (ziT )′
]′

in (5.1) by θ̇(z) =
∑T

s=1 ξstθ (zs) and γ(z) =
[
γ (z1)

′ , . . . ,γ (zT )′
]′

for i such that ‖zi − z‖ = o (1),
where z = [z1, . . . , zT ]′ be an interior point with zs 6= zs′ for s 6= s′. By the conventional nonpara-
metric kernel estimation theory, we expect that the first-stage estimator based on the within-group

transformation satisfies MSE
[
Θ̂(z)

]
≈ Op

(
h2 +

(
nhT

)−1/2)
, where the asymptotic variance is

of order
(
nhT

)−1
because the unknown curves to be estimated are functions of T arguments in

the transformed model (5.1). In fact, as we show in Sun & Malikov (2015), the within-groups
transformation method provides a consistent estimator only if T < 3 and T < 5 when the local
constant and the local linear estimators are respectively applied in the first-stage estimation. Given
finite samples, the less accurate first-stage estimator may reduce the estimation accuracy of the
second-stage estimator. Therefore, this paper focuses on the limit results from the first-differencing
method.7

5.2 Spatial Stationarity

The spatial stationarity of {yit} requires that max1≤j≤n,1≤t≤T |λj {ρ(zt)W0}| < 1 almost surely.
Following Kelejian & Prucha (2010), one can normalize the spatial weighting matrix W0 such
that its largest eigenvalue in absolute value is no greater than one, so that the spatial stationarity
condition holds if |ρ (z)| < 1 for any z ∈ Sz. To impose this restriction on the spatial lag parameter
function, we apply Hall & Huang’s (2001) “tilting” procedure. The procedure essentially mutes or
magnifies the impact of any given data point used in the estimation. This allows us to impose the
spatial stationarity condition post-estimation via a quadratic programming technique. The idea is
to slightly reweigh observations used in the estimation so that the spatial stationarity condition is
satisfied in the local neighborhood of z. Since the estimator derived using both linear and quadratic
orthogonality conditions does not have an analytical solution, the “tilting” procedure proposed by
Hall & Huang (2001) does not apply. Here, we therefore limit our attention to a simpler estimator
which makes use of linear moments only and hence is valid when β (z) 6= 0dx and θ (z) 6= 0dg over
at least one non-empty subset. It is noteworthy however that, when one does incorporate quadratic
conditions during the estimation, the non-singularity condition can be imposed even more easily
via box constraints on ρ(z) during the numerical optimization.

Specifically, when using only linear moment conditions in (3.13), the second-stage estimator
of ρ (z) derived in Section 3.1 can be abbreviated as ρ̃(z) =

∑n
i=1

∑T
t=2 ωit(G,X, z, h0)Ŷit, where

ωit(G,X, z, h0) is a local weight assigned to Ŷit and is the (it)th (column) element in the first row

of
[
M(z)′Kh0(z)′Q̂(z)Q̂(z)′Kh0(z)M(z)

]−1
M(z)′Kh0(z)′Q̂(z)Q̂(z)′Kh0(z). We then construct

ρ̃(z|p) = n (T − 1)

n∑
i=1

T∑
t=2

pitωit(G,X, z, h0)Ŷit, (5.2)

where p = (p12, . . . , p1T , . . . pn2, . . . pnT )′ is the sequence of additional weights such that
∑n

i=1

∑T
t=2 pit

= 1. Note that pit equals 1/ [n (T − 1)] (i.e., uniform weights) when the restriction is not imposed.

7We refer readers to Sun & Malikov (2015) for the detailed limit results of the within-group estimation method. This
paper is available upon request from the authors.
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If necessary, we can impose the non-singularity condition by selecting weights p that minimize
the following L2-metric:

D(p) =
(

[n (T − 1)]−1 in(T−1) − p
)′(

[n (T − 1)]−1 in(T−1) − p
)

subject to i′n(T−1)p = 1 and −1 < ρ̃(zit|p) < 1 for any (i, t). Here, D(p) is the sum of squared

deviations of pj from the unrestricted value of [n (T − 1)]−1. In our choice of the distance metric,
we follow Du, Parmeter & Racine (2013), which allows p to be both positive and negative.8 The
minimization problem is solved via a standard quadratic programming technique. Let p̂ be the
solution to this optimization problem. We then use ρ̃(z|p̂) as the final estimator for ρ (z). Since
the proofs of consistency and asymptotic normality of the “tilted” estimator are tedious and closely
follow those given in Malikov & Sun (2017), we omit the details here.

5.3 Infeasibility of a Smoothed Dummy Variable Approach

As briefly mentioned earlier, an alternative approach to removing fixed effects from functional-
coefficient models put forward in the literature is a nonparametric generalization of the so-called
“dummy variables” approach by Sun et al. (2009). In the instance of a kernel-based least-squares
estimator, Sun et al.’s (2009) method closely resembles a traditional least-squares dummy vari-
ables (LSDV) estimator of parametric fixed-effects panel data models. While this method can
successfully be applied to functional-coefficient models with fixed effects that suffer from endogene-
ity due to selectivity (see Malikov, Kumbhakar & Sun, 2016), it however cannot be extended to
varying coefficient panel data models subject to the general form of endogeneity stemming from
the simultaneity of regressors. The latter is due to singularity in the first-order condition of the
nonparametric GMM objective function, which we demonstrate below for the case when dg = 0
(i.e., no time-invariant regressors) and for the local constant estimator, without loss of generality.

Approximating our model in (1.2) around z yields

yit ≈m′itγ(z) + µi + uit (5.3)

for the (i, t)th observation with |zit − z| = o (1). The corresponding local moment condition is

E
[
Q′Kh(z) (y −Mγ(z)−Dµ)

]
≈ 0d, (5.4)

where M, Q and y stack up m′it, m̆′it and yit in the ascending order of index i first then index t,
and a typical element of the diagonal matrix Kh(z) is k ((zit − z) /h).

The kernel-weighted nonparametric GMM problem corresponding to the orthogonality condition
in (5.4) is given by

min
γ(z)

[
Q′Kh(z) (y −Mγ(z)−Dµ)

]′
Q′Kh(z) (y −Mγ(z)−Dµ) . (5.5)

The core idea of the “dummy variables” approach is to concentrate out the unknown fixed
effects from the objective function. To do so, one needs to substitute the first-order condition
for the optimization problem in (5.5) with respect to µ back into the objective function. This
first-order condition with respect to µ is

D′Kh(z)QQ′Kh(z) (y −Mγ(z)−Dµ) = 0n, (5.6)

8Hall & Huang (2001) use a power divergence metric which has a rather complex form and is only valid for non-
negative weights.
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which can be manipulated to obtain

µ̂ =
[
D′Kh(z)QQ′Kh(z)D

]−1
D′Kh(z)QQ′Kh(z) [y −Mγ(z)] . (5.7)

However, note that the above first-order condition suffers from singularity. To see this, let
A = Q′Kh (z) D. Then, D′Kh(z)QQ′Kh (z) D = A′A. Since A is a d×n matrix, A′A is a square
matrix of dimension n. Given that n > d, we know that the rank of A′A is no greater than d,
rendering matrix D′Kh (z) QQ′Kh (z) D to be singular. Thus, µ̂ cannot be solved for and cannot
be concentrated out of the GMM objective function (5.5). The “dummy variables” approach is
infeasible. The above argument continues to hold if dg > 0.

6 Test for Spatial Endogeneity

Given that our semiparametric spatial autoregressive model (1.2) nests the traditional functional-
coefficient fixed-effects model in (1.1) as a special case, one may wish to formally discriminate
between the two models. In this section, we are interested in testing for relevance of the spatial lag
term in model (1.2), and the proposed is, essentially, a test for spatial endogeneity. Specifically, we
consider the following null and alternative hypotheses:

H0 : Pr {ρ(z) = 0} = 1 vs. H1 : Pr {ρ(z) = 0} < 1.

That is, under H0, our model (1.2) becomes model (1.1). Our proposed test statistic is based on
a weighted squared distance between β̃0 (z) and β̃1 (z), which are the second-stage local-constant
estimators of β (z) under the null and alternative hypotheses, respectively. Since the estimation
of θ (z) involves a three-step procedure, for the sake of simplicity and feasibility, we propose to
construct our test statistic only from the estimators for β (z) under both hypotheses.

We start by defining Xj =
[
X ′j,1, . . . ,X ′j,n

]′
for j = 1, 2, where X1,i = [xi2, . . . ,xiT ]′ and

X2,i =
∑

j 6=iwij [yj2, . . . , yjT ]′, and Ξ̂h0(z) ≡ Kh0(z)′Q̂Q̂′Kh0(z), where Q̂ =
[
Q̂′2, . . . , Q̂′T

]′
with

Q̂t = [q̂1t, . . . , q̂nt]
′. Next, we define M2 (z) = In(T−1) − X2

[
X2
′Ξ̂h0(z)X2

]−1
X2
′Ξ̂h0(z) and

Sh0 (z) = M2 (z)′ Ξ̂h0(z)M2 (z), where we can show that Sh0 (z) = M2 (z)′ Ξ̂h0(z) = Ξ̂h0(z)M2 (z).

Then, the local constant estimator of β (z) for model (3.8) under H1 is calculated as β̃1 (z) =
[X1
′Sh0(z)X1]

−1X1
′Sh0(z)∆ŷ†, which is based on the local linear orthogonal moment condition

only and is used to simply the formula of our test statistic. Given the above, we construct our test
statistic as follows:

Tn =

∫ [
β̃1 (z)− β̃0 (z)

]′ [
X ′1Sh0(z)X1

]2 [
β̃1 (z)− β̃0 (z)

]
dz

=

∫ [
∆ŷ† −X1β̃0 (z)

]′
Sh0(z)′X1X ′1Sh0(z)

[
∆ŷ† −X1β̃0 (z)

]
dz

=

∫ [
∆ŷ† −X1β̃0 (z)

]′
Ξ̂h0(z)M2 (z)X1X ′1M2 (z)′ Ξ̂h0(z)

[
∆ŷ† −X1β̃0 (z)

]
dz ≥ 0,

where the typical element of ∆ŷ† −X1β̃0 (z) is given by

ε̃it (z) ≡ ∆ŷ†it − x′itβ̃0 (z) = ∆yit − g′i
̂̇
θ1 (zit) + m′i,t−1γ̂1(zi,t−1)− x′itβ̃0 (z)

≡ ε̂it + ρ(zit)
∑
j 6=i

wijyjt + x′it

[
β (zit)− β̃0 (z)

]
+ ∆uit, i = 1, . . . , n, t = 2, . . . , T,
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with ε̂it ≡ g′i

[
θ̇ (zit)− ̂̇θ1 (zit)

]
−m′i,t−1 [γ(zi,t−1)− γ̂1(zi,t−1)], and

̂̇
θ1 (·) and γ̂1(·) are estimators

calculated under H1.

Under H0, we have ε̃it (z) = ∆uit+op (1), whereas, under H1, ε̃it (z) = ∆uit +ρ(zit)
∑

j 6=iwijyjt

+x′it

[
β (zit)− β̃0 (z)

]
+op (1). Hence, intuitively, we expect Tn to go explosive at a faster speed

under H1 than under H0.

We next describe how to calculate β̃0 (z) under H0. Since, when ρ (z) = 0, (3.3) becomes
∆yit ≈ g′iθ̇ (z)+ξ′x′itβ (z)+∆uit, we consider the following kernel-weighted least-squares objective
function:

min
Θ0(z)

[∆y −MΘ0(z)]′K
h̃
(z) [∆y −MΘ0(z)] , (6.1)

where M = [M′1, . . . ,M′n]′ is an [n (T − 1)]× (2dx + dg) data matrix with Mi = [Mi2, . . . ,MiT ]′

and Mit =
[
g′i, ξ

′x′it
]′

, xit = diag {xit,xi,t−1}, and Θ0(z) =
[
θ̇0 (z)′ ,β0(z)′

]′
is of dimension

(2dx + dg). The solution to (6.1) yields Θ̂0(z) =
[
M′K

h̃
(z)M

]−1M′K
h̃
(z)∆y, which is the first-

stage estimator of Θ(z). The second-stage estimator β̃0 (z) is obtained from ∆ŷ†it ≈ x′itβ(zit)+∆uit

via local constant estimator, where ∆ŷ†it = ∆yit − g′i
̂̇
θ0 (zit) + x′i,t−1β̂0(zi,t−1). Similar to the

proof provided in Section 3, we can show that, under some regularity conditions, β̃0 (z)− β (z) =

Op

(
h̃20 +

(
nh̃0

)−1/2)
.

To simplify the test statistic, we replace ε̃it (z) with ε̂it = ∆ŷ†it − x′itβ̃0 (zit), where ∆ŷ†it =

∆yit−g′i
̂̇
θ1 (zit)+x′i,t−1β̂1(zi,t−1) is calculated under the alternative hypothesis, and replace Ξ̂h0(z)

with Kh0(z) since Ξ̂h0(z) essentially serves as a local weight. In addition, since M2 (z)X1 gives
the estimated “residuals” from regressing X1 on X2 and because X1 is a strictly exogenous variable
by Assumption 1, it is reasonable to replace M2 (z)X1 with X1. This replacement significantly
simplifies our proof under H0. Then, removing the center i = j terms in Tn, we obtain our modified
test statistic, i.e.,

Tn =
1

n2h0

n∑
i=1

n∑
j 6=i
ε̂′i

∫
Ki (z)X1,iX ′1,jKj (z) dz ε̂j , (6.2)

where ε̂i = [ε̂i2, . . . , ε̂iT ]′.

Applying simple algebra, we obtain

h−10

∫
Ki (z)X1,iX ′1,jKj (z) dz =

 k̄h0 (zi2, zj2) x′i2xj2 . . . k̄h0 (zi2, zjT ) x′i2xjT
...

. . .
...

k̄h0 (ziT , zj2) x′iTxj2 . . . k̄h0 (ziT , zjT ) x′iTxjT

 , (6.3)

where k̄h0 (zit, zjs) = h−10

∫
kit (z) kjs (z) dz =

∫
k ((zit − zjs) /h0 + ω) dω effectively selects (i, t)

and (j, s) such that |zit − zjs| = op (1). Therefore, without the loss of essence, we propose our final
test statistic:

T̂n =
1

n2h0

n∑
i=1

n∑
j 6=i
ε̂′iAij ε̂j , (6.4)

where Aij equals (6.3) with k̄h0 (zit, zjs) replaced with kh0 (zit, zjs) = k ((zit − zjs) /h0).
Let h̃ and h be the bandwidths for the first-stage estimation and h̃0 and h0 be the the bandwidths

for the second-stage estimation under H0 and H1, respectively. To obtain consistent test statistic,
we need the following restrictions on these bandwidths.
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Assumption 11 (i) As n→∞, h̃, h, h̃0 and h0 all converge to zero; (ii) nh̃2/ lnn→∞, nh̃0 →
∞, h̃/h̃0 → 0; (iii) nh4

√
h0 → 0,

√
h0/h

2 → 0; (iv) n
√
h0h̃

4
0 → 0,

√
h0/h̃0 → 0,

√
nh0/h̃0h

2 → 0,
√
nh0h̃

2
0/h→ 0,

√
h0/h̃0/h→ 0; (v) nh0 →∞.

Assumption 11(i) is a regularity condition. Assumption 11(ii) ensures that the second-stage

estimator of β (z) has an asymptotic bias term of order Op

(
h̃20

)
and an asymptotic variance

term of order Op

((
nh̃0

)−1)
under H0. Assumption 11(iii) removes the asymptotic impact of

the first-stage estimator (calculated under the alternative hypothesis) on the test statistic under
both hypotheses. Assumption 11(iv) makes asymptotically negligible the impact of the second-
stage estimator (calculated under the null hypothesis) on the test statistic under H0, while our test
statistic explodes under Assumption 11(v). The following theorem gives the limit result for the
proposed test statistic T̂n.

Theorem 4 Under Assumptions 1–3 and 11, we have under H0 that

Jn ≡ n
√
h0T̂n/σ̂0

d→ N(0, 1),

where σ̂20 =
(
n2h0

)−1∑n
i=1

∑n
j 6=i(ε̂

′
iAij ε̂j)

2 is a consistent estimator of

σ20 = 2σ4uυ2,0 (k)

T∑
t=2

∑
0≤|s−t|≤1

ctsE
[
µ (z2s) vec

(
x2sx

′
2s

)
f (z2s)

]
> 0,

µ (z) = E [x′1t ⊗ x′1t|z1t = z], cts = 4 for t = s and 1 otherwise. Under H1, Pr [Jn > Cn] → 1 as
n→∞, where Cn is some non-stochastic sequence such that Cn = o

(
n
√
h0
)
.

Theorem 4 states that the test statistic Jn = n
√
h0T̂n/σ̂0 provides a consistent test for testing

H0 against H1. It is a one-sided test since, as we show in the Appendix, both T̂n and σ̂20 converge
to positive constants under H1. If Jn is greater than the critical value from the standard normal
distribution, we reject the null hypothesis at the corresponding significance level. If we set h ∼ n−r,
h0 ∼ n−α, h̃ ∼ n−r̃ and h̃0 ∼ n−α̃, and α̃ = 1/5, Assumption 11 implies the following: α̃ < r̃ < 1/2,
2/3 < α < 1 and (1− α/2) /4 < r < α/4.

Note that the test loses its power if β̃0 (z) converges to β0 (z) in probability under the alternative

hypothesis and the elements of the spatial weighting matrix are at most of order O
( (
n
√
h0
)−1/2 )

.

The estimator β̃0 (z) is also consistent under the alternative hypothesis if the spatial lag term
becomes less endogenous as the sample size increases.

7 Monte Carlo Simulations

In this section, we evaluate the finite-sample performance of our proposed estimators and the test
statistic via Monte Carlo simulations. Section 7.1 reports the results for our proposed estimators,
whereas the performance of our proposed test statistic is reported in Section 7.2.

7.1 Estimators

We study the finite sample performance of our proposed estimators in a small set of Monte Carlo
experiments. Specifically, we consider the following data generating process with one time-invariant

17



Table 1. Simulation Results for the Estimator Using Linear and Quadratic Moments

Working T = 2 T = 3
Independence n = 98 n = 147 n = 196 n = 98 n = 147 n = 196

Estimated MAE
ρ(zit)
1st Stage 0.4988 0.4661 0.4372 0.4227 0.3958 0.3638
2nd Stage Yes 0.2971 0.2597 0.2259 0.2147 0.1833 0.1583
2nd Stage No 0.2474 0.2127 0.1835

β(zit)
1st Stage 0.2582 0.2230 0.2005 0.1935 0.1685 0.1514
2nd Stage Yes 0.1560 0.1251 0.1114 0.1056 0.0874 0.0758
2nd Stage No 0.1475 0.1295 0.1218

θ(zit)
3rd Stage Yes 0.2115 0.1605 0.1363 0.1326 0.1031 0.0887
3rd Stage No 0.1461 0.1094 0.0998

Estimated RMSE
ρ(zit)
1st Stage 0.5973 0.5644 0.5351 0.5197 0.4904 0.4553
2nd Stage Yes 0.3743 0.3284 0.2879 0.2728 0.2352 0.2059
2nd Stage No 0.3194 0.2775 0.2418

β(zit)
1st Stage 0.3477 0.2964 0.2645 0.2548 0.2192 0.1968
2nd Stage Yes 0.2103 0.1695 0.1527 0.1425 0.1200 0.1054
2nd Stage No 0.2052 0.1804 0.1693

θ(zit)
3rd Stage Yes 0.2336 0.1773 0.1503 0.1465 0.1141 0.0976
3rd Stage No 0.1608 0.1216 0.1094

regressor (i.e., dg = 1):

yit = ρ(zit)
∑
j 6=i

wijyjt + giθ(zit) + xitβ(zit) + µi + uit, i = 1, . . . , n, t = 1, . . . , T. (7.1)

As in Lee (2007) and Liu, Lee & Bollinger (2010), rather than generating {wij}, we instead use
the spatial weighting matrix from the crime study for 49 districts in Columbus, OH from Anselin
(1988). The spatial weighting matrix is contiguity-based and uses the (first-order) queen definition
for Columbus and corresponds to a sample of n = 49. To increase the sample size, we generate a
block-diagonal spatial matrix with the original 49× 49 Columbus matrix used as a diagonal block.

The data are generated as follows: zit ∼ i.i.d. U(0, π/2), gi ∼ i.i.d. N(0, 1), uit ∼ i.i.d. N(0, 0.5),
and xit = 0.5xi,t−1 + ζit with ζit ∼ i.i.d. N(0, 1). The fixed effects are constructed as µi =
(zi + xi + gi)/3 + ωi, where ωi ∼ i.i.d. N(0, 0.5). The coefficient functions are specified as follows:
ρ(zit) = 0.5 exp(−2zit), θ(zit) = 0.5 sin(πzit/3), and β(zit) = (zit − 0.75)2 − 1.9

We fix the length of panel at T = 2, 3 for each of which we let the sample size grow with the
number of cross-sections n = 98, 147, 196. In the second-stage estimation, we use the rule-of-thumb
bandwidth for the smoothing variable zit, i.e., h0 = 1.06σ̂z(n(T − 1))−1/5, where σ̂z is the (pooled)
sample standard deviation of zit. We need to undersmooth in the first stage and, by Assumption
7, the first-stage bandwidth h ∝ n−α with α ∈ (1/5, 1/4) given our choice of the second-stage
bandwidth h0 ∝ n−1/5. We set h = n−1/21h0 ∝ n−26/105 implying that α ≈ 0.248. Further, we
use the following feasible instruments for

∑
j 6=iwijyjt in the first stage: qit =

∑
j 6=iwij [x

′
jt, zjt, g

′
j ]
′

9Note that our choice of the θ(zit) functional coefficient is such that the θ(0) = 0 normalization is satisfied.
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Table 2. Simulation Results for the Estimator Using Linear Moments Only

Working T = 2 T = 3
Independence n = 98 n = 147 n = 196 n = 98 n = 147 n = 196

Estimated MAE
ρ(zit)
1st Stage 0.7196 0.6172 0.5555 0.5205 0.4662 0.4132
2nd Stage Yes 0.5572 0.4498 0.3606 0.3302 0.2702 0.2217
2nd Stage No 0.3883 0.3190 0.2592

β(zit)
1st Stage 0.2880 0.2408 0.2135 0.2043 0.1750 0.1554
2nd Stage Yes 0.2069 0.1569 0.1350 0.1254 0.2217 0.0819
2nd Stage No 0.1676 0.1392 0.1272

θ(zit)
3rd Stage Yes 0.2910 0.2157 0.1746 0.1612 0.1251 0.1012
3rd Stage No 0.1873 0.1402 0.1157

Estimated RMSE
ρ(zit)
1st Stage 1.0649 0.8753 0.7985 0.7288 0.6418 0.5677
2nd Stage Yes 0.8416 0.6699 0.5494 0.4871 0.4103 0.3380
2nd Stage No 0.6068 0.5125 0.4114

β(zit)
1st Stage 0.4157 0.3320 0.2930 0.2779 0.2330 0.2053
2nd Stage Yes 0.3107 0.2304 0.2020 0.1811 0.1410 0.1201
2nd Stage No 0.2453 0.2009 0.1817

θ(zit)
3rd Stage Yes 0.3214 0.2370 0.1913 0.1778 0.1381 0.1113
3rd Stage No 0.2063 0.1544 0.1269

when constructing the matrix of linear instruments Q, and Pn,l = IT−1 ⊗
[
Wl

0 − n−1tr
{
Wl

0

}
In
]

for l = 1, 2 for quadratic moments. For the second-stage estimation, Q̂(z) and P̂n are constructed
using first-stage estimates of ρ(zit) and β(zit) as described in Section 3.1.

For each sample size, we simulate the model 500 times. For each simulation, we compute the
mean absolute error (MAE) and the root mean squared error (RMSE) for each functional coefficient.
Reported are their averages computed over 500 simulations. We report the results for both the first-
and second-stage nonparametric GMM estimators fitted using two sets of orthogonality conditions:
(i) linear and quadratic moments (Table 1) and (ii) linear moments only (Table 2). Also, for
T = 3, we estimate the second-stage model twice: (i) accounting for “random effects” in ∆uit
induced by first-differencing as outlined in Section 3.1 and (ii) ignoring them by applying the local
Taylor approximation directly to (3.8) [as opposed to (3.11)]. In the second columns in both tables,
“Yes” corresponds to case (ii) with the “working independence” assumption imposed, while “No”
corresponds to case (i).

The two tables indicate that estimation of both ρ(·) and β(·) functional coefficients become
more stable as the number of cross-sections increases. Both the MAE and RMSE decline signif-
icantly as n increases. Regardless of the instrument set, as expected, the second-stage estimator
delivers a sizable improvement over its first-stage counterpart. This improvement is however far
more significant when pooling the data by ignoring random effects in the second-stage estimation.
We also observe that adding quadratic orthogonality conditions leads to a sizable increase in the
estimation accuracy. In addition, our results indicate that the performance of our estimator im-
proves significantly when working with longer panels. Comparing our second-stage estimator which
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Table 3. Simulations Results for the Spatial Endogeneity Test

Signif. Level n = 100 n = 400 n = 600 n = 1, 000 n = 1, 00 n = 400 n = 600 n = 1, 000

Estimated Size Estimated Power

α = 0.70; r = 0.168

1% 0.020 0.020 0.043 0.040 0.247 0.304 0.352 0.358
5% 0.071 0.070 0.089 0.084 0.378 0.408 0.482 0.532
10% 0.105 0.114 0.128 0.123 0.442 0.498 0.576 0.626
20% 0.181 0.213 0.213 0.211 0.542 0.601 0.666 0.704

α = 0.80; r = 0.175

1% 0.032 0.040 0.035 0.035 0.196 0.202 0.254 0.256
5% 0.080 0.098 0.107 0.087 0.322 0.343 0.402 0.400
10% 0.121 0.155 0.158 0.141 0.384 0.438 0.478 0.502
20% 0.207 0.247 0.234 0.226 0.504 0.524 0.574 0.604

α = 0.90; r = 0.181

1% 0.034 0.051 0.043 0.034 0.147 0.152 0.160 0.166
5% 0.098 0.117 0.107 0.096 0.274 0.272 0.282 0.294
10% 0.143 0.181 0.138 0.158 0.347 0.348 0.396 0.398
20% 0.213 0.258 0.235 0.258 0.479 0.470 0.502 0.506

accounts for random effects with its pooled local linear alternative, we observe that the estimation
of β(·) benefits significantly from the “working independence” assumption, at least in our current
data generating design.

Tables 1 and 2 also report the results for the third-stage sieve estimator of θ(·). We use cubic
B-splines to approximate the unknown functional coefficient. For simplicity, we set Ln = 3 in our
experiments for all three different n’s since the range of the sample size is not that large. Consistent
with our theory, the sieve estimator of θ(·) becomes more stable as the sample size grows.

Overall, simulation experiments lend support to asymptotic results for our proposed estimators.

7.2 Spatial Endogeneity Test

We next examine the small sample performance of our proposed residual-based test statistic for
spatial endogeneity. To assess the size and power of our test statistic Jn, we consider the following
two experimental designs for the data-generating process given in (7.1), where zit, xit, gi, uit, µi and
the functional coefficients θ(·) and β(·) are generated exactly as in Section 7.1. Following Kelejian
& Prucha (1999) and Jin & Lee (2015), we choose a circular “1 ahead and 1 behind” structure
of W0 = {wij}ni,j=1, where a given spatial unit is related to one neighbor immediately ahead and
one neighbor immediately behind it in a row. Each of these two neighbors are assigned an equal
non-zero weight of 0.5. We then specify the spatial lag functional parameter ρ(·) as follows:

(i) No spatial dependence: ρ(zit) = 0 for all zit;

(ii) Spatial autoregression: ρ(zit) = 0.5 + 0.4 exp(−2zit).

We consider samples with n = {100, 400, 600, 1, 000} and T = 3. For each n, we simulate the
model 500 times. We set h̃0 = 1.06σ̂z(n(T −1))−0.20, h̃ = 1.06σ̂z(n(T −1))−0.45, h0 = 1.06σ̂z(n(T −
1))−α and h = 1.06σ̂z(n(T − 1))−r with 2/3 < α < 1 and (1− α/2) /4 < r < α/4. To assess
the sensitive of the results to the choice of bandwidths, we try different combinations of h and h0.
Specifically, in line with our assumptions, we set (α, r) = {(0.70, 0.168), (0.80, 0.175), (0.90, 0.181)}.
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Table 3 reports the estimated size under design (i) and power under design (ii) of our test statistic
which are computed as rejection frequencies out of 500 simulations. Here, we use (asymptotic)
standard normal critical values. We find that out test statistic Jn exhibits good power which
increases with the sample size as anticipated, regardless of the choice of bandwidths. Also, the
power is significantly better when we under-smooth in both stages under H1. The size of the test
also seems to be sensitive to the degree of smoothing under the alternative with the better results
reported for the case when α = 0.70 and r = 0.168, which imply stronger under-smoothing under
H1. Overall, the estimated size tends to be greater than the nominal level, which is quite expected
given that we use asymptotic critical values and kernel-based nonparametric tests are known to
be prone to finite-sample size distortions. In empirical applications, we certainly recommend using
the bootstrap method.

8 Conclusion

This paper proposes an innovative way of estimating a functional-coefficient spatial autoregressive
panel data model with unobserved individual fixed effects which can accommodate (multiple) time-
invariant regressors in the model. The methodology we propose removes unobserved fixed effects
from the model via the first-difference transformation. The estimation of the transformed non-
parametric additive model however does not require the use of backfitting or marginal integration
techniques. We derive the consistency and asymptotic normality results for the proposed kernel
and sieve estimators. We also construct a consistent nonparametric test statistic to test for spatial
endogeneity in the data. A small Monte Carlo study shows that both our proposed estimators and
the test statistic exhibit good finite-sample performance.

Appendix. Brief Mathematical Proofs

Proof of Theorem 1. Denote ϑn = ζn

[ ̂̇
θ (z)′ − θ̇ (z)′ γ̂ (z)′ − γ (z)′

]′
,4y∗it = 4yit−g′iθ̇ (z)−

ξ′m′itγ (z) and εit (ϑ) = 4y∗it − ζ−1n
[
g′i, ξ

′m′it
]
ϑ, where {ζn} is a sequence of positive constants

such that 0 < C1 < ‖ϑn‖ < C2 <∞ for all n and T . We then rewrite (3.6) as

gn (ϑ) =


ε (ϑ)′Kh(z)Pn,1Kh(z)ε (ϑ)

...
ε (ϑ)′Kh(z)Pn,LKh(z)ε (ϑ)

Q′Kh(z)ε (ϑ)

 , (A.1)

where ε (ϑ) is an [n (T − 1)]× 1 vector stacking up {εit (ϑ)} in the ascending order of index t first
then index i, and obtain the following:

∂gn (ϑ)

∂ϑ′
= −ζ−1n


ε (ϑ)′Kh(z)Ps

n,1Kh(z)M
...

ε (ϑ)′Kh(z)Ps
n,LKh(z)M

Q′Kh(z)M

 .

Minimizing the objective function in (3.7) is equivalent to minimizing Λn (ϑ) = gn (ϑ)′ gn (ϑ)
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in ϑ ∈ S, a compact subset of R2(dx+1)+dg . Since ϑn minimizes Λn (ϑ) = gn (ϑ)′ gn (ϑ), we have

02(dx+1)+dg =
∂gn (ϑn)′

∂ϑ
gn (ϑn) =

∂gn (ϑn)′

∂ϑ

gn (0) +
∂gn

(
ϑ̃n

)
∂ϑ′

ϑn

 ,
where ϑ̃n lies between ϑn and 02(dx+1)+dg , and hence:

ϑn = −

∂gn (ϑn)′

∂ϑ

∂gn

(
ϑ̃n

)
∂ϑ′

−1 ∂gn (ϑn)′

∂ϑ
gn (0) .

Specifically, denoting Ξh(z) ≡ Kh(z)QQ′Kh(z), we have

An (z) = −∂gn (ϑn)′

∂ϑ
gn (0)

=
1

2ζn

L∑
l=1

M′Kh(z)Ps
n,lKh(z)ε (ϑn) ∆y∗′Kh(z)Ps

n,lKh(z)∆y∗ +
1

ζn
M′Ξh(z)∆y∗

and

Bn (z) =
∂gn (ϑn)′

∂ϑ

∂gn

(
ϑ̃n

)
∂ϑ′

=
1

ζ2n

L∑
l=1

{
ε (ϑn)′Kh(z)Ps

n,lKh(z)M
}′
ε
(
ϑ̃n

)′
Kh(z)Ps

n,lKh(z)M +
1

ζ2n
M′Ξh(z)M.

For each (i, t), we have4y∗it = 4uit+cit (z), where cit (z) = g′i [θ (zit)− θ (z1)]−g′i [θ (zi,t−1)− θ (z2)]
+m′it [γ (zit)− γ (z1)]−m′i,t−1 [γ (zi,t−1)− γ (z2)]. Stacking up {cit (z)} in the ascending order of in-
dex t first then index i gives an [n (T − 1)]×1 vector C (z). We also denote Γ1,l = 4u′Kh(z)Ps

n,lKh(z)C(z),

Γ2,l = C (z)′Kh(z)Ps
n,lKh(z)C(z), Γ3,l = 4u′Kh(z)Ps

n,lKh(z)∆u, Ψ1,l = 4u′Kh(z)Ps
n,lKh(z)M,

Ψ2,l = C (z)′Kh(z)Ps
n,lKh(z)M and Ψ3,l = M′Kh(z)Ps

n,lKh(z)M for l = 1, . . . , L. Then, we have
An (z) = An1 (z) +An2 (z)−An3 (z) with

An1 (z) =
1

2ζn

L∑
l=1

(2Γ1,l + Γ2,l + Γ3,l) (Ψ1,l + Ψ2,l)
′ +

1

ζn
M′Ξh(z)C(z),

An2 (z) =
1

ζn
M′Ξh(z)∆u,

An3 (z) =
1

2ζ2n

L∑
l=1

(2Γ1,l + Γ2,l + Γ3,l) Ψ3,lϑn

and

Bn (z) =
1

ζ2n

L∑
l=1

(
Ψ1,l + Ψ2,l −

1

ζn
ϑ′nΨ3,l

)′(
Ψ1,l + Ψ2,l −

1

ζn
θ̃
′
nΨ3,l

)
+

1

ζ2n
M′Ξh(z)M.

By Lemmas 1–3 below, we have(
nh2

)−2
ζnAn1 (z) = κA (h, z) + op

(
h2
)
, (A.2)
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(
nh2

)−3/2
ζnAn2 (z)

d→ N
(
02(dx+1)+dg , σ

2
uυ2,0 (k) Ω (z)

)
,(

nh2
)−2

ζ2nAn3 (z) = Op

(
h2 + n−1/2

)
,(

nh2
)−2

ζ2nBn (z) = κB (h, z) +Op
(
ζ−1n + ζ−2n

)
+ op (1) ,

where the last equation holds uniformly over all θ̃n ∈ S and κA (h, z) = Op
(
h2
)

and κB (h, z) =
O (1). In addition, we have

ζn

{[ ̂̇
θ (z)′ − θ̇ (z)′ γ̂ (z)′ − γ (z)′

]′
−
[(
nh2

)−2
ζ2nBn (z)

]−1 (
nh2

)−2
ζnAn1 (z)

}
=

ζn√
nh2

[
ζ2nBn (z)

(nh2)2

]−1
ζnAn2 (z)

(nh2)3/2
+

[
ζ2nBn (z)

(nh2)2

]−1
ζ2nAn3 (z)

(nh2)2
. (A.3)

Combining (A.2)–(A.3) with the fact that 0 < C1 < ‖ϑn‖ < C2 < ∞ for all n, we can deduce
that ζn must be of order

√
nh2. The logic is explained below.

(i) If ζn/
√
nh2 → ∞, it implies that

√
nh2

[ ̂̇
θ (z)′ − θ̇ (z)′ γ̂ (z)′ − γ (z)′

]′
→ 0 as n → ∞.

By (A.2)–(A.3) and Assumption 4, we obtain

√
nh2

{[ ̂̇
θ (z)′ − θ̇ (z)′ γ̂ (z)′ − γ (z)′

]′
− κB (h, z)−1 κA (h, z)

}
d
= N

(
02(dx+1)+dg , σ

2
uυ2,0 (k)κB (h, z)−1 Ω (z)κB (h, z)−1

)
+Op

(
h2 + n−1/2

)
.

Since the first term is of order Oe (1), a contradiction occurs.

(ii) Now, suppose that ζn/
√
nh2 → 0 holds true. By (A.2)–(A.3) and Assumption 4, we have

ϑn = op (1) which contradicts the fact that ‖ϑn‖ is uniformly bounded and positive.

Therefore, applying the exclusion method, we have shown that ζn must be of order
√
nh2 exactly,

which gives

√
nh2

{[ ̂̇
θ (z)′ − θ̇ (z)′ γ̂ (z)′ − γ (z)′

]′
− κB (h, z)−1 κA (h, z)

}
d
= N

(
02(dx+1)+dg , σ

2
uυ2,0 (k)κB (h, z)−1 Ω (z)κB (h, z)−1

)
.

This completes the proof of this theorem.

In the following three lemmas, we define κj (h, z) = κj,Q (z) + κj,P (h, z) for j = A, B, where
subscripts Q and P mean that the variable results from the use of Q and {Pn,l∆u} as the instru-
ment, respectively.

Lemma 1 Under Assumptions 1–4, we obtain
(
nh2

)−2
ζnAn1 (z) =κA (h, z) + op

(
h2
)
, where

κA,Q (z) = h2υ1,2 (k) E1 (z) E2 (z) ,

κA,P (h, z) =

L∑
l=1

[
F1,l (h, z) +

1

2
F2,l (h, z)

]
E [ψl (h, z)]′ = Op

(
h2 + n−1/2

)
and E1 (z), E2 (z), ψl (h, z) and Fj,l (j = 1, 2, 3) are defined in the proof below.
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Proof. Under Assumptions 1–4 and denoting E [·|z] = E [·|zit = z1, zi,t−1 = z2], we obtain

1

nh2
M′Kh(z)Q =

1

nh2

n∑
i=1

T∑
t=2

kit (z)

[
gig
′
i giξ

′m̆′it
mitξg

′
i mitξξ

′m̆′it

]
= E1 (z) +Op

(
h2 +

(
nh2

)−1/2)
(A.4)

and

1

nh2
Q′Kh(z)C(z) =

1

nh2

n∑
i=1

T∑
t=2

kit (z)

[
gi
m̆itξ

]
cit(z) = h2υ1,2 (k) E2 (z) +Op

(
h4 + n−1/2

)
,

(A.5)
where

E1 (z) =

T∑
t=2

ft,t−1 (z)

[
E [gig

′
i|z] E

[
giξ
′m̆′it|z

]
E [mitξg

′
i|z] E

[
mitξξ

′m̆′it|z
] ] ,

E2 (z) =

T∑
t=2

2∑
s=1

ξs


 ∂(E[gig

′
i|z]ft,t−1(z))
∂zs

∂(E[gim
′
i,t+1−s|z]ft,t−1(z))

∂zs
∂(E[m̆itξg

′
i|z]ft,t−1(z))
∂zs

∂(E[ m̆itξm
′
i,t+1−s|z]ft,t−1(z))
∂zs

[ 5θ (zs)
5γ (zs)

]
+

ft,t−1 (z)

2

 E [gig
′
i|z] E

[
gim

′
i,t+1−s|z

]
E [m̆itg

′
i|z] E

[
m̆itm

′
i,t+1−s|z

] [ 52θ (zs)
52γ (zs)

] .

This gives κA,Q (z) = h2υ1,2 (k) E1 (z) E2 (z).

Next, let aij (zt) be the (i, j)th element of the n× n matrix W0Sn (zt) and, by (2.2), we have

W0yt = ȳt+ūt, where the typical element of ȳt and ūt are ȳit =
∑n

j=1 aij (zt)
[
g′jθ (zjt) + x′jtβ(zjt) + µj

]
and ūit =

∑n
j=1 aij (zt)ujt, respectively. Correspondingly, we also denote mit = m̄it + m̃it with

m̄it = [ȳit,x
′
it]
′ and m̃it =

[
ūit,0

′
dx

]′
, cit (z) = c̄it (z) + c̃it (z) with c̄it (z) = g′i [θ (zit)− θ (z1)] −

g′i [θ (zi,t−1)− θ (z2)]+m̄′it [γ (zit)− γ (z1)]−m̄′i,t−1 [γ (zi,t−1)− γ (z2)] and c̃it (z) = ūit [ρ (zit)− ρ (z1)]

−ūi,t−1 [ρ (zi,t−1)− ρ (z2)], and Mit = M̄it+M̃it with M̄it =
[
g′i, ξ

′m̄′it
]′

and M̃it =
[
0′dg , ξ

′m̃′it

]′
=[

0′dg , m̃
′
it,−m̃i,t−1

]′
. Under Assumption 1(iii), we have ‖W0Sn (zt)‖j < C < ∞ for j = 1, ∞.

Applying straightforward calculations gives

Ψ1,l

nh2
=

1

nh2

n∑
i=1

n∑
j=1

T∑
t=2

psl,ijkit (z) kjt (z) ∆uitM
′
jt

=
2

nh2

n∑
i=1

T∑
t=2

pl,iik
2
it (z) ∆uitM̃

′
it +Op

(
h2 +

1√
nh

)
≡ ψl (h, z) +Op

(
h2 +

(√
nh
)−1)

= E [ψl (h, z)] + op (1) , (A.6)

where psl,ij = pl,ij+pl,ji, ψl (h, z) =
[
0′dg , ψ0,l (h, z) ,0′dx ,−ψ1,l (h, z) ,0′dx

]
with ψs,l (h, z) = 2

(
nh2

)−1∑n
i=1

∑T
t=2 pl,iiaii (zt−s) k

2
it (z) ∆uitui,t−s

for s = 0, 1. As

sup
i

E

[
h−1

T∑
t=2

pl,iiaii (zt−s) k
2
it (z) ∆uitui,t−s

]2
≤ C <∞,

applying the Chebyshev inequality we can show that ψs,l (h, z) = E [ψs,l (h, z)]+op (1) = 2σ2uυ2,0 (k)n−1
∑n

i=1 pl,ii
×
∑T

t=2 (−1)s E [aii (zt−s) |z] ft,t−1 (z) + op (1) = Op (1).
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Similarly, we obtain

Ψ2,l

nh2
=

1

nh2

n∑
i=1

n∑
j=1

T∑
t=2

psl,ijkit (z) kjt (z) cit (z) M′
jt = Op

(
h2 + n−1/2

)
, (A.7)

Γ1,l

nh2
=

1

nh2

n∑
i=1

n∑
j=1

T∑
t=2

psl,ijkit (z) kjt (z) ∆uitcjt (z)

=
2

nh2

n∑
i=1

T∑
t=2

pl,iik
2
it (z) ∆uitc̃it (z) +Op

(
h4 +

1√
n

)
≡ F1,l (h, z) +Op

(
h4 +

1√
n

)
= Op

(
h2 +

1√
n

)
, (A.8)

Γ2,l

nh2
=

1

nh2

n∑
i=1

n∑
j=1

T∑
t=2

psl,ijkit (z) kjt (z) cit (z) cjt (z)

=
2

nh2

n∑
i=1

T∑
t=2

pl,iik
2
it (z) c2it (z) +Op

(
h4
)

≡ F2,l (h, z) +Op
(
h4
)

= Op

(
h2 + hn−1/2

)
, (A.9)

and

Γ3,l

nh2
=

1

nh2

n∑
i=1

n∑
j=1

T∑
t=2

psl,ijkit (z) kjt (z) ∆uit∆ujt

=
2

nh2

n∑
i=1

T∑
t=2

pl,iik
2
it (z) (∆uit)

2 +Op

(
n−1/2

)
= Op

(
h2 +

1√
n

)
since tr {Pn,l} = 0 for all l. It then follows that

Γ3,l

nh2
Ψ2,l

nh2
= Op

(
h2 +

1√
n

)
Op

(
h2 + n−1/2

)
= Op

(
h4 +

h2√
n

+
1

n

)
.

Also, we have

Γ3,l

nh2
ψs,l (h, z) ≈ 4

n2h4

n∑
i=1

T∑
t=2

pl,iik
2
it (z) (∆uit)

2
n∑
i=1

T∑
t=2

pl,iiaii (zt−s) k
2
it (z) ∆uitui,t−s

= Op

(
1

nh2
+

1

n

)
= Op

(
1

nh2

)
,

so that we obtain
Γ3,l

nh2
Ψ1,l

nh2
= Op

(
1

nh2
+

1√
n

)
.

Combining all the above results gives(
nh2

)−2
ζnAn1 (z)

=
1

2 (nh2)2

L∑
l=1

(2Γ1,l + Γ2,l) Ψ′1,l +
1

(nh2)2
M′Ξh(z)C(z) +Op

(
h4 +

(
nh2

)−1
+ n−1/2

)
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=

L∑
l=1

[
F1,l (h, z) +

1

2
F2,l (h, z)

]
ψl (h, z)′ + h2υ1,2 (k) E1 (z) E2 (z) +Op

(
h4 +

(
nh2

)−1
+ n−1/2

)
,

which completes the proof of this lemma.

Remark 1 If θ (z) and γ (z) are both constant, we have Γ1,l = Γ2,l = 0 and Ψ2,l = 0′2(dx+1)+dg
,

from which it follows that
(
nh2

)−2
ζnAn1 (z) =

(
2nh2

)−2∑L
l=1 Γ3,lΨ

′
1,l = Op

(
n−1/2

)
under As-

sumption 4.

Lemma 2 Under Assumptions 1–4, we obtain(
nh2

)−2
ζ2nBn (z) = κB (h, z) +Op

(
ζn
−1 + ζn

−2)+ op (1) , (A.10)

where κB,Q (z) = E1 (z) E1 (z)′ and κB,P (h, z) =
∑L

l=1 E [ψl (h, z)]′ E [ψl (h, z)].

Proof. By (A.4), we obtain κB,Q (z) = E1 (z) E1 (z)′. In addition, we have

Ψ3,l

nh2
=

1

nh2

n∑
i=1

n∑
j=1

T∑
t=2

psl,ijkit (z) kjt (z) MitM
′
jt

=
2

nh2

n∑
i=1

T∑
t=2

pl,iikit (z) MitM
′
it +Op

(
h2
)

= Op (1) . (A.11)

Combining this result with (A.6) and (A.7) yields(
nh2

)−2
ζ2nBn (z)

=
1

(nh2)2

L∑
l=1

Ψ′1,lΨ1,l +
1

(nh2)2
M′Ξh(z)M +Op

(
ζ−1n + ζ−2n + h2 + n−1/2

)
= κB,P (h, z) + κB,Q (z) +Op

(
ζ−1n + ζ−2n

)
+Op

(
h2 +

(
nh2

)−1/2)
,

which completes the proof of this lemma.

Remark 2 When model (1.2) becomes a pure spatial autoregressive panel data model with random
effects, we have

E
[
mitξξ

′m̆′it|z
]

=


0′dq+dx

0′dq+dx

E [xitm̆
′
it|z] −E

[
xitm̆

′
i,t−1|z

]
0′dq+dx

0′dq+dx

−E
[
xi,t−1m̆

′
i,t|z

]
E
[
xi,t−1m̆

′
i,t−1|z

]
 and E [mitξg

′
i|z] =


0′dg

E [xitg
′
i|z]

0′dg

−E [xi,t−1g
′
i|z]


for all t, which implies that κB,Q (z) = E1 (z) E1 (z)′ becomes a singular matrix. Consequently,
applying only the linear moments, (3.4), will not give a consistent estimator due to the singularity
of κB,Q (z). However, κB (h, z) still can be a non-singular matrix if ψl (h, z) = Oe (1) hold for
some l. Therefore, the nonparametric GMM estimator using both linear and quadratic moments is
recommended.

Lemma 3 Under Assumptions 1–4, we obtain(
nh2

)−3/2
ζnAn,2 (z)

d→ N
(
02(dx+1)+dg , σ

2
uυ2,0 (k) Ω (z)

)
, (A.12)

where Ω (z) = E1 (z) E3 (z) E1 (z)′ and E3 (z) = limn→∞ n
−1∑n

i=1

∑T
t=1 ft,t−1 (z)E [QitQ

′
it|z].
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Proof. By definition,
(
nh2

)−3/2
ζnAn,2 (z) =

[(
nh2

)−1
M′Kh(z)Q

] (
nh2

)−1/2
Q′Kh(z)∆u, where(

nh2
)−1

M′Kh(z)Q = E1 (z) +Op

(
h2 +

(
nh2

)−1/2)
by Lemma 1. Below, we show that

∆n ≡
1√
nh2

Q′Kh(z)∆u =
1√
nh2

n∑
i=1

Q′iKi (z) ∆ui

converges to a normal distribution, where Qi = [Qi2, . . . ,QiT ]′, ∆ui = [∆ui2, . . . ,∆uiT ]′ and
Ki (z) = diag {ki2 (z) , . . . , kiT (z)}.

Let α 6= 0 be a [2 (dq + dx) + dg]×1 vector and we also denote χn,i =
(
nh2

)−1/2
α′Q′iKi (z) ∆ui.

Next, we construct a scalar ∆n,α ≡ α′∆n = α′
∑n

i=1 χn,i. Let Fn,i = σ
(
∆uj ,xj′ , zj′ ,gj′ , 1 ≤ j ≤ i,

j′ = 1, . . . , n) be the smallest sigma field containing all the information on ∆uj for 1 ≤ j ≤ i and(
xj′ , zj′ ,gj′

)
for j′ = 1, . . . , n. Under Assumption 1, {(χn,i,Fn,i)} forms a martingale difference

sequence. In order to apply Hall & Heyde’s (1980, Corollary 3.1) martingale difference central limit
theorem, we need to verify that, for any small ε > 0:

n∑
i=1

E
[
χ2
n,iI (|χn,i| > ε)

∣∣∣Fn,i−1] p→ 0 (A.13)

and
n∑
i=1

E
[
χ2
n,i

∣∣Fn,i−1] p→ σ2uυ2,0 (k)α′E3 (z)α > 0, (A.14)

where (A.14) holds true because
∑n

i=1 E
[
χ2
n,i

∣∣Fn,i−1] =
(
nh2

)−1
σ2u
∑n

i=1α
′Q′iKi(z)ΣKi(z)Qiα

with Σ = 2IT−1 − JT−1 (0)− JT−1 (0)′ and

1

nh2

n∑
i=1

Q′iKi(z)ΣKi(z)Qi =
1

nh2

n∑
i=1

T∑
t=1

k2it (z) QitQ
′
it +Op

(
h2
)

=
υ2,0 (k)

nh2

n∑
i=1

T∑
t=1

ft,t−1 (z)E
[
QitQ

′
it|z
]

+Op

(
h2 +

(√
nh
)−1/2)

.

Next, we verify (A.13). Under Assumptions 1–6, we have

n∑
i=1

E
[
χ2
n,iI (|χn,i| > ε)

∣∣∣Fn,i−1]

≤ ε−2
n∑
i=1

E
[
χ4
n,i|Fn,i−1

]
=

1

(nh2)2 ε2

n∑
i=1

E

( T∑
t=2

kit (z) ∆uitα
′Qit

)4 ∣∣∣∣∣Fn,i−1


≤ T 3

(nh2)2 ε2

n∑
i=1

T∑
t=2

E
[
k4it (z) (∆uit)

4 [α′Qit

]4 ∣∣∣Fn,i−1]
≤ C

(nh2)2 ε2

n∑
i=1

T∑
t=1

k4it (z)
[
Q′itQit

]2 (
α′α

)2
= Op

(
1

nh2ε2

)
= op (1) as nh2 →∞ when n→∞ for any small ε > 0,
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since
(∑T

t=2 at

)4
≤ T 3

∑T
t=2 a

4
t , where E [Q′itQit]

2 is uniformly bounded over (i, t) under Assump-

tion 1 and E
(
‖xit‖4

)
, E
(
‖gi‖4

)
and E

(
|zit|4

)
are all uniformly bounded over (i, t).

Therefore, applying Corollary 3.1 of Hall & Heyde (1980) and the Cramér’s Wold device com-
pletes the proof of this lemma.

Proof of Theorem 2. Define a (dx + 1)×2 matrix ϑn = ζn
[
γ̃ (z)− γ (z) h0 [5γ̃ (z)−5γ (z)]

]
as well as Ŷ ∗it = Ŷit − ϕttm′itγ (z) − ϕttm′it∇γ (z) (zit − z) and εit (ϑ) = Ŷ ∗it −ζ−1n ϕttm

′
itϑZit(z),

where {ζn} is a sequence of positive constants such that 0 < C1 < ‖ϑn‖ < C2 <∞ for all n. Then,
we can rewrite (3.16) as

gn (ϑ) =

[
ε (ϑ)′Kh0(z)P̂nKh0(z)ε (ϑ)

Q̂(z)′Kh0(z)ε (ϑ)

]
, (A.15)

where ε (ϑ) is an [n (T − 1)]× 1 vector stacking up {εit (ϑ)} in the ascending order of index t first
then index i. In addition, we have

∂gn (ϑ)

∂vec (ϑ)′
= −ζ−1n

[
ε (ϑ)′Kh0(z)P̂s

nKh0(z)M (z)

Q̂(z)′Kh0(z)M (z)

]
.

Minimizing the objective function in (3.15) is equivalent to minimizing Λn (ϑ) = gn (ϑ)′ gn (ϑ)
in ϑ ∈ S, a compact subset of R(dx+1) ×R2. Since ϑn minimizes Λn (ϑ) = gn (ϑ)′ gn (ϑ), we have

02(dx+1) =
∂gn (ϑn)′

∂vec (ϑ)
gn (ϑn) =

∂gn (ϑn)′

∂vec (ϑ)

gn (0) +
∂gn

(
ϑ̃n

)
∂vec (ϑ)′

vec (ϑn)

 ,
where ϑ̃n lies between ϑn and 02(dx+1), so that we have

vec (ϑn) = −

∂gn (ϑn)′

∂vec (ϑ)

∂gn

(
ϑ̃n

)
∂vec (ϑ)′

−1 ∂gn (ϑn)′

∂vec (ϑ)
gn (0) .

Specifically, denoting Ξ̂h0(z) ≡ Kh0(z)Q̂(z)Q̂(z)′Kh0(z), we have

Ân (z) = −∂gn (ϑn)′

∂vec (ϑ)
gn (0)

=
1

2ζn
M(z)′Kh0(z)P̂s

nKh0(z)ε (ϑn) Ŷ∗′Kh0(z)P̂s
nKh0(z)Ŷ∗ +

1

ζn
M(z)′Ξ̂h0(z)Ŷ∗

and

B̂n (z) =
∂gn (ϑn)′

∂vec (ϑ)

∂gn

(
ϑ̃n

)
∂vec (ϑ)′

=
1

ζ2n

[
ε (ϑn)′Kh0(z)P̂s

nKh0(z)M(z)
]′
ε
(
ϑ̃n

)′
Kh0(z)P̂s

nKh0(z)M(z) +
1

ζ2n
M(z)′Ξ̂h0(z)M(z).
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For each (i, t), we define a (dx + 1) × 1 vector Π(z∗it), whose lth element equals Πl(z
∗
it) =

∇2γl(z
∗
it)(zit − z)2, and z∗it lies between zit and z for l = 1, . . . , (dx + 1). Then, we have Ŷ ∗it =

ϕttm
′
itΠ(z∗it)/2 + v̂it with v̂it = π̂it + ∆ũit, ∆ũit =

∑T
s=2 ϕts∆uis and

π̂it =

T∑
s=2

ϕts

{
g′i

[
θ̇ (zis, zi,s−1)− ̂̇θ (zis, zi,s−1)

]
+ m′is [γ (zis)− γ̂ (zis)]−m′i,s−1 [γ (zi,s−1)− γ̂ (zi,s−1)]

}
.

(A.16)

Further, we define an [n (T − 1)] × 1 vector C (z) whose typical term equals ϕttm
′
itΠ(z∗it)/2.

Note that maxi,t |π̂it| = Op

(
h2 +

√
lnn/ (nh2)

)
holds under Assumptions 1 and 5. Also, let Π̂ be

an [n (T − 1)]× 1 vector stacking up π̂it in the ascending order of index t first.

Closely following the proof of Theorem 1, we denote

Ân1 (z) =
1

2ζn

(
2Γ̂1 + Γ̂2 + Γ̂3

)(
Ψ̂1 + Ψ̂2

)′
+

1

ζn
M (z)′ Ξ̂h0(z)

[
C(z) + Π̂

]
,

Ân2 (z) =
1

ζn
M(z)′Ξ̂h0(z)∆ũ,

Ân3 (z) =
1

2ζ2n

(
2Γ̂1 + Γ̂2 + Γ̂3

)
Ψ̂3vec (ϑn)

and

B̂n (z) =
1

ζ2n

(
Ψ̂1 + Ψ̂2 −

1

ζn
[vec (ϑn)]′ Ψ̂3

)(
Ψ̂1 + Ψ̂2 −

1

ζn

[
vec
(
ϑ̃n

)]′
Ψ̂3

)
1

ζ2n
M(z)′Ξ̂h0(z)M(z),

where, denoting v̂ = [v̂′2, . . . , v̂
′
T ]′ with v̂t = [v̂1t, . . . , v̂nt]

′, Γ̂1 = v̂′Kh0(z)P̂s
nKh0(z)C(z), Γ̂2 =

C(z)′Kh0(z)P̂s
nKh0(z)C(z), Γ̂3 = v̂′Kh0(z)P̂s

nKh0(z)v̂, Ψ̂1 = v̂′Kh0(z)P̂s
nKh0(z)M(z), Ψ̂2 =

C(z)′Kh0(z)P̂s
nKh0(z)M(z) and Ψ̂3 = M(z)′Kh0(z)P̂s

nKh0(z)M(z).

By Lemmas 5–7 given below, we have

(nh0)
−2 ζnÂn1 (z) = κA (h0, z) + op

(
h20
)
, (A.17)

(nh0)
−3/2 ζnÂn2 (z)

d→ N
(

02(dx+1), σ
2
u

[
υ2,0 (k) 0

0 υ2,2 (k) υ21,2 (k)

]
⊗Ω (z)

)
,

(nh0)
−2 ζ2nÂn3 (z) = Op

(
h20
)
,

(nh0)
−2 ζ2nB̂n (z) = κB (h0,z) +Op

(
ζ−1n + ξ−2n

)
+ op (1) , (A.18)

where the last line holds uniformly over all ϑ̃n ∈ S. Following exactly the same argument as in the
proof of Theorem 1, we obtain ζn =

√
nh0, which completes the proof of this theorem.

In the following three lemmas, we define κj (h0,z) = κj,Q (h0,z)+κj,P (h0,z) for j = A, B, where
subscripts Q and P mean that the variable results from the use of localized linear and quadratic
moments, respectively.

Lemma 4 Under Assumptions 1–5, we obtain
∥∥∥Ŝn (zt)− Sn (zt)

∥∥∥
sp

= Op

(
h2 +

√
(lnn) / (nh2)

)
and n−1tr

{
W0

[
Ŝn (zt)− Sn (zt)

]}
= Op

(
h2 +

√
(lnn) / (nh2)

)
.

Proof. First, we have∥∥∥Ŝn (zt)− Sn (zt)
∥∥∥
sp

=
∥∥∥[In − ρ̂ (zt) W0]

−1 − [In − ρ (zt) W0]
−1
∥∥∥
sp
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≤
∥∥∥[In − ρ̂ (zt) W0]

−1
∥∥∥
sp
‖[ρ̂ (zt)− ρ (zt)] W0‖sp

∥∥∥[In − ρ (zt) W0]
−1
∥∥∥
sp

,

where ‖[ρ̂ (zt)− ρ (zt)] W0‖sp ≤ ‖ρ̂ (zt)− ρ (zt)‖sp ‖W0‖sp = Op

(
h2 +

√
(nh2)−1 lnn

)
under As-

sumptions 1 and 5.

Next, Letting A = [In − ρ̂ (zt) W0] [In − ρ̂ (zt) W0]
′ and B = [In − ρ (zt) W0] [In − ρ (zt) W0]

′,

we have A−B = [ρ (zt)− ρ̂ (zt)] W0 +W′
0 [ρ (zt)− ρ̂ (zt)] +W0

[
ρ̂2 (zt)− ρ2 (zt)

]
W′

0. Applying

Weyl’s theorem and Property 4.67 (e) in Seber (2008) gives |λmin (A)− λmin (B)| ≤ (‖A−B‖1 ‖A−B‖∞)1/2

= Op

(
h2 +

√
(lnn) / (nh2)

)
under Assumptions 1 and 5. In addition, we have

∥∥∥[In − ρ (zt) W0]
−1
∥∥∥
sp
≤

C under Assumption 1(iii). We therefore obtain∥∥∥[In − ρ̂ (zt) W0]
−1
∥∥∥2
sp

= λ−1min

{
[In − ρ (zt) W0] [In − ρ (zt) W0]

′}+ op (1) ,

from which it follows ∥∥∥Ŝn (zt)− Sn (zt)
∥∥∥
sp

= Op

(
h2 +

√
lnn

nh2

)
. (A.19)

Now, by (A.19), we obtain

max
i,j
|âij (zt)− aij (zt)| ≤ ‖W0‖sp

∥∥∥Ŝn (zt)− Sn (zt)
∥∥∥
sp

= Op

(
h2 +

√
lnn

nh2

)
, (A.20)

where âij (zt) and aij (zt) are the (i, j)th element of W0Ŝn (zt) and W0Sn (zt), respectively. Con-
sequently, we have∣∣∣n−1tr{W0

[
Ŝn (znt)− Sn (znt)

]}∣∣∣ ≤ n−1 n∑
i=1

∑
j 6=i
|wij | |âij (zt)− aij (zt)| = Op

(
h2 +

√
lnn

nh2

)
,

(A.21)
which completes the proof of this lemma.

Lemma 5 Under Assumptions 1–7, we obtain (nh0)
−2 ζnÂn1 (z) = κA (h0, z) + op

(
h20
)
, where

κA,Q (h0, z) =
1

2
υ1,2(k)h20

[
1 0

]′ ⊗ [E1 (z)′E1 (z)∇2γ(z)
]
,

κA,P (h0, z) =

[
1
0

]
⊗
[
F1 (h0, z)ψ1 (h0, z)

0dx

]
= Op

(
h20
)
,

where E1 (z) ≡ limn→∞ n
−1∑n

i=1

∑T
t=2 ϕttft (z)E (qitm

′
it|zit = z), and F1 (h0, z) and ψ1 (h0, z) are

defined in the proof below.

Proof. First, we have

1

nh0
Q̂(z)′Kh0(z)M(z) =

1

nh0

n∑
i=1

T∑
t=2

ϕttkit (h0, z)
[
Zit(z)Zit(z)′

]
⊗
(
qitm

′
it

)
+Op

(
h2 +

√
lnn

nh2

)

=

[
1 0
0 υ1,2 (k)

]
⊗E1 (z) +Op

(
h20 + h2 +

1√
nh0

+

√
lnn

nh2

)
, (A.22)
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1

nh0
C(z)′Kh0(z)Q̂(z) =

1

2nh0

n∑
i=1

T∑
t=2

ϕttkit (h0, z) m′itΠ(z∗it)
[
Zit(z)′ ⊗ q′it

]
+Op

((
h2 +

√
lnn

nh2

)
h20

)

=
1

2
υ1,2(k)h20

[
1 0

]
⊗
[
E1 (z)∇2γ(z)

]
[1 + op (1)] ,

and

1

nh0
Π̂′Kh0(z)Q̂(z) =

1

nh0

n∑
i=1

n∑
j=1

T∑
t=2

kit (h0, z) π̂it
[
Zit(z)′ ⊗ q′it

]
+Op

(
h4 +

lnn

nh2

)

= Op

(
h2 +

lnn

nh2

)
. (A.23)

Second, letting pt,ij be the (i, j)th element of Pt = W0Sn (zt) − n−1tr{W0Sn (zt)} In and by
Lemma 4, we obtain

Ψ̂1

nh0
=

1

nh0
v̂′Kh0(z)P̂s

nKh0(z)M(z)

=
1

nh0
∆ũ′Kh0(z)Ps

nKh0(z)M(z) +
1

nh0
Π̂′Kh0(z)Ps

nKh0(z)M(z) +

1

nh0
v̂′Kh0(z)

(
P̂n −Pn

)s
Kh0(z)M(z)

=
2

nh0

n∑
i=1

T∑
t=2

ϕttpt,iik
2
it (h0, z) ∆ũitZit(z)⊗

[
ūit,0

′
dx

]′
+Op

(
h0 + h2 +

1√
nh0

+

√
lnn

nh2

)

≡
[

1
0

]
⊗
[
ψ1 (h0, z)

0dx

]
+ op (1) , (A.24)

where ψ1 (h0, z) = 2 (nh0)
−1∑n

i=1

∑T
t=2 ϕttE

[
pt,iik

2
it (h0, z) ∆ũitūit

]
= O (1).

Similarly, we can show that

Ψ̂2

nh0
=

1

nh0
C (z)′Kh0(z)P̂s

nKh0(z)M(z)

=
1

nh0
C (z)′Kh0(z)Ps

nKh0(z)M(z) +
1

nh0
C (z)′Kh0(z)

(
P̂n −Pn

)s
Kh0(z)M(z)

= Op

(
h20 + (nh0)

−1/2
)
, (A.25)

Γ̂1

nh0
=

1

nh0
v̂′Kh0(z)P̂s

nKh0(z)C(z)

=
2

nh0

n∑
i=1

T∑
t=2

ϕttpt,iik
2
it (h0, z) ∆ũitc̃it(z) +Op

(
h30 + h0

(
h2 +

√
lnn

nh2

))

≡ F1 (h0, z) +Op

(
h30 + h20

(
h2 +

√
lnn

nh2

))
= Op

(
h20
)

, (A.26)

Γ̂2

nh0
=

1

nh0
C (z)′Kh0(z)P̂s

nKh0(z)C(z)

=
2

nh0

n∑
i=1

T∑
t=2

ϕ2
ttpt,iik

2
it (h0, z) c

2
it(z) +Op

(
h40

(
h2 +

√
lnn

nh2

))
= Op

(
h40
)

, (A.27)
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Γ̂3

nh0
=

1

nh0
v̂′Kh0(z)P̂s

nKh0(z)v̂

=
2

nh0

n∑
i=1

T∑
t=2

pt,iik
2
it (h0, z) (∆ũit)

2 +Op

((
h2 +

√
lnn

nh2

)(
h0 + h2 +

1√
nh0

+

√
lnn

nh2

))

= Op

(
h20 +

1√
nh0

)
+Op

((
h2 +

√
lnn

nh2

)(
h2 + h0 +

√
lnn

nh2
+

1√
nh0

))
, (A.28)

since tr{Pt} = 0 for all t. It then follows that (nh0)
−2 Γ̂3Ψ̂2 = op

(
h20
)
. In addition, we obtain

2

nh0

n∑
i=1

T∑
t=2

pt,iik
2
it (h0, z) (∆ũit)

2 ψ1 (h0, z) = Op

(
1

nh0
+

1

n

)
,

so that (nh0)
−2 Γ̂3Ψ̂1 = op

(
h20
)

under Assumption 7. This completes the proof of this lemma.

Lemma 6 Under Assumptions 1–7, we obtain

(nh0)
−2 ζ2nB̂n (z) = κB (h0, z) +O

(
ζ−1n + ζ−2n

)
+ op (1) , (A.29)

where

κB,Q (z) =

[
1 0
0 υ21,2 (k)

]
⊗
[
E1 (z)

′
E1 (z)

]
and κB,P (h0, z) =

[
1 0
0 0

]
⊗
[
ψ2
1 (h0, z) 0′dx

0dx
0dx×dx

]
.

Proof. By (A.22), we have

1

(nh0)
2M(z)′Ξ̂h0(z)M(z) = κB,Q (z) (1 + op (1)) .

In addition, following the proof of Lemma 5, we have

Ψ̂3,l

nh0
=

1

nh0
M (z)′Kh0(z)P̂s

nKh0(z)M(z)

=
2

nh0

n∑
i=1

T∑
t=2

ϕ2
ttpt,iik

2
it (z)

[
Zit(z)Zit(z)′

]
⊗
(
mitm

′
it

)
+Op

(
h2 +

√
lnn

nh2

)
= Op (1) ,

which, when combined with (A.24) and (A.25), gives

(nh0)
−2 ζ2nB̂n (z) =

1

(nh0)
2 Ψ̂′1Ψ̂1 +

1

(nh0)
2M (z)′ Ξ̂h0(z)M (z) +Op

(
ζ−1n + ζ−2n + h20 + (nh0)

−1/2
)

= κB,P (h0, z) + κB,Q (z) + op (1) +Op
(
ζ−1n + ζ−2n

)
.

This completes the proof of this lemma.

Remark 3 If model (1.2) becomes a parametric spatial autoregressive panel data model with

random effects, E1 (z) ≡
[
0dq , n

−1∑n
i=1

∑T
t=2 ϕttft (z)E (qitx

′
it|zit = z)

]
causing κB,Q (z) to be

singular. However, κB (h0, z) can still be a nonsingular matrix so long as ψ1 (h0, z) = Oe (1).
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Lemma 7 Under Assumptions 1–7, we obtain

(nh0)
−3/2 ζnÂn,2 (z)

d→ N
(
0, σ2u

[
υ2,0 (k) 0

0 υ2,2 (k) υ21,2 (k)

]
⊗Ω (z)

)
, (A.30)

where Ω (z) = E1 (z)′ E3 (z) E1 (z) with E3 (z) = limn→∞ n
−1∑n

i=1

∑T
t=1 ft (z)E [qitq

′
it|z].

Proof. By definition, (nh0)
−3/2 ζnÂn,2 (z) =

[
(nh0)

−1M (z)′Kh0(z)Q̂ (z)
]

(nh0)
−1/2 Q̂ (z)′Kh0(z)∆ũ.

We need to show that

1√
nh0

Q̂ (z)′Kh0(z)∆ũ =
1√
nh0

n∑
i=1

Qi (z) Ki (z) ∆ũi + op (1)

converges to a normal distribution, where Qi = [Qi2, . . . ,QiT ]′, ∆ũi = [∆ũi2, . . . ,∆ũiT ]′ and
Ki (z) = diag {ki2 (h0, z) , . . . , kiT (h0, z)}.

Since the proof of this result closely follows that of Lemma 3, we only show the following:

1

nh0

n∑
i=1

Qi (z) K2
i (z)Qi (z) =

1

nh0

n∑
i=1

T∑
t=1

k2it (h0, z)
[
Zit (z)Zit (z)′

]
⊗
(
qitq

′
it

)
=

[
υ2,0 (k) 0

0 υ2,2 (k)

]
⊗ 1

n

n∑
i=1

T∑
t=1

ft (z)E
[
qitq
′
it|z
]

+Op

(
h20 +

1√
nh0

)
.

Combing above results with (A.22) completes the proof of this lemma.

Proof of Theorem 3. Under Assumption 8, we have

θ̃ (z)− θ (z) = θ̃ (z)− θ∗ (z) + θ∗ (z)− θ (z) =
[
Idg ⊗ φLn

(z)
]′ (
ψ̃ − ψ

)
+O

(
L−ξn

)
.

By (4.4), we have ψ̃ = (X ′MDX )−1X ′MD
˜̇y = ψ +∆n1 + ∆n2 since MDD = 0nT , where ∆n1

≡ (X ′MDX )−1X ′MDΠ, ∆n2 ≡ (X ′MDX )−1X ′MDu, and Π = [Π′1, . . . ,Π
′
n]
′

is of dimension nT
with Πi = [Πi1, . . . ,ΠiT ]′ and Πit = m′it [γ (zit)− γ̃ (zit)] + g′i [θ (zit)− θ∗ (zit)].

First, we show that
[
Idg ⊗ φLn

(z)
]′

∆n2 = Op

(√
Ln/n

)
has an asymptotic normal distribution.

Letting α 6= 0 be any finite vector of dimension dg, we have Γn ≡ α′
[
Idg ⊗ φLn

(z)
]′

∆n2 ≡ Γn,1 +

Γn,2, where Γn,1 ≡ α′
[
Idg ⊗ φLn

(z)
]′

Σ−1φφX
′MDu/n and Γn,2≡α′

[
Idg ⊗ φLn

(z)
]′ (

Σ−1n,φφ −Σ−1φφ

)
× X ′MDu/n with Σn,φφ ≡ n−1X ′MDX . Since Γn,2 is a vector, we have

‖Γn,2‖ = n−1
∥∥∥α′ [Idg ⊗ φLn

(z)
]′ (

Σ−1n,φφ −Σ−1φφ

)
X ′MDu

∥∥∥
sp

≤ n−1
∥∥∥α′ [Idg ⊗ φLn

(z)
]′∥∥∥

sp

∥∥∥Σ−1n,φφ −Σ−1φφ

∥∥∥
sp

∥∥X ′MDu
∥∥
sp

= Op

(√
Ln
n

√
Ln logLn

n

√
Ln

)
= op

(
Ln
n

)
under Assumptions 7 and 9, where also, under Assumption 1, we have

E
[∥∥X ′MDu

∥∥2] = E
[
u′MDX

(
X ′MDX

)−1X ′MDu
]
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= σ2uE
[
tr
(
MDX

(
X ′MDX

)−1X ′MD

)]
= σ2utr

(
IdgLn

)
= σ2udgLn,

so that ‖X ′MDu‖sp = ‖X ′MDu‖ = Op (Ln) by Markov’s inequality. In addition,∥∥∥Σ−1n,φφ −Σ−1φφ

∥∥∥
sp

=
∥∥∥Σ−1n,φφ (Σn,φφ −Σφφ) Σ−1φφ

∥∥∥
sp
≤
∥∥∥Σ−1n,φφ∥∥∥

sp
‖Σn,φφ −Σφφ‖sp

∥∥∥Σ−1φφ∥∥∥
sp

= Op (1)
∥∥∥Σ−1n,φφ∥∥∥

sp
‖Σn,φφ −Σφφ‖ = Op

(√
Ln logLn

n

)
, (A.31)

since
∥∥∥Σ−1n,φφ∥∥∥

sp
= λ−1min (Σn,φφ) = λ−1min (Σφφ) +O

(
‖Σn,φφ −Σφφ‖1

)
by Weyl’s theorem in Seber

(2008, p.117), ‖Σn,φφ −Σφφ‖ = Op

(√
Ln (logLn) /n

)
by Lemma 6.2 in Belloni, Chernozhukov,

Chetverikov & Kato (2015), and the B-spline basis functions are uniformly bounded over the
compact domain of z.

Next, we consider

√
nΓn,1 ≡ n−1/2α′

[
Idg ⊗ φLn

(z)
]′

Σ−1φφX
′MDu

= n−1/2α′
[
Idg ⊗ φLn

(z)
]′

Σ−1φφ

n∑
i=1

X ′i
(
IT − T−1iT i′T

)
ui

= n−1/2α′
[
Idg ⊗ φLn

(z)
]′

Σ−1φφ

n∑
i=1

T∑
t=1

[
gi ⊗ φLn

(zit)
]
uit,

where

Var
(√
nΓn,1|G,Z

)
= σ2uα

′ [Idg ⊗ φLn
(z)
]′

Σ−1φφΣn,φφΣ−1φφ
[
Idg ⊗ φLn

(z)
]
α = σ2n

(
1 + op (1)

)
and σ2n ≡ σ2uα′

[
Idg ⊗ φLn

(z)
]′

Σ−1φφ
[
Idg ⊗ φLn

(z)
]
α ≥ σ2uλ−1max (Σφφ)

∥∥α′ [Idg ⊗ φLn
(z)
]∥∥ ≥ CLn.

Under Assumption 1, E[Γn,1] = 0 and, by Minkowski’s inequality, we have for some δ > 0:

E

∣∣∣∣∣σ−1n α′ [Idg ⊗ φLn
(z)
]′

Σ−1φφ

T∑
t=1

[
gi ⊗ φLn

(zit)
]
uit

∣∣∣∣∣
2+δ

≤ 1

σ2+δn

{
T∑
t=1

(
E
[∣∣∣α′ [Idg ⊗ φLn

(z)
]′

Σ−1φφ
[
gi ⊗ φLn

(zit)
]∣∣∣2+δ |uit|2+δ])1/(2+δ)

}2+δ

≤ 1

σ2+δn

λ
−(2+δ)
min (Σφφ)

∥∥α′ [Idg ⊗ φLn
(z)′
]∥∥2+δ{ T∑

t=1

(
E
[∥∥gi ⊗ φLn

(zit)
∥∥2+δ |uit|2+δ])1/(2+δ)}2+δ

≤ C
L2+δ
n

σ2+δn

{
T∑
t=1

(
E
[∣∣g′igi∣∣2+δ |uit|2+δ])1/(2+δ)

}2+δ

≤ C

if max1≤t≤T E
[
|g′igi|

2+δ |uit|2+δ
]
≤ C < ∞, since maxz∈Sz

∑Ln
j=1φ

2
j (z) ≤ MLn for B-spline ba-

sis functions and
∥∥gi ⊗ φLn

(zit)
∥∥ =

√
g′igiφLn

(zit)
′φLn

(zit). Applying Liapounonv’s central
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limit theorem we obtain that
√
nΓn,1/σn

d→ N (0, 1), which implies that
[
Idg ⊗ φLn

(z)
]′

∆n2

= Op

(√
Ln/n

)
.

Second, we consider
[
Idg ⊗ φLn

(z)
]′

∆n1. Applying a method similar to the one used above, we

obtain that Λn ≡ α′
[
Idg ⊗ φLn

(z)
]′

∆n1 = α′
[
Idg ⊗ φLn

(z)
]′

(X ′MDX )−1X ′MDΠ = Λn,1
(
1 +

op (1)
)
, where Λn,1 ≡ α′

[
Idg ⊗ φLn

(z)
]′

Σ−1φφX
′MDΠ/n and

‖Λn,1‖ = ‖Λn,1‖sp ≤
∥∥∥α′ [Idg ⊗ φLn

(z)
]′∥∥∥

sp

∥∥∥Σ−1φφ∥∥∥
sp

∥∥X ′MDΠ/n
∥∥
sp

≤ Cn−1/2L1/2
n

(
Π′MDXX ′MDΠ/n

)1/2
≤ Cn−1/2L1/2

n

(
Π′Π

)1/2
λ1/2max (Σn,φφ)

= Op

(√
Ln
n

(
h20 +

√
lnn

nh0
+ L−ξn

))

under Assumptions 7 and 8. We extend the pointwise convergence result in Theorem 2 to the uni-

form convergence result maxz∈Sz ‖γ̃ (z)− γ (z)‖ = Op

(
h20 +

√
(lnn) / (nh0)

)
, following the proof

in Masry (1996). This completes the proof of this theorem.

Proof of Theorem 4. Begin by defining ∆i = [∆i2, . . . ,∆iT ]′, where ∆it = x′it

[
β (zit)− β̃0 (zit)

]
+

(Wy)it ρ(zit). Hence, ε̂it = ε̂it+∆it+∆uit, where ε̂it ≡ g′i

[
θ̇ (zit)− ̂̇θ1 (zit)

]
−m′i,t−1 [γ(zi,t−1)− γ̂1(zi,t−1)]

and
̂̇
θ1 (·) and γ̂1 (·) are the first-stage estimator under H1. Applying simple algebra, we obtain

T̂n =
1

n2h0

n∑
i=1

n∑
j 6=i
ε̂′iAij ε̂j

=
1

n2h0

n∑
i=1

n∑
j 6=i

∆′iAij∆j +
2

n2h0

n∑
i=1

n∑
j 6=i

∆′iAij ε̂j +
2

n2h0

n∑
i=1

n∑
j 6=i

∆′iAij∆uj +

2

n2h0

n∑
i=1

n∑
j 6=i
ε̂′iAij∆uj +

1

n2h0

n∑
i=1

n∑
j 6=i
ε̂′iAij ε̂j +

1

n2h0

n∑
i=1

n∑
j 6=i

∆u′iAij∆uj

≡ T̂n,1 + 2
(
T̂n,2 + T̂n,3 + T̂n,4

)
+ T̂n,5 + T̂n,6,

where we denote each term appearing in the second equation as T̂n,j (j = 1, . . . , 6) in the order of

their appearance. In what follows, we show that (i) n
√
h0T̂n,6 converges to a normal distribution

under both hypotheses, (ii) n
√
h0T̂n,j = op (1) under both hypotheses for j = 4 and 5, and (iii)

n
√
h0T̂n,j = op (1) under H0 and is explosive under H1 for j = 1, 2, 3.

First, we consider n
√
h0T̂n,6 = n−2

∑n
i=1

∑n
j 6=iHn

(
χi,χj

)
, where we denote Hn

(
χi,χj

)
=

h
−1/2
0 ∆u′iAij∆uj and χi = (∆ui,Xi). Evidently, under Assumption 1, Hn

(
χi,χj

)
is a symmetric

matrix with E
[
Hn

(
χi,χj

)
|χi
]

= 0 almost surely for all i 6= j. It is readily seen that

E
[
G2
n (χ1,χ2)

]
+ n−1E

[
H4
n (χ1,χ2)

]
(E [H2

n (χ1,χ2)])
2 =

Op
(
h20
)

+Op

(
(nh0)

−1
)

Op (1)
= op (1)
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if h0 → 0 and nh0 →∞ as n→∞, where Gn (χ1,χ2) = Eχi
[Hn (χ1,χi)Hn (χ2,χi)]. Specifically,

we have

E
[
H2
n (χ1,χ2)

]
= h−10 E

[
∆u′1A12∆u2∆u′2A12∆u1

]
=

σ2u
h0

E
[
∆u′1A12ΣA12∆u1

]
=
σ4u
h20

tr {E [A12ΣA12Σ]}

=
σ4u
h0

T∑
t=2

∑
0≤|s−t|≤1

ctsE
[
k2
(
z1t − z2s

h0

)(
x′1tx2s

)2]
+O (h0)

= σ4uυ2,0 (k)
∑∑

0≤|s−t|≤1
ctsE

[
µ (z2s) vec

(
x2sx

′
2s

)
f (z2s)

]
+O (h0)

≡ σ20/2 +O (h0) ,

where Σ is defined in Section 3, and µ (z2s) and cts are defined in Theorem 4. Applying Hall’s

(1984) central limit theorem gives n
√
h0T̂n,6

d→ N
(
0, σ20

)
.

Second, we verify n
√
h0T̂n,5 = Op

(
nh4
√
h0
)

under both hypotheses, where

n
√
h0T̂n,5 =

1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

ε̂itε̂jsk

(
zit − zjs
h0

)
x′itxjs.

Following the proof in Masry (1996), we obtain the uniform convergence result for the first-

stage estimator such that
[
E1 (z) E1 (z)′

]−1
E1 (z)

[
h2υ1,2 (k) E2 (z) +

(
nh2

)−1
Q′Kh (z) ∆u

]
is the

leading term of Θ̂1(z) −Θ(z) over z ∈Sz × Sz, where E1 (z), E2 (z), Q and Kh (z) are as defined
in Theorem 1. Let S1 be the first dg columns of the identity matrix Idg+2(dx+1) and S2 contain the
(dg + dx + 1)th to the [dg + 2 (dx + 1)]th columns of matrix Idg+2(dx+1). Then, we have that

ε̂it = g′i

[
θ̇ (zit)− ̂̇θ1 (zit)

]
−m′i,t−1 [γ(zi,t−1)− γ̂1(zi,t−1)]

=
(
−g′iS

′
1 + m′i,t−1S

′
2

)
χ (zi)

[
h2υ1,2 (k) E2 (zi) +

(
nh2

)−1
Q′Kh (zi) ∆u

]
× [1 + op (1)]

holds uniformly over all i and t, where χ (zi) ≡
[
E1 (zi) E1 (zi)

′]−1 E1 (zi). Thus, we have

n
√
h0T̂n,5 ≈ 1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
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s=1

k

(
zit − zjs
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)
x′itxjs

×
(
−g′iS

′
1 + m′i,t−1S

′
2

)
χ (zi)

[
h2υ1,2 (k) E2 (zi) +

(
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)−1
Q′ Kh (zi) ∆u

]
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(
−g′jS

′
1 + m′j,t−1S

′
2

)
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[
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(
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Q′ Kh (zj) ∆u

]
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√
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√
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√
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2
)

. (A.32)

Third, we verify that n
√
h0T̂n,4 = Op

(
h2
√
nh0 +

√
h0/h

)
under both hypotheses, where

n
√
h0T̂n,4 =

1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

ε̂itk

(
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h0

)
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≈ 1

n
√
h0
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j 6=i
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k

(
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)
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×
(
−g′iS

′
1 + m′i,t−1S

′
2

)
χ (zi)

[
h2υ1,2 (k) E2 (zi) +

(
nh2

)−1
Q′ Kh (zi) ∆u

]
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(
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√
nh0 +

√
h0/h+

√
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)
. (A.33)

Fourth, we consider n
√
h0T̂n,3. Similar to the proof for n

√
h0T̂n,4, we obtain that

n
√
h0T̂n,3 =

1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

k

(
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h0

)
x′itxjs∆ujsx

′
it

[
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]
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(
h̃20
√
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√
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)
under H0, (A.34)

and

n
√
h0T̂n,3 =

1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

k

(
zit − zjs
h0

)
x′itxjs∆ujs

×
(
x′it

[
β (zit)− β̃0 (zit)

]
+ (Wy)it ρ(zit)

)
= Op

(√
nh0

)
under H1. (A.35)

Fifth, we have

n
√
h0T̂n,2 ≈ 1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

k

(
zit − zjs
h0

)
x′itxjs

×
(
x′it

[
β (zit)− β̃0 (zit)

]
+ (Wy)it ρ(zit)

) (
−g′jS

′
1 + m′j,t−1S

′
2

)
×χ (zj)

[
h2υ1,2 (k) E2 (zj) +

(
nh2

)−1
Q′Kh (zj) ∆u

]
.

Applying the method similar to that used above, we obtain

n
√
h0T̂n,2 = Op

(
n
√
h0

(
h2 +

(
nh2

)−1/2)(
h̃20 +

(
nh̃0

)−1/2))
under H0, (A.36)

n
√
h0T̂n,2 = Op

(
n
√
h0h

2 + h−1
√
nh0

)
under H1. (A.37)

Lastly, we consider

n
√
h0T̂n,1 =

1

n
√
h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

k

(
zit − zjs
h0

)
x′itxjs

×
(
x′it

[
β (zit)− β̃0 (zit)

]
+ (Wy)it ρ(zit)

)
×
(
x′js

[
β (zjs)− β̃0 (zjs)

]
+ (Wy)js ρ(zjs)

)
.

Similar to the proof for n
√
h0T̂n,5, under H0, we obtain n

√
h0T̂n,1 = Op

(
n
√
h0

(
h̃40 +

(
nh̃0

)−1))
,

and under H1,

n
√
h0T̂n,1 ≈ 1

n
√
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n∑
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n∑
j 6=i

T∑
t=1

T∑
s=1

k

(
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)
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×
{
x′it [β (zit)− b (zit)] + (Wy)it ρ(zit)

}
×
{

x′js [β (zjs)− b (zjs)] + (Wy)js ρ(zjs)
}

= Op

(
n
√
h0

)
, (A.38)

where b (zit) is the leading term of E
[
β̃0 (z) |G,X,Z

]
at point z = zit, and denoting µ2 (z) =

E [x′it [β (zit)− b (zit)] xit|zit = z], we have

1

n2h0

n∑
i=1

n∑
j 6=i

T∑
t=1

T∑
s=1

k

(
zit − zjs
h0

)
x′itxjs

{
x′it [β (zit)− b (zit)] x

′
js [β (zjs)− b (zjs)]

}
=

T∑
t=1

T∑
s=1

E
[
f (zjs)µ2 (zjs)

′ µ2 (zjs)
]

(1 + op (1)) > 0.

Under H1, we show that T̂n,1/
(
n
√
h0
)

converges to a positive constant.

Next, we consider σ̂20 =
(
n2h

)−1∑n
i=1

∑n
j 6=i(ε̂

′
iAij ε̂j)

2. Under H0, we can show that

σ̂20 ≈
1

n2h

n∑
i=1

n∑
j 6=i

(∆u′iAij∆uj)
2 = 2E

[
H2
n (χ1,χ2)

]
(1 + op (1))

p→ σ20,

while, under H1, the leading term of σ̂20 is
(
n2h

)−1∑n
i=1

∑n
j 6=i(∆

′
iAij∆

′
j)

2 = Op (1) which converges
to a positive constant. Combining the above results completes the proof of this theorem.
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