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Abstract

Modeling financial volatility is an important part of empirical finance. This paper

provides a literature review of the most relevant volatility models, with a particular

focus on forecasting models. We firstly discuss the empirical foundations of different

kinds of volatility. The paper, then, analyses the non-parametric measure of volatil-

ity, named realized variance, and its empirical applications. A wide range of realized

volatility models, both univariate and multivariate, is presented, such as time series

models, MIDAS and GARCH-MIDAS models, Realized GARCH, and HEAVY mod-

els. We further discuss forecasting evaluation methods specifically suited for volatility

models.
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1 Introduction

Financial econometric literature has been focused, over the last two decades, on modelling and fore-

casting volatility. Since volatility as risk measure is largely used in asset allocation, risk manage-

ment and option pricing, and since it cannot be a priori determined, the definition of a good proxy

of volatility has become extremely relevant in this context. Hence, a wide range of econometric

literature has focused on estimating the latent conditional variance.

In the early steps, the bulk of volatility models has been based on the (Generalized) Autoregres-

sive Conditional Heteroskedasticity models, by Engle (1982) and Bollerslev (1986), and stochastic

volatility (SV) models.

Given the growing availability of high-frequency data, researchers have moved their attention

to alternative non-parametric measures of volatility based on such kind of data. The first attempt of

using high-frequency data for measuring volatility was made by Merton (1980), who noted that the

conditional variance can be computed as the sum of squared returns sampled at sufficiently high fre-

quency. The recent theoretical findings on the informative content of intra-day data have stimulated

an important stream of literature on the properties of non-parametric measures of volatility. In fact,

Andersen, Bollerslev, Diebold, and Labys (2000); Andersen, Bollerslev, Diebold, and Ebens (2001)

showed that ex-post volatility based on higher frequency data successfully measures underlying re-

turn variability. Barndorff-Nielsen and Shephard (2002a,b) provided the theoretical foundation of

using realized volatility as a proxy of the latent volatility based on the theory of quadratic variation.

In this way, volatility becomes observable and may be modelled directly through traditional time

series model.

The aim of this paper is to provide a review of theoretical foundations and empirical applica-

tions of realized volatility (RV). Contrary to already published reviews on RV, this paper is mainly

focused on practical applications of realized volatility models, with a particular mention of forecast-

ing performance. In order to provide a comprehensive review of RV models, this article also mentions

Realized GARCH models, MIDAS model and non-linear models on volatility, which have never been

treated in similar papers. Poon and Granger (2003), Andersen, Bollerslev, Christoffersen, and X.

(2006), McAleer and Medeiros (2008b) and Bandi and Russell (2006) have also reviewed the RV lit-

erature. However, the first two articles do not consider microstructure noise, while the other two

works mentioned do focus on theoretical properties and not on empirical applications. We aim at

providing a totally comprehensive overview of the relevant models for forecasting RV, in order to in-

spire possible alternative models overcoming the still existing pitfalls of this particular econometric

literature.

This article overviews also the developments on volatility forecasts evaluation and comparison.

We analyse self-standing measures, pairwise comparison tests, like the tests proposed by Diebold

and Mariano (1995), West (1996) and Giacomini and White (2006), and multiple comparison meth-
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ods, like the Model Confidence Set introduced by Hansen, Lunde, and Nason (2011). In most of these

direct methods of forecast accuracy, the evaluation of the forecasts relies on the ordering imposed by

a statistical loss function. In this article, we discuss the properties of a number of admissible loss

functions, both in the univariate and multivariate framework.

The paper is divided as follows: in the first part we provide an overview of the theoretical

foundation for the definition of volatility; the second part is a comprehensive review of parametric

models, based on a functional form of the expected and instantaneous volatility. The third part con-

cerns non-parametric approaches to model volatility, focusing on realized volatility and its empirical

applications, while the last part of the paper discusses forecasting evaluation methods.

1.1 Theoretical foundation
It is known that, in the financial market, negotiations take place at extremely short intervals, and

that stock prices may be modelled as continuous processes. We then assume that p(t) is the univari-

ate process of the logarithmic price, defined in a probability space (Ω, I,P), evolving in the continuous

time on an interval [0,T], where T is an integer, and that the entire available information is given

by (I t)t∈[0,T] ⊆ I.

Assuming the absence of arbitrage and a finite first moment, the price process belongs to the

class of special semimartingale1, as defined in Back (1991) and Shiryaev (1999). The class of semi-

martingale is particularly relevant in econometrics, since it includes processes like martingale and

Lévy process (see also Protter (1992)). The log price process p(t), with finite mean, is a semimartin-

gale if it can be decomposed as the sum of a drift component and a local martingale which can be

further decomposed in a realization of a continuous process and a jump component, such that

p(t)= p(0)+ A(t)+M(t)= p(0)+ AC(t)+∆A(t)+MC(t)+∆M(t), (1.1)

where A(0) ≡ M(0) ≡ 0, AC(t) and MC(t) are the realizations of the continuous process, ∆A(t) and

∆M(t) are the relative jump components.

If the compound return in the interval [t−h, t], for 0≤ h ≤ t ≤ T is defined as

r(t,h)= p(t)− p(t−h); (1.2)

and given that in [0, t] it may also be specified as

r(t)≡ r(t, t)= p(t)− p(0), (1.3)

1A process X may be defined as a special semimartingale, if it may be written as X = X0+A+M,

where A0 = M0 = 0, M is a local martingale and A is a predictable finite-variation process.
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it follows that

r(t,h)= p(t)− p(0)+ p(0)− p(t−h)

= r(t)− (p(t−h)− p(0))

= r(t)− r(t−h).

(1.4)

It is further assumed that the asset price follows a finite and almost surely strictly positive process,

so that p(t) and r(t) are well defined over [0,T], and that r(t) has only countably jump points over

[0,T].

Let the squares of the price and return processes be integrable, the cádlág version of the process

is given by

r(t−)≡ lim
τ→t,τ<t

r(τ) (1.5)

r(t+)≡ lim
τ→t,τ>t

r(τ) (1.6)

r(t)= r(t+) a.s. (1.7)

The jumps in the cumulative return process are

∆r(t)≡ r(t)− r(t−), 0≤ t ≤ T. (1.8)

At continuity points ∆r(t)= 0, more generally

P(∆r(t) 6= 0)= 0 t ∈ [0,T]. (1.9)

This does not imply that jumps are necessarily rare. There is the possibility of a (countably) infinite

number of jumps over any discrete interval - a phenomenon referred to as an explosion.

As a consequence of the decomposition of a martingale, the return process is equal to

r(t)≡ p(t)− p(0)=µ(t)+M(t)=µ(t)+MC(t)+MJ (t). (1.10)

The instantaneous return is decomposed in a predictable and finite variation process, µ(t), and a

local martingale, M(t), which is further decomposed in a continuous sample path, infinite variation

local martingale, MC(t), and a compensated jump martingale, MJ (t). The instantaneous return is,

thus, decomposed into an expected return component and a (martingale) innovation.

1.2 Volatility: definition and theoretical aspects
Volatility is an index of unexpected variability of asset returns in a period. In this section we analyse

the different definitions of volatility and the relations among them.
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For each semimartingale X (t) and for a couple of semimartingale, X (t) and Y (t), the quadratic

variation and covariation of the processes, respectively [X , X ]t and [X ,Y ]t, for t ∈ [0,T], can be

defined as

[X , X ]t = X (t)2 −2
∫ t

0
X (s−)dX (s) (1.11)

[X ,Y ]t = X (t)Y (t)−
∫ t

0
X (s−)dX (s)−

∫ t

0
Y (s−)dY (s), (1.12)

where the integral of the cádlág processes, X (s−) e Y (s−), is well defined. It follows that the

quadratic variation, [X , X ]t, is a growing stochastic process.

The quadratic variation of a semimartingale has the following properties:

i. if τm is a partition of [0,T], for 0= τm,0 ≤ τm,1 ≤ ·· · ≤ τm,m = T, such that sup j≥0(τm, j+1−τm, j)→
0 for m →∞, then

lim
m→∞

{
Σ j≥1(X (t∧τm, j)− X (t∧τm, j−1))2

}→ [X , X ]t, (1.13)

where t∧τ ≡ min(t,τ) and the convergence is uniform. The quadratic variation process repre-

sents the (cumulative) realized sample-path variability of X (t) over the [0, t] time interval.

ii. if X (t) and Y (t) are square integrable semimartingale, the covariance between X and Y in

[t−h, t] is given by

Cov
[
X (t),Y (t) | I t−h

]= E([X ,Y ]t | I t−h)− [X ,Y ]t−h; (1.14)

iii. if the finite variation component in (1.1), A, is continuous, it follows that

[X i, X j]t = [Mi, M j]= [MC
i , MC

j ]+ ∑
0≤s≤t

∆Mi(s)∆M j(s). (1.15)

Property (iii) shows that quadratic variation in continuous finite variation processes is zero, so that

the mean component is irrelevant for the quadratic variation. If it assumed, without loss of gener-

ality, that log-price follows a diffusion process

dp(t)=µ(t)dt+σ(t)dW(t), (1.16)

where W is a Wiener process, µ(t) is a finite variation predictable process2 and σ(t) is a strictly

positive and square integrable process, such that

P
[∫ t

t−h
σ2(s)ds <∞]= 1, (1.17)

then the compound return over the interval [t−h, t] is given by

r(t,h)=µ(t,h)+M(t,h)=
∫ t

t−h
µ(s)ds+

∫ t

t−h
σ(s)dW(s). (1.18)

2At time t, a process is predictable is the value of the process is known an instant before t.

Deterministic trends and cádlág processes are examples of predictable processes.
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Accordingly, the quadratic variation can be computed as

QVt = [p, p]t − [p, p]t−h =
∫ t

t−h
σ2(s)ds. (1.19)

This quantity, necessary for the definition of the realized variance, is also known as integrated vari-

ance.

Quadratic variation is crucial to the definition of notional volatility, quantified by the realized

variance. Notional volatility is a natural ex-post expression of return variability, (Andersen, Boller-

slev, Diebold, and Labys (2000)). The notional volatility equals the quadratic variation for return

series and over the [t−h, t] time interval is equal to

υ2(t,h)≡ [r, r]t − [r, r]t−h =
∫ t

t−h
σ2(s)ds. (1.20)

Let I t denote the available information of r t until t, in the above setting, the conditional volatility

(or expected volatility) over [t−h, t] can be defined as

ζ2(t,h)=V ar(r t | I t)≡E
[{

r t −E(r t | I t)
}2

∣∣∣ I t

]
(1.21a)

=E
[{∫ t

t−h
µ(s)ds−E

(∫ t

t−h
µ(s)ds | I t

)
+

∫ t

t−h
σ(s)dW(s)

}2 ∣∣∣ I t

]
(1.21b)

=E
[{∫ t

t−h
{µ(s)−E(µ(s) | I t)ds}2

∣∣∣ I t

]
(1.21c)

+E
[{∫ t

t−h
σ(s)dW(s)

}2 ∣∣∣ I t

]
(1.21d)

+2E
[∫ t

t−h
{µ(s)−E(µ(s) | I t)}ds

∫ t

t−h
σ(s)dW(s)

∣∣∣ I t

]
. (1.21e)

By defining Ah = Oa.s.(Bh) when Ah/Bh converges almost surely to a finite constant, as h → 0. We

have that equation (1.21c) = Oa.s.(h2), equation (1.21d) = ∫ t
t−hσ

2(s)ds = Oa.s.(h) and that (1.21e)

=Oa.s.(h3/2). Consequently, the conditional variance can be written as

V ar(r t | I t−h)'E[υ2(t,h) | I t−h]=E[QV (t,h) | I t−h]. (1.22)

This implies that the conditional variance is equal to the conditional expected value of the quadratic

variation, when µ(s)= 0 or when µ(s) is measurable with respect to I t−h. This result guarantees that

the realized variance is an unbiased estimator of conditional variance.

Notional volatility and expected volatility are latent but can be estimated. The measurement

of volatility can pass through parametric models or non-parametric measures. The most diffuse

parametric models are the Autoregressive Conditional Heteroscedasticity (ARCH) model and the

stochastic volatility models. In ARCH models, the available information, I t−h, depends on the past

values of returns and other directly observable variables. In stochastic volatility models the informa-

tion set, I t−h, incorporates both past values of returns and latent status variables. Non-parametric

measures of volatility, instead, quantify notional volatility υ2(t,h) directly. The major advantage of

non-parametric measures is that there is no need for a functional form for the stochastic process of

local martingale, M(t), and for the finite variation process, µ(t).
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2 Conditional Heteroscedasticity Models

2.1 Univariate GARCH models
In this paper, we analyse parametric models in discrete time, as ARCH models and stochastic volatil-

ity models. The current section introduces ARCH models.

The success of ARCH models is due to the wide application of this class of models in finance,

specifically in asset allocation problems and risk management. The ability of this type of models

to catch stylized facts, as not predictability of returns, presence of heavy tails in asset returns and

volatility clustering, rerouted the attention of the researchers on conditional moment of second order.

In particular, the class of ARCH models focuses on the variability of the second conditional moment

of returns, equal to expected volatility in paragraph 1.2 and defined as

ζ2(t,h)=E
[(

r(t,h)−E[µ(t,h)] | I t−h

)2 ∣∣∣ I t−h

]
. (2.1)

In order to explain the variability of the second conditional moment, Engle (1982) introduced

the Autoregressive Conditional Heteroscedasticity (ARCH) model, which specifies the error in the

linear regression of asset returns yt, such that

yt = x′tb+εt.

Let the Gauss-Markov assumptions be valid, in particular

E[εt | I t−1]= 0,

then the innovation, εt, at time t may be defined as follows

εt = uth1/2
t (2.2)

where ut ∼ i.i.d.(0,1) is a standard process with zero mean and unitary variance and ht is the

conditional variance of the innovation. It is further assumed that

Cov(εtεt+k)= 0.

While the non-conditional variance of this process is constant, it is possible that the conditional

variance, ht, varies during time:

ht =E[ε2
t | I t−1]=V ar(εt | I t−1). (2.3)

Consequently, the conditional distribution of the error is

εt | I t−1 ∼ N(0,ht).

Engle (1982) specifies the conditional variance as a linear function of the past squared returns of εt,

a model for ht can be written as

ht = w+
q∑

i=1
αiε

2
t−i (2.4)
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where w is the constant and αi is the coefficient related to ε2
t−i.

Positiveness of the variance is guaranteed if αi ≥ 0, for each lag i = 1,2, ....., q, and if w ≥ 0.

ARCH(q) process can be written according to MA(q) representation for the squares of the inno-

vations, such that

ht = w+ A(L)ε2
t (2.5)

Equation (2.5) is weakly stationary if the roots of the polynomial 1−A(L) are external to the unitary

circle, where A(L)=α1L+α2L2 + ...+αqLq is the polynomial of the lag operator. The necessary and

sufficient condition for process stationarity is

q∑
i=1

αi < 1.

The unconditional variance can be expressed as

V ar(εt)= E(ε2
t )= w

1−
q∑

i=1
αi

= w
1− A(1)

. (2.6)

2.1.1 GARCH model

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model, proposed by Boller-

slev (1986), generalizes the ARCH model introducing an autoregressive component in the conditional

variance regression. The specification of the conditional variance, under the same assumptions of

the ARCH model and given the information set I t−1, can be expressed as

ht = w+
q∑

i=1
αiε

2
t−i +

p∑
j=1

β jht− j (2.7)

with w ≥ 0, αi ≥ 0 for i = 1,2, ...., q lags and β j ≥ 0 for j = 1,2, ...., p lags. The conditional variance

is function of p lags of the conditional variance itself and q lags of ε2
t , catching the short-term

effects related to the evolution of the considered variable and the long-term effects related to the

persistence of the volatility. Using the lag operator, equation (2.7) can be written as ht = A(L)ε2
t +

B(L)ht where A(·) and B(·) are the polynomials of the lags of ε2
t and ht. GARCH(p, q) process is

covariance stationary if the roots of the polynomial 1− A(L)−B(L) fall outside the unitary circle,

q∑
i
αi +

p∑
j
β j < 1.

Unconditional variance may be specified as

E(ε2
t )= w

1−
q∑
i
αi −

p∑
j
β j

= w
1− A(1)−B(1)

.

Several extensions have been proposed for the basic GARCH model, see Bollerslev (2009) for a

large literature review. The most relevant are the following:
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• GARCH-M (GARCH in mean) model proposed by Engle, Lilien, and Robins (1987), where

a function of the conditional variance is introduced in the regression function of the asset

return, yt, such that yt = X tb+δg(ht)+εt

ε | I t−1 ∼ N(0,ht)
(2.8)

where g(ht) is a continuous and differentiable conditional variance function;

• EGARCH (Exponential GARCH) from Nelson (1990), that aims to catch asymmetric effects

of a single shock on volatility

log(ht)= w+
p∑
j
β j log(ht− j)+

q∑
i
αi g(ut), (2.9)

where g(ut) =
{
φut−i +γ

[
| ut−i | −E | ut−i |

]}
is i.i.d. with zero mean. If φ 6= 0, the model

takes into account the asymmetric behaviour of the volatility to the shocks;

• NGARCH (Nonlinear GARCH), introduced by Higgins and Bera (1992), also known as Power

GARCH. The conditional deviation, δ, is modelled as a function of lagged conditional devia-

tions and lagged absolute innovations at the power δ, then

(
√

ht)δ = w+
q∑

i=1
αt | εt−i |δ +

p∑
i=1

βi(
√

ht−i)δ (2.10)

when δ= 2, the model returns to a classic GARCH.

• TS-GARCH (Taylor-Schwert GARCH), or Absolute Value GARCH, introduced by Taylor (1986)

and Schwert (1989), is a particular case of the Power GARCH where the influence of high val-

ues in the traditional GARCH(p,q) model is limited:

(
√

ht)= w+
q∑

i=1
αi | εt−i | +

p∑
i=1

βi(
√

ht−i); (2.11)

• GJR-GARCH from Glosten, Jagannathan, and Runkle (1993), this model allows different

responses from the conditional variance to past innovations’ sign. The conditional variance is

modelled as

ht = w+
q∑

j=1

{
α j +δ j I(εt− j > 0)

}
ε2

t− j +
p∑

j=1
β jht− j (2.12)

where I(·) is an index function;

• IGARCH (Integrated GARCH), the model, starting from the equation with the lag operator,

ht = A(L)ε2
t +B(L)ht, is obtained when the autoregressive polynomial admits a unitary root;

• FIGARCH (Fractionally Integrated GARCH) introduced by Baillie, Bollerslev, and Mikkelsen

(1996), it considers the class of processes between unitary root and stationary processes. The

lag operator is defined as

1− A(L)−B(L)= f (L)(1−L)d .
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FIGARCH is the more general version of an IGARCH, obtained when d = 1, and a GARCH,

obtained with d = 0.

• SWARCH (regime SWitching ARCH), proposed by Cai (1994) and Hamilton and Susmel

(1994) in two different papers. The conditional variance is modelled as

ht

γst

= w+
q∑

i=1
αi

εt−i

γst−i

(2.13)

where γst and γst−i are the scale parameters.

• Smooth Transition GARCH (STGARCH), proposed by Hagerud (1997) and Gonzalo-Rivera

(1998), is a non linear version of the GJR-GARCH model, where the change of regime is

driven by a transition function. The Smooth Transition GARCH is defined as

ht = w1 +
q∑

j=1
αi jε

2
t− j + (w2 +

q∑
j=1

α2 jε
2
t− j)G(γ, c;εt− j)+

p∑
j=1

β jht− j (2.14)

where the transition function is denoted by

G(γ, c;εt− j)= (1+ eγ
∏K

k=1(εt− j−ck))−1, γ> 0

when K = 1 the transition function is a logistic function.

• Threshold GARCH (TGARCH), proposed by Zakoian (1994); the conditional standard devia-

tion is modelled as

h1/2
t = w+

q∑
j=1

(α+
j ε

+
t− j −α−

j ε
−
t− j)+

q∑
j=1

β j (2.15)

where ε+t− j = max(εt− j,0) and ε−t− j = min(εt− j,0). If c = 0, TGARCH model is linear in param-

eters.

2.1.2 GARCH models estimation

GARCH models are usually estimated through maximum likelihood, under the following assump-

tions:

- ut(θ)= εt(θ)/ht(θ)1/2;

- ut(θ)∼ i.i.d.(0,1);

- ut(θ)∼ f (ut(θ);η);

where θ is the vector of unknown parameters, η is the difference between ε2
t and its conditional

mean ht. Since the t-th return yt cannot be considered independent from the other realizations, the

likelihood function cannot be equal to the product of marginal distribution. Likelihood function is

built as the multiplication of the conditional distributions. Let
{
yT , yT−1...y1

}
be a sample realization

of the GARCH model and ψ′ = (θ′,η′) the (m+ k)×1 vector of parameters to be estimated, the joint

probability distribution can be defined as sequential factorization

LT (y,η)= f (yT , yT−1, ...y)=
T∏

t=1
f (εt(θ),η | I t−1) · f (ε1) (2.16)
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where f (εt(θ),η | I t−1) is the conditional distribution of the innovation. If it is assumed ε1 as degen-

erated, f (ε1) does not depend on unknown parameters, in this way the join distribution becomes

LT (y,η)= f (εt(θ),η | I t−1). (2.17)

From the distribution of the standard innovation, ut, it follows that

LT (y,η)=
T∏

t=1
f (ut(θ),η)ht(θ)−1/2 (2.18)

where ht(θ)−1/2 =| ∂ut/∂εt | is the determinant of the Jacobian obtained with the transformation of

the innovation εt to the standard ut. Thus, the log-likelihood can be written as

`T = log
[
LT (yT ...y1

]= T∑
t=1

log
{[

f (ut(θ),η)
]− 1

2
log

[
ht(θ)

]}
. (2.19)

The ML estimator, ψ̂, is the solution of the equation

St(yT ...y1)=
T∑

t=1
st(yt)= 0 (2.20)

where

st = ∂`T (yt,η)
∂ψ

(2.21)

is the score of the t-th observation that can be obtained using a numerical optimisation.

This estimation method is valid under the assumption of Gaussian distributed innovations,

ut ∼ N(0,1), such that

`T (y,θ)=−T
2

log(2π)− 1
2

T∑
t=1

log
[
ht(θ)

]− 1
2

T∑
t=1

ut(θ)2.

Where the score is

st = ∂µt(θ)
∂θ

· ut(θ)
ht

+ 1
2

(ht(θ))−1 ∂ht(θ)
∂θ

[ u2
t (θ)

ht(θ)
−1

]
.

Several alternative distributions have been used in order to take into account of the leptokurtosis in

the asset returns distribution, as the Student’s t-distribution, the non-central t-distribution and the

Generalized Error Distribution (GED).

Since normal distribution of innovations has been empirically denied, in order to avoid the spec-

ification of their distribution, the quasi-maximum likelihood (QML) estimator can be used. Under

few regularity conditions, the QML estimator is asymptotically normal with
p

T(θ̂n −θ∗0 ) d−→ N(0, A−1BA−1)

where the matrices A and B are equal to

A =− 1
T

E0

[
∂2`T (θ)
∂θ∂θ′

]
B = 1

2
E0

[
∂`T (θ)
∂θ

∂`T (θ)
∂θ′

]
.

When ut ∼ N(0,1), the matrices A and B coincide.
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2.2 Multivariate GARCH models
Normally, problems in economics need the specification and the estimation of a volatility measure in

the multivariate framework. Hence, the GARCH literature has been extended in the multivariate

case, as further analysed in this section.

Let yt be a vector of n components and εt a vector of n innovations with zero mean, given the

information set I t−1, it is assumed that

εt = H1/2
t ut (2.22)

where Ht is the n×n conditional covariance matrix and ut is a vector such that E(utu′
t)= In.

2.2.1 VECH

The VECH model, introduced by Bollerslev, Engle, and Wooldridge (1988), generalises in the multi-

variate the GARCH model

vech(Ht)= c+
q∑

i=1
A ivech(εt−iε

′
t−i)+

p∑
j=1

B jvech(Ht− j) (2.23)

where vech(·) is the mathematical operator that transforms a symmetric matrix in a vector consid-

ering only the lower triangular part of the matrix. Since c is a n(n+1)/2×1 vector and A i and B j are

n(n+1)/2×n(n+1)/2 matrices, the total number of parameters to be estimated is (p+q)[n(n+1)/2]2+
n(n+1)/2. When the number of the asset is particularly high, there can be a numerical problem

with the estimation. Moreover, it is not possible to ensure a semi-definite positive covariance matrix

without restrictions on the parameters.

Bollerslev, Engle, and Wooldridge (1988) introduced a restricted version of the VECH model,

assuming that A i and B j are diagonal matrices. As showed in Bollerslev, Engle, and Nelson (1994),

Ht can be ensured positive definite for each t. The diagonal GARCH(p,q) model reduces the number

of parameters to be estimated to (p+ q+1)n(n+1)/2. The major limitation of this model is that it

does not allow interactions between different conditional covariances.

2.2.2 BEKK

The Baba-Engle-Kraft-Kroner (BEKK) model, formalised by Engle and Kroner (1995), ensures posi-

tive definite conditional covariance matrix thanks to the quadratic form of the equation. The model

is written as

Ht = CC′+
q∑

i=1

K∑
k=1

A′
kiεt−iε

′
t−i Aki +

p∑
j=1

K∑
k=1

B′
k jHt− jBk j (2.24)

where Aki, Bk j are n×n non-negative symmetric matrices and C is a n×n low triangular matrix,

K are the called the degree of generality of the model. BEKK model is covariance stationary if and

only if the eigenvalues of the matrix

q∑
i=1

K∑
k=1

(A′
ki ⊗ A′

ki)+
p∑

j=1

K∑
k=1

(B′
k j ⊗B′

k j)
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are not greater than 1 in modulus, where ⊗ is the Kronecker product. When K > 1, there is a identi-

fication problem since several parametrizations are possible for the same matrix (cfr. Silvennoinen

and Teräsvirta (2008)).

2.2.3 Factorial and orthogonal GARCH models

This class of models aims to minimize the number of the parameters to be estimated. Based on

Capital Asset Pricing Model (CAPM) from Sharpe (1964), these models imply that few common

determinants drive asset volatility. Engle, Ng, and Rothschild (1990) introduced the first factorial

GARCH model, based on the Arbitrage Price Theory from Ross (1976), supposing that Ht matrix is

generated by a k number of factors, f t, such that

Ht =Ω+
K∑

k=1
wkw′

k fk,t, (2.25)

where Ω is a n×n semi-definite positive matrix, fk,t are the factors and wk, for k = 1, .....K , are the

linearly independent vectors of weighs. The model assumes that the factors are correlated, making

hard to understand the effects of the single factors and individuate the factors to be used.

The use of principal component analysis tries to overcome these limitations by introducing the

invertible decomposition W

yt =Wzt. (2.26)

The original observations are a linear combination of the unobservable factors zt. The models from

this specification are named Orthogonal (O-) GARCH, Alexander and Chibumba (1996), and Gen-

eralized Orthogonal (GO-) GARCH, Van der Weide (2002) and are based on the hypothesis that the

orthogonal matrix W is constant and invertible, and that the factors are conditionally heteroscedas-

tic and that follow a GARCH process.

2.2.4 CCC and DCC

The last class of multivariate specification of conditional heteroscedasticity models is based on the

decomposition of the conditional covariance matrices. Bollerslev (1990) proposes a class of constant

conditional correlation (CCC) models, where the conditional covariance matrix is decomposed as

Ht = D1/2
t RD1/2

t (2.27)

where Dt is a n×n diagonal matrix with the conditional variance, hiit, on the diagonal and R is the

conditional correlations matrix where the single element is ρ i j = hi j(hiih j j)−1/2.

When the correlations are constant, the elements of Ht, hi jt = ρ i j(hiith j jt)1/2, are time varying

only for the effect of the variations of single conditional variances. Ht is positive definite for each

t since R is positive definite and constant and the variances on the diagonal of Dt are positive for

construction.
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It is further assumed that the conditional variances on the diagonal of Dt follow a univariate

GARCH process, such that 
hiit = wi +

q∑
r=1

αirε
2
it−r +

p∑
r=1

βirhiit−r

hi jt = ρ i j(hiith j jt)1/2
(2.28)

This approach guarantees a positive definite matrix Ht and reduces the number of parameters to

be estimated to n(1+ p+ q)+n(n+1)/2, but is based on the unrealistic restriction of constant condi-

tional correlations. Engle and Sheppard (2001) and Engle (2002) proposed the Dynamic Conditional

Correlation (DCC) to introduce a dynamic component in the correlations. The model is written as

Ht = D1/2
t RtD1/2

t , (2.29)

where Rt is time varying for the effects of ρ i jt = hi jt(hiith j jt)−1/2. In the first step, the estimates of

the conditional variances follow a GARCH(p,q) process

hiit =α0i +
Q i∑
s=1

αs y2
it−s +

Pi∑
s=1

βshiit−s, (2.30)

where Q i and Pi are the numbers of the GARCH lags. In the second step, dynamics correlations are

estimated as follows

Qt = (1−
q∑

r=1
ar −

p∑
r=1

br)Q̄+
q∑

r=1
arut−ru′

t−r +
p∑

r=1
brQt−r (2.31)

Rt = Q̃−1
t QtQ̃−1

t (2.32)

where Q̃t is a matrix with the square roots of the element of Qt on its diagonal, Q̄ = E(utu′
t) is the

unconditional correlations matrix of yt and uit = yit/h1/2
it are the standardized residuals.

The major advantage of this model is the reduction of the number of parameters to p+ q+n+
n∑

i=1
(Pi +Q i) and the inclusion of a time varying correlation matrix.

2.2.5 Multivariate GARCH estimation

The estimation of the conditional covariance matrices is based on the maximum likelihood function.

Let
{
yt : t = 1,2, ...

}
be a sequence of n×1 vectors of random variables yt, it is supposed that the first

two conditional moments are:

E(yt | I t−1)=µt(θ)

V ar(yt | I t−1)= Ht(θ)

where θ ∈Θ and Θ are a subset of Rp. The log-likelihood is given by:

`T =
T∑

t=1
`t(θ)

14



where T is the number of the observations. Thus

log`t(θ)=−1
2

logdetHt(θ)− 1
2

[
yt −µt(θ)

]′
Ht(θ)

[
yt −µt(θ)

]
=−1

2
logdetHt(θ)− 1

2
εt(θ)′H−1

t εt(θ).

First order conditions for maximization are

∂`T (θ̂T )
∂θ

=
T∑

t=1

∂ log`t(θ̂t)
∂θ

= 0.

If the conditional moments µt(θ) and Ht(θ) are differentiable respect to θ and if Ht(θ) is a non-

singular matrix with probability one, for each θ ∈Θ, then the gradient of the t-th observation is

st(θ)′ = ∂µt(θ)
∂θ

H−1
t (θ)εt(θ)+ 1

2
∂Ht(θ)′

∂θ

[
H−1

t (θ)⊗H−1
t (θ)

]
vec

[
εt(θ)εt(θ)′−Ht(θ)

]
.

Under few regularity conditions on conditional variance and on the stationarity of the gradient, it

can be proved that the quasi-maximum likelihood estimator exists asymptotically and it is asymp-

totically normal (Bollerslev and Wooldridge (1992)).

3 Stochastic volatility models
Stochastic volatility models represent a parametric alternative to GARCH models for the estimation

of volatility. For this class of models, the informative set I t−h is not directly observable respect to

time. As a result of this, the latent volatility is driven by an underlying stochastic process. In this

section, a brief review of the principal stochastic volatility models is presented, for a more detailed

analysis see Taylor (1994), Shephard (1996) and Ghysels, Harvey, and Renault (1996).

It is supposed that volatility follows a stochastic process, vt, and that the asset price follows a

process like

dSt =µStdt+p
vtStdWt (3.1)

where Wt is a Brownian motion with zero mean and unitary variance, µ is the drift component of

price St. The equation underlying the stochastic volatility is defined as

dvt =αs,tdt+βs,tdBt (3.2)

where αs,t and βs,t are functions of vt. The most significant difference with GARCH models is

that, conditionally to information set I t−1, volatility vt is unknown and unobservable (cfr. Bauwens,

Hafner, and Laurent (2012)).

Heston (1993) was the first to propose a model of volatility dependent on the price dynamics,

such that

dvt = k(θ−vt)dt+σpvtdBt (3.3)
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where θ is the mean long-term volatility, k is the rate at which volatility reverts toward its long-term

mean, σ is the volatility of the volatility process and dBt is a zero mean Gaussian process, dWt and

dBt are correlated with the constant correlation value ρ.

Several extensions of Heston (1993) model have been proposed:

• CEV (constant elasticity of variance) model, in this model the relation between volatility and

price is given by

dSt =µStdt+σSβ/2
t dWt (3.4)

where dW is a Wiener process, σ is a positive constant and β is known as the CEV parameter.

β influences the direction and the size of the impact of the price on the volatility. Since this

model does not present a separated process for volatility, it is called local volatility model;

• Chen (1996) model, the dynamics that drive the interest rates, vt, are derived from the fol-

lowing system

dr t = (θt −αt)dt+p
r tσtdWt (3.5)

dαt = (ζt −αt)dt+p
αtσtdWt (3.6)

dσt = (βt −σt)dt+p
σtηtdWt; (3.7)

• SABR (Stochastic Alpha, Beta, Rho) model, aims to reproduce the dynamics of volatility on

the derivatives market. The equations that define the model are:

dSt =σtS
β
t dWt (3.8)

dσt =ασtdzt, (3.9)

where Wt and zt are two correlated Wiener processes.

3.0.1 Multivariate stochastic volatility models (MSV)

Stochastic volatility models are also extended in the multivariate framework. Considering a vector

of logarithmic prices S = (S1, ....Sn) of n assets with y = (y1, ...., yn) returns vectors, the model for S

can be defined as

dSt = H1/2
t dWt (3.10)

d f [vech(Ht)]= a[vech(Ht)]dt+b[vech(Ht)]dBt (3.11)

where Wt and Bt are two vectors of Brownian motions, Ht is the instantaneous covariance matrix

and f , a and b are known functions.
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It follows that the generic MSV model in discrete time is given by

yt = H1/2
t εt (3.12)

εt ∼ N(0, In) (3.13)

ut−1 ∼ N(0,Σu) (3.14)

f [vech(Ht)]= a[vech(Ht−1)]+ f [vech(Ht−1)]+b[vech(Ht−1)]ut−1, (3.15)

where yt = St −St−1.

This model does not guarantee a positive definite Ht; several works aims to overcome this limi-

tation.

Harvey, Ruiz, and Shephard (1994) introduces a new model, where Ht is ensured positive defi-

nite and is defined as

εt = H1/2
t zt zt ∼ N(0,Σt) (3.16)

Ht = diag(exp(h1t), ..., exp(hNt)) (3.17)

ht+1 = w+β¯ht +ut ut ∼ N(0,Σu) (3.18)

where ht = (h1t, ....,hNt) is the vector of the volatility at time t, Σt is the correlation matrix, ¯ is

the Hadamard product operator, w and β are vectors of parameters. The model is too restrictive,

because it has constant correlations in a similar way to the CCC model from Bollerslev (1990).

Harvey’s model has been extended in several ways, to taking into account of time varying corre-

lations, leverage effects, heavy tails distribution of innovations, for further details see Asai, McAleer,

and Yu (2006) and Andersen (2009).

4 Realized variance
Conditional heteroscedasticity and stochastic volatility model represent the most common approaches

to measure volatility. However, these models heavily depend on the specification of the underlying

process of volatility and necessitate of strong restrictions on parameters to be estimated.

Lately, the attention of the research on volatility measure has moved to high frequency data.

Firstly, Merton (1980) showed that volatility can be defined as the sum of the squared returns at high

frequency level. Recently, Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Boller-

slev, Diebold, and Labys (2001) pointed out that summing up the squared intra-daily returns it is

obtained an observable measure of daily volatility named realized variance (RV). Ex post volatility,

excluding measurement errors and jumps, becomes "observable" and can be directly modelled.

4.1 Realized variance construction
The realized variance theory is based on the idea that the realized measure is the best approxima-

tion of the unobservable volatility when the returns are sampled at sufficiently high frequencies.
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Supposing that the log-price of an asset, p(t), follows a diffusion process such that

dp(t)=µ(t)dt+σ(t)dW(t) con t=1, 2, 3 ... (4.1)

that describes the trajectories of a semimartingale in continuous time over the interval [0,T], with

0 ≤ s ≤ t ≤ T, where µt is the drift component, σt is the instantaneous volatility of the process

or standard deviation, strictly positive and square integrable (i.e. E(
∫ t

0 σ
2
s ds) < ∞), and Wt is a

standard Brownian motion.

Let the continuously compounded return between t−h and t, with 0< h ≤ t, be

r t = p(t)− p(t−h)=
∫ t

t−h
µsds+

∫ t

t−h
σsdWs. (4.2)

The quadratic variation of the return, natural measure of the variability of the diffusion path of a

martingale according to stochastic integration theory, is defined as

[
p
]

t =QVt =
∫ t

t−h
σ2(s)ds. (4.3)

Equation (4.3) shows that the drift innovations do not affect the variation of the diffusion path of

returns. In this context, since the quadratic variation is totally induced by the innovations of a

local martingale, it coincides with the integrated variance3, index of ex-post cumulated variability of

returns and given by

IVt =
∫ t

t−h
σ2(s)ds =QVt. (4.4)

From the property of the quadratic variation (from the equation (1.13) in section 1.2), it follows

that, in absence of microstructure errors4 and of measurement errors (Andersen, Bollerslev, Diebold,

and Labys (2000) and Barndorff-Nielsen and Shephard (2002a)), returns quadratic variation can be

approximated as [
p(t)

]= plim
n→∞

n∑
j=1

[
p(s j)− p(s j−1)

]2
, (4.5)

for each partition sequence 0 = s0 < s1 < ... < sn = t with | s j − s j−1 |→ 0, when the number of the

partitions n →∞.

Since the intra-daily return is defined as

r t,i = pt,i − pt,i−1 ∀i = 1, ....,n

and the daily return as

r t =
n∑

i=1
r t,i,

3Quadratic variation and integrated variance do not coincide in a more general process (e.g. dif-

fusion model with jumps).
4A microstructure error emerges for the presence of non-synchronized exchanges, for the absence

of trades, for some properties of the trading mechanism (Black (1976) and Amihud and Mendelson

(1987)) and for the presence of discrete prices (Harris (1990) and Harris (1991)).
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semimartingale theory ensures that the realized variance, defined as the sum of the intra-daily

squared returns, converges in probability to the quadratic variation and, consequently, to the inte-

grated variance of the day t, for n →∞. Let the realized variance be

RVt =
n∑

i=1
r2

t,i, (4.6)

it follows that

RVt
p−→ [r, r]t − [r, r]t−h ≡QVt (4.7)

RVt
p−→ IVt. (4.8)

Realized volatility is a consistent estimator of notional volatility, such that

RVt
p−→ υ2(t,h). (4.9)

This implies that the expected realized volatility is a consistent estimator of expected notional

volatility

E
[
RVt

∣∣ I t−h
] p→E

[
υ2(t,h)

∣∣ I t−h
]
. (4.10)

From equation (1.22), it follows that, if the return process is square integrable and if µ(t) ≡ 0, the

realized volatility is an unbiased estimator of the conditional variance of returns:

E
[
RVt

∣∣ I t−h
]=E

[
QVt

∣∣ I t−h
]=V ar

[
r(t,h) | I t−h

]
. (4.11)

This equivalence merges the realized volatility and the conditional variance from ARCH models.

In particular, it is possible to build a model of the time series for the realized variance which ap-

proximates the conditional variance of returns. If µ(t) 6≡ 0, the convergence of RV to QV does not

automatically imply the convergence in mean of the same objects.

First examples of realized variance can be found in Merton (1980), Poterba and Summers (1986),

Schwert (1989), Richardson and Stock (1989), Schwert (1990), Taylor and Xu (1997) e Christensen

and Prabhala (1998). The use of a realized measure, however, spread only after the formalization of

the measure by Andersen and Bollerslev (1998) that proved, with Andersen, Bollerslev, Diebold, and

Labys (2003), that the realized variance is a consistent estimator of the daily volatility only if the

distance between intra-daily observations approaches zero or if the sampling frequency approaches

infinity.

4.2 Realized variance distribution
The asymptotic distribution of the realized variance has been analysed in two different papers, Jacod

and Protter (1998) and Barndorff-Nielsen and Shephard (2002a).

From their results, it emerges that the realized variance is distributed as

n1/2 · 1√
2IQt

(RVt − IVt)
d−→ N(0,1) (4.12)
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where n is the intra-daily sampling frequency and IQt is defined as the integrated quarticity:

IQt =
∫ t

t−h
σ4(s)ds.

In order to make inference, a consistent estimator of IQt is necessary. Barndorff-Nielsen and Shep-

hard (2002a) showed that a consistent estimator of IQt is given by the Realized Quarticity, RQ,

defined as

RQt = 1
3

n∑
i=1

r4
i , (4.13)

such that
δ−1/2(RVt − IVt)√

2
3 RQt

d−→ N(0,1). (4.14)

Barndorff-Nielsen and Shephard (2002a) proved that the best approximation of the realized distri-

bution requires a log-linearisation, such that

δ−1/2(logRVt − log IVt)√
2
3

RQt
RV 2

t

d−→ N(0,1). (4.15)

4.3 Caveats with realized variance
The previous results show that the highest sampling frequency should be usually preferred to mea-

sure realized variance. However, the logarithm of prices does not spread in continuous time in

practice, but it is usually observed at discrete and not regular intervals. The sampling methods

influence the discretization of the price. We analyse different sampling methods:

• Calendar time sampling, transactions are selected by regularly spaced calendar time, such as

every 5 minutes or every hour. De Pooter, Martens, and Van Dijk (2008) attempt to find the

optimal sampling frequency, showing that an optimal sampling frequency for the measure-

ment of the daily realized variance is comprised between 30 and 65 minutes.

• Transaction time sampling, data are sampled each n transactions.

• Business time sampling, the price process is sampled at equidistantly spaced points in busi-

ness time, such that IVt,i = IVt
n .

• Tick time sampling, prices are sampled tick-by-tick.

Several works dealt with the choice of the best sampling method. Among others, Oomen (2005a,

2005b) concluded that the transaction time sampling method is the best choice, despite the large

diffusion of the calendar time sampling method.

In addition to the choice of the sampling methodology, the process for determining the realized

variance must face the presence of the microstructure error. There exists, in fact, a trade-off between

the microstructure error and the accuracy of the estimation that might lead the realized variance to

be a non-robust estimator of the daily integrated variance.
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The effect of the microstructure error is enhanced when calendar time sampling methodology is

used. Andersen et al. (2000, 2001, 2003) suggested that the issue related to microstructure error

could be solved through subsampling. A practical solution is to implement sparse sampling, which

implies to sample not too frequently, e.g. every 5 or 30 minutes.

Following this procedure, Bandi and Russell (2005), Bandi and Russell (2007) and Zhang, Myk-

land, and Aït−Sahalia (2005) proposed an approach to determine the optimal subsampling frequency

that relies on the minimization of the mean square error (MSE):

MSE
(
n(sparse)

t
)= 2n(sparse)

t E(ε2
t,i)+4n(sparse)

t E(ε4
t,i)

+
[
8RV (sparse)

t E(ε2
t,i)−2V (ε2

t,i)
]
+ 2

n(sparse)
t

IQ(sparse)
t

where nt is the number of subsamples, RVt is the realized variance, IQt is the integrated quarticity,

εt is the microstructure error with zero mean. Thus, the optimal sampling frequency is approxi-

mated as

n∗
t =

{
IQt

4
[
E(ε2

t,i)
]2

}1/3

.

Where E(ε2
t,i) can be consistently estimated by 1

2nt
RVt and the integrated quarticity can be esti-

mated through realized quarticity.

Nevertheless, Zhang (2006) showed that on one side the use of subsampling reduces the magni-

tude of the microstructure error, specifically by 2nE(ε2
t,i), on the other side it increases the variance

for the larger subsampling interval.

Alternative integrated variance estimators have been proposed in order to address this trade-off

and to consider the microstructure error. Zhang, Mykland, and Aït−Sahalia (2005) proposed the

two-time scales Estimator (TTSE), given by

RV (TTSE)
t = 1

K

K∑
k=1

RV (k)
t − nt

nt
RVt.

Where the set of daily observations is divided in K non-overlapping subset, where k=1,...,K, nt is the

number of observations of the entire grid, RV (k)
t is the realized variance of the subset k, RVt is the

realized variance of the day t and nt is defined as

nt = 1
K

K∑
k=1

n(k)
t = nt −K −1

K
.

Aït−Sahalia, Mykland, and Zhang (2006) re-interprets this estimator according to the following

specification:

RV (TTSE,ad j)
t =

(
1− nt

nt

)−1
RV (TTSE)

t .

The most common estimator in presence of microstructure error is the kernel estimator. Zhou (1996)

firstly proposed this estimator for high-frequency data, proving that the microstructure error is
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time-dependent and has time-varying properties. From this proposed estimator, Hansen and Lunde

(2004) and Hansen and Lunde (2006) developed the following estimator

RVt = RVt +2
H∑

h=1

nt

nt −h
γ̂h, (4.16)

with

γ̂h = nt

nt −h

nt−h∑
j=1

r t, jr t, j+h.

Nonetheless, the proposed estimators by Zhou (1996), with H = 1 for Equation (4.16), and from

Hansen and Lunde (2004) are not consistent.

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) tried to overcome this drawback through

the flat-top kernel-based estimator

RV (BHLS)
t = RVt +

H∑
h=1

k
(

h−1
H

)(
γ̂h + γ̂−h

)
(4.17)

where k(x) for x ∈ [0,1] is a non-stochastic weight function such that k(0)= 1 and k(1)= 0.

In the early phases of RV models, an alternative way to mitigate the effects of the microstructure

noise was to pre-filter the intraday returns. For example, Bollen and Inder (2002) relied on an

autoregressive (AR) filter, while Ebens (1999), Maheu and McCurdy (2002) and Andersen, Bollerslev,

Diebold, and Ebens (2001) used a moving average filter.

4.4 Realized Covariance
The realized variance approach may be extended in the multivariate framework. Considering n fi-

nancial activities, pt is a n×1 vector, µ and W are vectors of n-dimensional processes, the logarithmic

price process may be defined as:

dp(t)=µ(t)+Ω(t)dW(t) t = 1,2, . . .

where Ω(t) is a n× n matrix defined as instantaneous co-volatility such that Σt = Ω(t)Ω(t)′ is the

matrix of instantaneous covariances, assuming that Ω(t) is orthogonal to W(t).

The quadratic variation of p(t) is equal to

[
p, p]t =

∫ t

t−h
Σsds =

∫ t

t−h
Ω(s)Ω(s)′ds.

In this context, the quadratic variation coincides with the integrated variance that may be defined

as

ICovt =
∫ t

t−h
Σ(s)ds. (4.18)

Andersen, Bollerslev, Diebold, and Labys (2003) proved that the realized covariance

RCovt =
m∑

i=1
r i,tr′i,t (4.19)
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is a consistent estimator of the integrated covariance, where m is the number of intra-daily parti-

tions.

In the multivariate framework, since the negotiations are not simultaneous among the assets,

it may emerge the "Epps effect" (Epps, 1979), which shows that the correlation between the as-

sets tends to be under-estimated for the effect of non-synchronicity. Several studies have tried to

overcome this effect, see Bandi and Russell (2005) for further details.

5 Modelling and Forecasting Realized Covariance
Since volatility forecasting models are largely employed in empirical application, such as portfolio

optimisation, option pricing and risk hedging, a large part of the literature has been trying to best

approximate volatility dynamics. Realized variance has allowed researchers to focus on the spec-

ification of the forecasting models, giving rise to three strands of literature: time series model of

realized variance, Mixed Data Sampling and Realized GARCH models.

5.1 Time series models
Firstly, Andersen, Bollerslev, Diebold, and Labys (2003), Oomen (2001) aimed at analysing the per-

sistence of the logarithm of the variance through a fractionally integrated ARMA model. The model

introduced by Andersen, Bollerslev, Diebold, and Labys (2003) can be specified as follows:

Φ(L)(1−L)d(yt −µ)=Θ(L)εt (5.1)

where yt is the logarithm of the realized volatility, L is the lag operator, Φ(L) = 1−Φ1L.....ΦpLp,

Θ(L)= 1+Θ1L+ ......+ΘqLq and (1−L)d is the fractional difference operator defined as

(1−L)d =
∞∑

k=0

Γ(k−d)Lk

Γ(−d)Γ(d+1)
(5.2)

where Γ(·) is the gamma function. The d parameter can assume any values between 0 and 1, when

d = 0 the Equation (5.1) defines a I(0) model, while with d = 1 the Equation (5.1) defines a firstly

integrated model. The multivariate version of this model is proposed by Halbleib-Chiriac and Voev

(2011) and will be analysed in this section.

As an alternative of ARFIMA models, long-term memory can be captured also through a Het-

erogeneous Autoregressive (HAR) model, proposed by Corsi (2009). In the HAR model, the daily

realized volatility is function of the lagged daily, weekly and monthly realized volatility

RV (g)
t+1g = c(g) +β(g)RV (g)

t +β(w)RV (w)
t +β(m)RV (m)

t +εt+1,g (5.3)

where g, w and m represent the daily, weekly (5 days) and monthly (20 days) frequencies. The

regressors RV (w)
t , RV (m)

t are the average of the past values of RVt scaled for the size of the frequency,
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e.g. RV (m)
t = 1

20

19∑
i=0

RVt−i. The relatively simple structure and the possibility to estimate the model

through a OLS estimation have spread the use of this specification. Corsi (2009) showed that this

model generates more accurate out-of-sample forecasts than short-term memory models.

Due to the non-parametric nature of the realized measure, the implementation of multivari-

ate volatility models has become quite simple. A first attempt to model multivariate volatility is

provided by Halbleib-Chiriac and Voev (2011), which suggested a VARFIMA(p,d,q) of the Cholesky

factors of the realized covariance matrix, in order to capture the highly persistent behaviour of the

volatility and to guarantee a semi-positive definite forecast matrix.

Let Yt be a n× n realized covariance matrix at time t, where n is the number of asset, the

Cholesky decomposition of Yt is given by the lower triangular matrix, Pt, such that PtP ′
t =Yt. Since

the matrix Yt is symmetric and positive definite, the elements of the matrix Pt are all real if the

number of intra-daily observations is larger than n. Assuming that X t = vech(Pt) is the m = n(n+
1)/2 Cholesky factors vector, obtained by stacking the components of the matrix Pt, the authors

propose the following VARFIMA model

Φ(L)D(L)[X t −BZt]=Θ(L)εt εt ∼ N(0,Σt) (5.4)

where Zt is the k×1 vector of exogenous variables, B is the coefficients matrix of dimension m× k,

Φ(L)= In−Φ1L−Φ2L2......ΦpLp and Θ(L)= In−Θ1L−Θ2L2−.......−ΘqLq are matrix lag polynomials

where Φi, for i = 1, ....., p and Θ j, for j = 1......q, are the AR- and MA- coefficient matrices and D(L)=
diag{(1−L)d1, ....., (1−L)dm}, where d1.....dm are the degrees of fractional integration of each element

of the vector X t, Σt is the covariance matrix of εt. The authors assume that the roots of Φ(L) and

Θ(L) lie outside the unit circle and X t stationary when di < 0,5, as shown in Sowell (1992).

In their article, the model is estimated in final equations form5 to limit the number of param-

eters to be estimated and guarantee a unique representation. The final model is estimated via

quasi-maximum likelihood and its (1,d,1) specification has the following form

(1−ΦL)D(L)[X t − c]= (1−ΘL)εt εt ∼ N(0,Σ) (5.5)

where c is a m×1 vector. The number of parameters significantly reduces from qn2 + (k+1)n+ p to

2n+2, when D(L)= diag{(1−L)d1, ...., (1−L)dn}, and to n+3, when D(L)= (1−L)d In.

A recent study of Baruník and Čech (2016) suggested to model the Cholesky factors through a

generalized HAR (GHAR). The proposed model is a multivariate extension of the HAR model also

analysed in Halbleib-Chiriac and Voev (2011). The authors propose a system of unrelated HAR

equations for all the elements of the vector of Cholesky factors, X t, relying on a system of unre-

lated regressions (Zellner (1962)). Their results highlight the strong performance of this model in a

portfolio optimisation problem when compared with a VARFIMA model on the Cholesky factors, the

Riskmetrics model and a DCC-GARCH model.

5See Theil and Boot (1962). The VARFIMA(p,q) is said to be in final equations form, i.e. Φ(L)Yt =
Θ(L)εt, if Θ0 = In and Φ(L)= 1−Φ1L− ......−ΦpLp is a scalar operator with Φp 6= 0.
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An alternative approach to guarantee a semi-positive definite realized covariance matrix, in-

troduced by Bauer and Vorkink (2011), implies the logarithmic transformation of the matrix. This

parametrization produces the log-volatilities, defined as at = vech(At), where At is equal to

At = Bt log(G t)B′
t (5.6)

where Bt and G t are the matrices resulting from the spectral decomposition Yt = BtG tB′
t (see also

Appendix A).

The dynamics of the log-volatilities, at, are modelled through a VAR(1):

at = γ0 +γ1at−1 +εt (5.7)

where γ0 is a vector of intercepts of dimension n×1, γ1 is a n×n matrix of coefficients and εt is the

vector of residuals.

Once obtained the fitted values of ât ≡ E t(at) ≡ γ̂0 + γ̂1at−1, the realized covariance matrix can

be reconstructed. The inverse of the vech operator allows to define the matrix Ât and, finally, the

exponential function returns the estimated covariance matrix, V̂t:

V̂t = exp(Ât). (5.8)

The matrix V̂t is positive definite by definition.

A further innovation of Bauer and Vorkink’s paper is the use of exogenous variables as volatility

determinants. The authors rely on a set of regressors that includes lagged dependent variables and

macroeconomic/financial variables that have been proven to improve volatility forecasting accuracy.

The model has the following form:

at = γ0 +γ1at−1 +γ2at−2 + ....+γkat−M +γX X t−1 +εt. (5.9)

Since the number of parameters to be estimated is relatively high, the authors suggest three meth-

ods to reduce it. The first method implies the use of the previously described Heterogeneous Autore-

gressive model. Consider the logarithmic transformation of the bi-power covariance matrix6 and the

vector of the elements, aBP (d)t, a model of the log-volatilities can be expressed as

at = γ0 +γ1aBP (1)t−1 +γ5aBP (5)t−1 +γ20aBP (20)t−1 +γX X t−1 +εt (5.10)

where aBP (1)t , aBP (5)t and aBP (20)t are the matrix-logarithms of daily, weekly and monthly mul-

tivariate bi-power covariation, respectively. In this way, the number of parameters is reduced by

(M−3)p2.

6As proposed in Barndorff-Nielsen and Shephard (2004), when a jump component is introduced

in the diffusion process of the logarithmic price, pt, a robust estimation of the IV can be computed

as follows

BV =
n−1∑
i=1

| r i | · | r(i+1) |

where n is the number of intra-daily partitions.
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The previous approach still implies the estimation of a large number of parameters. A second-

dimension reduction technique supposes that the aBP
t (d)t series are driven by a small number of

factors. The authors test this hypothesis by estimating the principal components of aBP (d)t, where

aBP (d, i) is the ith principal component of the covariation matrix.

The third methodology proposed involves the use of a latent factor approach. Assuming that the

set of explanatory variables

Zt = (aBP (1,1)t, ...,aBP (5,1)t, .....,aBP (20,1)t, ...., X t) (5.11)

is related to the unknown volatility factors, the k-th volatility factor, vk,t, can be specified as

vk,t = θkZt−1. (5.12)

Thus, the volatility factor is a linear combination of the set of N variables Zt, θk = {θk,(1), .....,θk,(N)}

are coefficients that combine the explanatory variables. The log-volatilities are function of the

volatility factors, such that

ai
t = γi

0 +βiθZt−1 +εi
t, (5.13)

with i = 1, ....., p, where γi
0 is the i-th element of the vector γ0, βi is the 1×K vector of loadings of

log-space volatility and θ is a k×N matrix containing the coefficients on the Zt−1 variables for the k

factors. Aggregating for the p log-volatilities, we have

at = γ0 +βθZt−1 +εt. (5.14)

This approach has the major edge to significantly reduce the number of parameters and to allow to

combine lagged volatility with exogenous explanatory variables.

Recently, Gourieroux, Jasiak, and Sufana (2009) proposed a model of multivariate volatility

dynamics, called Wishart Autoregressive (WAR) model, based on the Wishart distribution of the co-

variance matrix. Let Xk,t, with k = 1, ....,K , be a vector of n Gaussian independent VAR(1) processes,

then:

Xk,t = MXk,t−1 +εk,t εk,t
i.i.d.∼ N(0,Σ). (5.15)

The process, defined as

Yt =
K∑

k=1
Xk,t X ′

k,t Yt ∼Wn(K , M,Σ) (5.16)

is a Wishart Autoregressive process or order 1, where K denotes the degrees of freedom. Merging

the two equations, Yt can be written as

Yt = MYt−1M′+KΣ+ηt (5.17)

where ηt is the heteroscedastic error term with zero mean and M is a matrix of dimension n× n.

In order that Yt has a Wishart distribution and that Yt is positive definite, it is necessary that K is
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larger than n even if this does not usually happen in practice (Halbleib-Chiriac (2007)). Gourieroux,

Jasiak, and Sufana (2009) suggested to estimate K through a method of moments (MM) estimator:

k̂ =
2
[
α′Σ̂∗(∞)α

]2

V̂
[
α′Ytα

]
where α is a n×1 vector defined as allocated portfolio and Σ̂∗(∞) is given by Σ̂∗(∞)= M̂Σ̂∗(∞)M̂′+Σ̂∗,

M̂ and Σ̂∗ are the estimates of the MM model, V̂ (α′Ytα) is the sample variance of the portfolio

volatility.

The Wishart model has been further extended by Bonato (2009), Bonato, Caporin, and Ranaldo

(2009), Jin and Maheu (2012) and Halbleib-Chiriac and Voev (2011). The major pitfall of this model

is that the parametric assumptions are particularly restrictive and that the only estimation tech-

nique available, a Bayesian Markov Chain Monte Carlo (MCMC), is highly computational expensive.

More recently, a part of the literature on volatility models have tried to understand, via time

series model, the usefulness of exogenous variables in forecasting logarithmic realized volatility, see

Paye (2012) and Christiansen, Schmeling, and Schrimpf (2012). Relying on a log-volatility model,

the authors aim at identifying the exogenous determinants of volatility. Both the papers interest-

ingly find that pure macroeconomic variables do not drive the dynamics of volatility, while financial

variables strongly impact on the process of volatility.

During the last few years, a growing stream of literature is implementing non-linear models of

realized volatility. In fact, it is well known that linear models do not consider some stylized facts,

as asymmetric responses of returns. This remains valid also for realized volatility models. Then,

Martens, De Pooter, and Van Dijk (2004) proposed to use a long memory model with asymmetries

and structural breaks for realized volatility. Lately, McAleer and Medeiros (2008a) extended their

paper with a smooth transition model, introducing tests for the presence of structural breaks and

non-linearity tests.

5.2 MIDAS and GARCH-MIDAS models
Realized measures and high-frequency data are also used in a different framework, called Mixed

Data Sampling (MIDAS) approach. The seminal papers of the MIDAS approach are Ghysels, Santa-

Clara, and Valkanov (2004) and Ghysels, Santa-Clara, and Valkanov (2006), which rely on data

sampled at different frequencies in order to efficiently forecast volatility.

Let Vt+1 be a volatility measure, as realized volatility, the MIDAS regression at time t+h can

be written as:

V̂t+h =µ+ϕ
jmax∑
j=0

b( j,θ)X t− j +εt (5.18)

where jmax is the maximum lag considered, X t− j is a set of explanatory variables and b( j,θ) is a

weight function of lagged regressors. The regressors are sampled at higher frequencies than the de-

pendent variable. The parameters of the MIDAS model are estimated through maximum likelihood.
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Several papers have implemented the MIDAS approach for an empirical analysis. Becker,

Clements, and O’Neill (2010) combined the use of mixed frequencies sampling with Cholesky de-

composition of the realized covariance matrix. The first two steps of the procedure are the same as

those showed in Halbleib-Chiriac and Voev (2011), whereas the realized covariance matrix is mod-

elled according to the approach presented in Hansen and Lunde (2005). The authors treat the close

to open period as a separate return period, so that the total 24-hour realized covariance matrix for

day t, Vt, is computed as

Vt = rco,tr′co,t +
n∑

i=1
r i,tr′i,t (5.19)

where rco,t is the vector of returns from closure of day t−1 to the opening of day t. The matrix for

m days, V (m)
t , is defined as the sum of daily covariance matrices, Vt. The Cholesky decomposition

is given by V (m)
t = C(m)

t C(m)′
t , while the vector of elements of the lower triangular Ct is defined as

P(m)
t = vech(C(m)

t ).

The n(n+ 1)/2 elements of P(m)
t are modelled through the MIDAS approach, which implies a

weighted average of their past values:

P(m)
i,t+m =βi0 +βi1

K∑
k=1

B(k,1,θi)Pi,t−k+1 +vt (5.20)

where B is a weighting function, in this case a beta function, such that

B(k, i,θi)=
f ( k

K ,1,θi)
K∑

k=1
f ( k

K ,1,θi)
(5.21)

f (z,a,b)= za−1(1− z)b−1Γ(a+b)
Γ(a)Γ(b)

(5.22)

where K is the maximum number of lags and βi0, βi1 and θi are the parameters to be estimated.

Including explanatory variables in the model, it becomes

P(m)
i,t+m =βi0 +βi1B(k,1,θi)Pi,t−k+1 +βixB(k,1,θix)X t−k+1 +vt. (5.23)

In order to forecast P(m)
i,t+m, an estimation of the Cholesky-MIDAS model is necessary through a

non-linear least squares (NLS) regression. Once obtained the estimation estimated parameters, m

step ahead forecasts P(m)
i,t+m may be produced and, consequently, the forecast covariance matrix.

An interesting analysis of different specifications of the weighting function, B, is provided by

Ghysels, Rubia, and Valkanov (2009). The authors compare the forecasts obtained with a MIDAS

model with those from a GARCH model and an AR model on the realized variance. The out-of-sample

forecasts are given by the following equation

Ṽ k
t+1 =µk +ϕk

jmax∑
j=0

bk( j,θ)r2
t− j +εk,t (5.24)

where Ṽ k
t+1 is a measure of volatility, like the realized variance, such that Ṽ k

t+1 = RV k
t+1 =

k∑
j=1

r2
t+ j,

bk( j,θ) is a weight function. µk, φk and θ must be estimated via quasi-maximum likelihood. The
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authors show that the MIDAS approach provides more accurate forecasts than the competing mod-

els, in terms of mean square error (MSE) and accordingly to West (1996) and Giacomini and White

(2006) tests.

The MIDAS approach is usually combined with a GARCH model, as proposed in the Spline-

GARCH model of Engle and Rangel (2008). The short-term component is modelled through a

GARCH process moving around a long-term trend, the long-term component is modelled with a

Spline function7. Recently, Engle, Ghysels, and Sohn (2013) introduced the GARCH-MIDAS model,

in order to understand the effect of macroeconomic and financial variables on return volatility.

In the Spline-GARCH, proposed by Engle and Rangel (2008), the returns follow a process defined

as

r i,t −E[r i,t | I i−1,t]=
√

g i,tτtZi,t (5.25)

where r i,t are the daily logarithmic returns, I i−1,t is the available information at day i, Zi,t
iid∼ (0,1)

are the innovations, g i,t is a GARCH process and τt is an exponential spline function. The volatility

can be denoted by two components, a short-term component for analysing the daily fluctuations, g i,t,

and the long-term component, τt. In the GARCH-MIDAS approach, the spline function is replaced

with a MIDAS equation.

Engle, Ghysels, and Sohn (2013) combined a GARCH-MIDAS model with the use of exogenous

macroeconomic variables, focusing on inflation rate and industrial production growth. Starting from

Equation (5.25), the equation of returns at day i and month8 t has the following form

r i,t =µ+
√
τt g i,tZi,t ∀i = 1, ....., Nt (5.26)

where Nt is the number of days included in t and µ is the conditional average of r i,t. g i,t follows a

GARCH process:

g i,t = (1−α−β)+α (r i−1,t −µ)2

τt
+βg i−1,t. (5.27)

Following the literature on realized variance determinants (Schwert (1989)), the authors model τt

as a function of monthly realized variance, RVt. According to the MIDAS scheme, the long-run

component can be computed as follows

τt = m+θ
K∑

k=1
ϕk(w1,w2)RVt−k (5.28)

where m is a constant, θ measures the impact of the lags of r2
t and RVt =

Nt∑
i=1

r2
i,t. The weight function,

7A spline function has the purpose to interpolate a set of points in an interval, through a set of

polynomials combined together. See also Wold (1976) for further details on spline functions.
8Also lower frequencies are allowed, such as quarterly.
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ϕk(w1,w2), is specified in a twofold way:
(k/K)w1−1(1−k/K)w2−1

K∑
j=1

( j/K)w1−1(1− j/K)w2−1
Beta Function

wk/(
K∑

j=1
w j) Exponential Weights

(5.29)

The model can be implemented with lower frequency, such as monthly, quarterly and yearly, and

the number of lags of the MIDAS component may vary considerably. The estimation is carried out

through quasi-maximum likelihood.

Finally, this specification allows to embed macroeconomic variables in the model. Engle, Ghy-

sels, and Sohn (2013) analysed a model with one and two filters. The first approach implies the use

of lagged macroeconomic variables as regressors in the long-term component, such that

logτt = ml +θl

K l∑
k=1

ϕk(w1,l ,w2,l)X mv
l,t−k (5.30)

where X mv
l,t−k represents the level of a macroeconomic variable, such as inflation rate or industrial

production growth, ml is a constant and θl measures the impact of the lagged exogenous variable

on the logarithm of the long-term component.

The "two-sided filter" model relies on past and future observations of the macroeconomic vari-

able to model the long-term component. The univariate specification is equal to:

logτt = m2 +
K (l)

f∑
k=−K (l)

l

ϕk(w1,w2)θ(k)
l X mv

l,t+k (5.31)

where the impacts of the macroeconomic variables are free to vary, then

θ(k)
l =

θ
f
l k ≥ 0

θb
l k < 0.

In their framework, the GARCH-MIDAS model provides highly accurate forecasts, in particular in

the sub-sample such as the Great Depression or the period following the Second World War.

Conrad and Loch (2014) extended the model of Engle, Ghysels, and Sohn (2013), including two

exogenous variables in the long-term component, the model can be written as

log(τt)= m+θX
K∑

k=1
ϕk(wX

1 ,wX
2 )X t−k +θY

K∑
k=1

ϕk(wY
1 ,wY

2 )Yt−k (5.32)

where Yt−k is a second explanatory macroeconomic variable. Let Yt−k be the realized monthly vari-

ance, the annual long-term component is specified as follows

log(τt)= m+θRV
K=12∑
k=1

ϕk(wRV
1 ,wRV

2 )RVt−k +θMV
K=12∑
k=1

ϕk(wMV
1 ,wMV

2 )X t−k. (5.33)
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They forecast volatility one step ahead. At the beginning of the period t, the long-term component,

τt, is pre-determined respect to the informative set I t−1, then the volatility forecast for day i in

period t is given by

E
[
g i,tτtZ2

i,t | I t−1

]
= τtE

[
g i,t | I t−1

]
.

Since E
[
g i,t | I t−1

] = 1+ (α+β+γ/2)i−1(g1,t −1) converges to the unconditional variance of g i,t, the

forecasts tend to the long-term component, for i sufficiently large. The forecast for the period t is

given by

E
[ Nt∑

i=1
g i,tτtZ2

i,t | I t−1

]
= τt

(
Nt + (g1,t −1)

1− (α+β+γ/2)Nt

1−α−β−γ/2

)
.

When g1,t is equal to its unconditional variance, the forecast for period t is τtNt.

The authors analyse a large set of macroeconomic variables, like the GDP growth, the industrial

production and the unemployment rate, the term spread9, the GDP deflator, the CPI and others.

The relevance of macroeconomic variables to forecast volatility through a GARCH-MIDAS model is

further analysed in Asgharian, Hou, and Javed (2013).

The GARCH-MIDAS has been extended in the multivariate framework. Let consider a vector

of n assets, in the DCC specification of Engle (2002), it follows a r t ∼ N(µ,Ht) process, where the

conditional covariance matrix, Ht, can be written as in Equation 2.29. In the bivariate case, the

conditional volatilities, for asset i and asset j, defined as qi,t and q j,t, follow a univariate GARCH

model and are estimated in a separated first stage. The estimation of the conditional covariances

represents the second step of the procedure. The conditional covariance is specified as in Equation

2.32, while Qt is equal to

qi j,t = ρ i j,t(1−a−b)+a(ui,t−1u j,t−1)+b(qi j,t−1) (5.34)

where ui,t and u j,t are the standardized residuals of the univariate model and the conditional cor-

relation is given by

ρ i j,t =
qi j,tpqii,tq j j,t

. (5.35)

qi j,t is the short-run covariance.

Firstly, Colacito, Engle, and Ghysels (2011) proposed a combination of the DCC model with the

MIDAS approach. In the DCC-MIDAS model, the conditional covariance is defined as in 5.34, the

long-run correlation is specified according to the MIDAS approach:

ρ i j,t =
Kc∑

k=1
ϕk(wi j

k )Ci j,t−k (5.36)

where Kc is the number of the lags of the historical correlations, Ci j,t−k, specified as

Ci j,t =
∑t

k=t−N ui,ku j,k√∑t
k=t−N i j u2

i,k

√∑t
k=t−N i j u2

j,k

. (5.37)

9The term spread represents the difference between the interest rate of a short-term bond and a

long-term bond.
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ρ i j,t is the slowly moving long-run correlation and ut is the standardized innovation.

Rewriting the set of correlations in matrix form, the model can be computed as:

Rt = (Q∗
t )−1/2Qt(Q∗

t )−1/2 (5.38)

Q∗
t = diag(Qt) (5.39)

Qt = (1−a−b)R t(wr)+autu′
t +bQt−1 (5.40)

where

R t(wr)=
Kc∑

k=1
φk(wr)¯Ct−k (5.41)

Ct =


v1,t 0 0

...
. . . 0

0 · · · vn,t


− 1

2 ( t∑
k=t−Nc

uku′
k

)
v1,t 0 0

...
. . . 0

0 · · · vn,t


− 1

2

(5.42)

vi,t =
t∑

k=t−Nc

u2
i,k ∀i = 1, ...,n (5.43)

where φk(wr) = ϕk(wr)ιι′. In this specification, a and b are imposed as common parameters across

all asset combinations. Without these restrictions, the short-run dynamics can be written as

Qt =G¯R t(wr)+ A¯ut−1u′
t−1 +B¯Qt−1 (5.44)

where G, A and B are n×n matrices of parameters.

Assuming a single parameter wr, the covariance matrix is positive definite under a small set

of assumptions. It may be noticed that the matrix Qt is a weighted average of the three matrices.

Since R t is a weighted average of correlation matrices, it is also semi-positive definite and ut−1u′
t−1

is semi-positive definite by construction. When the initial matrix Q0 is semi-positive definite, Qt is

semi-positive definite in each point.

When two or more weighting schemes are available, the matrix R t is not semi-positive definite

for each MIDAS specification. Further restrictions are necessary to ensure a semi-positive definite

sequence of matrices
{
φk

}K

k=1
. To estimate the parameters of the model, the authors employ the

two-step procedure of Engle (2002).

Asgharian, Christiansen, and Hou (2014) extended the work of Colacito, Engle, and Ghysels

(2011) by including macroeconomic variables and lagged realized correlations in the long-run com-
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ponent. The DCC-MIDAS-XC model is defined as follows

qi j,t = ρ i j,t(1−a−b)+aui,t−1u j,t−1 +bqi j,t−1 (5.45)

ρ i j,t =
exp(2zi j,τ)−1
exp(2zi j,τ)+1

(5.46)

zi j,τ = mi j +θRC

K∑
k=1

ϕk(w1,w2)RCi j,t−k +θX

K∑
k=1

ϕk(w1,w2)XQ
t−k (5.47)

RCi j,t =
∑Nt

k=1 ui,ku j,k√∑Nt
k=1 u2

i,k

√∑Nt
k=1 u2

j,k

(5.48)

where RCi j,t is the realized correlation, measured on a quarterly basis, XQ
t is a macroeconomic

variable measured at the same frequency, while K is the number of the MIDAS component.

The authors include future macroeconomic variables in the model, which is then a DCC-MIDAS-

XCF model. If θRC is equal to zero, the specification is in the following form:

zi j,t = m+θX

K lag∑
k=1

ϕk(w1,w2)XQ
t−k +θX

0∑
k=−K lead

ϕk(w1,w2)X SPF
t−k|t. (5.49)

The future observations, X SPF , are replaced by the expectation data provided by the Survey of

Professional Forecasters. Since the combination of historical data and forecast data is quite difficult,

the authors suggest treating the forecast data as an individual variables, such that

zi j,t = m+θX

K lag∑
k=1

ϕk(w1,w2)XQ
t−k +θF X

0∑
k=−K lead

ϕk(w1,w2)X SPF
t−k|t. (5.50)

Following Engle (2002) and Colacito, Engle, and Ghysels (2011), the authors estimate the parame-

ters of the model through a two-step quasi-maximum likelihood estimator, by maximizing the fol-

lowing function:

L =−
T∑

t=1
(T log(2φ)+2log | Dt | +u′

tD
−2
t ut)−

T∑
t=1

(log | Rt | +u′
tR

−1
t ut −u′

tut)

where Dt is a diagonal matrix with standard deviations of returns on the diagonal and Rt is the

conditional correlation matrix of standardized return residuals.

5.3 Realized GARCH and HEAVY model
Recently, an approach that includes a realized measure (like the realized variance, the bi-quadratic

variation and the realized kernel) in the GARCH equation has been proposed. Some specifications

of this method imply the use of multiple latent volatility processes, such as the Multiplicative Error

Model (MEM) of Engle and Gallo (2006) and the HEAVY (High-frEquency-bAsed VolatilitY) model

proposed by Shephard and Sheppard (2010). Hansen, Huang, and Shek (2011), instead, proposed a

single latent volatility process, called Realized GARCH.
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The variable of interest is the conditional variance, ht =V ar(r t−1 | I t−1), where r t is the series of

returns of an asset. In the classical GARCH specification, ht is only function of ht−1 and r2
t−1, while

in Hansen, Huang, and Shek (2011), ht it is also function of some realized measure of volatility,

xt−1. A measurement equation completes the model. The Realized GARCH is then specified in the

following form:

r t =
√

htzt (5.51)

ht = w+βht−1 +γxt−1 (5.52)

xt = ξ+ϕht +τ(zt)+ut (5.53)

where zt ∼ i.i.d.(0,1), ut ∼ i.i.d.(0,σ2
u). In this way, ht is an autoregressive model of order one,

ht = µ+φht−1 +wt−1, where µ = w+γξ, φ = β+ϕγ and wt = γτ(zt)+γut. In order to consider an

asymmetric response in volatility to return shocks, the authors suggest specifying τ(z) as follows

τ(z)= τ1z+τ2(z2 −1).

Their model can be easily estimated via quasi-maximum likelihood and can be extended to multiple

asset, as proposed in Hansen, Lunde, and Voev (2014).

Instead, the high-frequency-based volatility (HEAVY) of Shephard and Sheppard (2010) relies

on two latent processes

var(r t | IHF
t−1)= ht = w+αRMt−1 +βht−1, w,α≥ 0,β ∈ [0,1) (5.54)

E(RMt | IHF
t−1)=µt = wR +αRRMt−1 +βRµt−1, wR ,αR ,βR ≥ 0,αR +βR ∈ [0,1) (5.55)

where IHF
t−1 is the high-frequency information, RMt−1 is the realized measure, w and wR are the

constants and µt is the latent conditional mean of the realized measure. This semi-parametric model

can be extended to a more complex structure of the dynamics of µt and to the use of r2
t−1, as in the

traditional GARCH specification of ht−1. The parameters are estimated through quasi-maximum

likelihood.

A multivariate extension of the previous model is provided by Noureldin, Shephard, and Shep-

pard (2011). Let r i,t be the vector of intra-daily returns of dimension n×1, the realized measure, Vt,

is a n×n matrix. For example, considering the realized covariance RCt:

RCt =
n∑

i=1
r i,tr′i,t

where n are the intra-daily partitions, the cross product of the daily returns is equal to Pt = r tr′t,
then the HEAVY model can be written as

E
[
Pt | IHF

t−1

]
= E

[
r tr′t | IHF

t−1

]
= Ht

E
[
Vt | IHF

t−1

]
= Mt,
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with E
[
r t | IHF

t−1
]= 0, such that Ht is the conditional covariance matrix. Among the possible parametriza-

tions, the authors choose a BEKK specification Engle and Kroner (1995)), such that:

Ht = CHC
′
H +BH Ht−1B

′
H + AHVt−1 A

′
H

Mt = CMC
′
M +BM Mt−1B

′
M + AMVt−1 A

′
M

where BH , AH ,BM and AM are n×n matrices with n2 parameters, while CH and CM are lower tri-

angular matrices with n∗ = n(n+1)/2 parameters. Ht and Mt matrices are positive semi-definite for

each t, when H0 and M0 are positive semi-definite. The high number of parameters to be estimated

may lead to convergence problems in the quasi-maximum likelihood estimator. This drawback may

be solved by imposing BH , AH ,BM e AM to be scalars or diagonal matrices.

6 Forecasting Evaluation Methods
In this section, we analyse several methods to evaluate volatility forecasts. The evaluation of the

forecasts accuracy represents a crucial aspect for the selection of the volatility model and is based

on direct and indirect methods. Direct methods rest on a statistical evaluation of the forecasts to

understand the ranking of compared models, while indirect methods are based on portfolio allocation

or (Conditional) Value-at-Risk forecasting.

6.1 Direct Methods
A major pitfall that characterises the forecasts evaluation concerns the latent nature of the variable

of interest, which implies the use of a proxy (see also Patton (2011)). Typically, this issue is solved

through an unbiased estimator of volatility, like the squared returns. It is known, however, that

the squared returns are a noisy proxy of the latent volatility. For this reason, the attention moved

to the use of an unbiased estimator of volatility like the realized variance. The realized variance

is a more efficient estimator respect to the squared returns, since E[(r2
t −σ2

t )2 | I t−1] = 2σ4
t , while

the expected value of the realized variance is equal to E[(RV m
t −σ2

t )2 | I t−1] = 2σ4/m, where σ2
t

is the true unobservable variance and m is the number of intradaily periods. The use of such a

proxy allows to implement the classical evaluation methods, like the Mincer and Zarnowitz (1969)

regression and the test introduced by Diebold and Mariano (1995), but does not lead to the same

ranking results obtained in presence of the observed volatility. In fact, Andersen and Bollerslev

(1998) and Andersen, Bollerslev, and Meddahi (2005) showed that the tests are less powerful in

presence of a proxy. Moreover, Hansen and Lunde (2006) showed the presence of a distortion in the

ranking of several models, when a proxy of volatility is used. Recently, Patton (2011) contributed

to this literature proving that the use of the realized variance as proxy of volatility presents less

distort tests and ranking respect to other proxies.
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When the forecasts from two or more competing models are available, the evaluation of the

volatility forecasts is based on the ranking determined by some kind of loss function. Several papers

have been focused on the definition of the necessary conditions to obtain a consistent ranking. Patton

(2011) determined the necessary and sufficient conditions on the functional form of the loss function

in the univariate framework. Laurent, Rombouts, and Violante (2013) extended the analysis of those

conditions in the multivariate.

Let be E[r t | I t−1] = 0 and E[r2
t | I t−1] = σ2

t the true unobservable conditional variance of the

returns r t and let be ht a forecast from a forecasting model, the loss function is given by L(σ2
t ,ht).

In the multivariate framework, the variable of interest is the conditional covariance matrix, Σt =
E[r tr′t | I t−1], and the loss function is given by L(Σt,Ht).

Since the true latent variance is not observable, the loss function should rely on a proxy of

volatility, defined as σ̂2
t in the univariate and Σ̂t in the multivariate. Consequently, the loss functions

can be defined as L(σ̂2
t ,ht) and L(Σ̂t,Ht). Patton (2011) determined the properties that a loss function

should have in presence of a proxy of volatility. In particular, the loss function is considered "robust"

if the ranking between the competing models is the same obtained in presence of the real conditional

variance. Thus, the expected loss function, E[L(σ2
t ,ht)], given two competing models k and j should

satisfy the following condition:

E[L(σ2
t ,hk,t)]≤ E[L(σ2

t ,h j,t)]⇔ E[L(σ̂2
t ,hk,t)]≤ E[L(σ̂2

t ,h j,t)]. (6.1)

The condition (6.1) is guaranteed if
∂2L(σ2

t ,ht)

(∂σ2
t )2

(6.2)

exists and does not depend from ht (cfr. Laurent and Violante (2012)).

Patton (2011) provided also necessary and sufficient conditions to define a class of homoge-

neous10 loss functions in the univariate dimension, robust to the use of a proxy. If the degree of

homogeneity is equal to b+2, the class of loss functions is given by

L(σ̂2
t ,ht;b)=


1

(b+1)(b+2) (σ̂
2b+4
t −hb+2

t )− 1
b+1 hb+1

t (σ̂2
t −ht), b 6= −1,−2

ht − σ̂2
t + σ̂2

t log σ̂2
t

ht
, b =−1

σ̂2
t

ht
− log σ̂2

t
ht

−1, b =−2

(6.3)

For b = 0, the loss function corresponds to the mean squared error loss function (MSE), L(σ̂2
t ,ht) =

(σ̂2
t −ht)2, while for b = 2 the loss function is equal to a quasi-likelihood (QLIKE), L(σ̂2

t ,ht)= logh+
σ̂2

t
ht

. Patton and Sheppard (2009) proved that the DM test and the test introduced by West (1996)

are more powerful when a QLIKE loss function is used respect to a MSE function, in the univariate

dimension.

In the multivariate case, the necessary condition for a robust ranking becomes

E[L(Σt,Hk,t)]≤ E[L(Σt,H j,t)]⇔ E[L(Σ̂t,Hk,t)]≤ E[L(Σ̂t,H j,t)], (6.4)

10A loss function, L, is homogeneous of order k if L(aσ̂2
t ,aht)= akL(σ̂2

t ,ht), ∀a > 0.
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and the sufficient condition to ensure (6.4) is equal to

∂2L(Σt,Ht)
∂σk,t∂σ j,t

, ∀k, j = 1, . . . , N(N +1)/2 (6.5)

where σk,t is the k-th element of σt = vech(Σt). A loss function L is robust if and only if it assumes

the following form:

L(Σ̂t,Ht)= C̃(Ht)+ C̃(Σt)+C′(Ht)vech(Σ̂t −Ht), (6.6)

where

C(Ht)=


∂C̃(Ht)
∂h1,t

...
∂C̃(Ht)
∂hK ,t

 , C′(Ht)=


∂C̃(Ht)

∂h1,t∂h1,t
· · · ∂C̃(Ht)

∂h1,t∂hK ,t
...

. . .
...

∂C̃(Ht)
∂hK ,t∂h1,t

· · · ∂C̃(Ht)
∂hK ,t∂hK ,t


and where C(·) and C′(·) are the gradient and the Hessian of C̃(·) with respect to Ht.

Equation (6.6) is re-defined by Laurent, Rombouts, and Violante (2013) on the basis of the fore-

cast errors, such that

L(Σ̂t,Ht)= L(Σ̂t −Ht)= vech(Σ̂t −Ht)′Λ̂vech(Σ̂t −Ht) (6.7)

where Λ̂ is a positive definite matrix of weights associated to the elements of the forecast error

matrix. The loss function defined in Equation (6.7) nests several loss functions, both in the vector

space, like the Euclidean distance and the weighted Euclidean distance, and matrix space, like the

Frobenius distance and the Stein distance.

As underlined in Laurent, Rombouts, and Violante (2013), while in the univariate case an ana-

lytical expression is available for the entire class of consistent loss functions, in the multivariate case

this generalization is not feasible due to the infinite combinations between forecasts and forecasts

errors that satisfy (6.7). Given (6.7), Laurent, Rombouts, and Violante (2013) proved that specific

loss functions can be easily derived.

In this section, we further review several tests for forecasting accuracy that strongly rely on a

statistical loss function.

Firstly, a simple method to evaluate the accuracy of volatility forecast is the Mincer-Zarnowitz

(MZ) regression, introduced by Mincer and Zarnowitz (1969). This approach is based on the estima-

tion of the coefficients of a linear regression, such that

σ2
t =α+βht +εt (6.8)

where σ2
t is the true conditional variance, α is a constant and β is the coefficient of the forecast at

time t. A forecast is optimal when σ2
t = ht, which is equivalent to the null hypothesis H0 :α= 0∪β=

1. Given that volatility is latent, the regression is only feasible when a reliable proxy is used, then

the MZ regression can be expressed as

σ̂2
t =α+βht +εt. (6.9)
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The regression (6.9) gives a twofold information on the accuracy of the forecasts by testing the joint

hypothesis on the coefficients and through the R2 that can be seen as an indicator of how much the

prediction is correlated with the proxy of volatility.

The MZ regression strongly depends on the accuracy of the volatility proxy that influences the

estimation of the coefficients and the accuracy of the R2. Moreover, Hansen and Lunde (2006)

showed that, when a volatility proxy is used, the R2 cannot always be considered adequate and

may lead to a distort ordering.

The use of the MZ can be extended in the multivariate case. A simple approach is to estimate

the regression (6.9) for each element of the covariance matrix, such that

σ̂i j,t =αi j +βi jhi j,t +εi j,t (6.10)

where σ̂i j is the element i j of the realized covariance matrix Σ̂, for i = 1, . . . , N(N + 1)/2 and j =
1, . . . , N(N +1)/2. When the number of series is relatively high, there emerge difficulties with this

approach. A feasible alternative is to define the MZ regression as follows

vech(Σ̂t)=α+diag(β)vech(Ht)+εt (6.11)

where α and β are N(N+1)/2×1 vectors of parameters, vech(·) is the half-vector operator and diag(·)
is the operator that transforms a k×1 vector in a k×k matrix with the elements of the vector along

the diagonal. The joint test that α = 0 and β = 1 can be computed on (6.11). Patton and Sheppard

(2009) underlined the possibility of adversely affected results in finite sample, proposing to impose

a constraint on the parameters, such that α=αi and β=βi, ∀i = 1, . . . , N(N +1)/2.

Some of the most used methods of forecast evaluation can only be applied when different models

have been implemented on the same dataset and shall be based on the forecast error. These mea-

sures, relying on the forecast error and the relative transformations, include the Mean Squared Er-

ror (MSE), the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE). The former

measures are the most common in the forecasting evaluation literature, although several authors

suggest that MAE is a more reliable measure, since it is less sensitive to outliers of the forecast

error.

MAE measures the accuracy of the forecasts through the average of the magnitude of the fore-

cast error and can be computed as

MAE = 1
n

n∑
i=1

| e i |

where e i is the forecast error, for i ∈ ñ, where ñ = N(N +1)/2.

MSE and RMSE are robust measures when the competing models are based on the same series.

Since they strictly depend on the forecast error, it follows that the smaller the measure, the better

38



the accuracy. In the univariate case, the measures can be written as

MSE = 1
n

n∑
i=1

e2
i

RMSE =
√

1
n

n∑
i=1

e2
i

where n is the number of forecast errors. In the multivariate case, the RMSE can be based on the

Frobenius norm11 of the n× ñ matrix of the forecast error, and it is defined as follows

RMSE = ‖e‖2p
(n · ñ)−1

.

In the multivariate framework, a model should also be preferred if it exhibits the lowest RMSE.

For the pairwise comparison of competing models, two tests are usually implemented, the DM

and the GW test. The equal predictive ability tests share the null hypothesis of absence of predictive

ability. The test introduced by Diebold and Mariano (1995) is considered the first attempt to compare

two rival models in terms of forecasting accuracy, jointly with the test proposed by West (1996). The

DM test is based on assumptions made on the difference of the forecast error loss functions.

Assuming a robust loss function, like those defined in this section, the DM test is based on the

differential of the loss functions for the models k and j, such that

dt = L(σ̂2
t ,hk,t)−L(σ̂2

t ,h j,t), (6.12)

in the univariate case and

dt = L(Σ̂t,Hk,t)−L(Σ̂t,H j,t), (6.13)

in the multivariate case, where L(Σ̂t,Hk,t) is a loss function as the Euclidean distance between

vectors and the Frobenius distance between matrices.

The null hypothesis of equal predictive ability can be expressed as H0 : E[dt] = 0; the test as-

sumes the following form

DM =
p

T
dp
w

d−→ N(0,1) (6.14)

where

d = 1
T

T∑
t=1

dt

and

w = lim
t→∞V AR(

p
Td)

is its asymptotic variance, generally estimated through the sample variance.

11The Frobenius norm of a matrix is a Euclidean norm, built on matrix A, of dimension m× n,

equal to the square root of the summed squares of the matrix elements, defined as ‖A‖2 =√∑m
i=1

∑n
j=1 | ai j |2.

39



The bulk of the literature relies on a MSE loss function in the DM test, such that L(σ̂2
t ,ht)= (σ̂2

t −
ht)2, while in the multivariate framework two loss functions are usually implemented, the Frobenius

norm between matrices defined as LF (Σ̂t,Ht)=∑
i j(σ̂i j,t−hi j,t)2, and the Euclidean distance between

vectors, that can be specified as L(σ̂t,ht)=∑N(N+1)/2
k=1 (σ̂k,t −hk,t)2.

Giacomini and White (2006) extended the DM test to consider the previous information set in

the test, computing a conditional test of superior predictive ability. More specifically, the authors

proved that, given the volatility forecasts from two competing models, the null hypothesis may be

defined as

H0 : E
[
(Yt+1 − f t(β̂1t))2 − (Yt+1 − gt(β̂2t))2 | I t

]= 0 (6.15)

where f t(β̂1t) and gt(β̂2t) are two forecasting models for the conditional mean of the variable of

interest Yt+1, given a quadratic loss function.

The GW test is the best candidate to evaluate forecasts from a rolling window scheme, while it

does not allow the use of a recursive scheme. When the test is based on a rolling window scheme,

it allows to remove some of the assumptions made for other pairwise tests like the Diebold and

Mariano (1995) and West (1996). In particular, the hypothesis of stationary observations is no longer

needed, while the test can be applicable to a wider class of models, including linear and non-linear

models, semi-parametric or non-parametric models, nested or not-nested models.

For nested models, Clark and West (2007) introduced an equal predictive ability test based on

the mean squared prediction error (MSPE), defined as MSPE i = ∑T
t (σ̂2

t −hi,t)2, where i = 1,2. Let

be f̂ t = MSPE1 −MSPE2 +T−1 ∑T
t (h1,t −h2,t)2) and its average f̄ = T−1 ∑T

t f̂ t, the adjusted test for

the squared forecasts difference can be computed as

CW =
p

T f̄ /
√
σ2

f̂ t
(6.16)

where σ2
f̂ t
= T−1 ∑T

t ( f̂ t− f̄ )2. The null hypothesis of the test is given by MSPE1 = MSPE2, while the

alternative hypothesis is given by MSPE2 < MSPE1, determining the CW test as a unilateral test.

Alternatively to pairwise tests, forecasts may be compared for more than two models. At this

end, Hansen, Lunde, and Nason (2011) introduced the model confidence set (MCS) to compare all

forecasts against each other. For a given confidence level, the MCS defines the set of models con-

taining the best out-of-sample forecasts. The MCS approach consists in a sequential procedure that

allows to test the equal predictive ability of the compared models, discard any inferior model and de-

fine the set of superior models (SSM). Given a set of M0 forecasts, the MCS procedure tests whether

all models in M0 have equal forecasting ability. The performance is measured pairwise by the loss

functions difference, dk, j,t = L(σt,hk,t)−L(σt,h j,t), for all k, j ∈ M0 and k 6= j. Assuming that dk, j,t

is stationary, the null hypothesis takes the following form:

H0 : E[dk, j,t]= 0, ∀k, j ∈ M0. (6.17)

A model is discarded if the null is rejected at a given confidence level α. The test is sequentially

repeated until the non-rejection of the null. The remaining models define the set of statistically
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equivalent models with respect to a given loss function. As for pairwise models, also for MCS may

be implemented robust loss functions like MSE, Frobenius norm between matrices and Euclidean

distance among vectors.

6.2 Indirect methods
An alternative to statistical evaluation of the forecasts is evaluating predictive ability through indi-

rect methods.

Volatility is implemented in many economic decisions, like mean-variance portfolio optimisa-

tion, hedging risk measurement, option pricing and utility maximisation. In general, economic

evaluation of volatility and correlation forecasts relies on several assumptions, such as the utility

function of the hypothetical investor (in portfolio choice or hedging applications), the density of the

standardised returns (as in Value-at-Risk and Expected Shortfall forecasting, density forecasting

portfolio choice applications with non-quadratic utility), the derivative pricing model (in option, and

other derivative securities, pricing applications). Although "non-robust", these approaches can yield

valuable information on competing volatility and correlation forecasts.

6.2.1 Portfolio Optimisation

The use of covariance in portfolio optimisation has its roots in the doctoral thesis of Markowitz. Since

then, a wide stream of literature has been analysing the forecast accuracy in a context of portfolio

optimisation. Recently, the same literature has been wondering if a realized covariance matrix does

provide tangible advantages in the definition of the weights of a portfolio. Firstly, Fleming, Kirby,

and Ostdiek (2003) analysed the effects of the use of the realized covariance matrix, highlighting the

increased performance in terms of risk and return for the underlying portfolio. A great part of the

papers has investigated the realized covariance matrix in a Global Minimum Variance approach,

Kyj, Ostdiek, and Ensor (2009), Halbleib-Chiriac and Voev (2011) and Hautsch, Kyj, and Malec

(2015), among the others, confirm the usefulness of the non-parametric measure in the process of

investment decision.

Markowitz (1952) succeeded to synthesize the choices of portfolio allocation in two quantitative

variables, the mean and the standard deviation of the portfolio. According to Markowitz (1952), an

investor takes her decisions based on her expected utility function. Following the approach of von

Neumann and Morgenstern (1947), the investor aims at maximising her expected utility, reducing

the portfolio optimisation problem to the following form

max
w

E[U(W)]

where w are the optimal portfolio weights and U(W) is the utility of the investor function of her

wealth, W . Assuming returns normally distributed, a convenient choice is to define U(·) as a constant
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absolute risk adversion12 (CARA), given by

U(W)=−exp
{
cW

}
, c > 0 (6.18)

where c is the Arrow-Pratt measure of risk-aversion. The expected utility to be maximized becomes

E
[
U(W)

]=−exp
{− c

[
µp − c

2
σ2

p
]}

. (6.19)

Maximizing the expected utility when the utility function is exponential implies to find the solution

to the following problem

max
w

µp − 1
2

cσ2
p (6.20)

under the constraint

w′ι= 1. (6.21)

Equation (6.21) bounds the sum of the weights to one. Equation (6.20) can be computed as a risk

minimization problem given an objective return. The optimum problem can be written as

min
w

w′Σ̂w

s.t. w′µ̂=µp

w′ι= 1

(6.22)

where w is the weights vector, Σ̂ is the estimated covariance matrix. The optimum problem is

constrained to the full investment of the capital, w′ι = 1, and to the objective return, w′µ̂ = µp,

while the vector µ̂ is an estimation of the expected value of the returns of the assets composing the

portfolio.

The mean-variance remains the most used approach in portfolio optimisation, for its simple

implementation and for the possible extensions. Although appealing, the approach introduced by

Markowitz (1952) has been criticized due to the symmetric nature of the risk measure, i.e. the co-

variance matrix equally responds to positive and negative shocks (see also Hanoch and Levy (1969)),

and the poorly realistic assumptions of a CARA utility function and normal distribution of returns.

The mean-variance approach has been further criticized for relying on both the first two condi-

tional moments of the returns. There are well-known problems, however, concerning the prediction

of the first conditional moment. For this reason, the Global Minimum Variance (GMV), which fo-

cuses on the prediction of the conditional covariances avoiding to define a process for µp, has been

implemented and has been mostly diffused in allocation problem involving a specific forecasting

model for the covariance matrix (e.g. DCC, BEKK, Realized Covariance). Some articles show how

portfolios obtained from a mean-variance approach are less stable and perform worse than the com-

peting portfolios obtained from a GMV problem, see also Chan, Karceski, and Lakonishok (1999),

Jagannathan and Ma (2003) and Kyj, Ostdiek, and Ensor (2009).

12In this kind of function the Arrow-Pratt measure of risk-aversion, expressed as A(W) =−U"(W)
U ′(W) ,

is constant.
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The GMV weights can be derived from the following optimum problem

min
w

w′Σ̂w

s.t. w′ι= 1
(6.23)

where Σ̂ is the forecast of the conditional covariance matrix of portfolio. The underlying weights are

equal to

w = Σ̂−1ι

ι′Σ̂−1ι
. (6.24)

As seen in this section, classical optimisation problems are usually based on the covariance

matrix as risk measure. However, the financial operators have been investigating alternative risk

measure to account also for empirical evidences not included in covariance matrix. This lead the

financial institution J.P. Morgan to introduce, in 1994, a risk measure called Value-at-Risk (VaR)

that would have been the most used in the financial institutions in the following two decades, due

also to its legal implementation in the European Union (see Basilea II). The Value at Risk is defined

as the maximum portfolio loss at a given confidence level, α, in a time interval, formalized as follows

P(Rp ≤−V aRα)=α (6.25)

where Rp is the portfolio return. It follows that the greater the VaR, the larger the risk of the

portfolio. A risk-adverse investor would prefer to minimize the VaR of the portfolio.

There exist several methods to compute VaR in the financial literature, the most common are the

mean-variance approach, the historical simulation method, the use of the Monte Carlo simulations,

and the Extreme Value Theory, see Kuester, Mittnik, and Paolella (2006) for a comprehensive review

of these methods. Since in this article we focused on the realized variance, we only analyse the

method introduced by Giot and Laurent (2004) based on the realized volatility. Let be r t the returns

at time t of a single asset, it is assumed that

r t =
√

htzt, zt ∼ F (6.26)

where ht is the conditional variance, zt is a i.i.d. variable with unitary variance and F is the cumu-

lative function of the returns. The one-step ahead forecast of the VaR is given by

ˆV aRα
t+1|t =−F̂−1

√
ht

assuming ht as known conditionally to time t. For example, a GARCH model can be implemented

to forecast the conditional variance one-step ahead and, assuming a certain distribution for F, the

quantile of the distribution can be defined, and, consequently the VaR. When the VaR is the object

of the minimization problem, it becomes

min
w

V aRα

s.t. w′ι= 1.
(6.27)
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Despite the advantages denoting the Value-at-Risk, it also presents several weaknesses. The most

relevant, in terms of portfolio optimisation, is the not-additivity property. In fact, among the prop-

erties defined by Artzner, Delbaen, Eber, and Heath (1999), a risk measure should be sub-additive,

meaning that a diversification should reduce the overall risk or leave it not alternated. Instead,

for two portfolios, X and Y , the VaR obtained from a combination of the two may be greater than

the sum of the single VaR, i.e. V aR(X +Y ) > V aR(X )+V aR(Y ). Moreover, the VaR does not dive

any information about the losses exceeding the maximum loss at a given confidence level. For these

reasons, a more coherent risk measure like the Conditional VaR (or Expected Shortfall) should be

implemented.

The Conditional Value-at-Risk (CVaR) denotes the maximum loss conditional to the fact that this

happens in the tail of the distribution at left of the VaR. Let L be a continuous variable representing

the losses of a portfolio, the CVaR may be defined as

CV aRα = E
[
L | L ≥V aRα

]
. (6.28)

In other terms, the CVaR is equal to the average of the losses exceeding the VaR (see Figure 1). If

Figure 1: Conditional Value at Risk

the returns are normally distributed, then

CV aRα =−
(
µ−σΦ(N−1(α))

α

)
(6.29)

where Φ(N−1(α)) is the cumulative function of the quantile α. Let be the average of the returns null,

the formula can be written as

CV aRα =σΦ(N−1(α))
α

. (6.30)

When the returns are normally distributed, for α→ 0, then V aRα→ CV aRα (cfr. Barr (2013)).
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Contrarily to VaR, the CVaR is a coherent risk measure according to the definition of Artzner,

Delbaen, Eber, and Heath (1999), since the sub-additivity property allows to optimally capture the

effects of a portfolio diversification.

Using the definition of the CVaR in (6.30), the optimum problem is given by

min
w

CV aRα

s.t. w′ι= 1.
(6.31)

6.2.2 Risk hedging

A possible criterion to evaluate volatility forecasts implies forecasting Value-at-Risk (VaR).

The VaR and the related measure, like the Conditional-Value-at-Risk (CVaR), are an operative

standard in financial institutions.

These measures are based on the quantiles of the distribution, specifically on extreme losses.

The main advantage of this kind of risk measure is that only few information are necessary to define

them. Moreover, they can be determined through econometric models similar to those presented in

the previous chapter. The way VaR and CVaR are computed is described in the previous section, in

this section we focus on the evaluation of quantiles forecasts.

Ex-post evaluation methods are necessary in presence of VaR and CVaR forecasts. We introduce

two tests of VaR/CVaR forecast accuracy: the unconditional test of Kupiec (1995) and the conditional

test introduced by Christoffersen (1998). In order to determine the tests, it becomes necessary to

define the index variable. Let consider the returns of a financial asset, the index variable is equal to

ηt =
1 se r t <−V aR

0 se r t ≥−V aR,
(6.32)

where 1 denotes an exception and 0 denotes a return lower than the VaR (or CVaR for the conditional

measure). The exceptions are summed and divided for the total number of the out-of-sample VaR

estimates to gather an empirical measure.

The unconditional coverage test, introduced by Kupiec (1995), is based on the assumption that

the frequency of the exceptions empirically detected, φ, is coherent with the theoretical frequency,

α. The statistical test can be computed as

LRuc =−2
[

ln(αx(1−αN−x))− ln(φx(1−φ)N−x)
]
∼ χ2(1), (6.33)

where x is the number of exceedances, N is the sample size. Thus, a rejection of the null hypothesis

implies that the dimension of the empirical VaR is significantly different from the nominal VaR.

The Kupiec (1995) test can be applied only when the exceptions are independent, when the

exceptions are not independent and clustered, the analysis should rely on Christoffersen (1998)

test. The test introduced by Christoffersen (1998) is the most common method to evaluate the

performance of VaR models. Let be the probability of two consecutive exceptions equal to

pi j = P(ηt = 1 | ηt−1 = j),
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where η is the index function as in the Equation (6.32). Two exceptions are considered independent

if they do not occur in two consecutive days. Christoffersen (1998) suggested a likelihood test with

time independent observations as null hypothesis and violations following a Markov chain as alter-

native hypothesis. Assuming that the violations follow a Markov chain with the following transition

function

Π=
(
π0,0 π1,0

π0,1 π1,1,

)
(6.34)

where 1 represents a violation and 0 denotes a non-violation. Let be n0, n1, n00, n01, n10, n11 the

stages or the transitions of the stochastic Markov process, then

π00 = n00

n00 +n01
, π01 = n01

n00 +n01
(6.35)

π10 = n10

n10 +n11
, π11 = n11

n10 +n11
. (6.36)

Let be π0 = n0/N, π1 = n1/N, the LR test can be defined as follows

LRind =−2ln
[
(πn0

0 π
n1
1 )− ln(πn00

00 π
n01
01 π

n10
10 π

n11
11 )

]
∼ χ2(1). (6.37)

For a confidence level equal to 95%, if LRind > LRcritical = 3.841, the null hypothesis is rejected, and

the violations are not independent. Thus, the model fails the independence test.

The investors are, however, often not interested in the performance of a self-standing model for

the VaR, but in a comparison with others VaR models. The literature provided several ways to rank

two or more models, like the quadratic probability score function (Lopez (1998)) and the quadratic

score function (Blanco and Ihle (1999)). Both the functions allow to measure the performance of a

model related to another model.

Lopez (1998) introduced the quadratic probability score to measure the pairwise comparison of

VaR (CVaR) models, specified as follows

QPS = 2
n

n∑
t=1

(Ct − p)2, (6.38)

where n is the number of observations, p is the expected probability of a violation (i.e. the actual loss

is larger than the estimated VaR/CVaR). Ct is a loss function. Lopez (1998) relies on a loss function

defined as

Ct =
1 se L t >V aRt

0 se L t ≤V aRt.
(6.39)

QPS function assumes a value comprise between 0 and 2. Under general conditions, accurate esti-

mates of VaR (CVaR) generate the least possible score, thus a lower QPS indicates a better perfor-

mance in terms of violations.

In addition to the QPS function, a common method for the evaluation of VaR forecasts is the

already mentioned Root mean square error. Let V aRt be the estimated VaR (CVaR) and L t the real
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loss, the RMSE can be expressed as

RMSE =
√

E[(V aRt −L t)]=
√

1
n

n∑
t=1

(V aRt −L t)2. (6.40)

A lower RMSE denotes a greater predictive accuracy of the model.

7 Conclusion
In this article, we provided an overview of volatility measures, focusing on volatility forecasting and

evaluation methods, considering both the univariate and multivariate settings.

We discussed the different types of volatility and the methods to measure them, which can be

divided into three specific categories, namely ARCH models, stochastic volatility models and realized

volatility models.

The review has been particularly focused on predictive models for the realized variance, in-

troduced in the recent literature of the non-parametric measure of volatility, analysing in detail

time series models, MIDAS models and a combination of parametric models, like GARCH, and non-

parametric models, named Realized GARCH models.

We paid particular attention to forecast accuracy evaluation methods, considering the draw-

backs related to the latent nature of the conditional variance. In fact, in direct methods, it becomes

highly relevant the use of a volatility proxy which may lead to distortions in the ordering between

forecasts.

Thus, this article provided the conditions to define a robust loss function. Since the distortions

introduced by the use of some volatility proxy may be avoided by an appropriate choice of the loss

function.

Finally, since researchers are usually interested in the economic evaluation of the forecasts,

indirect methods have been analysed to evaluate volatility forecasts, such as portfolio optimisation

and risk hedging.
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A

Parametrizations for Variance-Covariance Ma-

trices
A general variance-covariance matrix, Σ, of dimension n×n, defined as

Σ=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


is symmetric and semi-positive definite for each x, such that

xTΣx ≥ 0.

This appendix relies only on a definite positive matrix, leaving aside the particular cases due to

linear combinations of the underlying casual variables. Let θ be the set of parameters to determine

Σ, the covariance matrix can be written as

Σ= L′L (A.1)

where L = L(θ) is an n×n matrix of full rank obtained from a vector of unconstrained parameters of

dimension n(n+1)/2. Any Σ defined as in (A.1) is positive definite.

Different choices of L lead to different parametrizations of Σ. We will consider here two classes

of L: one based on the Cholesky factorization of Σ and another based on the spectral decomposition

of Σ. The following variance-covariance will be used throughout this section to illustrate the use of

the various parametrizations.

Σ=


25 15 −5

15 18 0

−5 0 11

 (A.2)

A.1 Cholesky Parametrization
Since Σ is positive definite, it may be factored as Σ= L′L, where L is an upper triangular matrix.

Starting from a symmetric and positive definite matrix, Σ:

Σ=


a11 a12 a13

a21 a22 a23

a31 a32 a33


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its Cholesky factorization is
a11 a12 a13

a21 a22 a23

a31 a32 a33

=


l11 0 0

l12 l22 0

l13 l23 l33




l11 l12 l13

0 l22 l23

0 0 l33

=


l2
11 l11l12 l11l13

l12l11 l2
12 + l2

22 l12l13 + l22l13

l13l11 l13l12 + l23l12 l2
13 + l2

23 + l2
33


L is obtained from the following formula:

l j j =
√√√√a j j −

j−1∑
k=1

l2
jk

l i j = 1
l j j

(
ai j −

j−1∑
k=1

l ik l jk
)
, per i > j.

Knowing that l11 = p
a11, L can be generated in twofold way: in the first method, the matrix is

calculated row by row starting from the top-left edge of the matrix, according to the Cholesky-

Banachiewicz algorithm; the second method foresees to build the lower triangular column by column,

according to the Cholesky-Crout algorithm.

For example, the Cholesky factorization of Σ, defined in (A.2), is
25 15 −5

15 18 0

−5 0 11

=


l11 0 0

l12 l22 0

l13 l23 l33




l11 l12 l13

0 l22 l23

0 0 l33


The first row of L is given by:

25 15 −5

15 18 0

−5 0 11

=


5 0 0

3 l22 0

−1 l23 l33




5 3 −1

0 l22 l23

0 0 l33


The second row of L is equal to[

18 0

0 11

]
−

[
3

−1

][
3 −1

]
=

[
l22 0

l23 l33

][
l22 l23

0 l33

]
[

9 3

3 10

]
=

[
3 0

1 l33

][
3 1

0 l33

]
The third column is given by

10−1= l2
33, l33 = 3

Then, the final decomposition is defined as follows
25 15 −5

15 18 0

−5 0 11

=


5 0 0

3 3 0

−1 1 3




5 3 −1

0 3 1

0 0 3


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One problem with the Cholesky parametrization is that the Cholesky factor is not unique. In

fact, if L is a Cholesky factor of Σ, then so is any matrix obtained by multiplying a subset of the

rows of L by −1. This has implications on parameter identification, since up to 2n different θ may

represent the same Σ. Numerical problems can arise in the optimisation of an objective function

when different optimal solutions are close together in the parameter space.

Another problem with Cholesky parametrization is the lack of a straightforward relationship

between θ and the elements of Σ. This makes it hard to interpret the estimates of θ and to obtain

confidence intervals for the variances and covariances in Σ based on confidence intervals for the

elements of θ. One exception is | L11 |= p|Σ11 |, so confidence intervals on | Σ11 | can be obtained

from confidence intervals on
[
L11

]
, where

[
A

]
i j denotes the i j-th element of the matrix Σ. By

appropriately permuting the columns and rows of Σ, the confidence intervals can be derived for all

the variance terms based on confidence intervals for the elements of L.

The main advantage of this parametrization, apart from the fact that it ensures positive defi-

niteness of the estimate of Σ, is that it is computationally simple and stable.

A.2 Matrix Logarithm Parametrization
This parametrization is based on the spectral decomposition of the covariance matrix, Σ. Because Σ

is positive definite, it has n positive eigenvalues λ. Let U denote the orthogonal matrix of orthonor-

mal eigenvectors of Σ and Λ= diag(λ), it can be written

Σ=UΛU ′.

By setting

L =Λ1/2U ′

in Σ = L′L, where Λ1/2 represents the diagonal matrix with
[
Λ1/2]

ii =
√[
Λ

]
ii, a factorization of Σ

can be derived from the spectral decomposition. The matrix logarithm of Σ is defined as log(Σ) =
U log(Λ)U ′, where log(Λ) = diag

[
log(Λ)

]
. Σ and log(Σ) share the same eigenvectors. The matrix

log(Σ) can assume any value in the space of n×n symmetric matrices.

The matrix logarithm parametrization defines a one-to-one mapping of the θ elements of log(Σ),

therefore Σ does not have the identification problem of the Cholesky decomposition. Similarly to

the Cholesky decomposition, the vector θ in the matrix logarithm parametrization does not have a

straightforward interpretation in terms of the original variance and covariances in Σ. In order to

define log(Σ), the Schur-Fréchet algorithm may be used.

Let Σ be equal to (A.2). the matrix logarithm parametrization is given by

log(Σ)=


2.8371 0.9245 −0.3995

0.9245 2.4708 0.1956

−0.3995 0.1956 2.3054


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