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ABSTRACT 

 

 This paper shows how to prove the two Theorems, which are related to the terms β1(n) and β2(n) 

respectively Theorem: N(0,5,5n+1)= β1(n)+N (5,5,5n+1) and Theorem: N(1,5,5n+1)= β2(n)+ 

N(2,5,5n+2). 
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1. INTRODUCTION 

 

We give the definitions of  , Rank of partition,  nmN , ,  ntmN ,, , z,  x  (zx)∞,   m

nx  ,  n1 ,  n2 , 

 mk xx 5;  collected from Partitions Yesterday and Today (Garvan 1979), Generalizations of Dyson’s 

rank (Garvan 1986), Ramanujan’s Lost Notebook (Andrews 1979). We generate the generating 

functions for  n1 ,  n2  (Andrews 1979) and prove the Theorems  15,5,0 nN  n1 +

 15,5,2 nN  and  15,5,1 nN  n2 +  25,5,2 nN . Finally we give two examples, which are 

related to the Theorem 1 and Theorem 2 respectively when n =2. 

 

 

2. DEFINITIONS 

 

 : A partition. 

 

Rank of partition: The largest part of a partition   minus the number of parts of  . 
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 nmN , : The number of partitions of n with rank m. 

 

 ntmN ,, : The number of partition of n with rank congruent to m modulo t. 

 

 n0 : The number of partitions of n with unique smallest part and all other parts  the double of the 

smallest part. 

 

 n1 : The number of partitions of n with unique smallest part and all other parts  one plus the 

double of the smallest part. 

 

z: The set of complex numbers. 

 

 x : The product of infinite factors is defined as follows: 

 

                                  ...  1 1 1 32 xxxx . 

 

 zx : The product of infinite factors is defined as follows: 

 

                               ...  1 1 1 32 zxzxzxzx . 

 

 mnx : The product of m factors is defined as follows: 

                  121 1  ...  1 1 1   mnnnn

m

n xxxxx . 

 

 mk xx 5; : The product of m factors is defined as follows: 

                 5  11055 1  ...  1 1 1;   mkkkk

m

k xxxxxx . 

 

 n1 : The number of partitions of n into 1’s and parts congruent to 0 or –1 modulo 5 with the largest 

part    55mod0   times the number of 1’s  the smallest part  5mod1 .  

 

 n2 : The number of partitions of n into 2’s and parts congruent to 0 or – 2 modulo 5 with the 

largest part   55mod0   times the number of 2’s  the smallest part  5mod2 . 

 

 

3.  GENERATING FUNCTIONS (FROM RAMANUJAN’S LOST NOTE BOOK) 

 

From Ramanujan’s Lost Note Book (Andrews 1979), Mock Theta Functions (2) (Watson 1937), G. 

E. Andrews and F. G. Garvan  (Andrews and Garvan 1989), we quote the relations as follows: 
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But we get; 
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   xAx  13 . 

  

And,  
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We assume without loss of generality that n = 1. Let 5

 2

exp

i

  , then we may write the definitions of 

F(x) and ′(x) as; 
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where we have used the relations; 

 

  10 a ,       11 ... 1 1  n

n axaxaa , for 1n  

 

and,  

 

     1

1

1 



  n

n
n

n
axaLima . 

 

After replacing x by x
5
 we see that (1) and (2) are identities for F(x) and ′(x). We note that the 

numerators in the definitions of A(x) and D(x) are theta series in x and hence may be written as 

infinite products using Jecobi’s triple product identity; 
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  ...1... 3212 xzzxzxz . 

 

where z  0 and x< 1.  

  

Replacing x by x
5
 and z by 

3x  we get from (3); 
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Again replacing x by x
5
 and z by 

3x  equation (3) becomes; 
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In fact we have; 
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3.1 Rank of a Partition 

         

The rank of a partition is defined as the largest part minus the number of parts. Thus the partition 6 + 

5 + 2 + 1 + 1 + 1 + 1 of 17 has rank, 6–7 = –1 and the conjugated partition, 7 + 3 + 2 + 2 + 2 + 1 has 

rank, 7–6 = 1. i.e., the rank of a partition and that of the conjugate partition differ only in sign. The 

rank of a partition of 5 belongs to any one of the residues (mod 5) and we have exactly 5 residues. 

There is similar result for all partitions of 7 leading to (mod 7). 

    

The generating function for the rank is of the form (Garvan 1986); 
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The generating function for  ntmN ,,  is of the form; 
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which shows that all the coefficients of 
nx

 (where n is any positive integer) are zero. 

 

Now we define the generating function; 

 

 dra  for  dtntaN ,,  
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where       n

n
aa xdtntaNtdrdr  ,,,

0





 , and 

 

       drdrtdrdr bababa  ,,, . 
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n
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,,,,
0

. 

 

The generating function  x  is of the form; 
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The generating function A(x) is defined as; 
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The generating function is of the form; 
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The generating function is of the form; 
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The generating function (x) is of the form; 

 

 
   











732

5

2 1 1 11

1
1

xxx

x

x
x  

      






...
1 1 1 1 1 128732

20

xxxxx

x  

 

    ...1...11 2542  xxxx     ......1 ...1 763 xxx  

 

 ...22 10987642 xxxxxxx . 

 



   

International Journal of Scientific Knowledge April 2014. Vol. 5, No.3 
 

9 

 

Hence,  
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The generating function D(x) is of the form; 
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4. THE GENERATING FUNCTIONS FOR  n1  AND  n2  

         

First we shall establish the following identity, which is used in proving the Theorems. If a and t are 

both real numbers with a < 1 and t < 1, we have; 
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The generating function for  n1  is defined as; 
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were we have assumed   101  .   

 

The generating function for  n2  is defined as; 
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were we have assumed   101  .  

  

Here we give two Theorems, which are related to the terms  n1  and  n2  respectively. 

 

Theorem 1:  15,5,0 nN  n1 +  15,5,2 nN , 

where  n1  is the number of partitions of n into 1’s and parts congruent to 0 or –1 modulo 5 with 

the largest part    55mod0   times the number of 1’s  the smallest part  5 mod1 . 

 

Proof: From (4) by replacing  xz 1  for a and z for t we have; 
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Replacing x by x5 and z by x, we obtain; 
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Equating the coefficient of 
nx on both sides, we get; 

 

     15,5,215,5,01  nNnNn .  

 

Hence the Theorem. 

 

 

Theorem 2:  15,5,1 nN  n2 +  25,5,2 nN , where  n2  is the number of partitions of n into 2’s 

and parts congruent to 0 or – 2 modulo 5 with the largest part   55mod0   times the number of 2’s  

the smallest part  5mod2 . 

 

Proof: From (4) by replacing   xz 1  for a, and z for t we have; 
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Equating the coefficient of x
n
 on both sides, we get; 

 

     25,5,225,5,12  nNnNn  

 

     25,5,225,5,1 2  nNnnN  .  

 

Hence the Theorem. 

 

Now we give two examples, which are related to the Theorems respectively. 
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Example 1:  N(0, 5, 11) = 12,  N (2, 5, 11) = 11,    121  , with the relevant partition is 1 + 1. 

 

N(0, 5, 11) =  21 + N(2, 5, 11). 

 

Example 2: N(1, 5, 12) = 16, N(2, 5, 12) = 15,   122   , with the relevant partition is 2. 

 

N(1, 5, 12) =  22 + N(2, 5, 12). 

 

 

5. CONCLUSION 

  

We have verified for any positive integer of n, the two Theorems related to the terms  n1  and 

 n2  respectively. We have also verified the Theorems for n = 2.  
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