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Abstract  In 1894, Rogers found the two identities for the first time. In 1913, Ramanujan found 

the two identities later and then the two identities are known as The Rogers-Ramanujan 

Identities. In 1982, Baxter used the two identities in solving the Hard Hexagon Model in 

Statistical Mechanics. In 1829 Jacobi proved his triple product identity; it is used in proving The 

Rogers-Ramanujan Identities. In 1921, Ramanujan used Jacobi’s triple product identity in 

proving his famous partition congruences. This paper shows how to generate the generating 

function for  nC ,  nC1
 ,  nC   and  nC1

 , and shows how to prove the Corollaries 1 and 2 

with the help of Jacobi’s triple product identity. This paper shows how to prove the Remark 3 

with the help of various auxiliary functions and shows how to prove The  Rogers-Ramanujan 

Identities with help of Ramanujan’s device of the introduction of a second parameter a.  

 

Keywords: At most, auxiliary function, convenient, expansion, minimal difference, operator, 

Ramanujan’s device. 

 

1. Introduction 

      

      In this article, we give some related 

definitions of  nP ,  nC ,  2mnPm  , 

 nC1
 ,  nC  ,   1 mmnPm  and  nC1

 . 

We describe the generating functions for 

 nC ,  2mnPm  ,  nC1
 ,  nC  , 

  1 mmnPm  and  nC1
 , and establish 

the Remarks 1 and 2 with numerical 

examples and also prove the Corollaries 1 

and 2 with the help of Jacobi’s triple product 

identity [3]. We transfer the auxiliary 

function into another auxiliary function with 

the help of Ramanujan’s device of the 

introduction of a second parameter a [5],  
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where k =1, and a = x, it is used in proving 

The Rogers-Ramanujan Identity 1. We 

prove The Rogers-Ramanujan Identities 

with the help of auxiliary functions.   
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2. Some Related Definitions  

 

     nP  [7]: The number of partitions of n 

like: 4, 3+1, 2+2, 2+1+1, 1+1+1+1    P 

(4)=5. 

 nC  [6]: The number of partitions of n into 

parts each of which is of one of the forms 

5m + 1 and 45 m . 

 2mnPm  : The number of partitions of 
2mn   into m parts at most. 

 nC  : The number of partitions of n into 

parts of the forms 5m + 2 and 5m + 3. 

 nC1
 : The number of partitions of n into 

parts without repetitions or parts whose 

minimal difference is 2. 

  1 mmnPm : The number of partitions 

of  1 mmn  into m parts at most. 

 nC1
 :  The number of partitions of n into 

parts not less than 2 and with minimal 

difference 2. 

 

3. Generating Functions for  nC  and 

 nC   

 

      In this section we describe the 

generating functions for  nC  and  nC   

respectively. The generating function for 

 nC  is of the form [5]; 
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where the coefficient  nC  of  
nx  is the 

number of partitions of n into parts each of 

which is of one of these forms 5m + 1 and 

5m + 4. 

     Now we consider a special function, 

which is given below: 
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     It is convenient to define   10 mP . The 

coefficient  2mnPm   of 
nx  in the above 

expansion is the number of partitions of 
2mn   into m parts at most. Another special 

function, which is defined as; 
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where the coefficient  nC1


 is the number of 

partitions of n into parts without repetitions 

or  parts, whose minimal difference is 2. 

 

      From (1) and (2) we can establish the 

following Remark: 
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Remark 1:    11111 CC     (3) 

i.e., the number of partitions of n with 

minimal difference 2 is equal to the number 

of partitions of n into parts of the forms 5m 

+ 1 and 5m + 4. 

 

Example 1: For n = 11, there are 7 

partitions of 11 that are enumerated by 

 nC1
  of above statement, which are given 

bellow [6]: 

 

11, 10 + 1, 9 + 2, 8 + 3, 7 + 4, 7 + 3 + 1, 6 + 

4 + 1,   

 

    7111 C  .  

 

There are 7 partitions of 11 are enumerated 

by  nC1
  of above statement, which are 

given bellow: 

 

11, 9 + 1 + 1, 6 + 4 + 1, 6 + 1 + 1 + 1 + 1 + 

1,  

4 + 4 + 1 + 1 + 1, 4 + 1 + 1 + 1 + 1 + 1 + 1 + 

1,  

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1,    

    711 C  . 

 

Hence,    11111 CC  .  

 

    We can conclude that,    11111 CC  . 
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which will be proved later as identity 1, it is 

known as The Rogers-Ramanujan identity 1. 

 

      The generating function for  nC   is of 

the form [1]; 
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(4) 

where the coefficient  nC   is the number of 

partitions of n into parts of the forms 5m + 2 

and 35 m . 

     Now we consider a special function, 

which is of the form [1]; 
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, 

where the coefficient   1 mmnPm  of 
nx  

in the above expansion is the number of 

partitions of  1 mmn  into m parts at 

most. 

     Another special function, which is 

defined as; 
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  ... 3221 8765432 xxxxxxx  

 

  n
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1




 ,    (5) 

where the coefficient  nC1
  is the number of 

partitions of n into parts not less than 2 and 

with minimal difference 2. 

 

From (4) and (5) we can establish the 

following Remark: 

 

Remarks 2:    nCnC 
1

,     (6) 

i.e., the number of partitions of n into parts 

not less than 2 and with minimal difference 

2 is equal to the number of partitions of n 

into parts of the forms 5m + 2 and 5m + 3. 

 

Example 2: If n = 11, the four partitions of 

11 into parts not less than 2 and with 

minimal difference 2 are given below: 

 

11, 9 + 2, 8 + 3, 7 + 4.  

 

Hence,   4111 C . 

 

Again the four partitions of 11 into parts of 

the form 5m + 2 and 5m + 3 are given as; 

 

8 + 3, 7 + 2 + 2, 3 + 3 + 3 + 2, 3 + 2 + 2 + 2 

+ 2. 

 

Hence,   411 C . 

 

    11111 CC  . 

 

       We can conclude that,    nCnC 
1 . 

   

i.e.,   n

m

xnC  1
1

1




    n

m

xnC  1
1






   

 

 

    









1
2

1

1 ... 1 1
1

m
m

mm

xxx

x

  

  3525
0 1 1

1




 


mm
m xx

, 

 

which will be proved later as identity 2, it is 

known as The Rogers-Ramanujan identity 2. 

 

        Now we give two Corollaries, which 

are related to the Jacobi’s triple product 

identity [3]. 
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Proof: From Jacobi’s Theorem [2] we have; 
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, 

for all z except z = 0, if  1x . 

    If we write 
25x  for x,  

23x  for z and 

replace n by n + 1 on the left hand side we 

obtain; 
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Hence, the Corollary. 
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Corollary 2:   
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Proof: From Jacobi’s Theorem we have; 
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for all z except z = 0, when 1x . 

    If we write 
25x  for x,  

21x  for z and 

replace n by n + 1 on the left hand side we 

obtain; 
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Hence the Corollary. 

 

 

4.The Rogers-Ramanujan Identities  

 

    First we transfer the following auxiliary 

function into another auxiliary function. Let 

us consider the auxiliary function [1, 2] with 

1x  and 1a .  
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it is known as Ramanujan’s device of the 

introduction of a second parameter a, where 

k is 0, 1 or 2 and 10 C ,  
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=  xaHk ,               (8) 

which is another auxiliary function, and  it is 

used in proving The Rogers-Ramanujan 

Identities [1]. 

 

But from (7) we can easily verify that with k 

= 1, 2 and a = x. 
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        From (8) we can also find that, if k =1 

and a = x, then; 
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Again for k = 2 and a = x, we get;  
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Now we can consider the following Remark 

[2]. 

 

Remark 3: k
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1  , where 

the operator  is defined by  f(a) = f(ax), 

and k = 1 or 2. 

 

Proof: From (8) we have;  
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It is convenient to define 10 P , 10 H .  

We have; 
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      In the second sum on the right hand side 

of the Identity we change n into n + 1. Thus, 
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Hence, the Remark. 

 

The Rogers-Ramanujan Identities  

 

Identity 1 [4]:  
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Identity 2 [4]:   
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Proof: From (8) we have; 
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where  00 H .  

From above Remark we have; 
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where the operator  is defined by  f(a) = 

f(ax), and k = 1 or 2. In particular  
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where the coefficients depend on x only. 

Substituting this into (15), we obtain; 
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Hence the Identity 1. 

 

Again from (13), (14) and (16) we have with 
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5. Conclusion  

 

    In this study, we have shown 

   nCnC 
1  with the help of a numerical 

example when n=11, and also have shown 

   nCnC 
1  with the help of a numerical 

example when n =11. We have transferred 

the auxiliary function into another auxiliary 

function with the help of Ramanujan’s 

device of the introduction of a second 

parameter a, 
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where k =2, and a = x, it is used in proving 

The Rogers-Ramanujan Identity 2. Finally 

we have proved The Roger-Ramanujan 

Identities with the help of auxiliary function, 
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