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Abstract  

In this paper, we argue that systemic risk should be understood from two different 

perspectives, the homogeneity of portfolios (or called asset homogeneity) and the 

contagion mechanism. The homogenization of portfolios held by different financial 

institutions increases the positive correlations among them and therefore the probability of 

simultaneous collapses of a considerable part of the network, which are prerequisites and 

amplifiers of contagion. We first theoretically analyze the influence of asset homogeneity 

on the initial risk, fragility and systemic risk of the network. Based on the theoretical 

predictions, we perform simulations on regular networks and Poisson random networks to 

illustrate the effects of portfolio homogeneity on systemic risk. It is shown that the 

relationship between asset homogeneity and systemic risk is not always positively related. 

When the network contagion is weak, then a high asset homogeneity will lead to a high 

systemic risk. However, if the network contagion is considerably strong, the systemic risk 

is quite likely to be negative related to the asset homogeneity, so that a high homogeneity 

will produce a low systemic risk. Moreover, networks with strong contagion and low asset 

homogeneity tend to have the greatest systemic risk. Results from logistic regression 

analysis further clarify the relationships between systemic risk and asset homogeneity. 

JEL classification: G38; D85; G01 

Keywords: Financial network; Portfolio homogenization; Contagion; Systemic risk 
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1. Introduction 

Along with the continuous development of financial markets, the relationships between 

various institutions become more and more complex. Many financial institutions are 

connected with each other by holding assets, ownership, and credit-debt relationships, which 

constitute a large financial network. The financial institutions referred to here can be 

governments, central banks, investment banks, and companies, etc. The mutual 

interdependencies among these institutions promote the occurrence of economic crisis, such 

as the Great Depression in 1930, the Asian financial crisis in 1997 and the international 

financial crisis triggered by the subprime crisis of the United States in 2008. A major 

contributor to the financial crisis is systemic risk, widely defined as the possibility that an 

event at the institution level triggers severe instability or collapse of an entire industry or the 

economy. Moreover, the financial network structure plays an important role in generating 

systemic risk (Acemoglu et al., 2015). It is imperative to improve our understandings of the 

relationship between the network structure and systemic risk, which would help regulating 

and designing the network of financial institutions (Schweitzer et al., 2009). 

This paper investigates the effects of the homogenization of portfolios held by 

institutions on systemic risk in a financial network. The applications of network theory to 

systemic risk analysis is not new (see Diamond and Dybvig, 1983, Allen and Gale, 2000, 

Freixas et al., 2000, Gai and Kapadia, 2010, Acemoglu et al. 2012, Elliott et al., 2014). Most 

works focus on the mechanism of contagions with cascades of failure based on the 

connectivity arising from the inter-institutional lending, share cross-holdings or overlapping 

portfolios. The inter-institutional lending drives the problems of counterparty and roll-over 

risk, which have been extensively studied (Gai and Kapadia, 2010, Staum, 2013). The basic 

framework for the share cross-holdings was developed by (Brioschi et al., 1989) and (Fedenia 

et al., 1994). In the seminal paper, (Allen and Gale, 2000) firstly present the contagion 
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channel of interbank cross holdings of deposits and show how the network structure matters. 

Gai and Kapadia (2010) develop a standard model of epidemics in which the network is 

characterized by its degree distribution and observe that cascades can be non-monotonic in 

connectivity (Gai and Kapadia, 2010). Elliott et al. (2014) develop a general cross-holdings 

model to show that integration (increasing dependence of each organization on its 

counterparties) and diversification (each organization interacting with a larger number of 

counterparties) have different, non-monotonic effects on the extent of cascades (Elliott et al., 

2014).  

While all these works emphasize contagions as the basic mechanism of financial crisis 

and the key root of systemic risk, they do not distinguish two different channels that amplify 

systemic risk due to connectivity: the financial contagions, which stress sequential collapses 

of financial institutions induced by the preceding collapses, and the portfolio homogenization, 

which increases the correlations between the returns of financial institutions and thus the 

likelihood of their simultaneous failures. Both financial contagions and portfolio 

homogenization could be the byproducts of financial networks, but they play different roles 

for systemic risk. The former highlights that the healthy nodes in the network could fail under 

the influence of poor performances of others, whereas the latter is directed to the property that 

different nodes are exposed to similar external risk factors. To avoid financial contagion, one 

needs to prevent the first failure from occurring or to cut off the contagion channels. Both 

measures are futile in the presence of portfolio homogeneity since all the nodes have already 

been assaulted by the same external risks. By the metaphor of epidemics, "portfolio 

homogenization" corresponds to the situation where too much people are exposed to the same 

external source of infection. Under this situation, we should try to control the infection source 

to prevent more contagions. Moreover, portfolio homogenization facilitates the course of 

failures contagions because it increases the probability of a considerable number of 
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companies going bankrupt, which then increases the possibility to infect more. 

The main conclusion of this paper is that, the individual behavior of risk aversion and 

asset diversification induce portfolio homogenization which, in turn, increases systemic risk 

when the network contagion is not strong. The well-known two-fund separation theorem 

shows that different financial institutions tend to hold similar portfolios of risky assets, and 

henceforth portfolio homogeneity (also known as asset homogeneity) prevails. Under very 

general assumptions, a simple model is proposed to show that the homogenization of 

portfolios held by different institutions will increase the positive correlations among them and 

therefore increase the probability of simultaneous collapses of some considerable part of the 

network, and result in a high systemic risk, defined as the probability of cascades of failures 

of all nodes in the network. We show that when all companies have the same investment 

proportions for different original assets, the companies' portfolios are completely 

homogeneous, and the probability that all individuals collapse at the same time is the largest. 

This failure is evaluated at the initial moment and named the initial risk, which is unrelated to 

contagion consideration. In practice, the connection between financial network nodes is 

complex and it is unlikely that all the companies homogenizing their portfolios completely. 

Despite the possibility of all the institutions failing at the same time, directly from portfolio 

homogenization, is quite small, a fair number of initial failures may lead to further 

widespread failures and eventually produce the failures of the whole network, provided that a 

group of companies are more likely to fail under similar conditions due to portfolio 

homogenization. 

Another main conclusion of this paper is that if the network contagion is strong, asset 

homogeneity is likely to reduce systemic risk. An increase in the correlation of the portfolios 

among different companies greatly reduces the probability that at least one company becomes 

bankrupt. If a network is highly contagious, a single company's failure may be able to 
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produce the risk of bankruptcy to all companies through the contagion mechanism. Under 

such circumstances, low homogeneity of assets can lead to high systemic risk.  In general, 

when the network is less contagious, asset homogeneity can be seen as a prerequisite and an 

extension of infection. If contagion is strong, then we have the opposite conclusion. Based on 

the theoretical analysis, we compare the effects of asset homogeneity on systemic risk under 

different contagion schemes with numerical simulations on networks with different structures. 

The simulation results are consistent with the theoretical predictions. In addition, the results 

indicate that, for any given value of asset homogeneity, systemic risk is positively related to 

contagions of network; which is congruent with the previous literature.  

Finally, logistic regression is applied to the simulation data from large-scale randomly 

generated networks to further examine the relationship between systemic risk and asset 

homogeneity. The results show that the relationship between systemic risk and asset 

homogeneity is dependent upon the network contagion. When the contagion is week, 

systemic risk exhibits a positive correlation with asset homogeneity. As contagion increases, 

systemic risk is reduced and may become negatively associated with asset homogeneity. 

Furthermore, a significant inverted-U relationship between systemic risk and asset is found. 

The regression analysis therefore provides a comprehensive explanation to the results 

obtained from the simulated observations. 

There are several research works related to the current paper. The issues of overlapping 

portfolios have been considered in (Nier et al., 2007, May and Arinaminpathy, 2010, Beale et 

al., 2011, Caccioli et al., 2014). For example, Caccioli et al. (2014) develop a measure to 

compute the stability of financial networks under contagion due to overlapping portfolios and 

examine the circumstances under which systemic instability is likely to occur. All these 

papers focus on financial contagion due to overlapping portfolios such that, a bank has to 

liquidate all his assets when bankrupt, the asset values are reduced by a simple market impact 
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function. Instead, we focus on portfolio homogenization and the systemic risk originates from 

the collapse of the financial institutions itself and how does portfolio homogenization in 

conjunction with contagion mechanism affect the systemic risk of the network . Our 

methodology and results are different from any that we are aware of and our work is a 

complementary to existing works. 

The structure of the paper is as follows: Section 2 describes the model and analyses the 

initial risk and fragility of the network. Theoretical analysis of a simple network is reported in 

Section 3 to highlight the dependence of systemic risk on asset homogeneity. In Section 4, the 

dependence of systemic risk on asset homogeneity is investigated with simulated 

observations from different network structures. Section 5 performs logistic regressions on the 

simulated data to analyze the relationship between systemic risk and asset homogeneity. 

Finally, the main results are summarized in Section 7.  

2. Financial Network Model 

2.1. The basic framework 

We consider a financial network containing n  companies and m  primitive risky assets. 

The network is bipartite, as shown in Figure 1. A link between a company and an asset in the 

network represents the company makes an investment in the asset. The price of asset j  is 

denoted by ( 1, , )jP j m . For convenience, the total amount of each asset is standardized to 

be 1.  Thus, 
jP  is also the total value of asset j  in the market. Let ijA (0 1ijA  ) be the 

share of the value of asset j  held by company i  and let A  denote the matrix whose 

( , )i j -th entry is equal to ijA . The total value of company i  is 

1

,
m

i ij j

j

Y A P


  
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Pooling together all the companies, we have 

 Y AP , (1) 

where 1 2( , , , )T

nY Y Y Y  and 1 2( , , , )T

mP P P P . The superscript T denotes transpose operation. 

We name matrix A   the investment matrix. This portfolio model can be extended to the 

case of inter-institutional lending and share cross-holdings. For the case of share 

cross-holding, m n  and Y is exactly the market value. Note that, at the market equilibrium, 

the demand and supply of assets must equal to each other to clear the market. Therefore,

1

1
m

ij

i

A


 .  

Figure 1: Graphical representation of a bipartite network of companies and assets. 

Companies are denoted by blue circles, assets by yellow squares. A link connecting a 

company to an asset is established when the asset is included in the company’s 

portfolio. 

 

In the current paper, the contagion is induced by fire sales. Specifically, whenever a 

company does not satisfy the solvency condition, its portfolio will undergo a fire sale, i.e. all 

its assets are immediately liquidated. The fire sale causes the price of the assets in the bank's 

portfolio to drop. This further causes a loss for other companies that invest in the same assets 

because we consider a mark-to-market accounting framework in which all companies update 

the value of their portfolios according to the most recent observed prices.  
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Under this contagion mechanism, we consider two types of network: a network with the 

same degree of company nodes (regular network) and a random network with Poisson 

distributions for company nodes. The degree of a company node refers to the number of 

assets that it invests in. As long as 0ijA  , there is a link between i -th company and j -th 

asset, i.e., the i -th company invests in the j -th asset. Thus, the number of non-zero 

elements in the i -th row of investment matrix A  is the degree of the i -th company node. 

In a regular network, the degree of every company node is the same; that is, all companies 

invest in the same number of assets.  In the random network, for each company-asset pair a 

link is drawn with the same probability. We consider a network with a sufficiently large 

number of nodes ( 1000n  ) with different average degree of company nodes, from very small 

to very large. 

We adopt the following assumptions. The prices of the m assets 1 2, , , mP P P  can be 

describes by an m-dimensional normal random variable such that each price has the same 

expectation and the same variance.① We normalize the variance to be one. The covariance 

matrix ( )Cov P  is simply denoted by C  whose ( , )i j -th entry is ijC . Each company has 

the initial endowment: 
1 1

( ) ( ) ( )
m m

i ij j j ij

j j

E Y A E P E P A
 

   . Moreover, when the value of a 

company's assets is lower than   ( 0  ) times its initial endowment, the company will face 

bankruptcy;   is called the collapse threshold. 

Financial contagion in our model takes place as follows. At the initial moment, all the 

asset prices 1 2, , , mP P P  are randomly selected and we calculate the value of each company to 

determine whether or not it will collapse. A bankrupt company will liquidate its assets 

                                                             
① The joint distribution of the asset prices affects the value of the systemic risk, but not the 

qualitative conclusions obtained in this paper. 
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immediately. As a consequence, each asset involved in the fire sales will be devaluated such 

that the price decreases from 𝑃𝑗  tp 𝑃𝑗𝑓(𝑃𝑗)  where ( )jf P  is market impact function.  

Following Caccioli et al. (2014), we adopt the functional form: ( )
t
jst

jf s e


 , where 
t

js  is 

the fraction of asset j  being liquidated by bankrupt companies up to time t . The parameter 

  measures the devaluation of an asset caused by  the collapse of a company, further 

reflecting the infectious ability of the network②. In (Caccioli et al., 2014),   is chosen to be 

1.0536 such that the price drops by 10%  when 10%  of the asset is liquidated.  We will 

consider various choices of   in our study. 

2.2. Characterization of asset homogeneity and systemic risk 

Two-fund separation theorem (Huang and Litzenberger, 1988) shows different investors 

would choose the same portfolio. In reality, different companies may hold different but 

similar portfolios.  The degree of similarity among company portfolios has important 

implications for systemic risk of a financial network.  Systemic risk, defined as the 

probability of failure of all companies ultimately after a series of risky contagions in the 

financial network (Lopomo and Wegner, 2014), has been extensively studied (Allen and Gale, 

2000, Gai and Kapadia, 2010, Elliott et al., 2014). Differences in company portfolios are 

caused by different asset allocations and differences in assets. We will first suggest a measure 

of asset homogeneity. Specifically, we sum up all the elements of correlation matrix of Y  

( ( )Cov Y ) and divide it by 𝑛2 to represent the asset homogeneity. The measure is denoted by 

𝑆𝐶/𝑛2. The larger the asset homogeneity is, the more likely the asset returns will all co-move. 

Portfolio homogeneity describes the similarity of company portfolios, which is determined by 

                                                             
② The market impact function can take other forms such as a linear function in the fraction of 

asset liquidated. Nonetheless, the results remain qualitatively valid. 
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asset homogeneity and asset allocation in the company portfolio. In this paper, we focus on 

asset homogeneity and adopt other parameters to characterize differences in asset allocation. 

We assume the asset prices are equi-correlated such that the correlation matrix can be 

written as follows:  

1

1
.

1
n n

C

 

 

 


 
 
 
 
 
 

 

where   is positive. That is, all pairs of asset returns are positively correlated and have the 

same correlation coefficient③ . For applications of equi-correlated random variables in 

economics, see (Elton and Gruber, 1973, Ledoit and Wolf, 2004, Engle and Kelly, 2012). 

Particularly, Elton and Gruber (1973) find that equi-correlation assumption reduces 

estimation noises and provide superior portfolio allocations. In the following, we first study 

the nature of the network for the special case where all assets are fully homogeneous. Then 

we return to the general case to investigate the relationship between systemic risk and asset 

homogeneity.  

2.3. Initial risk and fragility 

In this section, we analyze two properties of the network: initial risk and the fragility of 

the network. Initial risk is defined as the probability that all the companies fail at the initial 

moment. Based upon the previous definition of threshold collapse, a company goes bankrupt 

when its asset value is less than   times its initial endowment. This probability is denoted as

( ( ))i ip Y E Y . The probability that all companies fail at the same time is 

                                                             
③ Since the homogeneity of assets is captures in positive correlations, all the assets we 

consider here are positively correlated. Consequently, there is no hedging market. 
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1 1( ), , ( )( )n np Y E Y Y E Y   . Furthermore, the fragility of the network is defined as the 

probability of at least one company going bankrupt ( Lopomo and Wegner, 2014) which 

equals to 1 minus the probability that no company is failing and can be written as 

1 11 ( ), , ( )( )n np Y E Y Y E Y    . 

Theorem 1: When all the companies allocate the same percentages to different original assets, 

the company portfolios are completely homogeneous and the initial risk reaches its maximum 

value whereas the probability of at least one company going bankrupt obtains its minimal. 

Proof: Firstly, we prove that  

 

1 1

1 1

1 1

( ), , ( )

( ) ( )

( ) ( )

( )

( )

( )

n n

n n

m m

p Y E Y Y E Y

p Y Y E Y E Y

p P P E P E P

 

 

 

 

     

     

  (2) 

When the investments of all the companies have the following form:  

1 1 1 2

1 2

( ),

( ),

m

n n m

Y v P P P

Y v P P P

   

   

 

with 1 2 1( 0)n iv v v v     , (2) is satisfied at the equality; thus, the probability that all 

companies fail at the same time will reach its maximum value 

1 1( ) ( )( )m mp P P E P E P      .   

Similarly, the probability of at least one company failing is: 

 

1 1

1 1

1 1

1 ( ), , ( )

1 ( ) ( )

1 ( ) ( )

( )

( )

( )

n n

n n

m m

p Y E Y Y E Y

p Y Y E Y E Y

p P P E P E P

 

 

 

  

      

      

 (3) 

When the investments of all the companies have the following form: 
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1 1 1 2

1 2

( ),

( ),

m

n n m

Y v P P P

Y v P P P

   

   

 (4) 

with 1 2 1( 0)n iv v v v     , (3) is satisfied at the equality and, hence, the probability that at 

least one company going bankrupt reach its minimum value.  

Note that, while the possibility that all financial institutions fail at the same time as a 

direct result of portfolio homogenization is quite small for a large-scale network, the 

possibility that a considerable number of nodes in the network fail simultaneously remains 

fairly high. The failure of many companies exhibits stronger contagion than the failure of one 

or just a few companies, leading to a cascade of failures. That is, portfolio homogenization 

tends to produce high systemic risk. Nevertheless, if the network is highly contagious, then 

greater homogeneity of assets may be preferred in terms of lower systemic risk. Low 

homogeneity of the network implies a great probability of several company collapses at the 

beginning which may lead to global cascade of failure due to high contagion in the network. 

A more in-depth theoretical analysis on this issue is presented in the next section.

 

3. Theoretical analysis of a simple network 

We examine the network with 3 company nodes and 3 original assets (see Figure 2). The 

original asset prices, 𝑃1, 𝑃2, and 𝑃3 are assumed to have the two point distribution{ , }L HP P ; 

the probabilities of 
LP  and 

HP  are 1 p  and p  ( 0 1p  ), respectively. For simplicity, 

LP  and 
HP  are set to be 0 and 1, respectively. Thus, the expectation of the original asset price 

is p , and the variance is (1 )p p . As mentioned above, we assume that the correlation 

coefficients of any pair of the three primitive assets are the same, and can take any value in 

the interval [0,1]. That is, the correlation coefficient matrix: 



 13 / 49 
 

3 3

1

1 ,

1

C

 

 

 


 
 

  
 
 

 

and [0,1] . 

 

Figure 2: A bipartite network formed by 3 companies and 3 original assets. 

 

For this network, we examine three special cases such that the degree of each company node 

is 1, 2, and 3 respectively in each case. The investment matrix is assumed to be symmetric as 

follows: 

1 2 3

1 1 11 1
0

3 3 32 21 0 0
1 1 1 1 1

0 1 0 , 0 , ,
2 2 3 3 3

0 0 1
1 1 1 1 1

0
2 2 3 3 3

  
  

    
          
     

  
   
   

A A A  

For the investment matrix 1A , 

1 1

2 2

3 3

,

,

,

Y P

Y P

Y P





 

 

The correlation of 1 2,Y Y  and 3Y  is exactly the same as that of 1 2,P P  and 3P , and there is no 

contagion in the network. The initial risk is just systemic risk. An increase in asset 
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homogeneity ineases the systemic risk of the network as well. When the investment matrix is

3A , 
1 2 3 1 2 3

1
( ).

3
Y Y Y P P P     No matter what the correlation of 1 2,P P  and 3P  is, 1 2,Y Y  

and 3Y  are exactly the same random variable. All the company nodes in the network will 

either stay safe or bankrupt simultaneously. Consequently, the initial risk is systemic risk. 

Finally, when the investment matrix is
2A , 

1 1 2

2 1 3

3 2 3

1
( ),

2

1
( ),

2

1
( ),

2


 




 



 


Y P P

Y P P

Y P P

 

This scenario requires extensive discussions. First, note that the values of 1 2,P P  and 3P  can 

be categorized into the following four cases: 

0

1

2

3

{(0,0,0) },

{(1,0,0) , (0,1,0) , (0,0,1) },

{(1,1,0, ) , (0,1,1) , (1,0,1) },

{(1,1,1) },

T

T T T

T T T

T

K

K

K

K









 

Next, we will compare how the systemic risk changes as the correlation of 1 2,P P  and 3P  

changes. 

3.1. Extreme correlations between original assets  

We consider two extreme cases: the correlation of any pair of 1 2 3, ,P P P  is 1 (all assets are 

perfectly correlated) and 1 2 3, ,P P P  are mutually independent. When the correlation of any pair 

of 1 2 3, ,P P P  is 1, we have 

Case 0K  3K  

Probability 1 p  p  
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When 
1 2 3, ,P P P  are mutually independent, we have 

Case 0K  1K  2K  3K  

Probability 
31（ ） p  

213（ ）p p  
2 13 （ ）p p  

3p  

Given the probability of occurrence, we examine whether all the companies will go bankrupt 

in each case. In case 0K , 2 (0,0,0)TY A P  and all companies go bankrupt, whereas in case 

3K , 2 (1,1,1)TY A P  and all companies are safe. For the two remaining cases, under 1K , 

2 (1/ 2,1/ 2,0)TY A P   and under 2K , 2 (1,1/ 2,1/ 2)TY A P  . Herein the bankruptcy 

condition is determined by the comparison between 1
2

 and p . 

Suppose that 
1

2
p , then the company will not fail when 

1

2
iY  . For the case of 

2K , 

no company will fail. For 
1K , there is one company bankrupt at the initial time. The prices of 

primitive assets invested by the company are both 0. After liquidating of these assets, their 

prices are still 0. As a result, the remaining two companies will not be affected by the failing 

company. Thus, only case 
0K  will encounter systemic risk. It is obvious that the network has 

a higher systemic risk when the correlation of any pair of 1 2 3, ,P P P  is 1.  

If 
1

2
p , the company will fail when 

1

2
iY  . For the case of 

1K , all the companies 

will fail. For the case of 2K ，there are two companies bankrupt at the initial time. If the 

network is highly contagious, the third company will eventually fail as well. Actually, the 

value of the third company is 0.5e  . The condition for the third company to fail is 

0.5e p   , or 2 ( )log p   . When this condition is satisfied, for cases 0K , 
1K  and 2K  all 

companies will fail. The systemic risk is then 1 p  when the correlation of any pair of 

1 2 3, ,P P P  is 1 and 
31 p  when 

1 2 3, ,P P P  are mutually independent. As 
31 1p p   , the network 
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has a higher systemic risk when 
1 2 3, ,P P P  are mutually independent.  

On the other hand, if the network contagion is weak, i.e., 2 ( )log p   , then all 

companies fail only for cases 0K  and 1K . Because 3 21 (1 ) 3 (1 )p p p p      if 
1

2
p  , the 

network has a higher systemic risk when the correlation of any pair of 1 2 3, ,P P P  is 1. We can 

summarize the conditions for each case to encounter systemic risk as shown in the following 

table: 

Case 0K  1K  2K  3K  

Condition 

for 

systemic 

risk 

always 
1

2
 

p
 

1

2
 

p
 and -2log( )  p  never 

From the above analysis, we conclude that, only when
0K , 

1K  and 2K  all encounter 

systemic risk, it is possible for the network to have a higher systemic risk when 
1 2 3, ,P P P  are 

mutually independent. The conditions for such situation are 
1

2 p
   and 2 ( )log p   . 

Namely, the parameters   and   are both large enough to ensure strong contagion in the 

network. Overall, when the network contagion is weak, a large asset homogeneity brings in a 

large systemic risk; but when the network is highly contagious, on the contrary, asset 

homogeneity is likely to make the systemic risk small. 

3.2. General correlation between original assets 

We now turn to the general case where the correlations of 1 2,P P  and 3P  cake take any 

value between 0 and 1. Because the asset price can take only one of two values, there are 

eight possible outcomes. These outcomes and their occurrence probabilities are shown in the 

following table: 
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Value (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) 

Probability 1x  2x  3x  4x  5x  6x  7x  8x  

Note that the correlation of any pair of 
1 2 3, ,P P P  is  , we have 

2

22 2

( )( ) ( ) ( )( ) ( )
( , )

( ) ( )

i i j j i j i j i j

i j

i j

E P EP P EP E PP EP EP E PP p
Cov P P

p pVar P Var P p p p p


   
   

 
 

where , 1,2,3i j   and i j . Since 
1 2 7 8 2 3 4 8 1 3 6 8( ) , ( ) , ( ) ,E PP x x E P P x x E PP x x      we 

have the following equations: 

1 2 3 4

5 6 7 8 2

1 2 5 6

1 8

1 3 5 7

2 2 3 5 8

7 8

2 4 6 7 8

4 8

2

6 8

1 ,

,
(1 ) ,

1 ,
1 3 3 ,

1 ,
2 ,

(1 ) ,
,

(1 ) ,

(1 ) ,









    


   
    
      

    
      

        
        


   

x x x x p

x x x x p
k p p p

x x x x p
x p k x

x x x x p
x x x p k x

x x p p p
x x x k x

x x p p p

x x p p p

 

We further assume that   and 
8x  have a linear relationship. The results from the previous 

section show that the line must go through the two points, 3(0, )p  and (1, )p . Therefore, the 

line can be expressed as: 

3 3

8 ( ) .x p p p    

The probabilities of 
0 1 2, ,K K K  and 

3K  can be written as follows: 

Case Probability 

0K  
2 3 2 33 3（2 ） 1 3      p p p p p p  

1K  
2 3 2 33 3 6 3p p p p p p     （6 ） 3  

2K  
3 2 2 33 3 3（ ） 3   p p p p  

3K  
3 3（ ）  p p p  
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By simple calculation, we find that, as  increases, the occurrence probabilities of 𝐾0 

and 𝐾3 will both increase whereas the occurrence probabilities of 𝐾1 and 𝐾2 will both 

decrease. That is, an increase in asset correlation promotes the probability that 
1 2 3, ,P P P  

simultaneously take upon the same value. Moreover, if
1

2
p  , it can be shown that, as   

increases, the sum of the probability of 
0K  and the probability of 

1K  will decrease, 

whereas the conclusion is reversed when 
1

2
p  . The sum of the probability of 

0K  and the 

probability of 
2K  will always decrease as   increases. We obtain 

Case 0K  1K  2K  3K

    Probability   Probability   Probability   Probability   

and  

Case 0K  0 1+K K  0 1 2+ +K K K  

   Probability   Probability   if 
1

2
p  

Probability   if 
1

2
p  

2 

Probability   

 

In order to determine the response of the systemic risk to changes in the correlation 

between 1 2,P P  and 3P , we need to determine the location of the dividing line that separates 

the case where  all companies fail from the case where at least one company survives. It is 

obvious that in the case of 0K , systemic risk always prevails and in the case of 3K  systemic 

risk never occurs. There are only three locating possibilities for the dividing line. (1) If the 

dividing line is located between 0K  and 1K , the increase of the correlation increases the 

systemic risk. (2) If the dividing line lies between 1K  and 2K , the increase of the 
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correlation reduces the systemic risk decreasing when 
1

2
p  , and increases systemic risk 

when 
1

2
p  . (3) If the dividing line falls between 2K  and 3K , then the increase of the 

correlation of 1 2,P P  and 3P  reduces the systemic risk. 

Overall, for the investment matrix 2A , we obtain the following theorem. 

Theorem:  Let SR  denote the systemic risk of the network. 

1. When 
1

2 p
  , only case 0K  encounters systemic risk. The occurrence probability 

of 0K  is SR ;  hence, 0
SR







; 

2. When 
1

2 p
  and 2 ( )log p    ,both cases 0K  and 1K  encounter systemic 

risk. Furthermore, 
1

2 p
   implies 

1

2
p  . Hence 0

SR







; 

3. When 
1

2 p
   and 2 ( )log p   , cases 0K , 1K  and 2K all encounter systemic 

risk . Hence, 0
SR







. 

The location of the dividing line is determined by the company's bankruptcy threshold 

parameter   and the parameter   in the market impact function. The larger the two 

parameters, the stronger the network contagion is, and the closer the dividing line is to 3K . 

The systemic risk is likely to decrease when the correlation of the original assets increases. 

Therefore, only when the network contagion is weak, the systemic risk is positively related to 

asset homogeneity; otherwise, systemic risk is negatively related to asset homogeneity. This 

conclusion is extended to large-scale networks and further verified by numerical simulations 

in the following section

file:///C:/Users/hyj/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/
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4. Dependence of systemic risk on asset homogeneity 

With the insights derived from the simple model in the previous section, we now investigate the 

relationship between asset homogeneity and systemic risk for a general network taking into account 

contagion effect as well.  To be specific, a large number of networks and corresponding randomly 

distributed assets are randomly generated to simulate the collapse cascade of the companies. We then 

measure the percentage of all random networks in which all the companies fail in the end. 

4.1. Simulation algorithm 

We present the numerical simulation algorithm adopted in this paper. For an arbitrarily chosen 

network and an arbitrarily chosen distribution of original assets, we follow the chain of events caused 

by the initial shock. Specifically, after the price of each asset 1 2, , , mP P P  is randomly determined at 

time 0t , at each future time 1,2,t , the value of each company is calculated and compared 

with the threshold of collapse. If the value of a company is lower than its collapse threshold, the 

company will become bankrupt. The portfolios of bankrupted companies are liquidated immediately 

and the asset prices change accordingly. The new asset prices are computed from the impact 

functions. Then the values of all surviving companies will be recalculated at the next time. The 

dynamics continue until when there is no new bankruptcy occurring between two consecutive times. 

In details, the algorithm consists of the following steps. 

1. Randomly generate a network, i.e., the investment matrix A . First, the degree id  of all the 

companies, i.e., the number of nonzero elements in each row of A  is determined. Then, 

randomly select  im d  elements in the i -th row of A  and set them to 0. Each of the 

other id  elements is randomly drawn from the uniform distribution over [0,1]. Finally, 

each element of the resulting matrix is divided by the sum of all elements in its column. The 

resulting matrix is the invest matrix A. For a regular network, id  is the same for all the 
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companies and randomly generated from the set {1,2, , }n with equal probability. For a 

random network, id  is generated from a Poisson distribution where the mean is randomly 

selected from{1,2, , }n with equal probability. 

2. At 0t , randomly generate the correlation coefficient among all the assets and a set of 

prices of all the assets that subject to the normal distribution (3,1)N . If the asset price is 

negative, then it is reset to be 0. 

3. Calculate the values of all the companies, and compare the values to their threshold of 

bankruptcy (initial endowment) to determine whether there is a company failure. If there is, 

then enter step 4; otherwise, the program terminates. 

4. Obtain the collection of failed companies tD  at time t , and liquidate the original assets 

held by these companies. 

5. Recalculate the prices of all the original assets and the values of all the surviving companies 

according to the market impact function.  

6. If there are new companies going to fail, return to step 4 and time 1t ; otherwise, 

1 t tD D  and the program terminates. 

4.2. Simulation results 

We first study the network with the same degree of company nodes (regular network) and 

m n . The correlation matrix, equals to the covariance coefficient matrix since the variance of each 

asset  ( 1, , )jP j m  is assumed to be 1, is as follows: 

1

1
.

1

 

 

 


 
 
 
 
 
 n n

C  

where   is randomly selected from the set {0,0.1,0.2, ,0.9,1} with equal probability. Upon 
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applying the algorithm given in the previous section with 1.0536   and 0.75  , we generate a 

large number of observations from which we obtain the relationship between systemic risk and the 

correlation coefficient of assets. For the sake of graphic presentation, we use different transformation 

to represent the homogeneity of the assets (instead of 2/SC n ) in the figures. 

Figure 3 is obtained by simulating 
510  random networks with 4 n m . The degree of 

company nodes is 1,2,3,4 for Figure 3 (A)-(D), respectively. Note that, there are some individual 

points in the figure with large deviations from the normal trend. This is largely caused by the 

sampling errors and will reappear in other subsequent figures as well.  We can ignore these data 

points as they do not affect our conclusions. From Figure 3, we find that, regardless of the degree of 

the company node, systemic risk increases with the increase in the correlation coefficient. Moreover, 

when the degree of the company nodes is small, systemic risk is greatly affected by the correlation 

coefficient. As the degree increases, systemic risk is less affected by the correlation coefficient. 

 

Figure 3: A total of 
510  regular networks are randomly generated with 4 n m . From 

(A)-(D), the degree of each company node is 1,2,3, and 4, respectively. Each subgraph 

shows the relationship between the systemic risk and the correlation coefficient of Y . The 

horizontal coordinate SC represents rounding the summation of all the elements of 

correlation coefficient matrix of Y . The vertical coordinate represents the percentage of the 

total networks in which all companies fail in the end. 
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Figure 4 is obtained by simulating 
610  random networks with 10 n m . The degree of 

company nodes is 1,2, ,10  for Figure 4 (A)-(J), respectively. Furthermore, we represent all the 

results in Figure 4 by a three-dimensional graph in Figure 5. From these figures, we find that, 

starting from a small number, as the degree of network nodes increases, systemic risk will increase 

significantly. However, there is a turning point at which if the degree is increased further, systemic 

risk will decline slightly. Thus, the most unstable network is the network whose degree is neither too 

small nor too large. In addition, accompanied with the increase in the degree of network nodes, 

systemic risk becomes more and more independent of the correlation of Y , or there may even be a 

slightly negative relationship between systemic risk and the correlation coefficient. However, as the 

degree of network nodes further increases, the positive relationship is recovered.   

 

Figure 4: A total of 
610  regular networks are randomly generated with 10 n m . From 

(A)-(J), the degree of each company node is 1,2, ,10 , respectively. Each subgraph shows 

the relationship between the systemic risk and the sum of correlation coefficients of Y . 
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Figure 5: The graph is drawn by integrating all the results in Figure 4. The vertical 

coordinate is the systemic risk. The two coordinates of the horizontal plane represent asset 

homogeneity (SC/n) and the degree of company nodes. 

 

Figure 6: A total of 
610  regular networks are randomly generated with 100 n m . From 

(A)-(H), the degree of each company node is 3, 5, 10, 20, 30, 50, 80, and 100, respectively. 

Each subgraph shows the relationship between systemic risk and asset homogeneity. 

 

Finally, we study large networks with the number of company nodes and asset nodes 100 n m  

and 1000 n m . The results are shown in Figure 6 and Figure 7, respectively. We also investigate 

the Poisson distribution network with 1000 nodes with the average degree of nodes increasing 

gradually. The results are shown in Figure 8. All these figures present the same properties highlighted 
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in Figure 4. 

To sum up, Figures 3-8 show that the influence of asset homogeneity on the systemic risk is 

dependent on the degree of company nodes in the network. When the degree is small, the 

connectivity of the network is low. Thus, the systemic risk is roughly equivalent to the initial risk, 

and the contagion has little effect if any. Furthermore, a larger correlation of Y  leads to a higher 

probability that a considerable number of companies failing simultaneously. Thus, systemic risk is 

proportional to the correlation of Y  when the degree is small. As the degree increases, the network 

connectivity is strengthened such that a small number of initial collapses are likely to infect the entire 

network. The systemic risk is not so much affected by the correlation of Y ; it may even be 

negatively affected by the correlation. However, when the degree of network nodes is sufficiently 

large, the systemic risk and the correlation of Y  will be positively related once again. As a remark, 

for a given degree of network, there is an inverted U relationship between the systemic risk and the 

correlation coefficient, and the inverted U type is more distinguished when the degree is moderate. 

file:///C:/Users/hyj/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/
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Figure 7: A total of 
610  regular networks are randomly generated with 1000 n m . 

From (A)-(H), the degree of each company node is 10, 20, 30, 50, 80, 200, 500, and 1000 

respectively. Each subgraph shows the relationship between systemic risk and asset 

homogeneity.  

 

Figure 8: A total of 
610 Poisson distribution networks are randomly generated with

1000 n m . From (A)-(F), the average degree of the nodes is 8, 10, 15, 20, 40, and 60 

respectively. Each subgraph shows the relationship between systemic risk and asset 

homogeneity.  

4.2.1 Effects of contagion parameters 

We have characterized the relationship between the systemic risk of network and asset 
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homogeneity allowing the average degree of the network to vary. Gai and Kapadia (2010), points out 

the average degree of the network plays a key role on network contagions. There are two other 

important parameters that can control the effects of contagions:   and  . For a given network, 

when   increases or   increases, the network will become more contagious, and vice versa. This 

aspect, however, has not been studied by the previous work. We expect these two parameters to have 

great impacts on our results, both qualitatively and quantitatively. Therefore, we conduct simulations 

to re-examine the relationship between the systemic risk and by the asset homogeneity under 

different contagion schemes (i.e., allowing both   and   to change as well). First, we discuss the 

numerical simulation results generated from different compositions of , , d . Then, we will apply 

the methodology of (Caccioli et al., 2014) to characterize contagions and analyze the influence of 

contagion on the relationship between asset homogeneity and the systemic risk. 

Figure 9 and Figure 10 consider the regular networks with 10 n m  and the Poisson 

distribution networks with 1000 n m , respectively. Since the results of these two figures are 

consistent, we only discuss the results shown in Figure 9. In Figure 9,   is either 0.5, 1.0536, or 5, 

and   is either 0.5, 0.75, or 0.9. From left subgraphs to right subgraphs,   is 0.5, 1.0536 and 5, 

respectively. From top subgraphs to bottom subgraphs,   is 0.5, 0.75 and 0.9, respectively. A larger 

value of   indicates that, the bankruptcy of a company will cause a larger devaluation of the assets 

contained in its portfolio. A larger value of   signals the company is more vulnerable to the 

fluctuations in its market value and is easier to collapse. Clearly, the increase in of   or   will 

make the network more contagious, and vice versa. The middle subgraph (E) corresponds to the case 

that 1.0536   and 0.75  , whose result was given in Figure 4.  

There is a big difference between subgraph (E) and the other subgraphs.  For the case of 

0.5   and 0.5  , which is a very weak contagion, systemic risk and asset homogeneity are 

significantly positively correlated, regardless of the average degree of network. In the case of  

5   and 0.9   where a very high contagion prevails, a completely different pattern prevails. 
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When the average degree of the network is small, the systemic risk maintains a positive relationship 

with asset homogeneity. As the average degree of the network increases, the systemic risk may 

become negatively correlated with asset homogeneity. However, when the average degree of the 

network is sufficiently large, the negative relationship between the systemic risk and asset 

homogeneity is weakened. This result is consistent with our theoretical analysis which suggests, a 

low asset homogeneity may be accompanied by a high systemic risk for a highly contagious network. 

In all the subgraphs with a small average degree, the systemic risk displays a significant and 

positive dependence on asset homogeneity. The reason is that, a small average degree implies a low 

contagion and the systemic risk of the network is equivalent to the initial risk.  A comparison across 

all the figures shows that the network with a large   and a large   has the greatest systemic risk. 

On the contrary, the network with a small   and a small   has very small systemic risk. To sum 

up, the most stable network prevails when   and   are both small; moreover, the systemic risk 

can be further reduced by reducing asset homogeneity. When   and   are relatively large, the 

average degree of network must be very small to contain the systemic risk of the network by 

reducing the asset homogeneity. If the average degree of network is not small, then controlling asset 

homogeneity does not help reducing the systemic risk at all. 
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Figure 9: The regular networks are all randomly generated with 10 n m . The horizontal 

coordinate SC/n represents rounding the summation of all the elements of the correlation  

matrix of Y  divided by n. The vertical coordinate represents the systemic risk. Each 

subgraph is marked with A, B, , I. For each subgraph, the average degree of the network is 

(from left to right and from top to bottom) 2, 4, 7 and 10 respectively, which has been show 

in the subgraph (A). From left subgraphs to right subgraphs,   is 0.5, 1.0536 and 5 , 

respectively. From top subgraphs to bottom subgraphs,   is 0.5, 0.75 and 0.9, respectively. 

The subgraph (E) is the same as that presented in Figure 4. 
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Figure 10: The Poisson distribution networks are all randomly generated with 1000 n m . 

The horizontal coordinate SC/10n represents rounding the summation of all the elements of 

the correlation matrix of Y  divided by 10n. The vertical coordinate represents the systemic 

risk. Each subgraph is marked with A, B, , I. For each subgraph, the average degree of the 

network is (from left to right and from top to bottom) 8, 12, 20 and 40 respectively, which 

has been show in the subgraph (A). From left subgraphs to right subgraphs,   is 0.5, 

1.0536 and 5 , respectively. From top subgraphs to bottom subgraphs,   is 0.5, 0.75 and 

0.9, respectively. The subgraph (E) is the same as that presented in Figure 8. 
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4.2.2 Results based on comprehensive analysis of contagions 

In this section, we consider the contagion index constructed by (Caccioli et al., 2014). To be 

specific, Caccioli et al. (2014) propose a matrix N  whose element hkN  represents the expected 

number of companies of degree h  failing because of the failure of a company of degree k  

( , 1,2,, ,h k m ). The expression of hkN  is given in Appendix A. The contagion of the system can 

be estimated by computing the largest eigenvalue ( ) of N . For the regular networks, we simulate 

the dependence of the systemic risk on both asset homogeneity and contagion. The results are 

displayed in Figure 11. The results for Poisson distribution networks are similar.  

From Figure 11, it is shown that, when the contagion of the network is low, the systemic risk is 

positively related to asset homogeneity. When the contagion of the network is high, the systemic risk 

has a strongly negative correlation with asset homogeneity. Thus, a network has the greatest systemic 

risk when the contagion is highest and the asset homogeneity is smallest at the same time. However, 

high contagion implies that the network has a high degree of connectivity, and hence the asset 

homogeneity cannot be too low. As a consequence, the case that a network has highest contagion and 

lowest homogeneity at the same time hardly exists. Indeed, there is no such case in Figure 11. The 

greatest systemic risk will occur in the network that has fairly high contagion and fairly low 

homogeneity of companies, but the contagion is not the highest possible and asset homogeneity is not 

the lowest possible. Finally, we can see from Figure 11 that no matter what the value the of asset 

homogeneity takes up, the systemic risk is always positively related to the contagion parameter  , 

which is consistent with the previous analysis (Caccioli et al., 2014) and further supports the validity 

of our simulation results. 
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Figure 11: The graph is drawn after randomly generating 
610  networks (with the same 

degree of company nodes) with 10 m n . The vertical coordinate is the systemic risk. 

The two coordinates of the horizontal plane represent asset homogeneity and contagion 

index.
 

5. Regression analysis 

5.1. Data and variables 

For regression analysis discussed in this section, the data are obtained from the simulation 

results of 
610  randomly generated regular networks with 10n m   (The regression 

results for Poisson degree distribution random networks with 1000n m   are presented in 

Appendix B). The degree of companies ( d ) is randomly generated from {1,2, , }n . 

Whenever a network (investment matrix A ) of a certain degree is randomly generated, the 

prices of the original assets ( 1 2, , , mP P P ) are also randomly generated, as well as parameters

 and . The values of    and  , assumed to come from a set of reasonable ranges, can 

play a significant role in the systemic risk of the network. Given d ,   and  , the 

contagions parameter   can be calculated. We apply the algorithm described in Section 4.1 

and determine whether all companies fail for each random network. If all the companies fail 
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in the end, we set the index R  to be 1; otherwise, R  equals to 0. The systematic risk (for 

each type of network) is calculated as the ratio of the number of networks where R  equals 

to 1 to the total number of networks. In the simulation process, there are cases that the sum of 

a column of the investment matrix A  is 0. After removing these data, we have a total of 

788512 observations. The variables of the regression model are described in  

Table 1 and their corresponding descriptive statistics are given in  

Table 2. 

Table 1: Definition and range of main variables 

variables variable descriptions range of values 

R  

R 

Are all companies bankrupt? (Yes=1,No=0) {0,1} 

2SC n  asset homogeneity  [1 ,1]n  

d

d 

average degree of company nodes [1, ]n  

  bankruptcy threshold 
{0.5, 0.6, 0.7, 0.8, 

0.9} 

  asset devaluation speed   {0.5, 1, 1.5, 2, 2.5} 

  Contagion index [0, ]  

 

Table 2: Descriptive statistics of main variables ( 10 n m ) 

variable mean  standard deviation minimum  maximum  

R  0.21960 0.4140 0 1 

2SC n  0.7907 0.1808 0.1 1 

d  6.4738 2.3458 1 10 

  0.7002 0.1415 0.5 0.9 

  1.5000 0.7074 0.5 2.5 

  9.011 16.751 0 90.841 
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5.2. Regression design and results 

Since the dependent variable R  is a binary variable with a value of 0 or 1, we apply the 

logistic regression model with the following specification: 

2 2 2 2 2 2

0 1 2 3 4 11 22 33 44

2 2 2 2

12 13 14 5 15

( ) ( / ) ( / )

( / ) ( / ) ( / ) ( ) ( / ) ,

(

)

E R f c c SC n c d c c c SC n c d c c

c SC n d c SC n c SC n c log c SC n

   

   

        

    
 

where  

( )
( ) .

(1 ( ))

exp x
f x

exp x



 

Our focus is the effect of homogeneity variables 
2/SC n  on the systemic risk. Thus, the 

interaction terms between d ,  ,   and   are not included in the model. In order to 

validate our predictions in the previous section, we gradually added the interaction terms and 

the square terms of the explanatory variables into the regression model. The results of 

regression model which does not include   are shown in Table 3 whereas the results of 

regression model which includes   are displayed in Table 4. In both tables, the numbers 

inside the brackets are standard errors. All the   coefficients are statistically significant at the 

l% level. 

Firstly, we discuss the results in Table 3. Model 1 is a linear model and the estimation 

results show that systemic risk is positively related to 
2/SC n ,   and  , but negatively 

related to d . Next, we introduce model 2 which incorporate the cross terms 
2( / )SC n   and 

2( / )SC n   to model 1 to investigate how the dependence of systemic risk on 
2/SC n  

changes with   and  . The results show that the effect of 
2( / )SC n on R is 

(13.026 12.948 1.257   ) which is negatively dependent on the value of   and  . When 

  and   are small, the effect of 
2( / )SC n  is positive and systemic risk will exhibit a 

positive correlation with the 
2/SC n . When   and   are sufficiently large, the effect of 



 35 / 49 
 

2( / )SC n  is negative. In such cases, systemic risk will be negatively related to 
2/SC n . 

These regression results explain our theoretical predictions and simulation results in Sections 

3 and 4. 

In order to examine how the dependence of systemic risk on 
2/SC n  changes with d , 

we further add the cross term 
2( / )SC n d  to obtain model 3. The result indicates the degree 

of company nodes significantly reduces the impacts of asset homogeneity on systemic risk. 

On the other hand, our numerical simulation suggests low and high degrees of company 

nodes have opposite influence.   Thus, we divide our samples into two subsamples. 

Subsample I contains observations with the degree less than 6 (a total of 293191 data points) 

and Subsample II includes observations with the degree no less than 6 (a total of 495321 data 

points). Logistic regressions were performed for the two subsamples respectively. The results 

are presented in Table 5 and 6. The regression coefficient of 
2( / )SC n d  is negative for 

Subsample I and the positive for Subsample II. That is, when the degree is small, an increase 

in the degree will reduce the positive correlation between systemic risk and 
2/SC n . On the 

other hand, when the degree is large, an increase in degree will increase the positive 

correlation between systemic risk and 
2/SC n . As a consequence, in the presence of 

moderate network connectivity, i.e., when the average degree is neither too large nor too 

small, the systemic risk is most likely negatively correlated with asset homogeneity, which is 

congruent with the simulation results displayed in Figure 9. 

Model 4 and model 5 add the square terms 
2d  and 

2 2( / )SC n  successively. In both 

models, the coefficient of 
2d  is statistically significantly negative. Thus, consistent with the 

previous literature, the relationship between systemic risk and the degree of network is 

captured by an inverted U curve. The negative correlation of 
2 2( / )SC n  in model 5 suggests 

that the relationship between systemic risk and asset homogeneity also appeared to be of the 
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inverted-U shape. Moreover, the vertex of the inverted U curve changes with   and  . If 

  and   are small, the vertex appears at a large value of 
2/SC n  and systemic risk 

exhibits a positive correlation with 
2/SC n  when 

2/SC n  is valued in [1/ ,1]n . As increase 

  and   increase, the vertex gradually moves toward the axis / 0SC n  . In such cases, 

systemic risk first increases and then decrease as 
2/SC n  increases from 1/ n  to 1. When 

  and   are sufficiently large, the vertex corresponds to a negative value of 
2/SC n  

which means that, as long as 
2/ 0SC n  , systemic risk is always negatively related to 

2/SC n . Note that the inverted U type relationship between systemic risk and 
2/SC n  is 

embedded in our simulation results and depicted in Figure 4 through Figure 8. 

The squared terms 
2  and 

2  are now added to construct model 6. The regression 

coefficients of these two terms are both negative. Therefore, the dependence of systemic risk 

on   or   is of inverted U type as well. The magnitude for the coefficients of   and   

are much greater than those of 
2  and 

2 . As a result, the values of   and   at the 

vertices would be very large. The graphs of systemic risk with respect to    and   would 

appear to be the left half of a parabolic curve that open downward. 

At last, we analyze the results of regression models incorporating the contagion 

parameter,  . In model 1 of Table 4, the regression coefficient of   is positive. In model 2, 

the effect of   on systemic risk is 
2(0.158 0.149( / ))SC n , which is larger than 0 since 

2/ 1SC n  . Thus, the systemic risk and contagion parameters   are positively related. On 

the other hand, the negative coefficient of 
2( / )SC n   in model 2 implies that the 

dependence of systemic risk on asset homogeneity 
2/SC n  is affected by  . If   is small, 

systemic risk will exhibit a positive correlation with 
2/SC n . As   increases, the systemic 

risk will gradually decrease and eventually become negatively related to 
2/SC n . These 

results are consistent with the simulation results presented in Figure 11.  
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We successively add d ,  ,   in model 3, and then the cross terms 
2( / )SC n d , 

2( / )SC n  , 
2( / )SC n   in model 4,  and finally the square terms 

2d , 
2 2( / )SC n , 

2  and 

2  in model 5. The estimation results indicate that additions of the variables d ,  ,   

would disperse the effect of  on the systemic risk. This is not unexpected since   is 

indeed a function of d ,  ,  . In summary, the regression results present a clearer view of 

the relationship between systemic risk and asset homogeneity, and the relationship is 

influenced by network contagion. 

Table 3: Regression results of regular networks with 10 n m  

Variable model 1 model 2 model 3 model 4 model 5 model 6 

Constant -7.686 -17.779 -20.121 -20.560 -21.904 -24.126 

 (0.025) (0.129) (0.144) (0.145) (0.158) (0.208) 

2SC n  0.801 13.026 15.857 14.859 18.737 19.192 

 (0.018) (0.151) (0.168) (0.170) (0.228) (0.232) 

d  -0.022 -0.021 0.323 0.613 0.506 0.505 

 (0.001) (0.01) (0.008) (0.010) (0.010) (0.010) 

  7.592 18.269 19.006 18.982 19.815 24.693 

 (0.025) (0.148) (0.152) (0.152) (0.160) (0.372) 


 

0.201 1.225 1.269 1.270 1.316 1.779 

 (0.004) (0.022) (0.022) (0.022) (0.023) (0.032) 

2( )SC n   
 

 -12.948 
(0.173) 

-13.815 
(0.178 ) 

-13.746 
(0.178 ) 

-14.742 
(0.187) 

-15.225 
(0.193) 

2( )SC n   
 

 -1.257 
(0.026) 

-1.309 
(0.027) 

-1.308 
(0.027) 

-1.364 
(0.027) 

-1.382 
(0.028) 

2( )SC n d  
 

 
 

 -0.411 
(0.009) 

-0.236 
(0.010) 

-0.086 
(0.011) 

-0.086 
(0.011) 

2d  
 

   -0.034 
(0.001) 

-0.035 
(0.001) 

-0.035 
(0.001) 

2 2( )SC n  
 

    -2.720 
(0.100) 

-2.740 
(0.100) 

2  
 

     -3.049 
(0.208) 

2  
 

     -0.149 
(0.007) 
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Table 4: Regression results ( included) 

 

Variable model 1 model 2 model 3 model 4 model 5 

Constant -1.801 

(0.013) 
-2.829 

(0.017) 

-8.565 

(0.035) 

-18.238 

(0.185) 

-22.709 

(0.251) 

2SC n  0.263 1.481 1.945 13.649 17.483 

 (0.016) (0.021) (0.024) (0.216) (0.282) 

  0.030 0.158 0.093 0.028 0.021 

 (0.000) (0.001) (0.001) (0.002) (0.002) 

2( )SC n   
 

 -0.149 

(0.001) 

-0.110 

(0.001) 

-0.032 

(0.002) 

-0.023 

(0.002) 

d    -0.029 0.226 0.428 

   (0.002) (0.010) (0.012) 

    7.579 17.303 23.634 

   (0.032) (0.185) (0.411) 


 

  0.192 1.054 1.596 

   (0.005) (0.026) (0.036) 

2( )SC n   
 

   -11.812 

(0.217) 

-13.770 

(0.238) 

2( )SC n   
 

   -1.055 

(0.031) 

-1.200 

(0.032) 

2( )SC n d  
   -0.300 

(0.012) 

-0.003 

(0.014) 

2d  
 

    -0.035 
(0.001) 

2 2( )SC n  
 

    -2.675 
(0.100) 

2  
 

    -3.224 
(0.223) 

2  
 

    -0.143 
(0.007) 
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Table 5: Regression results ( 5d  ) 

Variable model 1 model 2 

Constant 
-22.706 

(0.202) 

-29.602 

(0.324) 
2SC n  18.166 23.264 

 (0.245) (0.332) 

d  1.233 2.308 

 (0.021) (0.051) 

  17.727 25.361 

 (0.189) (0.594) 


 

1.491 2.407 

 (0.029) (0.049) 

2( )SC n   
 

-12.863 

(0.231) 

-14.688 

(0.257) 

2( )SC n   
 

-1.440 

(0.036) 

-1.584 

(0.038) 
2( )SC n d  -1.249 -1.149 

 (0.027) (0.029) 

2d  
 

 
-0.152 

(0.006) 

2 2( )SC n  
 

 
-2.870 

(0.118) 

2  
 

 
-4.218 

(0.351) 

2  
 

 
-0.263 

(0.012) 

 

Table 6: Regression results ( 6d  ) 

Variable model 1 model 2 

Constant 
-18.036 

(0.279) 

-22.179 

(0.369) 
2SC n  13.801 20.423 

 (0.320) (0.441) 

d  -0.540 -0.674 

 (0.023) (0.040) 

  24.661 30.206 

 (0.268) (0.520) 

  0.785 1.096 

 (0.039) (0.049) 

2( )SC n   
 

-19.877 

(0.306) 

-21.909 

(0.332) 

2( )SC n   
 

-0.812 

(0.045) 

-0.849 

(0.046) 
2( )SC n d  0.503 0.826 

 (0.026) (0.030) 

2d  
 

 
-0.009 
(0.002) 

2 2( )SC n  
 

 
-4.810 

(0.209) 

2  
 

 
-2.578 

(0.261) 

2  
 

 
-0.093 
(0.009) 
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6. Conclusions 

In this article, we propose a general portfolio model that can capture the relationships among 

firms, cross shareholdings, and more general portfolio strategies to investigate the effects of portfolio 

homogenization of companies (or called asset homogeneity) on systemic risk in financial networks. 

There are two different channels that may amplify systemic risk because of connectivity. One is the 

financial contagions, which stress the sequential collapse of financial organizations induced by the 

preceding collapses. The other is the portfolios homogenization, which increases the correlation 

between the returns of financial organizations and then the likelihood of their simultaneous failure. 

The existing works mainly emphasize contagions as the basic mechanism of financial crisis while, to 

our knowledge, the effect of portfolio homogenization on the systemic risk has not yet been 

extensively examined. Portfolio homogenization might facilitate the course of financial contagions 

because it increases the probability that a considerable number of companies going bankrupt, 

enhancing the possibility of further spread. As two-fund separation theorem suggests that the 

investment portfolios among different institutions have convergent characteristics, analyzing the 

effect of asset homogeneity on systemic risk offers important practical guidelines. 

Asset homogeneity reflects the correlation of portfolios among different companies. The greater 

the correlation, the stronger the asset homogeneity is. We sum up all the elements in the correlation 

matrix of the asset returns to character asset homogeneity. We first theoretically analyze the 

relationship between the initial risk, fragility and asset homogeneity. The homogenization of 

portfolios increases the positive correlations among financial institutions, leading to an increase in 

the initial risk and systemic risk of the network. Thus, the systemic risk is positively related to the 

asset homogeneity. The network in which all companies' portfolios are completely homogeneous has 

the highest systemic risk. However, for the network with low homogeneity of assets, the probability 
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that at least one company collapses is greater than that of the network with high homogeneity of 

assets. If the network contagion is strong, the collapse of one node is likely to spread the risk to the 

entire network. Therefore, to the contrary, low asset homogeneity may quite likely produce higher 

systemic risk.  

Based on the results from the theoretical analysis, we perform simulations to illustrate the 

influences of asset homogeneity on systemic risk under different contagion schemes. We study two 

different network structures: the regular network and Poisson random network. For either type of 

network structure, the effect of asset homogeneity on systemic risk is closely related to the contagion, 

which is consistent with our theoretical prediction. Systemic risk is significantly and positively 

related to asset homogeneity when the network contagion is weak. As the network contagion 

increases, the systemic risk becomes inversely related to asset homogeneity. Therefore, networks 

with fairly strong contagion and fairly low asset homogeneity tend to have the greatest systemic risk. 

We further analyze the data obtained from simulations of large-scale randomly generated 

networks by logistic regressions. The regression results show that the effect of asset homogeneity on 

systemic risk is closely dependent upon the network contagion. Weak contagion of network induces 

the systemic risk to exhibit a positive correlation with asset homogeneity. As contagion increases, the 

correlation gradually decreases and may even become negative. Moreover, systemic risk is quite 

likely to have an inverted U type relationship with asset homogeneity and the location of the vertex is 

related to the contagion of the network. Overall, the regression results offer comprehensive 

explanations to the patterns prevailed in the simulation data. 

In summary, we have investigated how the systemic risk is affected by asset homogeneity and 

how this effect varies for networks with different contagion capacity. In the analysis, during the 

contagion stage, we assume all the surviving companies retain the initial portfolio with no asset 

reallocation. To allow asset reallocation, we need to specify the decision-makings of the companies 

and introduce more dynamic changes into the model. Nevertheless, we expect our conclusions to be 



 42 / 49 
 

qualitatively unchanged.  On the other hand, we also plan to analyze real-world financial networks 

and determine to what extent the past financial crises were attributed to the mechanism of portfolio 

homogenization and to the mechanism of contagions.  
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Appendix A. Explicit calculation of the matrix N  

In order to understand how the systemic risk of network depends on asset homogeneity under 

different contagion schemes, we refer to (Caccioli et al., 2014) and let 

1

( , | ) ( | , )
m

hk h

a

N N P h k a F h k a


   

where hN  is the number of companies of degree h , ( , | )P h k a  is the probability that a given 

company of degree h  and a given company of degree k  share (i.e., are both connected to) a given 

asset a , ( | , )F h k a  is the probability that a company of degree h  fails given that it is connected to 

a failed company of degree k  through asset a . 

For the Poisson random networks with Poisson degree distributions for both banks and assets, 

we set the average degree of all the companies to be c  and the average degree of all the assets to 

be a . Thus, the number of companies of degree h  is ( )h cN np h  where  

( )
!

c h

c
c

e
p h

h

 

  

is the probability that a company has degree h . A given company of degree h  is connected to a 

given asset of degree al  (i.e, the number of companies investing in this asset) with probability
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/ ( )a chl n , where cn  is the total number of edges in the network. The probability that a failed 

company of degree k  is also connected to the same asset a  is 2( 1) ( 1) / ( )a a ch k l l n  , where the 

factor of 1k   comes from the fact that one of the k  edges of the failed company is already 

connected to the asset that caused its failure. Thus, we have 

2 2

( 1)( 1)
( , | ) .a a

c

hl k l
P h k a

n

 
  

Now, we compute the probability ( | , )F h k a . When a fraction as  of an asset is sold, the asset 

price is reduced to (1 ( ))af s  of its original value. Thus, the condition for a company of degree k  

to fail is  

(1 ( )) 1 , i.e. ( ) .a af s f s      

In (Caccioli et al., 2014), as  is calculated as follows. Let ( )v a  denote the set of companies 

investing in asset a , the fraction of a  that is liquidated is  

( )

1/

1/
a

m

m v a

k
s

k





 

where mk  denotes the degree of company m . This formula is obtained under the simplifying 

assumption that each company has the same investment proportion for different assets that it invests 

in, i.e., the nonzero elements of each row of matrix A  have the same value. Besides, the investment 

matrix A  in (Caccioli et al., 2014) has the property
1

1
m

ij

j

A


 . This further deduces that the 

non-zero elements in the i -th row of matrix A  are all 1/ h  if the degree of the i -th company is 

h . Following Caccioli et al., 2014, in order to derive the conditional probability, we adopted a similar 

approach by assuming that the proportion of each asset held by different companies that invest in it is 

the same. This simplifying assumption does not affect the outcome since we have confirmed it by 

simulation. Thus, combining the properties of 
1

1
m

ij

i

A


 , we deduce that the non-zero elements in the
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j -th column of matrix A  are all 1/ k  if the degree of the j -th asset is k , which gives  

( | , ) (1 (1/ )) (1 ){ }F h k l f l      

where l  denotes the degree of asset that a given company of degree h  and a given company of 

degree k  are both connected to.   is the Heaviside step function, ( ) 1x   if 0x   and zero 

otherwise. Furthermore, it is easy to get 

2 2

( 1)( 1)
( , | ) ( , | ) ( )a a

l a

c

hl k l
P h k l P h k a M mp l

n

 
   

where al l  and ( )l aM mp l  is the number of assets of degree l  and  

( ) .
!

a l

a
a

e
p l

l

 

  

Thus, expression of hkN  can be transform to be: 

1

2 2
1

2
1

( , | ) ( | , )

( 1)( 1)
(1 (1/ )) (1 )

! !

( 1)
( 1) (1 (1/ )) (1 ) .

! !

{ }

{ }

c a

c a

n

hk h

l

h ln
c a

l c

h ln
c a

lc

N N P h k l F h k l

e ehl k l
n f l

h n l

e eh k
l l f l

h n l

 

 

 




 






 



 





 
    


     







 

For the networks in which all the companies have the same degree k , the matrix N  will reduce 

to the scalar quantity: 

*

*

( 1, ( / ))
( 1) ( / )

( 1)

l k n m
N k k n m

l

 
 

 
 

where  

* ,
( )

l
log




   

1

0
( ) x tx t e


     

is the gamma function, and  
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1( , ) x t

z
x z t e


     

is the incomplete Gamma function.

 

Appendix B. The regression results for Poisson degree distribution random 

networks 

The data are obtained from the simulations of 
610  randomly generated networks of poisson 

degree distributions for company nodes with 1000n m  . For any large-scale network with a lot 

of nodes, when the node degree is moderate, the network will become fully connected and the 

contagion will become very weak. This character is called phase change of network (Jackson, 2008). 

As an example, Caccioli et al. (2014) consider only networks with average company degree from 0 to 

12 for networks with 
410  company nodes. Thus, it is imperative not to choose a large degree of 

companies. In our simulation, d is randomly generated from{1,2, ,20}. In the simulation process, 

there will be cases that the sum of a column of the investment matrix A  is 0. After removing these 

data, there are 650993 observations left. 

The regression results for models not including   are shown in Table B. 1, and the results for 

models including   are shown in Table B. 2. The statistical significant levels of all coefficients are 

less than 0.001, except for   and 
2( / )SC n   in model 4 of Table B. 2. All the regression 

coefficients in Table B. 1: Regression results of random networks with 1000 n m , are consistent with 

those of the low dimensional network (see Table 3 in the main text). But the regression coefficients 

in model 4 and model 5 are slightly different from those in Table 4, due to the additions of   and 

2( / )SC n  . The results suggest, for a large-scale network, the introduction of variables d ,  ,   in 

the model has a greater influence on the role of   as compared to the low dimensional network. 
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Table B. 1: Regression results of random networks with 1000 n m  
 

Variable model 1 model 2 model 3 model 4 model 5 model 6 

Constant -8.746 -27.852 -30.799 -32.553 -33.050 -36.747 

 (0.027) (0.155) (0.175) (0.179) (0.183) (0.238) 
2SC n  0.082 22.702 26.194 25.851 27.032 27.708 

 (0.011) (0.171) (0.194) (0.459) (0.212) (0.216) 

d  0.018 0.016 0.165 0.459 0.465 0.465 

 (0.001) (0.001) (0.003) (0.007) (0.007) (0.007) 

  9.226 29.940 30.965 30.978 31.320 39.104 

 (0.027) (0.170) (0.175) (0.175) (0.178) (0.413) 


 

0.468 2.263 2.333 2.337 2.351 3.324 

 (0.005) (0.021) (0.021) (0.021) (0.021) (0.032) 

2( )SC n   
 

 
-24.542 
(0.189) 

-25.666 
(0.195 ) 

-25.637 
(0.195 ) 

-26.053 
(0.198) 

-26.876 
(0.205) 

2( )SC n   
 

 
-2.138 
(0.024) 

-2.215 
(0.024) 

-2.217 
(0.024) 

-2.234 
(0.024) 

-2.234 
(0.024) 

2( )SC n d  
 

  
-0.181 
(0.004) 

-0.158 
(0.004) 

-0.161 
(0.004) 

-0.161 
(0.004) 

2d  
 

   
-0.011 
(0.000) 

-0.011 
(0.000) 

-0.011 
(0.000) 

2 2( )SC n  
 

    
-0.707 
(0.048) 

-0.687 
(0.048) 

2  
 

     
-4.822 
(0.230) 

2  
 

     
-0.321 
(0.008) 
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Table B. 2: Regression results ( included) 
 

Variable model 1 model 2 model 3 model 4 model 5 

Constant -1.248 

(0.008) 

-1.863 

(0.010) 

-9.191 

(0.032) 

-30.852 

(0.205) 

-37.340 

(0.274) 

2SC n  0.080 0.809 0.705 26.060 28.420 
 (0.010) (0.012) (0.013) (0.227) (0.262) 

  0.015 0.080 0.038 0.000④ -0.003 
 (0.000) (0.001) (0.000) (0.001) (0.001) 

2( )SC n    -0.074 -0.044 -0.001⑤ 0.003 
  (0.001) (0.001) (0.001) (0.001) 

d    0.024 0.165 0.464 
   (0.001) (0.003) (0.007) 

    9.058 31.019 39.742 
   (0.033) (0.214) (0.463) 


 

  0.452 2.334 3.399 
   (0.005) (0.025) (0.036) 

2( )SC n      -25.514 

(0.236) 

-27.600 

(0.254) 

2( )SC n      -2.185 

(0.028) 

-2.313 

(0.029) 

2( )SC n d     -0.180 

(0.004) 

-0.160 

(0.004) 
2d      -0.011 

(0.000) 
2 2( )SC n      -0.751 

(0.050) 
2      -4.810 

(0.254) 
2      -0.323 

(0.008) 

 

 

                                                             
④ the statistical significance is 0.939 

⑤ the statistical significance is 0.075 
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