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Abstract

In this study, we formulate the adjusted gradient tests when the alternative model used to
construct tests deviates from the true data generating process for a spatial dynamic panel data
model (SDPD). Following Bera et al. (2010), we introduce these adjusted gradient tests along
with the standard ones within a GMM framework. These tests can be used to detect the presence
of (i) the contemporaneous spatial lag terms, (ii) the time lag term, and (iii) the spatial time
lag terms in an higher order SDPD model. These adjusted tests have two advantages: (i)
their null asymptotic distribution is a central chi-squared distribution irrespective of the mis-
specified alternative model, and (ii) their test statistics are computationally simple and require
only the ordinary least-squares (OLS) estimates from a non-spatial two-way panel data model.
We investigate the finite sample size and power properties of these tests through Monte Carlo
studies. Our results indicates that the adjusted gradient tests have good finite sample properties.
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1 Introduction

In this study, we consider a spatial dynamic panel data model (SDPD) that includes a time lag
term, spatial time lag terms and contemporaneous spatial lag terms. The model is in the form
of a high order spatial autoregressive model by including high orders of contemporaneous spatial
lag term and spatial time lag term. We formulate the GMM gradient tests, the adjusted GMM
gradient tests and the C'(«) test to test hypothesis about the parameters of the time lag term, the
spatial time lag terms and the contemporaneous spatial lag terms.

In the literature, the model specifications and estimation strategies, including the ML, GMM
and Bayesian methods, receive considerably more attention than the specification testing and other
forms of hypothesis tests for the SDPD models. For two recent surveys, see Anselin et al. (2008])
and Lee and Yu (2010b). Lee and Yu (2010aj, 2011, 2012a)), Yu and Lee (2010)), and Yu et al. (2008,
2012)) consider the ML approach for dynamic spatial panel data models when both the number of
individuals and the number of time periods are large under various scenarios. The MLE suggested
in these studies has asymptotic bias and the limiting distributions of bias corrected versions are
properly centered when the number of time periods grows faster than the number of individuals.
Elhorst (2005), Lee and Yu (2015), and Su and Yang (2015) consider the ML approach for the
dynamic panel data models that have spatial autoregressive processes in the disturbance terms.
Parent and LeSage (2011) introduce the Bayesian MCMC method for a panel data model that
accommodates dependence across space and time in the error components. Kapoor et al. (2007
extend the GMM approach of Kelejian and Prucha (2010) to a static spatial panel data model with
error components. Lee and Yu (2014) consider the GMM approach for an SDPD model that has
high orders of contemporaneous spatial lag term and spatial time lag term.

To date, the focus has been on the specification testing for the cross-sectional and the static
spatial panel data models (Anselin et al. [1996; Baltagi and Yang 2013} Baltagi et al. 2003|2007}
Debarsy and Ertur |2010)). In this study, we introduce GMM-based tests for an SDPD model that
has high orders of contemporaneous spatial lag term and spatial time lag term. In particular, we
first consider the GMM-gredient test (or the LM test) of Newey and West (1987)), which can be used
to test the non-linear restrictions on the parameter vector. We also consider the C'(«) test within
the GMM framework for the same model. While the computation of GMM-gradient test requires
an estimate of the optimal restricted GMME, the computation of C(«) test statistic requires only
a consistent estimate of the parameter vector. For both tests, we provide analytical justification
for their asymptotic distributions within the context of our SDPD.

Within the ML framework, Davidson and MacKinnon (1987)), Saikkonen ((1989) and Bera and
Yoon (1993)) show that the usual LM tests are not robust to local mis-specifications in the alternative
models. That is, the usual LM tests have non-central chi-squared distribution when the alternative
model (locally) deviates from the true data generating process. Bera et al. (2010) extent this result
to the GMM framework and show that the asymptotic distribution of the usual GMM-gradient test
is a non-central chi-squared distribution when the alternative model deviates from the true data
generating process. In such a context, the usual LM and GMM-gradient tests will over reject the
true null hypothesis. Therefore, Bera and Yoon (1993) and Bera et al. (2010) suggest robust (or
adjusted) versions that have, asymptotically, central chi-squared distributions irrespective of the
local deviations of the alternative models from the true data generating process.

By following Bera et al. (2010)), we construct various adjusted GMM-gradient tests for an SDPD
model. These tests can be used to detect the presence of (i) the spatial lag terms, (ii) the time lag
term, and (iii) the spatial time lag terms in an SDPD model. Besides being robust to local mis-
specifications, these tests are computationally simple and require only estimates from a non-spatial
two-way panel data model. Within the context of our SDPD, we analytically show the asymptotic
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distribution of robust tests under both the null and local alternative hypotheses. We investigate
the size and power properties of our suggested robust tests through a Monte Carlo simulation. The
simulation results are in line with our theoretical findings and indicate that the robust tests have
good size and power properties.

The rest of this paper is organized in the following way. Section [2] presents the SDPD model
under consideration and discusses its assumptions. Section [3| lays out the details of the GMM
estimation approach for the model specification. Section {| presents the GMM gradient tests, the
adjusted GMM gradient tests and the C'(«) test. Section |5 lays out the details of the Monte Carlo
design and presents the results. Section [f] closes with concluding remarks. Some of the technical
derivations are relegated to an appendix.

2 The Model Specification and Assumptions

Using the standard notation, an SDPD model with both individual and time fixed effects is stated
as

p p
Yo = Z XjoWn;i Yot +v0Yn1—1 + Z PioWniYn -1 + XntBo + cno + agoln + Vi (2.1)
j=1 i=1

for t =1,2,...,T, where Y = (y1¢, Y2t, - - - ,ynt)l is the n x 1 vector of a dependent variable, X,
is the n x k, matrix of non-stochastic exogenous variables with a matching parameter vector Sy,
and Vy; = (vie,. .. ,vnt)l is the n x 1 vector of disturbances (or innovations). The spatial lags of
the dependent variable at time ¢ and ¢ — 1 are, respectively, denoted by W,,;Y,; and W,;Y;, 1
for j = 1,...,p. Here, W,;s are the n x n spatial weight matrices of known constants with
zero diagonal elements, Ao = (A0, .- ., )\pO), and po = (p10s-- -, ppo)/ are the spatial autoregressive
parameters. The individual fixed effects are denoted by c¢,0 = (c10, ..., cn’g)l and the time fixed
effect is denoted by aygly,, where I, is the n x 1 vectors of ones. For the identification of fixed
effects, Lee and Yu (2014) impose the normalization I,,c,o = 0. For the estimation of the model,
we assume that Yo is observable. Let © be the parameter space of the model. In order to
distinguish the true parameter vector from other possible values in O, we state the model with

the true parameter vector 6y = ()\6,(56)/, where dg = (vo,pz),b’(l)),. Furthermore, for notational
simplicity we let S,(\) = (In — Z?:l )\jan), Sp = Sn(No), A, = St ('ygIn + Z?Zl ijnj),
an()\) = anS,jl()\), an = an()\o) and N = n(T — 1).

To avoid the incidental parameter problem, the model is transformed to wipe out the
fixed effects. The individual effects can be eliminated from the model by employing the or-
thonormal eigenvector matrix [FT’T,l,%lT] of Jpr = (IT — %lTli[), where Frr_q is the
T x (T — 1) eigenvectors matrix corresponding to the eigenvalue one and I is the T x 1 vec-
tor of ones corresponding to the eigenvalue zeroE This orthonormal transformation can be

applied by writing the model in an n x T system. Hence, the dependent variable is trans-
formed as [Ynl,Yng, .. .,YnT} X Frr_q = [ * Y "'7Y7T,T—1]v and also [Yno,Ynl, ... ,anT_l] X

nlr *n2>

*,—1 *,—1 *,—1 e .
FT,T—I = [Y’I’EO ), Yn(l ), ey Yn(,T—Z)] . Slmllarly, [an’l, ang, . 7an,T] X FT,T—I =
[(Xori1s Xoiar s Xoip ] for =1, ks [V, Vaz, oo, Var] X Freoy = [V, Vi Ve ]

: 1

and [0410,0420, .. ,ozTo] x Frp_y = [of{o, asg, - .- ,a%ilyo]. Since the column of [FT,T—1, ﬁlﬂ are
orthonormal, we have [cp0, Cno, ..., Cno] X Frr—1 = Onx(T-1)- Thus, the transformed model does
!This orthonormal matrix has the following properties (i) JrFrr-1 = Fror—1 and Jrlr = Orxi, (i)

F:,F’T71FT,T—1 = IT_1 and F:;“7T71ZT = 0<T71>><1, (iii) FT,T—lF:;“VT71 + %lTl:f = IT and (iV) FT,T—lF:;",T71 = JT.
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not include the individual fixed effects and can be written as

p p
=D XoWa Y+ 0, + D pioWa YT + X580 + ool + Vi (2:2)
j=1 j=1

for t =1,...,7 — 1. We consider the forward orthogonal difference (FOD) transformation for
the orthonormal transformation. Hence, the terms in can be explicitly stated as V5, =
(Ti;-il)l/z Vot — 75 ZZ:HJ Vo), YTE;’:II) = (T{t_-&t-l)l/Q [Yoi-1— 75 P Yon], and the others
terms are defined similarly. Let V;;’T_l = ( n*l/,..., ;/T_l)/. Then, Var(V;‘L’T_l) = (F/T,T_l ®
In)E(VnTV;ZT) (FT,T,l ® In) = 0(2].7 ~ by Assumption The transformed model in still
includes the time fixed effect ojyl,, which can be eliminated by pre-multiplying the model with
JIp =1, — %lnl;l. The resulting model is free of the fixed effects, fort =1,..., 7 — 1,

p p
TnY =3 NoduWai Vi + 7000 Y 0 )+ pio Wi Vi) + Ju XiBo + TV (2.3)
j=1 j=1

The consistency and asymptotic normality of the GMME of 0y are established under Assumptions
through

Assumption 1. — The innovations v;s are independently and identically distributed across ¢
and t, and satisfy E (vy) =0, E (v}) = 03, and E |lvie| T < oo for some 1 > 0 for all i and ¢.
Assumption 2. — The spatial weight matrix Wp,;s is uniformly bounded in row and column
sums in absolute value for j = 1,...,p, and || 32F_; XjoWhjlle < 1. Moreover, S, '()) exists and
is uniformly bounded in row and column sums in absolute value for all values of A in a compact
parameter space.

Assumption 3. — Let n > 0 be a real number. Assume that X,;, cno, and oy are non-stochastic

terms satisfying (i) sup,  —» ST Szt < oo for I = 1,... kg, where 24 is the (,t)th
1 T—1

element of the [th column, (ii) lim, 2T=T) 2ot=1 XneJn Xy exists and is non-singular, and (iii)

Supr % 2521 |04t0\2+" < oo and sup,, % > i |C¢o|2+n < 00.

Assumption 4. — The DGP for the initial observations is Yy =
Z;O AZS,;I (cno + Xn,—nBo + a—poln + Vi, 1), where h* could be finite or infinite.
Assumption 5. — The elements of ) _;° ;abs (AZ) are uniformly bounded in row and column

sums in absolute value, where [abs (A,)];; = |An,j]

3 The GMM Estimation Approach

In this section, we summarize the GMM estimation approach for (2.3 under both large T" and finite
T scenarios. The model in ([2.3]) indicates that IVs are needed for W,,;Y, Y(;’:ll)7 and anY(*’fl)

nty *n n,t—1
for each t. Before, we introduce the set of moment functions, it will be convenient to introduce

some further notations. Let Z}, = [er;’__ll), WnlYn(:;’__ll), ey WanTS’*t’__ll), X:;t], Jnr-1 = Ir_1®Jy,
and V3 () = (V;1(6), ..., 7?,,T—1(6)), where V%(0) = Snt (V)Y — Z%,6 — al,,. We consider the

nl

2For interpretations and implications of these assumptions, see Lee and Yu (2014) and Kelejian and Prucha (2010).
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following (m + ¢) x 1 vector of moment functions

V:L;T—l(H)Jn,TflPnLTflJn,Tflv;kz,T—l(9)
Vo 1(0)Jnr-1Pror1dnr-1Vy, r_1(0)
gnt (0) = : . (3.1)
Vi 103 1 Primr 1 Inr Vg 1 (0)
Qn,T—lJn,T%V;,Tq(Q)
In (3.1), Ppjr—1 = IT—1 ® P,j, where P,; is the n x n quadratic moment matrix satisfying
tr (Py;Jn) =0forj=1,...,m,and Q,r-1 = (Q;ﬂ, cel Q;MT_I) is the IV x ¢ liner IV matrix such
. . gt (0
that ¢ > k;z+2p+1. Under Assumptlons it can be shown that %98%50) = DnT‘FRnT‘*'O(\/%),
where D,,r is O(1) and R, is O(%)H
Let vecp(-) be the operator that creates a column vector from the diagonal elements of an input
square matrix. For the optimal GMM estimation, we need to calculate the covariance matrix of
moment functions E(g;T (00) gn (00) ), which can be approximated by

D 4 %Anm,T 0m><q (3 2)
=0 / )

0 Ogxom ;%%QH,T,lJn,Tq Qnr-1

L (b1 38 o O

N 0q><m 0q><m

where Wnm, T = [VeCD (Jn,T—lpnl,T—lJn,T—1)7 -+, VECp (Jn,T—anm,T—lJn,T—l)] >
Apn - [vee(In 1Py p_ 1 Ing1), - vee( o 1Py o Inro1)] X
[vec(JnyT,le,LLT_lJn,T,l), e ,vec(Jn7T,1sz7T_1Jn,T,1)], where A5 = A, + A,n for any

square matrix A,,.
Let X, be a consistent estimate of ¥,,7. Then, the optimal GMME is defined by

~ ~

ur = axgmingee gur (0) Spibgur (0) (3:3)

Under Assumptions [1f- |5, Lee and Yu (2014) show that when both 7" and n tend to inﬁnityEl:
~ d ) ;o —1
VN By — 60) S N <o, [phmn,%m DnTzn}DnT} ) . (3.4)

When T is finite, the GMME in (3.4)) is still consistent and unbiased but its limiting covariance
matrix is different, since the additional term R, = O(%) does not vanish. Hence, when T is finite,

the asymptotic covariance matrix of v N (é\nT — 90) is given by [plimn o (DnT + RnT)IET_L% (DnT +
-1
Ror)]

3The explicit forms for D,r and R,r are not required for our testing results, hence they are not given here. For
these terms, see Lee and Yu (2014]).

4 Lee and Yu (2014) state the identification conditions. Here, we simply assume that the parameter vector is
identified.
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4 The GMM Gradient Tests

In this section, we consider various version of the gradient test (LM test). Let r : RZPThe+1 5 REr

be a twice continuously differentiable function, and assume that R(0) = 85(?) has rank k.
Con81der the 1mphc1t restrictions denoted by the null hypothesis Hy : r(@og = 0. Define
HnTr = argmaxyg.,(g)—o} Qn, where Q, = g7 (0) EnTgnT (0), as a restricted (or constrained) opti-
mal GMME. )

In order to give a general argument, consider the following partition of 6 = (Bl,w/,gb’) ,
where 1) and ¢ are, respectively, ky; x 1 and kg x 1 vectors such that ky + ks, = 2p + 1.
In the context of our model, ¢ and ¢ can be any combinations of the remaining parameters,
namely, (/\/,V,pl),. Let G, = %aggiz,(a), C. = G, (0) nTgnT( ), where a € {f,9,¢} and

Gor = ~gnr- Define G(0) = (Gs(0), Gy (0), Gy (0)), and C(0) = ( ), C’;p 9), C:z) ),
and B(0) = G ()S,1G(6). Finally, let G, = plim, 700 10z for o € {B,1,¢}. Define
g = (Qﬁ, Gy, g¢) and H = plim,, p_,, ( nT + Rnt) nT( nT + Rnt). We consider the following
partition of B(#) and H:

Bg (0) Bgy (0) Bgg(0) Hp  Hpy Hpy
B(0)= | Bys(0) By(0) Byy(0) |, H=|Hys Hy Hys|- (4.1)
By (0) Byy (6) By (0) Hop Heoy Mg

With the notation introduced, the standard LM test statistic for Hy : r(6y) = 0 is defined in
the following way (Newey and West |1987)):

LM =N C (81,) B (0nr.)C (Onrsr).- (4.2)

A similar test is the C(«) testﬂ This test is designed to deal with the nuisance parameters when
testing the parameter of main interest (Bera and Bilias 2001). Lee and Yu (2012b) investigate
the finite sample properties of this test for a cross-sectional autoregressive model. Their simula-
tion results indicate that this test can be useful to test the possible presence of spatial correlation
through a spatial lag in the spatial autoregressive (SAR) model. Here, we provide a general de-
scription of this test within the context of our SDPD model. By the implicit function theorem,
the set of k, restrictions on 6 can also be stated as h(&) = 6o, where h : R? — RZPtke+tl
is continuously dlfferentlable §o contains the free parameters, and g = 2p + ky + 1 — k. Define
fnT = argming g7 (h(€)) EnTgnT (h(£)). Then, we have QnTT = h@nT) Let &, be a consistent es-

timate of &. Denote G¢ (0) = L aggT( L, Ce (0) = Gy (0) S} (0), and Be (0) = Gy (0) S,1Ge (6).
Following the formulation suggested by Breusch and Pagan (1980), we state the C'(«) test statistic
in the following way

Cla) = N[O (h(&ur)) B (MEur)) C (Mnr)) — Co(h(Enr)) B (h(€nr)) Ce ((Enr))]. (4.3)

In (4.3)), it is important to note that S,LT can be any consistent estimator. In the case where énT is an
optimal GMME, the C(«) statistic reduces to LM statistic, since C¢ (h(gnT)> =0 by deﬁnitionﬁ
The asymptotic distributions of C'(a)) and LM are given in the following proposition.

®Breusch and Pagan (1980) call this test the pseudo-LM test, since its test statistic is very similar to the form of
the LM statistic.

5Tn the context of ML estimation, the C(c) statistic reduces to the LM statistic when the restricted MLE is used.
For details, see Bera and Bilias (2001]).



Proposition 1. — Given our stated assumptions, we have the following results under Hy :

’I”(@o) =0:
LM% Xiw and C(a) 4 X%r‘ (4.4)
Proof. See Section O

Next, we consider the following joint null hypothesis:
Hy: 2 =0,p0=0,v% =0, Hpz: At least one parameter is not equal to zero. (4.5)

Under the joint null hypothesis, the model reduces to a two-way non-spatial panel data model which
can be estimated by an OLSE (for the estimation of two-way models, see Baltagi (2008|) and Hsiao
(2014)). The joint null hypothesis can be tested either by LM or C(c). Let 6,7 be a constrained
optimal GMME under the joint null hypothesis, and let /Q\RT be any other consistent estimator of
0 under the null hypothesis. As stated in Newey and West (1987)), the LM test statistic should be

formulated with the optimal constrained GMME. Let ¢ = ()\l, 0, 7)/. Then, the LM test statistic
for the joint null hypothesis can be expressed as

LMy (Bur) = N C(8ur) [Bo.s (8ur) ] 7' Co (Onr). (4.6)
where  Cy(0ur) = (Cy(fax), Cy(Bur). C5(Bur)s  Bos(Bur) = By(Bur) -
By (Onr) By (On) Bgo (Onr), Bop(Onr) = Buy(Onr) = (Bag(Onr), Byg(Onr), Blg(Onr)) .

and
p(enT) By, nT) : (4.7)

Similarly, the consistent estimator 6,7 can be used to formulate the following C () test for the
joint null hypothesis:

Cy (@) = N [C' Buz) B (Bur)C Our) — C ) B;" (Bur) Cs (Brr) . (4.8)

The properties of the LM test can be investigated under a sequence of local alternatives (Bera
and Bilias 2001; Bera and Yoon [1993} Bera et al. [2010; Davidson and MacKinnon [1987; Saikkonen
1989)). Bera and Yoon (1993)) and Bera et al. (2010) suggest robust LM tests when the alternative
model is misspecified. We consider similar robust LM tests within the context of our model. In
order to give a general result, we consider the LM test for Hg) : g = 0 when Hg : ¢o = 0, which
can be stated as

LMy = N Cy(0ur) [Bys (ur)] ™ Cyp (Bur), (4.9)

where Bwﬂ(énT) = By (énT) — Byg (énT)Bgl (énT)Bﬁq/, (énT) We investigate the asymptotic
distribution of LM, under the sequences of local alternatives HK D = Py + 0y/ VN, and
Hﬁ = ¢o + s/ VN, where (1/16, qbz)) is the vector of hypothesized values under the null,

and 6, and J, are bounded vectors. The distribution of (4.9), under Hﬁ and Hﬁ, can be in-
vestigated from the first order Taylor expansions of pseudo-scores Cy, (HnT) and Cpg (HnT) around
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0* — (5(')’ wé + 5;0/\/N, gblo + 5;)/\/]V)/ These expansions can be written as

VN Cy(Bur) = VN Cy(07) — Gy (0°) S, 2Gs (0) 6, — Gy (0%) S,4G (8) 64 (4.10)
+ VN Gy (07 £,7G5 (9) (Bur — Bo) + 0,(1),
VN Cs(0ur) = VN C5 (07) = G (0) £,7.Gly (8) 65 — G (0) £,7.Giy (6) 0 (4.11)

+ VNG5 (0")S1G5 () (Bur — Bo) + 0p(1),

where 8 lies between 8,7 and 6*. Note that 8* = 6y 4 0,(1) implies 6 = 6y + 0,(1). By Lemma
we have B(0*) = H + 0,(1), and G (0*)Z,7 = G Spr + 0,(1). Then, from ([@10) and [@11)), we get
the following fundamental result:

VN Cy(Onr) = [Gy St — HupH 5 G55 1] (4.12)

1
— (0

\/Ng T( 0)

— [Hy — HygMy Hpp |0y — [Hps — HyupHy Has|0g + 0p(1).

By Lemma we have \/%gnT(Ho) 4 N (0, plim,,_,o, ¥pr), and thus (4.12) implies that
~ d —

VN Cy(0nr) = N( = Hypy — Hyssds, Hyp), where Hyp = [Hy — HygHy Hpy], and

Hpps = [Hpo — ngHngM]. Hence, LM¢(0~,LT) 4 X%w (¥1) under Hﬁ and Hﬁ, where

Y = 5;/)H¢.ﬁ(51/, + 5;117—[¢¢.55¢ + 5;7—[;&(1),5511, + 5;7{;&@5,52‘—[@37—%(,5.5% is the non-centrality parame-

ter We provide the distributional results for LM, (GnT) and its robust version in the following

proposition.

Proposition 2. — Given our stated assumptions, the following results hold.

1. Under Hﬁ and Hﬁ, we have
LMy (Bnr) % X3, (91), (4.13)
where 9 = 8, Hy. g8y + 6, g 506 + S5 My 500 + 0y Hy 51y lsHus. 556
2. Under HX and Hg, we have
LMy (7)) % X3, (92), (4.14)
where 99 = 5;7—[1/,.55,&.
3. Under Hg’ and Hi, we have
LMy (Bnr) < X3, (03), (4.15)
where 03 = 6, M., 5H o 5 Hus 504-

4. Let C';Z' (énT) = [C’¢ (énT)N_ By (énT)B;é (én}ﬂ)C’(zg (é"TN)] be the adjus:ced pseudo:score,
where By.5(0nr) = By (Onr) = Bys (On) Bs " (0nr) Bos (Onr), and Bo.s(0nr) = By (0nr) —

"For the definition of non-centrality chi-square distribution, see Anderson (2003 p.81-82).
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Bys (cgnT)Bﬂ_1 (énT)Bg¢ (énT) Under Hép and irrespective of whether Hg or Hﬁ holds, we
have

LM (Bnr) = N Cf (Bur) [Bys (Onr) — Byos (0ur) By s (Onr) By s (Onr) ]~ C (Our)
43, (4.16)
5. Under H}ﬁ and Hg’, we have
LM (Opr) 4 X%w (Va), (4.17)

/ _1 ’
Proof. See Section O

There are three important observations regarding to the results presented in Proposition
First, the one directional test has a non-central chi-square distribution when the alternative model
is misspecified, i.e., when the alternative model includes ¢g. The non-centrality parameter is
Y3 = 5;H;p¢. 5?—[;.%8?-[1#(1,.55(75, which would be zero if and only if Hys.s3 = 0. Second, the robust
test LMIZ (énT) has a central chi-square distribution even when the alternative model is locally
misspecified. Finally, LM;; (énT) has less asymptotic power than LM,y (énT), since g — 14 > 0

under HK and Hg).
Proposition [2| provides a template that can be used to determine the test statistics for the
following hypotheses:

1. The null hypothesis for the contemporaneous spatial lag terms: Hé‘ : Ao = 0 in the presence
of pg and ~p.

2. The null hypothesis for the spatial lag terms at time ¢ — 1: H{ : pp = 0 in the presence of \g
and 7.

3. The null hypothesis for the time lag term: Hj : 79 = 0 in the presence of \g and py.

In the following, we provide the test statistic for each hypothesis and leave the detailed derivations

to Appendix E We start with Hé‘ : Ap = 0. In the context of this hypothesis, ¢ = (p’,y) . Then,
the one directional test can be written as

LMy (0nr) = N C5\(Bnr) [Brg (0nr)] Cr(0nr), (4.18)

~ = ~ 15 ~ ~ d
where BM;(OnT) = B)\(GnT) - B)\B(enT)Bﬁ1(0nT)Bﬂ)\(9nT)' Then, LM)\(QnT) — X;% (192) un-
der Hj“ and H¢; and LM,\(GNnT) 4, X?) (¥3) under HO)‘ and Hﬁ;, where 99 = 61\H>\.I3(5A and
Y3 = (5;57-[:\(15,5?—[;,167{)\(;).,3%. The robust version is stated as

LM (0ur) = N C3 (0ur) [Brs (0nr) — Bags (0ur) Bok (0nr) Brs (Onr)] "' C(Onr),  (4.19)

where Cf (énT) = [CA (énT) — Byg (énT)B;g (5nT)C¢ (énT)] is the adjusted score. Irrespective
of whether Hg) or Hﬁ holds, LM3 (énT) has an asymptotic X;Q; distribution under Hé‘ by Propo-
sition Finally, under HQ and H(?, we have LM;(éN?nT) 4, Xzz) (94), where ¥4 = 5;\(7—[>\.5 —
Hoag-sH 55 Hg.5) O
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Next, we consider Hf : po = 0. In the context of this hypothesis, ¢ = ()\/,7),. The one
directional test can be written as

LM, (Brr) = N C(fur) [Bps (6ur)] ' Co0ur), (1.20)

where Bp.g(énT) = Bp(énT) — Bpg(énT)Bgl(énT)ng(énT). Proposition implies that

LMP(HNHT) LN X3 (92) under H| and Hg); and LMp(énT) LN Xz (93) under Hf and Hi, where
Yo = 5;)Hp.g<5p and V3 = (5%%%,57-[;[137-{@.5%. The robust version of LM, (énT) is stated as

LAGE (Bur) = N € (Brr) (B (But) ~ By (Our) B33 0ur) B (Our)) 7' C (Bar),— (2.21)

where NC’; (HNnT) = [Cp (énT) — By (HNHT)B;% (0~nT)C¢ (énT)] The asymptotic null distribution of
LMy (GnT) is X?), irrespective of whether Hg) or Hﬁ holds. Finally, under H} and Hg , we have
(7 d / _ /
LM (Onr) = x5 (94), where 94 = 6,(Hpp — HppsH 5 5H 5 5)5,)./
Finally, we consider H{ : 7o = 0. Here, we have ¢ = ()\/, p/) . The one directional test can be
written as

LM, (énT) =N C’,‘/ (é”T) [Bv-ﬁ (énT)} _1Cv (énT)’ (4.22)
where By.g(0ur) = By (Our) — Byg(Bur) By (0ur) Bay (0ur). Then, LM, (fur) % x3 (92) un-
der H and Hg; and LMW(énT) 4, x? (¥3) under H and Hﬁ, where ¥y = 5;7-[7.5(57 and
Y3 = 5;H;¢,5H;.}3H7¢.55¢. The robust version is stated as

LM (fur) = N C2 (Bur) [By-5(0ur) — Bogs (9ur) B3 (0ur) Blops (Bur)] 7 C2 (Bur),  (4.23)

where C’; (énT) = [C’7 (énT) — By (énT)B;é (énT)ng (énT)] The asymptotic null distribution of

LM;k (énT) is X%, irrespective of whether Hg) or Hfﬁ holds. Finally, under HZ1 and Hg) , we have
A d / _ /

LM (HHT) = X3 (94), where ¥4 = 0. (Hy.g — Hv¢-BH¢~IBHy¢ﬂ)57-

5 Monte Carlo Simulation

In this section, we describe the details of Monte Carlo design for our analysis. Our design is based
on Lee and Yu (2014) and Yang (2015). For the model in (2.1)), we will focus on the case where

p=1
Yot =AoWn Yo + 'YOYn,tfl + pOWnYn,tfl + XntBo + €no + ol + Ve, (51)

fort =1,2,...,T. We generate the weights matrix according to (i) Rook contiguity and (ii) Queen
contiguity. The n spatial units are randomly permuted and allocated into a lattice of k x m squares,
where m > n. In the Rook contiguity, w;;, = 1 if the spatial unit j is in a square that is adjacent
(left /right /above or below) to the square of the spatial unit 7. In the Queen contiguity, w;;, = 1 if
the spatial unit j is in a square that is adjacent to or shares a corner with the square of the spatial
unit 4. In both cases, W,, is row normalized.

We allow for two exogenous regressors. The first one is generated as X1 s = ¥, +0.01¢ 1, + Uy,
where Upy = 0.5 Uy, t—1+€nt+0.56p -1 and epe ~ N(0px1,21,). Furthermore, ¥, = T, +1/(T+m+
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1)L, €nty where Ty, ~ N(Opx1, ;) and m = 20. Then, X = (X100, Wy Xo,nt) where Xy ~
N(Opx1,Ipn). We set Sy = (1.2,0.6). For the individual effects, we let c,0 = (1/T) Zle X1 nt,
and draw ayg from N(0,1). For the error term Vj,,;, we specify two cases: (i) V;n: ~ N(0,1) and
(i) Vint ~ Gamma(1,1) — 1. The data generating process has 21 + T' periods and the last 7'+ 1
periods are used for estimation. For the sample size, we use the following n and 1" combinations:
(n, T) = {(100,10), (20,200)} [

Under the null model (i.e., A\g =70 = po = 0), (5.1)) reduces to a two-way error model (2WE).
We can employ seven different specifications for the alternative model. We choose to focus on
the following four specifications as they are more common in empirical applications. The first
specification is a dynamic panel data model with no spatial effects (DPD), i.e., when Ao = pg = 0
and vy # 0 in . The second specification is a spatial static panel model (SSPD), i.e., when
Ao # 0 and pp = 7 = 0 in (5.1)). The third specification is a spatial dynamic panel data model
with no spatial-time lag (SDPDW), i.e., when py = 0, Ao # 0 and 79 # 0 in . The final
specification for the alternative modes is the spatial dynamic panel data model (SDPD), i.e., when
po # 0, Ag # 0 and 79 # 0 in . Note that the first three alternative models can be considered
as the null models for the one-directional tests and their robust counterparts in the following
way: (i) the DPD model for LM,, LM}, LMy and LMJ; (ii) the SSP model for LM,, LM}, LM,
and LM;; (iii) the SDPDW model for LM, and LM;. We let Ag, v and po take values from
{-0.3,-0.1,,—0.05,0.05,0.1,0.3} for the alternative models. Hence, the DPD, SSPD, SDPDW
and SDPD specifications yield respectively 6, 6, 16 and 216 combinations. Resampling is carried
out for 5,000 times.

Table 1] summarizes the null hypotheses and the respective test statistics along with the source
of misspecification in each hypothesis considered in the Monte Carlo study. For example, the source
of misspecification for Hy : Ag = 0 is the presence of py and 7 in the alternative model. All test
statistics presented in Table [1| are computed by the estimates from the 2WE model. For the test
statistics, we also need to specify the set of moment functions. The set of linear moments consists
of Qui = (Yni—1, WaYnu1, WaYno1, Xoiy, W X5, W2XF ) for t = 1,2,...,T — 1. For the
quadratic moments, we employ P, = W,, — tr(W,J,,)/(n — 1)J,, and Pno = W2 — tr(W2J,)/(n —
1)J,. Note that we do not consider the conditional tests that require a restricted GMME (see
Proposition for the computation of the test statistics. Here our aim is to compare the performance
of the robust tests with their non-robust counterparts once the estimates of the simple 2WE model
are available.

5.1 Results on Size Properties

A P value discrepancy plots is generated from the empirical distribution function (edf) of p values.
To see how, let 7 denote a test statistic, and 7; for j = 1,...,R be the R realizations of 7 generated
in a Monte Carlo experiment. Let F'(z) denote the cumulative distribution function (cdf) of the
asymptotic distribution of 7 evaluated at the level x. Then, the p value associated with 7;, denoted
by p(7j), is given by p(7;) = 1 — F(75). An estimate of the cdf of p(7) can be constructed simply
from the edf of p(7;). Consider a sequence of levels denoted by {z;} for i = 1,...,m from the
interval (0, 1). Then, an estimate of the cdf of p(7) is given by F(z;) = 2311 1(p(rj) < xz)/RH
The P value discrepancy plot is created by plotting ﬁ(azl) — x; against x; under the assump-
tion that the true data generating process is characterized by the null hypothesis. To asses the

8For the sake of brevity, we only provide estimation results for (n, T') = (100, 10).
9We choose the following sequence and focus on the levels smaller than or equal to 0.1: {z;}/~; = {0.001 : 0.001 :
0.010 0.015:0.005:0.990 0.991 : 0.001 : 0.999}.
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Table 1: Summary of test statistics

Null hypothesis Parameter Test statistic
Spatial time lag: po Time lag: vo

Ho:Xo=0 Set to zero Set to zero LM, in

Ho: X =0 Unrestricted, not estimated Unrestricted, not estimated LMJ in (4.19)
Contemporaneous spatial lag: Ao Time lag: vo

Ho:po=0 Set to zero Set to zero LM, in

Ho:po=0 Unrestricted, not estimated Unrestricted, not estimated LM; in (IED
Contemporaneous spatial lag: Ao Spatial time lag: po

Ho:7v% =0 Set to zero Set to zero LM, in

Ho:v =0 Unrestricted, not estimated Unrestricted, not estimated LM in ([#23)

H()Z)\()ZO,,OQ:O,’YQ:O - - LMJin

Ho:X0=0,p0=0,7%=0 - - CJin

significance of discrepancies in a P value discrepancy plot, we construct a point-wise 95% confi-
dence interval for a nominal size by using a normal approximation to the binomial distribution
(Anselin et al. [1996). Let a denote the nominal size at which the test is carried out. Using a
normal approximation to the binomial distribution, a point-wise 95% confidence interval centered
on « would be given by a £ 1.96 [a(1 — oc)/R]l/Q, and thus it would include rejection rates be-
tween o —1.96 [a(1 — o) /R]"? and a4 1.96 [a(1 — ) /R]"/%. We use this approach to insert a 95%
confidence interval in a P value discrepancy plot. In the discrepancy plots, the interval will be
represented by the red solid lines.

Table 2: Empirical sizes when Ho: The DPD model and (n,T) = (100, 10)

Normal Distribution Gamma Distribution
Yo LM, LMI*, LM, LM} LM, LM,*) LM, LM}
Rook

-0.30 0.046 0.015 0.042 0.005 0.047 0.016 0.042 0.008
-0.10 0.044 0.038 0.042 0.039 0.040 0.042 0.041 0.037
-0.05 0.040 0.049 0.048 0.051 0.043 0.045 0.047 0.046
0.05 0.061 0.046 0.061 0.056 0.057 0.051 0.056 0.052
0.10 0.074 0.042 0.064 0.039 0.070 0.041 0.061 0.043
0.30 0.135 0.028 0.100 0.024 0.128 0.035 0.099 0.028
Queen
-0.30 0.063 0.020 0.053 0.012 0.062 0.018 0.049 0.011
-0.10 0.044 0.047 0.046 0.043 0.039 0.038 0.044 0.038
-0.05 0.049 0.053 0.051 0.048 0.044 0.048 0.042 0.044
0.05 0.055 0.046 0.058 0.051 0.062 0.049 0.055 0.050
0.10 0.075 0.050 0.060 0.050 0.070 0.045 0.061 0.043
0.30 0.099 0.012 0.062 0.017 0.083 0.015 0.051 0.020

To save space, the size results based on the 2WE model will be presented through the P value
discrepancy plots whereas the size results based on the DPD, SSPD and SDPDW models will be
summarized in tables. Note that in our design we allow for 6 different values for g, 79 and pg,
which would yield 216 P value discrepancy plots for each. Hence, when the null model is one of
the DPD, SSPD and SDPDW models, we focus solely on the nominal size of 5% and provide size

12
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Figure 1: Size discrepancy plots when (n,T") = (100, 10).

230 deviations at this level only. The general observations on the size properties of tests from Figure
and Tables [2| through [4] are listed as follows.

232 1. Fisgure [1] presents the size discrepancy plots when the null model is 2WE. The results show
that all tests have little size distortions and their size discrepancies generally lie inside the 95%

234 confidence interval. The size discrepancies are relatively larger in the case of queen weight
matrix and non-normal errors.

236 2. Table [2] provide some evidences on the magnitude of size distortions as a function of the size
of local misspecification of the alternative model, the DPD model. One would expect to see
238 robust versions of the one directional tests, LM; and LMY, to perform better than LM, and

LM, respectively, when the magnitude of misspecification is small. Overall, this seems to

13
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be the case. For example, when the value of ~p is 0.05 in absolute value in the true model,
the actual size of the robust tests are very close to the nominal size of 5%. However, as the
misspecification deteriorates, this property of the robust tests vanish as expected.

. Similar results hold for Table [3| as well, the robust versions of the one directional tests, LM;

and LMfy, perform better than LM, and LM,, respectively, when Ag deviates locally from
zero in the null model.

. Tables [4| and [5( confirms our previous findings: LM; perform better than LM,, when A\g and

vo deviate locally from zero. For example, in Table [4, when true values of \g and 7y are 0.1,
the actual size of LM; is 0.045 at the 5% level in the case of normal errors, whereas the actual
size of LM, is 0.985.

. Recall that the robust tests use the residuals from the estimation of 2WE model and imple-

ments a correction on the test statistics for a local misspecification of the alternative model,
i.e., ignoring the spatial component(s). The bias in these residuals depends on the strength
of spatial dependence as well as on the connectedness of the weights matrix. Therefore, we
can expect poor performance for the robust tests as spatial parameters deviate from zero
substantially in the alternative model.

. Finally, Tables and [5|indicate that as the temporal dependence strengthens, i.e., the mis-

specification in vy gets larger in absolute value, the performance of the robust one-directional
tests deteriorates significantly relative to their non-robust counterparts. This is not surprising
in the sense that the bias in the residuals from the estimation of 2WE model increase as the
dependence over time strengthens.

Table 3: Empirical sizes when Ho: The SSPD model and (n,T) = (100, 10)

Normal Distribution Gamma Distribution
Ao LM, LM; LM, LMfy LM, LM; LM, LMZ;
Rook

-0.30 1.000 0.791 1.000 0.999 1.000 0.793 1.000 1.000
-0.10 0.913 0.051 0.334 0.184 0.913 0.048 0.335 0.168
-0.05 0.394 0.053 0.087 0.071 0.379 0.052 0.085 0.065
0.05 0.326 0.048 0.077 0.068 0.336 0.051 0.073 0.064
0.10 0.853 0.051 0.204 0.136 0.863 0.053 0.215 0.143
0.30 1.000 0.730 0.998 0.997 1.000 0.708 0.999 0.998
Queen
-0.30 0.994 0.134 0.604 0.431 0.997 0.144 0.614 0.451
-0.10 0.393 0.058 0.070 0.068 0.374 0.055 0.072 0.064
-0.05 0.134 0.052 0.056 0.057 0.132 0.047 0.049 0.049
0.05 0.171 0.046 0.073 0.063 0.187 0.045 0.060 0.054
0.10 0.550 0.053 0.103 0.071 0.539 0.055 0.116 0.073
0.30 0.999 0.202 0.972 0.970 0.999 0.195 0.972 0.969

5.2 Results on Power Properties

To investigate power properties of all tests, we use the approach described in Davidson and MacK-
innon (1998)) to generate the size power curves against the actual size obtained under the cor-
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Table 4: Empirical sizes when Ho: The SDPDW model and (n,7T) = (100, 10): Rook

Normal Distribution Gamma Distribution

Ao Y0 LM, LM7P LM, LM7
-0.30 -0.30 0.580 0.299 0.578 0.310
-0.30 -0.10 0.999 0.833 1.000 0.831
-0.30 -0.05 1.000 0.831 1.000 0.830
-0.30 0.05 1.000 0.772 1.000 0.778
-0.30 0.10 1.000 0.885 1.000 0.892
-0.30 0.30 1.000 1.000 1.000 1.000
-0.10 -0.30 0.120 0.045 0.118 0.043
-0.10 -0.10 0.466 0.039 0.466 0.039
-0.10 -0.05 0.734 0.046 0.751 0.048
-0.10 0.05 0.971 0.048 0.974 0.042
-0.10 0.10 0.990 0.047 0.987 0.049
-0.10  0.30 1.000 0.739 0.999 0.739
-0.05 -0.30 0.073 0.025 0.067 0.024
-0.05 -0.10 0.128 0.044 0.137 0.045
-0.05 -0.05 0.242 0.050 0.255 0.047
-0.05 0.05 0.515 0.051 0.502 0.048
-0.05 0.10 0.612 0.049 0.610 0.046
-0.05 0.30 0.819 0.219 0.835 0.215
0.05 -0.30 0.068 0.018 0.062 0.015
0.05 -0.10 0.121 0.046 0.115 0.036
0.05 -0.05 0.207 0.049 0.208 0.053
0.05 0.05 0.474 0.051 0.469 0.053
0.05 0.10 0.557 0.042 0.585 0.045
0.05 0.30 0.598 0.022 0.597 0.017
0.10 -0.30 0.133 0.031 0.134 0.035
0.10 -0.10 0.360 0.042 0.347 0.051
0.10 -0.05 0.639 0.053 0.639 0.056
0.10 0.05 0.956 0.054 0.957 0.055
0.10 0.10 0.985 0.045 0.985 0.046
0.10 0.30 0.990 0.151 0.991 0.157
0.30 -0.30 0.763 0.296 0.764 0.302
0.30 -0.10 0.976 0.746 0.970 0.768
0.30 -0.05 1.000 0.757 1.000 0.754
0.30 0.05 1.000 0.643 1.000 0.652
0.30 0.10 1.000 0.637 1.000 0.627
0.30 0.30 1.000 1.000 1.000 1.000

responding null hypothesis. Therefore, two experiments need to be carried out. First, the data
generating process under the alternative hypothesis is used to generate the edf of p-values. We
denote the resulting edf by F(z). Second, the data generating process satisfies the null hypothesis,
and as before ﬁ(m) denotes the resulting edf of p-values. Then, a size-power curve is generated by
plotting F'(x;) against F (x;) for i = 1,...,m. As stated in Davidson and MacKinnon (1998)), the
size-power curve avoids the size adjustments made to generate the power curves.

15



Table 5: Empirical sizes when Ho: The SDPDW model and (n,T") = (100, 10): Queen

Normal Distribution Gamma Distribution
Ao Y0 LM, LM7P LM, LM7
-0.30 -0.30 0.223 0.021 0.227 0.017
-0.30 -0.10 0.670 0.125 0.662 0.118
-0.30 -0.05 0.935 0.153 0.934 0.153
-0.30 0.05 1.000 0.105 1.000 0.106
-0.30 0.10 1.000 0.067 1.000 0.065
-0.30 0.30 1.000 0.418 1.000 0.432
-0.10 -0.30 0.046 0.021 0.041 0.021
-0.10 -0.10 0.126 0.042 0.120 0.043
-0.10 -0.05 0.230 0.049 0.234 0.048
-0.10 0.05 0.541 0.045 0.533 0.050
-0.10 0.10 0.638 0.048 0.636 0.043
-0.10  0.30 0.675 0.021 0.670 0.019
-0.05 -0.30 0.043 0.020 0.045 0.020
-0.05 -0.10 0.058 0.039 0.062 0.042
-0.05 -0.05 0.092 0.048 0.094 0.047
-0.05 0.05 0.179 0.050 0.175 0.051
-0.05 0.10 0.221 0.053 0.210 0.049
-0.05 0.30 0.209 0.009 0.208 0.010
0.05 -0.30 0.121 0.024 0.117 0.021
0.05 -0.10 0.065 0.042 0.061 0.041
0.05 -0.05 0.105 0.045 0.114 0.043
0.05 0.05 0.264 0.050 0.274 0.050
0.05 0.10 0.344 0.049 0.364 0.042
0.05 0.30 0.477 0.049 0.484 0.047
0.10 -0.30 0.230 0.032 0.220 0.035
0.10 -0.10 0.157 0.044 0.153 0.042
0.10 -0.05 0.328 0.047 0.326 0.043
0.10 0.05 0.713 0.056 0.732 0.050
0.10 0.10 0.821 0.048 0.821 0.049
0.10 0.30 0.912 0.178 0.918 0.187
0.30 -0.30 0.866 0.028 0.858 0.030
0.30 -0.10 0.783 0.170 0.789 0.170
0.30 -0.05 0.977 0.194 0.974 0.204
0.30 0.05 1.000 0.231 1.000 0.241
0.30 0.10 1.000 0.350 1.000 0.351
0.30 0.30 1.000 1.000 1.000 1.000
270 For all our proposed tests, the power curves can be generated in several ways. For example,

the power curves can be generated when the null model is the 2WE model, and the alternative can
a2 be one of the DPD, SSPD, SDPDW and SDPD model. We will refer to this as Case 1. However,
this approach would yield several plots, for instance, 216 plots for the 2WE-SDPD combination.
21+ To save space, we instead summarize the results in Tables [6] through [8] where the level for all tests
is 5%. As we mentioned in the Monte Carlo design, the DPD, SSPD and SDPDW models can be
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considered as null models for one-directional tests and their robust counterparts. Therefore, we can
generate size power curves for these one directional tests, where the null model is one of the DPD,
SSPD and SDPDW models and the alternative model is one of the SDPDW and SDPD models.
We will refer to this as Case 2. For example, we could investigate the size power curves for LM
and LM} where the null model is the DPD model and the alternative model is SDPDW model.
Similarly, for LMy and LM}, the null of the DPD and the alternative of the SDPD would yield
another size power curve. We chose to present some representative cases in Figures |2| and

The general observations from Tables [6] through 8| on the power properties of our proposed tests
for Case 1 are listed as follows. To save space, we only present the normally distributed error case,
as the results for the gamma distributed error case are similar. Also, for the case of the SDPD
model, we focus on some representative tables.

Table 6: Power of tests when Hi: The DPD/SSPD model and Hop: The 2WE model
Yo/Ao LM, LM; LM, LM} LM, LM; LM Cy
Hi: The DPD model
-0.30 0.046 0.015 0.042 0.005 1.000 1.000 1.000 1.000
-0.10 0.044 0.038 0.042 0.039 0.550 0.536 0.376 0.374
-0.05 0.040 0.049 0.048 0.051 0.178 0.171 0.114 0.113
0.05 0.061 0.046 0.061 0.056 0.236 0.231 0.149 0.144
0.10 0.074 0.042 0.064 0.039 0.634 0.616 0.454 0.454
0.30 0.135 0.028 0.100 0.024 1.000 1.000 1.000 1.000
H;: The SSPD model
-0.30 1.000 0.791 1.000 1.000 1.000 0.999 1.000 1.000
-0.10 0.913 0.0561 0.993 0.810 0.334 0.184 0.975 0.973
-0.05 0.394 0.053 0.600 0.303 0.087 0.071 0.443 0.431
0.05 0.326 0.048 0.593 0.343 0.077 0.068 0.426 0.421
0.10 0.853 0.051 0.992 0.844 0.204 0.136 0.965 0.962
0.30 1.000 0.730 1.000 1.000 0.998 0.997 1.000 1.000

1. Table @ shows that the joint test statistics and the one directional test statistics, LM,, LM;
in the case of the DPD model and LMy, LM} in the case of the SSPD model, have desirable

power[H]

2. In Table [6] the robust versions of the one directional tests generally perform similar to their
non-robust counterparts. However, as the value of g increases in the DPD model for example,
we see that the rejection frequencies of LM; remain low whereas LM, over rejects the true null,
confirming the (over) size problem in Table[2| A similar finding applies to LM}. Therefore, in
case of temporal dependence in the data generating process, the robust tests are preferable.
In the case of the SSPD model in Table @ LM% and LM; report relatively smaller rejection
frequencies and hence perform better than the non-robust counterparts. Again, in case of
spatial dependence in the data generating process, the robust tests are preferable.

10WWe only present results based on the rook weight matrix for the power analysis. The results based on the queen
weight matrix are available upon request.

"Note that the one directional tests and their robust counterparts for A and p should have lower rejection frequencies
for the case where Hi: The DPD model and Hp: The 2WE model. Similarly, the one directional tests and their
robust counterparts for v and p should report lower rejection frequencies for the case where Hi: The SSPD model
and Hyp: The 2WE model.
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3. Table[f]reveals similar findings. The joint test statistics and the one directional test statistics,
LM,, LM and LM, LM}, have desirable power. LM}’s rejection frequency remains low for
smaller deviations of A\g and vy from zero, whereas LM, over rejects the true null, confirming
the (over) size problem in Table 4l Therefore, in case of spatial and temporal dependence in
the data generating process, the robust tests are preferable.

4. Tables[8] [9]and shows that all one directional tests and the joint tests have proper power.
The non-robust tests have higher power relative to their robust counterparts in some cases
but the differences are generally negligible.

For all our proposed tests, the power curves can be generated in several ways in Case 2. First,
one can obviously consider the 2WE model as the null model and the alternative can be one of the
DPD, SSP, SDPDW and SDPD models. We will not generate size power curves for these cases as
we already summarized the results in Tables [6] through Furthermore, for the one directional
tests and their robust versions, one of the DPD, SSPD and SDPDW models can be the null model
and one of the SDPDW and SDPD models as the alternative model. For example, we can generate
a size power curve for LM and LM} using the DPD model as the null model and the SDPDW
model as the alternative. Another size power curve for LMy and LM} can be obtained from the
DPD model as the null model and the SDPD model as the alternative['Z]

In Figures [2 and |3} the lines with the red color correspond to the non-robust one directional
test whereas the lines with blue color correspond to their robust counterparts. Different markers
are used to identify varying true values of the spatial parameter in the corresponding alternative
model. The general observations on the power properties of our proposed tests are listed as follows.

12The experiments based on the gamma distributed errors are not presented, because results are similar to the
experiments based on the normally distributed errors.
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Table 7: Power of tests when H; : The SDPDW model and Ho: The 2WE model

M 1 LM, LM; LM, LM§ LM, LM? LM, C,
030 -0.30 0.580 0.299 1.000 1.000 0.979 0.201 1.000 1.000
0.30 -0.10 0.999 0.833 1.000 1.000 0.964 0.984 1.000 1.000
0.30 -0.05 1.000 0.831 1.000 1.000 1.000 0.999 1.000 1.000
030 0.05 1.000 0.772 1.000 0.995 1.000 1.000 1.000 1.000
030 0.10 1.000 0.885 1.000 0.992 1.000 1.000 1.000 1.000
030 0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 -0.30 0.120 0.045 0.946 0.877 1.000 1.000 1.000 1.000
0.10 -0.10 0.466 0.039 0.983 0.936 0.274 0.283 0.978 0.980
0.10 -0.05 0.734 0.046 0.990 0.901 0.088 0.075 0.962 0.963
0.10 0.05 0.971 0.048 0.995 0.628 0.754 0.525 0.989 0.987
0.10 0.10 0.990 0.047 0.999 0.483 0.965 0.864 0.998 0.998
0.10 0.30 1.000 0.739 1.000 0.945 1.000 1.000 1.000 1.000
0.05 -0.30 0.073 0.025 0.404 0.212 1.000 1.000 1.000 1.000
0.05 -0.10 0.128 0.044 0512 0.394 0.481 0.477 0.646 0.663
0.05 -0.05 0.242 0.050 0.553 0.374 0.128 0.134 0.466 0.473
20.05 0.05 0515 0.051 0.651 0.230 0.380 0.296 0.607 0.582
0.05 0.10 0.612 0.049 0.703 0.162 0.777 0.687 0.827 0.808
0.05 0.30 0.819 0.219 0.857 0.395 1.000 1.000 1.000 1.000
0.05 -0.30 0.068 0.018 0.457 0.246 1.000 1.000 1.000 1.000
0.05 -0.10 0.121 0.046 0.531 0.411 0.495 0.469 0.652 0.675
0.05 -0.05 0.207 0.049 0.545 0.373 0.154 0.143 0.457 0.473
0.05 0.05 0474 0.051 0.613 0.244 0.307 0.271 0.566 0.547
0.05 0.10 0.557 0.042 0.629 0.161 0.726 0.685 0.789 0.774
0.05 0.30 0.598 0.022 0.657 0.169 1.000 1.000 1.000 1.000
0.10 -0.30 0.133 0.031 0949 0.881 1.000 0.999 1.000 1.000
0.10 -0.10 0.360 0.042 0.986 0.948 0.333 0.286 0.979 0.984
0.10 -0.05 0.639 0.053 0.986 0.914 0.082 0.077 0.957 0.961
0.10 0.05 0.956 0.054 0.992 0.706 0.617 0.481 0.984 0.981
0.10 0.10 0.985 0.045 0.995 0.520 0.912 0.828 0.995 0.994
0.10 0.30 0.990 0.151 0.998 0.761 1.000 1.000 1.000 1.000
0.30 -0.30 0.763 0.296 1.000 1.000 0.998 0.228 1.000 1.000
0.30 -0.10 0.976 0.746 1.000 1.000 0.671 0.902 1.000 1.000
0.30 -0.05 1.000 0.757 1.000 1.000 0.961 0.976 1.000 1.000
0.30 0.05 1.000 0.643 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.10 1.000 0.637 1.000 0.999 1.000 1.000 1.000 1.000
0.30 0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 8: Power of tests when H;:The SDPD model and Hy: The 2WE model

Normal distribution
Ao Yo 00 LM, LM/*) LM, LM} LM, LM,*Y LM Cy

0.06 -0.30 -0.30 1.000 0.964 0.631 0.627 1.000 1.000 1.000 1.000
0.06 -0.30 -0.10 0.861 0.198 0.464 0.020 1.000 1.000 1.000 1.000
0.06 -0.30 -0.05 0.390 0.040 0.430 0.081 1.000 1.000 1.000 1.000
0.06 -0.30 0.05 0.188 0.138 0478 0.486 1.000 1.000 1.000 1.000
0.06 -0.30 0.10 0.688 0.464 0.496 0.737 1.000 1.000 1.000 1.000
0.06 -0.30 0.30 1.000 0.999 0.503 1.000 1.000 1.000 1.000 1.000

0.06 -0.10 -0.30 1.000 0.991 0.424 0.068 0.929 0.930 1.000 1.000
0.06 -0.10 -0.10 0.446 0.375 0.137 0.167 0.830 0.574 0.796 0.789
0.06 -0.10 -0.05 0.073 0.121 0.287 0.276 0.668 0.509 0.629 0.640
0.06 -0.10 0.05 0.564 0.129 0.758 0.510 0.413 0.486 0.852 0.859
0.06 -0.10 0.10 0.938 0.383 0.917 0.617 0.406 0.533 0.981 0.981
0.05 -0.10 0.30 1.000 0.987 1.000 0.951 0.553 0.891 1.000 1.000

0.06 -0.06 -0.30 1.000 0.991 0.764 0.027 0.547 0.669 1.000 1.000
0.06 -0.05 -0.10 0.292 0.380 0.098 0.220 0.462 0.210 0.530 0.519
0.05 -0.06 -0.05 0.049 0.141 0.262 0.304 0.261 0.156 0.354 0.362
0.06 -0.05 0.05 0.700 0.134 0.824 0.440 0.111 0.141 0.773 0.778
0.06 -0.06 0.10 0.966 0.377 0964 0.466 0.145 0.185 0.968 0.969
0.06 -0.05 0.30 1.000 0.976 1.000 0.816 0.308 0.588 1.000 1.000

0.06 0.05 -0.30 1.000 0.965 0.997 0.029 0.759 0.098 1.000 1.000
0.06 0.05 -0.10 0.146 0.332 0.069 0.265 0.118 0.166 0.277 0.277
0.06 0.05 -0.05 0.098 0.129 0.221 0.277 0.178 0.235 0.298 0.289
0.06 0.056 0.05 0.883 0.115 0922 0.18 0.512 0.340 0.876 0.866
0.06 0.05 0.10 0991 0.322 0991 0.157 0.633 0.341 0.987 0.986
0.06 0.05 030 1.000 0.841 1.000 0.553 0.944 0.225 1.000 1.000

0.06 0.10 -0.30 1.000 0.873 1.000 0.040 0.989 0.490 1.000 1.000
0.06 0.10 -0.10 0.157 0.238 0.084 0.218 0.490 0.497 0470 0.464
0.06 0.10 -0.05 0.136 0.098 0.204 0.219 0.559 0.610 0.543 0.538
0.056 0.10 0.05 0.929 0.094 0.940 0.129 0.859 0.727 0.964 0.959
0.06 0.10 0.10 0996 0.218 0.997 0.112 0931 0.743 0.997 0.996
0.056 0.10 0.30 1.000 0.574 1.000 0.608 0.999 0.712 1.000 1.000

0.06 030 -0.30 1.000 0.173 1.000 0.495 1.000 1.000 1.000 1.000
0.06 030 -0.10 0.690 0.037 0.368 0.028 1.000 1.000 1.000 1.000
0.06 0.30 -0.05 0.125 0.015 0.120 0.035 1.000 1.000 1.000 1.000
0.06 030 0.05 098 0.121 0.983 0.507 1.000 1.000 1.000 1.000
0.05 030 0.10 1.000 0.330 1.000 0.796 1.000 1.000 1.000 1.000
0.06 030 0.30 1.000 0.452 1.000 0.972 1.000 1.000 1.000 1.000
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Table 9: Power of tests when Hi: The SDPD model and Hy: The 2WE model

AO Yo Po LMp LM; LM)\ LM’;\ LNLY LMZ; LMJ CJ

0.10 -0.30 -0.30 1.000 0.883 0.976 0.137 1.000 1.000 1.000 1.000
0.10 -0.30 -0.10 0.925 0.114 0.954 0.406 1.000 1.000 1.000 1.000
0.10 -0.30 -0.05 0.556 0.016 0.948 0.685 1.000 1.000 1.000 1.000
0.10 -0.30 0.05 0.121 0.191 0.956 0.966 1.000 1.000 1.000 1.000
0.10 -0.30 0.10 0.579 0.574 0.963 0.993 0.999 1.000 1.000 1.000
0.10 -0.30 0.30 1.000 1.000 0.959 1.000 0.995 1.000 1.000 1.000

0.10 -0.10 -0.30 1.000 0.990 0.210 0.077 0.998 0.927 1.000 1.000
0.10 -0.10 -0.10 0.228 0.385 0.815 0.779 0.867 0.405 0.950 0.956
0.10 -0.10 -0.05 0.069 0.154 0.935 0.890 0.619 0.317 0.944 0.952
0.10 -0.10 0.05 0.848 0.113 0.997 0.963 0.176 0.286 0.995 0.995
0.10 -0.10 0.10 0.991 0.340 0.999 0975 0.159 0.339 1.000 1.000
0.10 -0.10 0.30 1.000 0.975 1.000 0.996 0.336 0.729 1.000 1.000

0.10 -0.05 -0.30 1.000 0.992 0.140 0.138 0.920 0.706 1.000 1.000
0.10 -0.05 -0.10 0.084 0.417 0.758 0.809 0.522 0.117 0.846 0.854
0.10 -0.05 -0.05 0.167 0.168 0.926 0.883 0.218 0.081 0.879 0.887
0.10 -0.05 0.05 0.954 0.101 0.998 0917 0.133 0.087 0.995 0.995
0.10 -0.05 0.10 0.999 0.308 1.000 0.926 0.250 0.115 1.000 1.000
0.10 -0.05 0.30 1.000 0.928 1.000 0.968 0.647 0.373 1.000 1.000

0.10 0.05 -0.30 0.997 0.989 0.645 0.310 0.271 0.078 0.995 0.994
0.10 0.05 -0.10 0.186 0.353 0.648 0.759 0.087 0.242 0.684 0.672
0.10 0.05 -0.05 0.664 0.150 0.928 0.753 0.290 0.360 0.892 0.880
0.10 0.05 0.05 0.999 0.091 1.000 0.627 0.836 0.560 0.999 0.999
0.10 0.05 0.10 1.000 0.214 1.000 0.554 0.926 0.598 1.000 1.000
0.10 0.05 0.30 1.000 0.503 1.000 0.919 0.998 0.512 1.000 1.000

0.10 0.10 -0.30 0.999 0972 0.896 0.305 0.782 0.257 0.999 0.998
0.10 0.10 -0.10 0.290 0.250 0.595 0.650 0.400 0.588 0.771 0.757
0.10 0.10 -0.05 0.793 0.094 0.919 0.599 0.685 0.730 0.950 0.942
0.10 0.10 0.05 1.000 0.059 1.000 0.459 0.980 0.872 1.000 1.000
0.10 0.10 0.10 1.000 0.117 1.000 0.474 0.995 0.894 1.000 1.000
0.10 0.10 0.30 1.000 0.183 1.000 0.961 1.000 0.908 1.000 1.000

0.10 0.30 -0.30 1.000 0.206 1.000 0.058 1.000 1.000 1.000 1.000
0.10 0.30 -0.10 0.126 0.019 0.311 0.187 1.000 1.000 1.000 1.000
0.10 0.30 -0.05 0.702 0.028 0.891 0.419 1.000 1.000 1.000 1.000
0.10 0.30 0.05 1.000 0.519 1.000 0.956 1.000 1.000 1.000 1.000
0.10 0.30 0.10 1.000 0.808 1.000 0.994 1.000 1.000 1.000 1.000
0.10 0.30 0.30 1.000 0.877 1.000 1.000 1.000 1.000 1.000 1.000
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Table 10: Power of tests when Hi: The SDPD model and Hy: The 2WE model

Normal distribution
Ao Yo 00 LM, LM/*) LM, LM} LM, LM,*Y LM Cy

0.30 -0.30 -0.30 1.000 0.766 1.000 0.978 1.000 0.927 1.000 1.000
0.30 -0.30 -0.10 0.999 0.656 1.000 1.000 1.000 0.349 1.000 1.000
0.30 -0.30 -0.05 0.977 0.496 1.000 1.000 1.000 0.269 1.000 1.000
0.30 -0.30 0.05 0.321 0.138 1.000 1.000 0.941 0.233 1.000 1.000
0.30 -0.30 0.10 0.327 0.088 1.000 1.000 0.638 0.235 1.000 1.000
0.30 -0.30 0.30 1.000 0.895 1.000 1.000 0.820 0.450 1.000 1.000

0.30 -0.10 -0.30 1.000 1.000 1.000 1.000 1.000 0.123 1.000 1.000
0.30 -0.10 -0.10 0.296 0.964 1.000 1.000 0.605 0.764 1.000 1.000
0.30 -0.10 -0.05 0.718 0.908 1.000 1.000 0.291 0.865 1.000 1.000
0.30 -0.10 0.05 1.000 0.519 1.000 1.000 0.960 0.913 1.000 1.000
0.30 -0.10 0.10 1.000 0.272 1.000 1.000 0.998 0.920 1.000 1.000
0.30 -0.10 0.30 1.000 0.175 1.000 1.000 1.000 0.892 1.000 1.000

0.30 -0.06 -0.30 0.985 1.000 1.000 1.000 1.000 0.117 1.000 1.000
0.30 -0.05 -0.10 0.734 0.962 1.000 1.000 0.284 0.927 1.000 1.000
0.30 -0.05 -0.05 0.975 0.901 1.000 1.000 0.646 0.967 1.000 1.000
0.30 -0.05 0.05 1.000 0.530 1.000 1.000 0.999 0.982 1.000 1.000
0.30 -0.06 0.10 1.000 0.303 1.000 1.000 1.000 0.983 1.000 1.000
0.30 -0.05 0.30 1.000 0.447 1.000 0.999 1.000 0.985 1.000 1.000

0.30 0.05 -0.30 0.377 0.998 1.000 1.000 0.940 0.373 1.000 1.000
0.30 0.05 -0.10 1.000 0.863 1.000 1.000 0.941 0.998 1.000 1.000
0.30 0.05 -0.05 1.000 0.779 1.000 1.000 0.998 0.999 1.000 1.000
0.30 0.056 0.05 1.000 0.551 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.05 0.10 1.000 0.589 1.000 0.999 1.000 1.000 1.000 1.000
0.30 0.05 0.30 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000

0.30 0.10 -0.30 0.280 0.988 1.000 1.000 0.531 0.666 1.000 1.000
0.30 0.10 -0.10 1.000 0.659 1.000 1.000 0.998 1.000 1.000 1.000
0.30 0.10 -0.05 1.000 0.621 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.10 0.05 1.000 0.747 1.000 0.999 1.000 1.000 1.000 1.000
0.30 0.10 0.10 1.000 0.891 1.000 0.999 1.000 1.000 1.000 1.000
0.30 0.10 0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.30 0.30 -0.30 0.516 0.674 0.999 1.000 1.000 1.000 1.000 1.000
0.30 0.30 -0.10 1.000 0.895 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.30 -0.05 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.30 0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 030 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.30 0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

22



Power

0.8

e
>

Power

=
=

LM, LM;: 5 =

¢ N=-03
0.2 0 N=-0.1]1
’ﬁ o )\0 =01
X )\0 =03
0@ L L . . 09 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Size

(a) Ho: The DPD model, H;: The SDPDW model

Power

Power

Size

(b) Ho: The DPD model, Hy: The SDPD model

08 I I
0.4

Size

(¢) Ho: The DPD model, Hi: The SDPD model (d) Ho: The SSPD model, Hi: The SDPDW model

0.6

0.8 1 0 0.2

Figure 2: Size-power curves

23

0.4

Size

0.6



Power
Power

0 02 04 06 08 1 4
Size Size

(a) Ho: The SSPD model, Hi: The SDPD model (b) Ho: The SSPD model, Hi: The SDPD model

LM,, LM;: Ao = 03,7 = 0.1

1F
08+
0.6+
g 5
Z 5
[al ol
04+
¢ p=-03
0.2 (o] p0:—0.1 1
o p= 0.1
“." X py= 0.3 H
& T | | 0 / |
0 0.2 0.4 X 0.6 0.8 1 0 0.2 0.4 . 0.6 0.8 1
Size Size

(¢) Ho: The SDPDW model, Hi: The SDPD model(d) Ho: The SDPDW model, Hi: The SDPD model

Figure 3: Size-power curves

24



320

322

324

326

328

330

332

334

336

338

340

342

344

346

348

350

352

354

356

358

1. In Figure the null model is the DPD model and the alternative model is the SDPDW
model. Both LM, and LM} has satisfactory power. For lower values of Ao, LM} is less
powerful than LMy. In Figure the null model is the DPD model and the alternative
model is the SDPD model. Generally, LM} is less powerful than LM except for the case
where A\g = 0.1.

2. In Figure , the null model is the DPD model and the alternative model is again the
SDPD model. LM; is slightly less powerful than LM, except for the case where py = —0.1.
In Figure the null model is the SSPD model and the alternative model is again the
SDPDW model. LM,*Y and LM, behave similarly and both lack power when o = —0.1.

3. In Figure the null model is the SSPD model and the alternative model is again the
SDPD model. Generally, LM; and LM, behave similarly. We see that when o = 0.1, LM;
is more powerful than LM,. But this picture reverses when 9 = —0.1.

4. In Figure the null model is the SSPD model and the alternative model is again the
SDPD model. It confirms the results on the one directional tests of py from Table @ LM,
over rejects when the true model involves dependence over space and time. Furthermore,
when spatial time lag coefficient is small on the negative side, LM, suffers from positive size
distortion and lack of power. Surprisingly though, LM7 lack power when pg = 0.3.

5. In Figures and the null model is the SDPDW model and the alternative model is the
SDPD model. It confirms the results on the one directional tests of pg from Table @ Clearly,
LM, over rejects when the true model involves dependence over space and time. Again, we
see that LM; lack power when py = 0.3. But, it does not suffer from size distortions unless
the misspecification in the alternative becomes larger.

6 Conclusion

In this paper, we introduce the robust LM tests within the GMM framework for a spatial dynamic
panel data model. These tests are robust in the sense that their asymptotic distributions under the
null hypothesis are still a central chi-square distribution when the alternative model is misspecified.
On the other hand, when the alternative model is misspecified, the asymptotic null distributions
of the standard LM tests deviate from the central chi-square distributions. Hence, the robust tests
obtain asymptotically the correct size. We derive the asymptotic distributions of our proposed tests
under the null and the local alternative hypotheses. These tests can be used to test the presence of
the contemporaneous dependence over space, dependence over time and spatial time dependence.
Since these tests are robust to the misspecification of the alternative models, they are much more
suitable for the detection of the source of dependence in a spatial dynamic panel data model.

One attractive feature of our proposed tests is that their test statistics are easy to compute and
only require the estimates from a two-way error model. Therefore, our proposed tests can easily
be made available for the practical applications by using the standard statistical softwares. In a
Monte Carlo study, we investigate the size and power properties of our proposed tests. Our results
shows that the robust tests have good finite sample properties and would be useful for the detection
of the source of dependence in a spatial dynamic panel data model. The simulation results, hence,
confirm our analytical results that the robust tests are valid, when the alternative models locally
deviate from the the true data generating process.
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«» Appendix

A A Useful Lemma

32 Lemma 1. — Under our stated assumptions, the following results hold.

1. +E <9nT(00>9;LT(90>> = +o0(1) and S,y = Sar + 0p(1), where .7 and X, are stated
364 in the main text.

o~

2. G(bpr) = Dpr+ Ryr + O <\/%), where Dy,p is O(1), Ry, is O(%) and gnT is any consistent
366 estimator of 6.

3. G(@\nT)flnTG(é\nT) = (Dpr + RnT)/ Yot (Dpr + Rur) + 0p(1), where /O\nT is any consistent
368 estimator of 6.

4. Let apr be a kq, X (m + q) non-stochastic matrix. Then

1 d . /
——an7gnt (0 —>N<0, lim,, . apr¥nTa, ) Al
N T9nt (00) b — T &nTApT ( )
Proof. See Lee and Yu (2014). O

7w B Expressions for Test Statistics

In this section, we provide explicit expressions for the elements of test statistics. Let the jth column
of G4 (0) be denoted by G, (0) [:, j]. We start with G (0) = (G (8), G (8), G, (0), G (0)), where

Y:; T—1W31j,T—1Jn7T—1Ple,T—1Jn7T—1V;§,T—1 (9)
Y:L,Tflwnj,TflJan_lPfLQ,T*lJan_ler,Tfl(0)
Gy(0)]:, 4] = —= : . B.1
Okd=—F| ] * (B.1)
Yn,Tflwn;',TflJan—lan,TflJnaT—1Vn,T71(0)
Q.1 Inr-1Whjr 1Y} 1y

Vi (03 1Py T 1Y
V;kzl,Tfl (Q)Jn,T—lpisz1Jn,T—1Yn*fF—

¢ (0) =+ ; (B.2)
V;;/,T—l (Q)Jn,Tf1szm,T—1Jn,Tle£:§ll%
Q;,T,lJn,TAY?(:’T__I%
Vi 03z Py T Wagra Y5
1 V;/,T—l (‘9)Jn,T—1PZQ,T_1Jn,T—1an,T—1Ynfip__1%
Gy (0) 1] = — - ®.3)

VY OT 1P T W e Yo7 )

n,
/ (*,—1)
Q. r—1In -1 Wrjr1Y, 1
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«/ s *
Vn/T—l (Q)Jn,T—1Pn1,T—1Jn7T—1Xn,T—1

* S *
Vn,Tfl (H)Jn,T—1Pn2,T71Jn7T—1Xn,T71

oy s *
Vn,Tfl (0)']/an— 1 an,Tf 1Jn7T— 1Xn,Tfl

*
Qn,TflJan— 1 Xn,Tfl

Using the inverse of the partitioned matrix formula (Amemiya 1985, p.460), we have

~1
i—l _ ( [U Aan + ( - 30 ) Wy, TWnm, T:| 0m><q >
nT qum 82]{[ n,T— 1JnT lQnT 1
O11 Or2
_ B.5
<O21 022) ’ (B.5)
where O11 = [ 4Aan + (,u4—30) anwan]il, O = 0/21 = Omxg; and Oy =
% [Q;L7T_1Jn,T—1Qn,T—1} . The component of C () are given by
/ O O _ ! O O —
L GO =60 (08 0%)ar®). ¢ o=60 (0" oL)are  ®o
/ @) 0] _ / O O _
2 G0=6,0(0" 0)anr®). GO)=6®(0" 06  ®)

The components of B (f) are defined in below.

' O Or2 . o O11 Ox2
<021 022> Gy, By, (0)=B,,(0) =G, (0) <021 022> Gp

’ / 011 012 Oll 012
G, Bys(0) = B 0 G
(O 02) 6 B3 6) = B 6) = <>(021 o) 6

@) @) ' 0]
5.5,0) =G, 0) (0} 02) 6,0 B (0) = B, 0) = G, 0) (O %)

\/

' / O O O
180 = 55y 0) = 6, 0) (3 02) 6, 8,0) =, 0) (32 2) 2

’ / 011 012 011 012
= Gg, Bg (0) = G
<om om> 8 Bs (0) (021 om>

Expressions for Hé‘ t Ao =0
C3(Bur) = [C(Bur) — Brgs (9ur) B3 (Bur) Cs (1) (B.8)

/

where ¢ = (pl, 'y)/, Cy (énT) = (C’; (énT), C’; (énT)) , and
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By (0nr) = Bag (Onr) — Bg(Onr) By (Onr) Bas (Onr) (B.9)
= (B (0nr), Bry(Onr)) — Bag(Onr) B3 (Onr) (B (Onr) Bay (Our))
Bys(Onr) = By (Onr) — Bos(Our) B (Onr) Bao (Onr)

= [ ) Belbea)) [ Bor ) | G B3y ). B B

Byp(nr)  Bp(0nr) By (Onr) |7
(B.10)
Expressions for Hj : py = 0:
Cp (Onr) = [Cp(Onr) = By (Onr) By (Onr) Co (Onr) ] (B.11)
where ¢ = (X, 1), Cs(Bur) = (Cy (), C,(Bur))’, and
Boo.5(0nr) = Bpo (On) — Bps (Onr) B3 () Bao (5nT) (B.12)

By.(Ont) = By (Our) — Bys (Onr) B (Onr) Bso (5nT)
BA(%T) B)\'y(énT):| B [ gA

N By (enT) B, (énT) 8 (OnT
(B.13)
Expressions for HJ : vy = 0:
C5(Onr) = [C4(Onr) = Broos (Onr) By (Onr) Co (Onr)], (B.14)
where ¢ = (X, '), Cy(0nr) = (Cy (), C)(Bur))’, and
B (Ont) = Bys (Onr) — By (Onr) B3 (Onr) B (Our) (B.15)

= (B (0ur)s Byp(Bur)) = Bas(0ur) B (Bur) (Bsa (Our), Bsp(Bur)),
By (0nr) = By (0nr) — Bos(Onr) By (Onr) Bos (Ot

- (o) ?f&))] |

C Proofs of Propositions

su C.1  Proof of Proposition

Let g,7(0) denote the m+ ¢ dimensional vector of empirical moments such that m+q > 2p+k, +1.
376 Define the OGMME /O\nT = argming g;LT (0) i;%gnT (9), where inT is a consistent estimate of >,
by Lemmall] By the implicit function theorem, the set of &, restrictions on 6y can also be stated as
sis (&) = o, where h : RY — RQPJFkIjI is continuously differentiable, § contains the free parameters,
and g = 2p + kg + 1 — k;. Define £, = argmin, g7 (h(€)) i;%gnT (h(§)). Then, we have 6., =
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80 h (EHT> as the constrained OGMME of 6. Let &, denote a v/ N-consistent estimate of &.

Agnt (R ~ Agnt (h(En Agnt (R
For notational simplicity, denote Gy = %w, Gy = %w, Ge = ]{,gTag,(g)),
~ Agnt (R(En - = . =~
w Ge = % g T(ag(lf T))7 and g, = gnT(h(gnT)). By Lemma we have phmmT_)OO Gy = Gy,

; ~ . Agnr (B
plim, o G = Ge, where G = plim,, 7, W.

In the following, we first establish the null asymptotic distribution of C(«) test and then that
of LM. Our proof for the null asymptotic distribution of C'(«) test is similar to the one provided
by Lee and Yu (2012b). Let

Tor(§) = JbagnTég(a) [Im+q - in%]bagn%(;(g)) (C.1)

9a. (h(€)) ~ Ognr (M 11 0g,p(h -1
y (;Igma(g(g))zg%]{fg%(f/(g))> ]inga(g(f)) > \/1»gnT( (€)

= Gl [Ty = S} Ge(GE,6) 6 B o (4(6).

Claim 1. — Let A, be any sequence of (2p+ k, + 1) x g constant matrices. Define the following
class of functions

Tor (Anr,€) = (Gp + AnTgé)En%\/lﬁgnT (h(9)).

Then,

1 87; An , 1 , B
mE( T((%,T §o)> - =B (Tor (A, €0) 9,7 (00)S12G¢ ) + o(1).

Proof. Note that
OTwr (Anr, €)
o¢'

' 1 1 agn h(f)
= (G0 + At Ta(g )

By Lemmal[I], we have

B (a%T (Anr, o)

o ) = (Gp + AnrGe) £,1Ge + o(1).

1
VN

Now, write down

1 / -1 o ’ ’ 1 i ’ 1
\/7NE (%T (-AnT, fo)gnT(eo)Znng) = (gg + -An,ng) EnTNE <gnT(h(§0))gnT(90)) EnTg§
ss4 where we use the fact that %E(gnT(h(gﬁo))g;LT(Ho)) = Y, +0(1) (see Lemma . O
Claim 2. — There exists a unique A7 in the class including A, 7 such that

\/%E(%T (Alr, €0) Gur(B0)2,7Ge) = o(1),

where A7 = *%E,Z%gg(gézgfl’%)

-1

29



386

388

390

392

394

396

398

Proof. The result follows from setting (C.2) to zero and solving it for A, 7. O

Claim 3. — TFor any v/N-consistent estimate of énT of &, we have %T(A;;T,énqﬂ) =
Tor (Afp, &) + op(1).

Proof. By assumption &,7 is a v/ N-consistent estimator. Hence v N (énT — qbo) = Op(1). By the
mean value theorem, we obtain

1 0Tr (Anr, &or)
i o VN

where £, lies between e and &. By & 2, & and Lemma |1} we obtain

1 0Tor (Anr, &ur) 1 <87;1T (Anr, 50))
VN o¢' VN o¢'
i agnT (h(gnT))

op(1)

Tor (Ant, &) = Tor (Anr, &0) + (&t — &)

Replacing A,7 with A7, in the mean value expansion and noting from Claim that

ﬁE(%ﬁT’&))) = 0(1), we obtain the desired result. O
Claim 4. — At any v/N-consistent estimate &7, ﬁT(énT) — %T(.AZT,énT) = o0p(1) and
n*T (gnT) = ET(Afmﬁo) + Op(l)-

Proof. Let BnT(énT) = élg[lm+q — i;%ég(ééig%ég)_léé]ig% and B, = Qé[1m+q —

206 (G371 Ge) "' Ge] S Then, it follows that T, (&ur) — Tor (Aip&r) = [Bur(€ur) —
B;T} \/iﬁgnT (h(énT)) By Lemma [BnT (EnT) — BZT] = 0p(1). By the mean value theorem,

3 gur (WE.
\;NgnT(h(gnT)) = \/%gnT(h(fo)) + 2 TE%(,& 7)) \/1]V

= L (iie) + 5 2O VN 6 - )

(€nr — &)

Since (i) \/N(énT — &) = 0p(1), (ii) J{T{MT(B}L&(’@T)) = Ge + 0y(1) by Eup 2, & and Lemma

and (iii) ﬁgﬂ(h(&))) = O,(1), and ﬁgnT(h(énT)) :~op(1) by Lemma Hence, 7,5 (€u7) —
Tor (Afp, &ar) = 0p(1). Then, by Claim we have T (§nr) = Tor (A, &0) + 0p(1). O
Claim 5. — Under Hg, the random variable 7,1 (A;‘;T,é’o) has zero mean and variance {2 =
plim, p_, o Qnr, where Q,p = g(; [E;% — E;%gg (géz;}gf)‘lgéZ;}] Gp with rank k.. Furthermore,
Tor (Ar, €0) & N(0,9).

Proof. Note that Gy has full rank 2p + k, + 1. Hence, Q(;E;%gg is a positive definite matrix which

can be cholesky decomposed as LnTL;IT, where L,7 is invertible. Further, since %%ﬁ(éo))
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402

404

406

408

1 99n7(60) 9(&0)

N o9 e We have G¢ = GoH,, 7, where H,7 = %5,0). Then, T, (AZT, 50) can be written as

23

1

! ! ! — / ! 1
Tor (Alr,&0) = [Lopiko+1 — o= 1 G0 Hur (HyrGoXntGoHur) ™ Hyp) gozg%ﬁgw(@o)

:LnTML’HL;%gé nT\/>gnT(90 (03)

/ / / —1 /
where ML/H = IQerkIJrl - PL/H and PL'H = LnTHnT (HnTLnTLnTHnT) HnTLnT' Note that
M,/ is idempotent with its rank equal to 2p + k; +1 — g = k,.. Then,

Var [Tor (Alr, €0)] = plimy, 700 LurM /Lt Lyr Ly LM L

= plim,, 7, LnTML’HLnT = plimy, 7,00 Qo

where ,7 is singular with rank k.. By Lemma \/LﬁgnT(Go) 4 N (O,plimn oo EnT). Hence,
. d
Tor (A, &) = N(0,9). O

Claim 6. — Denote C*(a) = 7;1T(A:;T,fO),Q;TﬁLT(A;;Tag(])v where €1 . is the generalized
inverse of 7.

Proof. Tt follows from Claim |5| that C*(«) 4, er. Note that Q.7 = L,rM,/ HL;lT and the
generalized inverse of M/, is itself, then 0 . = L;;TlM 1 gLt Tt follows from (C.3)

1 I / !
C*(a) = N—=g,r(00)27Go L, —11\/1 Ly Ly M1 LGy S gn1(60)
( \/N T ) nT L'H T T L'H TY60 T\/*

1 _ I
NgnT( 0)% ngL MLH TQnTLnTML’HLnTgoznTgnT(GO)

= %gnT(90)E;%QGL;;TIML/HL;TQ;)E;%%T(@O)- (C.4)
Note that
LMy Loy = (LarLiy) ™' = Hur (HogGoSkGoHor) ™ Hyyy (C.5)
= (%E;%%)_l — Hur(Ge5,1G¢) " Hyr
Then, it follows from (C.4]) and ) that

-1

1

C*(0) = 579ur (90) 5,750 (Go% Tgerlggz;;gmeo)
— (00 G (G54 Ge) " Ge bt (00 ()
O
Claim 7. — The test statistic can be written as C(«) = Tpr (énT)*' Y i (énT), where ﬁnT =

C?; [ir}} — i;%ég (ééi‘;}ég) G Z‘ ]Ge Under Hy, it follows that C(« ) 4, er'
Proof. By Lemma, 2, (Z;T— 7 = 0p(1). Furthermore, by Clalml {nT) = Tar (.A*T, Eo)—l-op(l)

Hence, C(a) — C*(a) = 0p(1) by continuous mapping theorem. Then the asymptotic equivalence
(White (2001, Lemma 4.7, p.67)) and Claim [4] yield the desired result. O
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412

Now we will establish the null asymptotic distribution of LM test. Recall that the test statistic
is
LM = N C 0nrs) B~ Ours)C (Onrr).- (C.7)
Let LM = VNC' @nT’T)H_l\/NC(@LT,T). Under Hy : r(6p) = 0, we have LM = LM + op(1) by
Lemma and EnT,T = 0p+o0,(1). Now consider the limiting behavior of VN C (EnT,r). By the mean
value theorem, we have
VN C(Ours) = VN C(00) = G (O)TurG(0) x VN (Buz.r — o)
= \/NC(G()) —H x \/N (/énT,r — 90) + Op(l). (CS)
To evaluate (C.8)), we need to consider the limiting behavior of v N (/H\nTﬂ, — 00). The result derived

for the limiting behavior of constrained GMME in Hall (2004, Lemma 5.4, p.167) can be considered
for our case. It can be shown that

VN Onry —00) = [H' = H 'R (RH'R) T RHY)VN C(6) + 0,(1), (C.9)
where R = R(0p) = %. Substituting into yields
VN C(Onry) = R (RHT'R) " "RH'WN C(6o) + 0,(1). (C.10)

Substituting (C-10) into LM yields LM = /N C'(6o)H 'R (RHR') "' RHV/N C (o) + 0p(1).
By Lemma we have RH‘I\/NC(OO) N N(O, R’H_IR/), which implies that LM % XiT' Then,

the desired results follows from the asymptotic equivalence of LM and LM.

C.2 Proof of Proposition

The first three results follows directly from LM,y (énT) 4 Xi;b (1) under Hﬁ and Hﬁ, where ¥; =
5;7—[1&.5511, + (5;)?—[1/,(]5./36(1, + 5;57-[2/@,[351;, + 5;5%;/1¢~6H1Z-16H1/’¢‘55¢ is the non-centrality parameter; Here,
we will prove the last two results. For this purpose, we consider the distribution of Cy, (HHT) =

!

(C¢ (énT), C;) (énT))l The first order Taylor expansions of Cg (énT) and Cp (énT) around 6* =
(ﬂE)? 1/16 + 5;/\/N, ¢/0 + 5;5/\/N,) are given by

VN Coi (Bur) = VN Cys (07) = Gy (67) S Gy (0) (31, 0) (C.11)
+ VN Gy (0°)£,7.G5(9) (Bur — Bo) + 0p(1),
VN C(Bur) = VN C(07) — G5 (67) -Gy (8) (51, 65)’ (C.12)

+ VN Gy (07)S572G5(8) (Bur — o) + 0p(1).
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418

where Gy (0) = (Gy (), Gy (9) ). Then, using (C.11) and (C.12), we obtain
1

\/NC¢¢((§TLT) = (Q;@E;ylv, Hwﬂﬂgl%ﬁﬁ)\/—ﬁ gnT (07) (C.13)

Hyp ”wa) <5¢>
— +op(1),
<H¢¢-B Hes ) \9¢ o(1)

where Gy = (Q’w, Q¢), Hyyp = (7—[;}5, 7-[;)6) s and Hyy.p = Hey — H(WHEI’HW. Using Lemma
we can determine the distribution of VN Cy, (énT) under Héb and Hﬁ from (C.13)). Then,

~ Hyo 39, Hy.s  Hypo
R a8 x{ — () (on o)) )
vo(0nr) He500 Hops  Hop
The result in (C.14) can be used to determine the distribution of N C’;Z (énT)
_ ~ ~ _ ~ d

(I, —HypsH ¢_1ﬁ)\/ﬁ Cyg(0nr) +0p(1). Hence VN [Cy (Onr) —HyppsH ¢_1ﬁc¢ (0nr)] = N (0, Hypp—
’H¢¢.5H;‘15H¢¢.g). Then, this last result and Lemmayield the desired result.

Using ((C.13)) and Lemma we can also determine the distribution of v N C;Z (énT) under HZ
and Hg) for the asymptotic power analysis. We have

*x (N d — ! _ /
VN Cl(Onr) = N( = (Hyp — HuosHo 5 Hyps) 00, Hus — HussHo g Hyss)- (C.15)
~ d / _ /
Therefore, LMzZ (OnT) — Xiw (94), where 94 = % (Hwﬂ — H¢¢.5H¢./137-[¢¢ﬂ)(5¢. It follows that

Yo — 134 > 0. This result indicates that LMIZ (énT) has less asymptotic power than LMy, (énT) when
there is no local misspecification.
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