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Abstract: In this paper we investigated group size impact on risk aversion when a majority rule is applied. Drawing on 

the widely used Holt and Laury’s (2002) lottery pairs, we observed a risky shift for both individual and groups 

regardless of their size. However, groups choices are shown to be closer to the risk-neutrality prediction. More 

interestingly, whereas smaller groups attitudes can be safely approximated by individual choices, larger groups reveal a 

statistically different risk-loving attitude. This risky shift becomes more prominent as group size increases.  
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1. Introduction 
In the last decade, several scholars investigated groups risk attitudes. However, they did not achieve 

a univocal position. Some of them reported that groups are more risk averse than individuals 

(Ambrus et al., 2015; Baker et al., 2008; Bateman and Munro, 2005; Shupp and Williams, 2008; 

Masclet et al., 2009). Conversely, other studies show that groups tend to be less risk averse 

(Rockenbach et al., 2007; Zhang and Casari, 2012). In a recent paper Harrison et al. (2012) studied 

preferences over social risk. Their main result was that individuals and groups risk attitude was not 

statistically different. 

So far, most studies have tested three-person groups (Baker et al. 2008; Masclet et al., 2009; 

Harrison et al., 2012; Zhang and Casari, 2012; Brunette et al., 2015), but the size of the group could 

matter (Sutter, 2005; Charness and Sutter, 2012).  

In this work we compare individual preferences with group preferences towards risk when 

group decision is taken under a majority rule; additionally we studied the impact of the group size 

on group preferences towards risk. 

The remainder of this paper is organized as follows. We first present the experimental design 

in section 2. Then, we report our results in section 3. Finally, section 4 concludes. 

 

2. Experimental design 
Our experiment was conducted on a heterogeneous sample of 300 students. The experiment was 

programmed in z-Tree (Fischbacher, 2007) and was run at the Universitat Jaume I (Castellón, 

Spain). Overall, we run the experiment in 10 occasions (30 subjects participated in each occasion). 

No person took part in the experiment in more than one occasion. Subjects were recruited to 

participate in the experiment using the ORSEE software (Greiner, 2004). Participants were 

undergraduate students from different disciplines. Written instructions on the experiment were 

distributed at the beginning (a translation of the Spanish instructions can be found in Appendix). In 

all experiments payoff amounts were denoted by ECU (Experimental Currency Unit), where 10 

ECU = €1. The average earnings amounted to almost 5 Euro, and the experiment lasted less than 20 

minutes. 

Participants were presented with 10 binary lottery choices as developed by Holt and Laury 

(2002) (see Table 1). But differently from Holt and Laury (2002) lotteries were not presented in a 

classical Multiple Price List format (MPL).  

Following Andersen et al. (2014) we used the procedures of Hey and Orme (1994), and 

presented each choice to the subject as a “pie chart” showing prizes and probabilities (see figure 1A 

in the Appendix). 
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TABLE 1 – Binary Lotteries in Multiple Price List format  

Lottery A Lottery B EV(A) EV(B) EPD Open CRRA interval if 
subject switches to lottery B p ECU p ECU p ECU p ECU 

0.1 50 0.9 40 0.1 96.25 0.9 2.5 41 11.88 29.12 -∞, -1.71 
0.2 50 0.8 40 0.2 96.25 0.8 2.5 42 21.25 20.75 -1.71, -0.95 
0.3 50 0.7 40 0.3 96.25 0.7 2.5 43 30.62 12.38 -0.95, -0.49 
0.4 50 0.6 40 0.4 96.25 0.6 2.5 44 40.00 -4 -0.49, -0.15 
0.5 50 0.5 40 0.5 96.25 0.5 2.5 45 49.37 -4.37 -0.15, 0.15 
0.6 50 0.4 40 0.6 96.25 0.4 2.5 46 58.75 -12.75 0.15, 0.41 
0.7 50 0.3 40 0.7 96.25 0.3 2.5 47 68.12 -21.12 0.41, 0.68 
0.8 50 0.2 40 0.8 96.25 0.2 2.5 48 77.5 -29.5 0.68, 0.97 
0.9 50 0.1 40 0.9 96.25 0.1 2.5 49 86.87 -37.87 0.97, 1.37 
1 50 0 40 1 96.25 0 2.5 50 96.25 -46.25 1.37, ∞ 

 

We showed all the 10 pairs of lotteries one by one on a computer screen. The pairwise choices 

were presented in the order shown in Table 1, with increments of the high prize probability of 0.1. 

The first row in the Table 1 shows how lottery A has a 10% chance of receiving 50 ECU and 

90% chance of receiving 40 ECU. The expected value of each lottery is shown after lotteries payoff 

matrix. For example, it is 41 ECU for lottery A and 11.88 ECU for lottery B. These two columns 

were not presented to the subjects. Likewise, lottery B in the first row has a 10% chance of winning 

96.25 ECU and a 90% chance of winning 2.50 ECU. 

Clearly, the two lotteries have been set up in order to have a large difference between their 

expected values. Moving down the matrix, we can see that the expected value of both lotteries 

increases. 

However, at a certain point the expected value of lottery B (risky option) becomes greater 

than the expected value of lottery A (safe option). In the first lottery pair, the probability of getting 

the higher payoff for both lotteries is 10%. Consequently, only a risk-loving subject would choose 

B (risky option) in the first row and only a risk-averse subject will choose A (safe option) in the 

second last row.  

The last row provides a simple test to verify that, according to non-satiation assumption, 

subjects understood the instructions (it was not considered for risk aversion assessment). When the 

probability of the higher payoff for B increases enough for lower rows in the table, subjects should 

switch over option B. Now, individuals are expected to cross from A to B at some row in the table. 

The point at which they switch over lottery B will be used to assess their risk attitude.  

According to Harrison et al. (2012) lottery choice data can be analysed in two ways. Since 

each subject provide a choice for each row of the table, responses can be represented by a single 
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scalar. It will be the number of the lowest row in the Table 1 at which subjects switch to lottery B1. 

A risk neutral subject is expected to switch from A to B when the expected value of both lotteries is 

about the same therefore he will choose lottery A for the first four rows and lottery B thereafter. If 

subjects switch to the risky option after the fifth row they will be considered risk-averse whereas if 

subjects switch to the risky option before the fifth row they will be considered risk-seekers.  

Another way to analyse individual risk attitude would be looking for the Constant Relative 

Risk Aversion (CRRA) interval in which subject fall according to their decision (see last column in 

Table 1). Now, assuming Constant Relative Risk Aversion, the utility function likely to fit subjects 

choices will be defined as 𝑈 𝑦 = (𝑦!!!)/(1− 𝑟) where 𝑟 is no more than the CRRA coefficient. 

With this parameterization, 𝑟 < 0  will imply risk-seeking behaviours, 𝑟 = 0  risk-neutrality 

behaviours and 𝑟 > 0 risk-aversion behaviours.  

Thus for each row of Table 1, it is possible to infer the implied bounds of the CRRA 

coefficient when subjects permanently switch to B at that point. This means that if subjects 

switched to lottery B, let’s say at the seventh row, they would reveal a CRRA interval between 0.41 

and 0.68. The implied CRRA interval will allow us to use a statistical method able to recognize the 

presence of an interval-censored response. The interval regression models are essentially Tobit 

extensions allowing for a dependent variable to be right or left censored at some fixed value. 

Furthermore, these extensions shall properly consider right and left censoring which can vary 

according to subjects’ preferences2. 

Now, if we assume monotonic preferences, subjects are expected to choose A in the first 

decision problem and then switch forever to B at one later decision. Individuals that switch from A 

to B more than once or that switches back from B to A again would be qualified as non-monotonic. 

Usually multiple-switch behaviours are said to be sign of indifference (Andersen et al, 2006) or 

confusion in lotteries choices (Zhang and Casari, 2011). This would imply a problem of inference if 

it were necessary to impose a certain structure to subjects’ preferences that are not justified by the 

underlying theory. Since some subjects have switched back and forth several times as we move 

down on Table 1 we could have some problems in inferring their CRRA interval.  

According to Andersen et al. (2006), if such behaviour can be safely qualified as sign of 

indifference between lottery options, then the idea is that on can use a “fatter” interval to represent 

non-monotonic subjects in the analysis. This “fatter” interval will be defined by the first row that 

																																																								
1	This constant will take only integer values ranging from 1 and 10. If the subject switched to lottery B at the first 
decision problem his scalar will be 1 whereas if the subject switched to lottery B at the last decision problem his scalar 
will be 10.	
2	This statistical approach has been used firstly in Coller and Williams (1999) to elicit subjects’ discount rates. The 
dependent variable in such a kind of model will be the CRRA interval subjects or groups implicitly choose when they 
switch from lottery A to lottery B.	
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the subject switched at and the last row that the subject switched at. Theoretically speaking, this 

would imply that subjects’ preferences could be modelled as weakly convex and not strictly convex. 

We showed all the 10 pairs of lotteries one by one in the same order as depicted in Table 1. 

Participants were asked to take note of which one they preferred to play on a booklet they were 

provided in advance. 

At the end of the experimental procedure, several random outcomes were generated. We paid 

only one of the 10 lottery pairs. Firstly one of the rows was randomly selected through a ten-sided 

die for each subject. Then the lottery was played to determine subjects’ payment. 

After collecting answers subject by subject, we merged them using the majority rule. In doing 

so, we exogenously formed two types of groups. The smaller groups were 3-members groups (100 

groups) and 5-members groups (60 groups). The larger groups were 15-members groups (20 

groups) and 25-members groups (12 groups). 

 

3. Results  
Figure 2 displays the proportion of lottery A choices (safe option) as average for each of the ten 

decision problems listed on the bottom axis. The dashed line shows the predictions under the 

assumption of risk neutrality. In this reference case, the probability of choosing A will be 1 for the 

first four decisions and 0 thereafter. As discussed earlier, a risk-neutral subject should take lottery A 

until its expected value is higher then that of lottery B and then pick lottery B in the remaining 

decisions. A switch in a later decision would reveal clear risk-aversion behaviour whereas a switch 

in an earlier decision would reveal clear risk-seeking behaviour.  

It is useful to clarify that a rational subject with monotonic preferences should switch from 

the safer to the riskier option just once and never switch back. Instead, some subjects switched from 

A to B and vice versa more than once. This behaviour can be due to several reasons: either these 

subjects are genuinely indifferent towards different lotteries (Andersen et al. 2006) or they are not 

respecting monotonicity (Zhang and Casari, 2011), or it is just a mistake. For our purpose, we 

consider this behaviour a “mistake” when only one switchback occurred3. On the contrary, we 

labelled as “irrational” those participants who showed multiple switches (they were not monotonic 

in their preferences).  

In Table 2A in the Appendix we report counts and percentages for non-monotonic lottery 

choices across individual and group size treatments. It is noteworthy that the percentage of multiple 

																																																								
3	In the individual lottery choices mistakes were 31 out of 300 obs (10,33%), in the 3-members groups they were 12 out 
of 100 (12%), in the 5-members groups 7 out of 60 (11,67%), in the 15-members and 25-members groups only 1/20 
(5%) and 1/12 (8,3%). However, we verified that our results would change very little if we drop such observations from 
our dataset. 
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switches throughout lottery choices is strictly decreasing when group size increases. It seems that 

the majority rule makes inconsistent behaviours less likely and more interestingly non-monotonic 

preferences are absolutely absent in both largest groups. 

Figure 2 compares individual choices (circles line), and group choices elicited with majority 

rule for different group sizes. The two larger groups (15-members groups and 25-members groups) 

have been identified with a thick line, which become thicker as the group size increases. 

 

Figure 2 – Fraction choosing the safe choice (lottery A) per individual and group size 

 
 

As we can notice, we observe a risky shift for both individuals and groups. More specifically, 

the switching point occurs at lottery 4. However, groups seem to be closer to the risk-neutrality 

prediction respect to individuals. Here it is useful to distinguish between lotteries 1-4 from lotteries 

5-10. As commented before only a risk-loving individual will choose B in lotteries 1 through 4. For 

this range of lotteries we observe that both smaller and larger groups were less-risk seeking than 

individuals. Differently, if we move our attention on lotteries 5 through 10 we detect that the 

difference between group sizes becomes relevant. Particularly, 15-members and 25-members 

groups lines depict a lower proportion for lottery A choices thus revealing a clear risk-seeking 

trend. Hence, for these lotteries lager groups seem to be more risky than individuals.  

As far we analysed only average choices across lotteries. A second step in our breakdown 

would be using the CRRA intervals subjects choose in each decision problem. In Figure 3 we start 
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by presenting the graphical distribution of elicited CRRA interval midpoints for individuals and 

groups4 and in Table 2A in the Appendix some descriptive statistics on them. 

 

Figure 3 – Elicited CRRA interval midpoints for individuals and groups 

 
 

From Table 2A we note that the average CRRA midpoint for individuals is negative as 

expected (risk-seeking behaviours) and progressively decreases as the group size increases. While 

individuals and smaller groups distributions seem to be statistically indistinguishable, for larger 

groups (15 and 25 members) the standard error is relatively small respect to samples mean. This is 

clearly noticeable in the last two histograms in Figure 3 where there is not a great variability around 

the mean as midpoints become concentrated on the left of the zero-reference line.  

To provide a more formal test of our experimental framework we employ an Interval 

Regression Model (Coller and Williams, 1999; Andersen et al., 2006; Harrison et al., 2012). Our 

dependent variable will be the elicited CRRA interval that subjects and exogenously formed groups 

implicitly choose when they cross over the risky option B in Table 1. Estimates of the CRRA for 

																																																								
4	In the individuals’, 3-members and 5-members groups panels, the sample size is less than their total observations (300 
for individuals, 100 for groups of three persons and 60 for groups of 5 persons) since some subjects provided choices 
that led their CRRA interval being (−∞;+∞) making midpoints computation impossible. According to Harrison et al. 
(2012) in the presence of multi-switching behaviours a bounded interval cannot be properly defined. In Figure 3A of the 
Appendix we report the distribution of CRRA midpoints when “fatter” intervals are considered according to Andersen 
et al. (2006).	
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different group sizes are displayed in Table 2 where we consider individual choices as our reference 

agents.  

 

Table 2: Interval Regression Model of elicited CRRA interval  

       
VARIABLES Estimate Standard Error Z-statistic P-value Lower 95% C.I. Upper 95% C.I. 
       
       
Group 3 0.033** 0.045 0.749 0.454 -0.054 0.121 
Group 5 -0.028** 0.048 -0.596 0.551 -0.122 0.065 
Group 15 -0.082** 0.048 -1.713 0.087 -0.176 0.012 
Group 25 -0.118** 0.054 -2.198 0.028 -0.223 -0.013 
       
Constant -0.014** 0.028 -0.500 0.617 -0.070 0.041 
       
Observations 456      

 
Notes: Dependent variable being elicited CRRA interval. Reference dummy being Inividuals. Log-likelyhood value is 
-773.87711, Wald test for the null hypothesis that all coefficients are zero has a Chi-squared value of 10.01 with 4 
degree of freedom and a p-value of 0.0403. Standard errors are robust to heteroskedasticity. 

 

 

We notice that for both smaller groups of 3 members and 5 members the estimates are far to 

be significant. As previously showed in graphical analysis, smaller groups are not statistically 

different from individuals (standard errors are even larger than estimated coefficients). Differently, 

we prove that, as hypothesized, larger groups reveal negative and significant estimates. Particularly, 

we detect very sizable marginal effects. Groups with 15 subjects have a CRRA estimate being 8.2 

percentage points lower than the omitted category whereas groups with 25 subjects present a far 

more prominent difference of almost 12 percentage points.  

These findings are robust to the alternative specification where “fatter” intervals are 

considered for some multi-switching behaviours. In Table 3 of the Appendix we report regression 

results with “fatter” CRRA intervals. The estimates appear to be stable and consistent though the 

marginal effects for 15-members group are only very close to the statistical significance. 

 

4. Conclusions 

In this paper we investigated group size impact on risk attitude when a majority rule is 

applied. Particularly, we aimed to compare smaller-sized groups of 3 and 5 subjects with larger-

sized groups of 15 and 25 subjects being randomly and exogenously formed departing from 

individual choices.  
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Drawing on the widely used Holt and Laury’s (2002) lottery pairs we elicited individuals 

and groups risk attitudes. We observed a risky shift for both individual and groups regardless of 

their size. However, groups choices are shown to be closer to the risk-neutrality prediction. More 

interestingly, whereas smaller groups attitudes can be safely approximated by individual choices, 

larger groups reveal a statistically different risk-loving attitude. This risky shift becomes more 

prominent as group size increases.  

Now, classical economics textbook models individual choices being independent from other 

people choices. However, social and political decision-making processes imply some aggregation of 

individual preferences with a variety of risk attitudes. This means that when a majority rule is likely 

to work at some social level, in presence of some degree in individual risk-seeking behaviours the 

social decision will undoubtedly be a more risky one. 
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Appendix 

 

FIGURE 1A – Lottery pairs in a pie-chart display 

 

 
 

FIGURE 2A - Elicited CRRA interval midpoints for individuals and groups (“fatter” intervals) 
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TABLE 1A – Non-monotonic preferences in lotteries choices 

 Total observations Observations with multiple switch-back % 

Individuals 300 30 10% 
Group3 100 6 6% 
Group5 60 1 1.67% 
Group15 20 0 0% 
Group25 12 0 0% 

 

 

TABLE 2A – CRRA midpoints descriptive statistics 

   
Variables Mean Standard Error 
   
   
Individuals -0.0233 0.0290 
Group_3  0.0167 0.0347 
Group_5 -0.0447 0.0389 
Group_15 -0.0980 0.0398 
Group_25 -0.1330 0.0476 
   
Observations 455  

 

 

TABLE 3A: Interval Regression Model of elicited CRRA interval with “fatter” intervals 

       
VARIABLES Estimate Standard Error Z-statistic P-value Lower 95% C.I. Upper 95% C.I. 
       
       
group3 0.031 0.044 0.718 0.473 -0.054 0.117 
group5 -0.025 0.047 -0.523 0.601 -0.117 0.068 
group15 -0.077 0.048 -1.617 0.106 -0.170 0.016 
group25 -0.112** 0.053 -2.114 0.035 -0.216 -0.008 
       
Constant -0.019 0.028 -0.705 0.481 -0.074 0.035 
       
Observations 491      
 
Notes: Dependent variable being elicited CRRA interval. Reference dummy being Inividuals. Log-likelyhood value 
is -777.90577, Wald test for the null hypothesis that all coefficients are zero has a Chi-squared value of 9.13 with 4 
degree of freedom and a p-value of 0.0579. Standard errors are robust to heteroskedasticity. 
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Experiment instructions (translated into English): 

Welcome to the Experiment  

This	is	an	experiment	to	investigate	your	evaluation	of	lotteries.	At	the	end	of	the	experiment	

you	will	receive	a	payoff	based	on	the	decisions	you	make	according	to	the	rules	set	out	at	the	

end	 of	 the	 experiment.	 Please	 read	 the	 instructions	 very	 carefully	 before	 starting	 the	

experiment.	 In	particular,	make	sure	 that	you	have	understood	the	payoff	procedure	before	

starting.	

	

You	will	 face	10	pairs	of	 lotteries.	For	each	pair	you	will	be	asked	to	choose	the	lottery	that	

you	prefer	the	most.	Below	is	an	example	of	the	pairs	of	lotteries	you	can	face:	

	

You	will	have	to	choose	between	Lottery	A	and	Lottery	B.	Once	you	complete	 this	 task,	one	

out	 of	 the	 10	 pairs	 of	 lotteries	will	 be	 randomly	 chosen.	 The	 lottery	 that	 you	 stated	 as	 the	

most	preferred	will	then	be	played	for	real.	

	
 

 

  
Lottery A Lottery B 
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