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Department of Statistics, University of Warwick

September 22, 2017

Summary

The method of model averaging has become an important tool to deal with model uncer-
tainty, in particular in empirical settings with large numbers of potential models and relatively
limited numbers of observations, as are common in economics. Model averaging is a nat-
ural response to model uncertainty in a Bayesian framework, so most of the paper deals
with Bayesian model averaging. In addition, frequentist model averaging methods are also
discussed. Numerical methods to implement these methods are explained, and I point the
reader to some freely available computational resources. The main focus is on the problem
of variable selection in linear regression models, but the paper also discusses other, more
challenging, settings. Some of the applied literature is reviewed with particular emphasis
on applications in economics. The role of the prior assumptions in Bayesian procedures
is highlighted, and some recommendations for applied users are provided (JEL: C11, C15,
C20, C52, O47).

1 Introduction

This paper is about model averaging, as a solution to the problem of model uncertainty and
focuses mostly on the theoretical developments over the last two decades and its uses in appli-
cations in economics. This is a topic that has now gained substantial maturity and is generating
a rapidly growing literature. Thus, a survey seems timely. The discussion focuses mostly on
covariate selection in regression models (normal linear regression and its extensions), which is
arguably the most pervasive situation in economics. Advances in the context of models designed
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to deal with some more challenging situations, such as data with dependency over time or in
space or endogeneity (all quite relevant in economic applications) are also discussed. Two main
strands of model averaging are distinguished: Bayesian model averaging (BMA), based on prob-
ability calculus and naturally emanating from the Bayesian paradigm by treating the model index
as an unknown, just like the model parameters and specifying a prior on both; and frequentist
model averaging (FMA), where the chosen weights are often determined so as to obtain desirable
properties of the resulting estimators under repeated sampling and asymptotic optimality.

In particular, the aim of this paper is threefold:

• To provide a survey of the most important methodological contributions in a consistent no-
tation and through a formal, yet accessible, presentation. This review takes into account the
latest developments and applications, which is important in such a rapidly developing lit-
erature. Technicalities are not avoided, but some are dealt with by providing the interested
reader with the relevant references. Even though the list of references is quite extensive,
this is not claimed to be an exhaustive survey. Rather, it attempts to identify the most im-
portant developments that the applied economist needs to know about for an informed use
of these methods. This review complements and extends other reviews and discussions; for
example by Hoeting et al. (1999) on Bayesian model averaging, Clyde and George (2004)
on model uncertainty, Moral-Benito (2015) on model averaging in economics and Wang
et al. (2009) on frequentist model averaging. Further, we can mention a review of weighted
average least squares in Magnus and De Luca (2016) while Fragoso and Neto (2015) de-
velop a conceptual classification scheme to better describe the literature in Bayesian model
averaging. Koop (2017) discusses the use of Bayesian model averaging or prior shrinkage
as responses to the challenges posed by big data in empirical macroeconomics.

• By connecting various strands of the literature, to enhance the insight of the reader into the
way these methods work and why we would use them. In particular, this paper attempts to
tie together disparate literatures with roots in econometrics and statistics, such as the litera-
ture on forecasting, often in the context of time series and linked with information criteria,
fundamental methodology to deal with model uncertainty and shrinkage in statistics1, as
well as more ad-hoc ways of dealing with variable selection. There is also a subsection
explaining the various commonly used numerical methods to implement model averaging

1Variable selection can be interpreted as a search for parsimony, which has two main approaches in Bayesian
statistics: through the use of shrinkage priors, which are absolutely continuous priors that shrink coefficients to zero
but where all covariates are always included in the model, and through allocating prior point mass at zero for each
of the regression coefficients, which allows for formal exclusion of covariates and implies that we need to deal with
many different models, which is the approach recommended here.
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in practical situations, which are typically characterized by very large model spaces. For
Bayesian model averaging, it is important to understand that the weights (based on poste-
rior model probabilities) are typically quite sensitive to the prior assumptions, in contrast
to the usually much more robust results for the model parameters given a specific model.
In addition, this sensitivity does not vanish as the sample size grows (Kass and Raftery,
1995; Berger and Pericchi, 2001). Thus, a good understanding of the effect of (seemingly
arbitrary) prior choices is critical.

• To provide sensible recommendations for empirical researchers about which modelling
framework to adopt and how to implement these methods in their own research. In the case
of Bayesian model averaging, I recommend the use of prior structures that are easy to elicit
and are naturally robust. I include a separate section on freely available computational
resources that will allow applied researchers to try out these methods on their own data,
without having to incur a prohibitively large investment in implementation. In making rec-
ommendations, it is inevitable that one draws upon personal experiences and preferences,
to some extent. Thus, I present the reader with a somewhat subjective point of view, which
I believe, however, is well-supported by both theoretical and empirical results.

Given the large literature, and in order to preserve a clear focus, it is important to set some
limits to the coverage of the paper. As already explained above, the paper deals mostly with
covariate selection in regression models, and does not address issues like the use of Bayesian
model averaging in classification trees (Hernández et al., 2017) or in clustering and density esti-
mation (Russell et al., 2015). The large literature in machine learning related to nonparametric
approaches to covariate selection (Hastie et al., 2009) will also largely be ignored. Finally, this
paper considers situations where the number of observations exceeds the number of potential co-
variates as this is most common in economics (some brief comments on the opposite case can be
found in footnote 10).

As mentioned above, I discuss Bayesian and frequentist approaches to model averaging. This
paper is mostly concerned with the Bayesian approach for two reasons:

• I personally find the formality and probability-based interpretability of the Bayesian ap-
proach very appealing, as opposed to the more ad-hoc nature and often asymptotic mo-
tivation of the frequentist methodology. I do realize this is, to some extent, a personal
choice, but I prefer to operate within a logically closed and well-defined methodological
framework, which immediately links to prediction and decision theory and where it is made
explicit what the user adds to the analysis (in particular, the choice of priors).
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• There is a large amount of recent literature on the Bayesian approach to resolving model
uncertainty, both in statistics and in many areas of application, among which economics
features rather prominently. Thus, this focus on Bayesian methods is in line with the ma-
jority of the literature (see footnote 5) and seems to reflect the perceived preference of
many researchers in economics.

Of course, as Wright (2008) states: “One does not have to be a subjectivist Bayesian to
believe in the usefulness of BMA, or of Bayesian shrinkage techniques more generally. A fre-
quentist econometrician can interpret these methods as pragmatic devices that may be useful for
out-of-sample forecasting in the face of model and parameter uncertainty.”

This paper is organised as follows: in Section 2 I discuss the issue of model uncertainty and
the way it can be addressed through Bayesian model averaging, and I introduce the specific con-
text of covariate selection in the normal linear model. Section 3 provides a detailed account of
Bayesian model averaging, focusing on the prior specification, its properties and its implementa-
tion in practice. This section also provides a discussion of various generalizations of the sampling
model and of a number of more challenging models, such as dynamic models and models with
endogenous covariates. Section 4 describes frequentist model averaging, while Section 5 surveys
some of the recent literature where model averaging methods have been applied in economics.
In Section 6 some freely available computational resources are briefly discussed, and the final
section concludes and provides some recommendations.

2 Model uncertainty

The issue of model uncertainty is a very important one, particularly for modelling in the social sci-
ences, where there is usually a large amount of uncertainty about model specifications that is not
resolved by universally accepted theory. Thus, it affects virtually all modelling in economics and
its consequences need to be taken into account whenever we are (as usual) interested in quantities
that are not model-specific (such as predictions or effects of regressors). Generally, one important
and potentially dangerous consequence of neglecting model uncertainty is that we assign more
precision to our inference than is warranted by the data, and this leads to overly confident deci-
sions and predictions. In addition, our inference can be severely biased. See Chatfield (1995) and
Draper (1995) for extensive discussions of model uncertainty. In the context of the evaluation
of macroeconomic policy, Brock et al. (2003) describe and analyse some approaches to dealing
with the presence of uncertainty about the structure of the economic environment under study.
Starting from a decision-theoretic framework, they recommend model averaging as a critical tool
in tackling uncertainty. Brock and Durlauf (2015) specifically focus on policy evaluation and
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provide an overview of different approaches, distinguishing between cases in which the analyst
can and cannot provide conditional probabilities for the effects of policies. Varian (2014) states
that “An important insight from machine learning is that averaging over many small models tends
to give better out-of-sample prediction than choosing a single model. In 2006, Netflix offered a
million dollar prize to researchers who could provide the largest improvement to their existing
movie recommendation system. The winning submission involved a ‘complex blending of no
fewer than 800 models,’ though they also point out that ‘predictions of good quality can usually
be obtained by combining a small number of judiciously chosen methods’ (Feuerverger et al.,
2012). It also turned out that a blend of the best- and second-best submissions outperformed
either of them. Ironically, it was recognized many years ago that averages of macroeconomic
model forecasts outperformed individual models, but somehow this idea was rarely exploited in
traditional econometrics. The exception is the literature on Bayesian model averaging, which has
seen a steady flow of work; see Steel (2011) for a survey.”

As an example, Durlauf et al. (2012) examine the effect of different substantive assumptions
about the homicide process on estimates of the deterrence effect of capital punishment2. Con-
sidering four different types of model uncertainty, they find a very large spread of effects, with
the estimate of net lives saved per execution ranging from -63.6 (so no deterrence effect at all) to
20.9. This clearly illustrates that the issue of model uncertainty needs to be addressed before we
can answer questions such as this and many others of immediate relevance to society.

Over the last decade, there has been a rapidly growing awareness of the importance of dealing
with model uncertainty for economics. As examples, the European Economic Review has recently
published a special issue on “Model Uncertainty in Economics” which was also the subject of the
2014 Schumpeter lecture in Marinacci (2015), providing a decision-theory perspective. In addi-
tion, a book written by two Nobel laureates in economics (Hansen and Sargent, 2014), focuses
specifically on the effects of model uncertainty on rational expectations equilibrium concepts.

In line with probability theory, the standard Bayesian response to dealing with uncertainty
is to average. When dealing with parameter uncertainty, this involves averaging over parameter
values with the posterior distribution of that parameter in order to get the predictive distribution.
Analogously, model uncertainty is also resolved through averaging, but this time averaging over
models with the (discrete) posterior model distribution. The latter procedure is usually called
Bayesian model averaging and was already described in Leamer (1978) and later used in Min
and Zellner (1993), Koop et al. (1997) and Raftery et al. (1997a). BMA thus appears as a direct
consequence of Bayes theorem (and hence probability laws) in a model uncertainty setting and is
perhaps best introduced by considering the concept of a predictive distribution, often of interest

2A systematic investigation of this issue goes back to Leamer (1983).
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in its own right. In particular, assume we are interested in predicting the unobserved quantity
yf on the basis of the observations y. Let us denote the sampling model3 for yf and y jointly
by p(yf |y, θj,Mj)p(y|θj,Mj), where Mj is the model selected from a set of K possible models,
and θj ∈ Θj groups the (unknown) parameters of Mj . In a Bayesian framework, any uncertainty
is reflected by a probability distribution4 so we assign a (typically continuous) prior p(θj|Mj)

for the parameters and a discrete prior P (Mj) defined on the model space. We then have all the
building blocks to compute the predictive distribution as

p(yf |y) =
K∑
j=1

[∫
Θj

p(yf |y, θj,Mj)p(θj|y,Mj)dθj

]
P (Mj|y), (1)

where the quantity in square brackets is the predictive distribution given Mj obtained using the
posterior of θj given Mj , which is computed as

p(θj|y,Mj) =
p(y|θj,Mj)p(θj|Mj)∫

Θj
p(y|θj,Mj)p(θj|Mj)dθj

≡ p(y|θj,Mj)p(θj|Mj)

p(y|Mj)
, (2)

with the second equality defining p(y|Mj), which is used in computing the posterior probability
assigned to Mj as follows:

P (Mj|y) =
p(y|Mj)P (Mj)∑K
i=1 p(y|Mi)P (Mi)

≡ p(y|Mj)P (Mj)

p(y)
. (3)

Clearly, the predictive in (1) indeed involves averaging at two levels: over (continuous) param-
eter values, given each possible model, and discrete averaging over all possible models. The
denominators of both averaging operations are not immediately obvious from (1), but are made
explicit in (2) and (3). The denominator (or integrating constant) p(y|Mj) in (2) is the so-called
marginal likelihood of Mj and is a key quantity for model comparison. In particular, the Bayes
factor between two models is the ratio of their marginal likelihoods and the posterior odds are
directly obtained as the product of the Bayes factor and the prior odds. The denominator in (3),
p(y), is defined as a sum and the challenge in its calculation often lies in the sheer number of
possible models, i.e. K.

Bayesian model averaging as described above is thus the formal probabilistic way of obtain-
ing predictive inference, and is, more generally, the approach to any inference problem involving
quantities of interest that are not model-specific. So it is also the Bayesian solution to conducting
posterior inference on e.g. the effects of covariates. Formally, the posterior distribution of any

3For ease of notation, we will assume continuous sampling models with real-valued parameters throughout, but
this can immediately be extended to other cases.

4Or, more generally, a measure.
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quantity of interest, say ∆, which has a common interpretation across models is a mixture of the
model-specific posteriors with the posterior model probabilities as weights, i.e.

P∆|y =
K∑
j=1

P∆ | y,Mj
P (Mj | y). (4)

The rapidly growing importance of model averaging as a solution to model uncertainty is
illustrated by Figure 1, which plots the citation profile over time of papers with the topic “model
averaging” in the literature (left panel). A large part of the literature uses Bayesian model av-
eraging methods, reflected in the citations to papers with the topic “Bayesian model averaging”
shown in the right panel of Figure 15. The sheer number of recent papers in this area is evidenced
by the fact that Google Scholar returns over 45,000 papers in a search for “model averaging”
and 17,000 papers when searching for “Bayesian model averaging”, over half of which date from
2012 and later (data from September 7, 2017).

Figure 1: Left: number of citations to papers with topic “model averaging”. Right: number of citations to papers
with topic “Bayesian model averaging”. Source: Web of Science, June 4, 2017

2.1 Covariate selection in the normal linear regression model

Most of the relevant literature assumes the simple case of the normal linear sampling model. This
helps tractability, and is fortunately also a model that is often used in empirical work. We shall
follow this tradition, and will assume for most of the paper6 that the sampling model is normal

5Comparison of both graphs in Figure 1 might create the mistaken impression that most of the literature uses
frequentist rather than Bayesian model averaging methods. However, the equivalent search for “frequentist model
averaging” only generates less than 1% of the total citations represented in the right hand panel of the figure.

6Section 3.8 explores some extensions, e.g. to the wider class of Generalized Linear Models (GLMs) and some
other modelling frameworks that deal with specific challenges in economics.
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with a mean which is a linear function of some covariates7. We shall further assume, again in
line with the vast majority of the literature (and many real-world applications) that the model
uncertainty relates to the choice of which covariates should be included in the model, i.e. under
model j the n observations in y are generated from

y|θj,Mj ∼ N(αι+ Zjβj, σ
2). (5)

Here ι represents a n × 1-dimensional vector of ones, Zj groups kj of the possible k regressors
(i.e. it selects kj columns from an n× k matrix Z, corresponding to the full model) and βj ∈ <kj

are its corresponding regression coefficients. Furthermore, all considered models contain an in-
tercept α ∈ < and the scale σ > 0 has a common interpretation across all models. We standardize
the regressors by subtracting their means, which makes them orthogonal to the intercept and ren-
ders the interpretation of the intercept common to all models. The model space is then formed by
all possible subsets of the covariates and thus contains K = 2k models in total8. Therefore, the
model space includes the null model (the model with only the intercept and kj = 0) and the full
model (the model where Zj = Z and kj = k). This definition of the model space is consistent
with the typical situation in economics, where theories regarding variable inclusion do not nec-
essarily exclude each other. Brock and Durlauf (2001) refer to this as the “open-endedness” of
the theory9. Throughout, we assume that the matrix formed by adding a column of ones to Z has
full column rank10.

This model uncertainty problem is very relevant for empirical work, especially in the social
sciences where typically competing theories abound on which are the important determinants of a
phenomenon. Thus, the issue has received quite a lot of attention both in statistics and economics,
and various approaches have been suggested. We can mention:

7Note that this is not as restrictive as it seems. It certainly does not mean that the effects of determinants on the
modelled phenomenon are linear; we can simply include regressors that are nonlinear transformations of determi-
nants, interactions etc.

8This can straightforwardly be changed to a (smaller) model space where some of the regressors are always
included in the models.

9In the context of growth theory, Brock and Durlauf (2001) define this concept as “the idea that the validity of
one causal theory of growth does not imply the falsity of another. So, for example, a causal relationship between
inequality and growth has no implications for whether a causal relationship exists between trade policy and growth.”

10For economic applications this is generally a reasonable assumption, as typically n > k, although they may
be of similar orders of magnitude. In other areas such as genetics this is usually not an assumption we can make.
However, it generally is enough that for each model we consider to be a serious contender the matrix formed by
adding a column of ones to Zj is of full column rank, and that is much easier to ensure. Implicitly, in such situations
we would assign zero prior and posterior probability to models for which kj ≥ n. Formal approaches to use g-priors
in situations where k > n include Maruyama and George (2011) and Berger et al. (2016), based on different ways
of generalizing the notion of inverse matrices.
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1. Stepwise regression: this is a sequential procedure for entering and deleting variables in a
regression model based on some measure of “importance”, such as the t-statistics of their
estimated coefficients (typically in “backwards” selection where covariates are considered
for deletion) or (adjusted) R2 (typically in “forward” selection when candidates for inclu-
sion are evaluated).

2. Shrinkage methods: generally, these methods aim to find a set of sparse solutions (i.e.
models with a reduced set of covariates) by shrinking coefficient estimates toward zero.
Bayesian shrinkage methods rely on the use of shrinkage priors, which are such that some
of the estimated regression coefficients in the full model will be close to zero. Typically,
such priors will have a peak at zero to induce shrinkage for small coefficients, combined
with fat tails that do not lead to shrinkage for large coefficients. Examples are the normal-
gamma prior of Griffin and Brown (2010) and the horseshoe prior of Carvalho et al. (2010).
A common classical method is penalized least squares, such as LASSO (least absolute
shrinkage and selection operator), introduced by Tibshirani (1996), where the regression
“fit” is maximized subject to a complexity penalty. Choosing a different penalty function,
Fan and Li (2001) propose the smoothly clipped absolute deviation (SCAD) penalized
regression estimator.

3. Information criteria: these criteria can be viewed as the use of the classical likelihood ra-
tio principle combined with penalized likelihood (where the penalty function depends on
the model complexity). A common example is the Akaike information criterion (AIC).
The Bayesian information criterion (BIC) implies a stronger complexity penalty and was
originally motivated through asymptotic equivalence with a Bayes factor (Schwarz, 1978).
Asymptotically, AIC selects a single model that minimizes the mean squared error of pre-
diction. BIC, on the other hand, chooses the correct model with probability tending to one
as the sample size grows to infinity. So BIC is consistent, while AIC is not. Spiegelhalter
et al. (2002) propose the Deviance information criterion (DIC) which can be interpreted as
a Bayesian generalization of AIC.11

4. Cross-validation: the idea here is to use only part of the data for inference and to assess
how well the remaining observations are predicted by the fitted model. This can be done
repeatedly for random splits of the data and models can be chosen on the basis of their
predictive performance.

5. Extreme Bounds Analysis (EBA): this procedure was proposed in Leamer (1983, 1985)

11DIC is quite easy to compute in practice, but has been criticized for its dependence on the parameterization and
its lack of consistency.
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and is based on distinguishing between “core” and “doubtful” variables. Rather than a
discrete search over models that include or exclude subsets of the variables, this sensitivity
analysis answers the question: how extreme can the estimates be if any linear homogenous
restrictions on a selected subset of the coefficients (corresponding to doubtful covariates)
are allowed? An extreme bounds analysis chooses the linear combinations of doubtful
variables that, when included along with the core variables, produce the most extreme
estimates for the coefficient on a selected core variable. If the extreme bounds interval is
small enough to be useful, the coefficient of the core variable is reported to be “sturdy”.

6. s-values: proposed by Leamer (2016a,b) as a measure of “model ambiguity”. Here σ
is replaced by the OLS estimate and no prior mass points at zero are assumed for the
regression coefficients. For each coefficient, this approach finds the interval bounded by
the extreme estimates (based on different prior variances, elicited through R2); the s-value
(s for sturdy) then summarizes this interval of estimates in the same way that a t-statistic
summarizes a confidence interval (it simply reports the centre of the interval divided by half
its width). A small s-value then indicates fragility of the effect of the associated covariate,
by measuring the extent to which the sign of the estimate of a regression coefficient depends
on the choice of model.

7. General-to-specific modelling: this approach starts from a general unrestricted model and
uses individual t-statistics to reduce the model to a parsimonious representation. We refer
the reader to Hoover and Perez (1999) and Hendry and Krolzig (2005) for background.
Hendry and Krolzig (2004) present an application of this technique to the cross-country
growth dataset of Fernández et al. (2001b) (“the FLS data”, which record average per capita
GDP growth over 1960-1992 for n = 72 countries with k = 41 potential regressors).

8. The Model Confidence Set (MCS): this approach to model uncertainty consists in con-
structing a set of models such that it will contain the best model with a given level of
confidence. This was introduced by Hansen et al. (2011) and only requires the specifica-
tion of a collection of competing objects (model space) and a criterion for evaluating these
objects empirically. The MCS is constructed through a sequential testing procedure, where
an equivalence test determines whether all objects in the current set are equally good. If
not, then an elimination rule is used to delete an underperforming object. The same sig-
nificance level is used in all tests, which allows one to control the p-value of the resulting
set and each of its elements. The appropriate critical values of the tests are determined by
bootstrap procedures. Hansen et al. (2011) apply their procedure to e.g. US inflation fore-
casting, and Wei and Cao (2017) use it for modelling Chinese house prices, using predictive
elimination criteria.
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9. Best subset regression of Hastie et al. (2009), called full subset regression in Hanck (2016).
This method considers all possible models: for a given model size kj it selects the best in
terms of fit (the lowest sum of squared residuals). As all these models have kj parameters,
none has an unfair advantage over the others using this criterion. Of the resulting set of
optimal models of a given dimension, the procedure then chooses the one with the smallest
value of some criterion such as Mallows’ Cp 12. Hanck (2016) does a small simulation
exercise to conclude that log runtime for complete enumeration methods is roughly linear
in k, as expected. Using the FLS data and a best subset regression approach which uses a
leaps and bounds algorithm (see Section 3.2) to avoid complete enumeration of all models,
he finds that the best model for the FLS data has 22 (using Cp) or 23 (using BIC) variables.
These are larger model sizes than indicated by typical BMA results on these data13.

10. Bayesian variable selection methods based on decision-theory. Often such methods avoid
specifying a prior on model space and employ a utility or loss function defined on an
all-encompassing model, i.e. a model that nests all models being considered. An early
contribution is Lindley (1968), who proposes to include costs in the utility function for
adding covariates, while Brown et al. (1999) extend this idea to multivariate regression.
Other Bayesian model selection procedures that are based on optimising some loss or utility
function can be found in e.g. Gelfand and Ghosh (1998), Draper and Fouskakis (2000) and
Dupuis and Robert (2003). Note that decision-based approaches do need the specification
of a utility function, which is arguably at least as hard to formulate as a model space prior.

11. Bayesian model averaging, discussed here in detail in Section 3.

12. Frequentist model averaging, discussed in Section 4.

In this list, methods 5-8 were specifically motivated by and introduced in economics. Note
that all but the last two methods do not involve model averaging and essentially aim at uncovering
a single “best” model (or a set of models for MCS). In other words, they are “model selection”
methods, as opposed to the model averaging methods that we focus on here. As it is unlikely that
reality (certainly in the social sciences) can be adequately captured by a simple linear model, it
is often quite risky to rely on a single model for inference, forecasts and (policy) conclusions. It

12Mallows’ Cp was developed for selecting a subset of regressors in linear regression problems. For model Mj

with kj parameters Cp =
SSEj

σ̂2 − n + 2kj where SSEj is the error sum of squares from Mj and σ̂2 the estimated
error variance. E(Cp) = kj (approximately) and regressions with low Cp are favoured.

13For example, using the prior setup later described in (6) with fixed g, Ley and Steel (2009b) find the models
with highest posterior probability to have between 5 and 10 regressors for most prior choices. Using random g, the
results in Ley and Steel (2012) indicate that a typical average model size is between 10 and 20.
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is much more likely14 that an averaging method gives a better approximation to reality and it will
almost certainly improve our estimate of the uncertainty associated with our conclusions. Model
selection methods simply condition on the chosen model and ignore all the evidence contained
in the alternative models, thus typically leading to an underestimating of the uncertainty. Com-
parisons of some methods (including the method by Benjamini and Hochberg (1995) aimed at
controlling the false discovery rate) can be found in Deckers and Hanck (2014) in the context
of cross-sectional growth regression. BMA methods can also be used for model selection, by
e.g. simply selecting the model with the highest posterior probability. Typically, the opposite is
not true as most model selection methods do not specify prior probabilities on the model space
and thus can not provide posterior model probabilities.

Wang et al. (2009) claim that there are model selection methods that automatically incorpo-
rate model uncertainty by selecting variables and estimating parameters simultaneously. Such
approaches are e.g. the SCAD penalized regression of Fan and Li (2001) and adaptive LASSO
methods as in Zou (2006). These methods sometimes possess the so-called oracle property15.
However, the oracle property is asymptotic and assumes that the “true” model is one of the mod-
els considered. So in the much more relevant context of finite samples and with true models
(if they can even be formulated) outside the model space these procedures will very likely still
underestimate uncertainty.16

Originating in machine learning, there are a number of “ensemble” algorithms like random
forests, boosting or bagging (Hastie et al., 2009). As these methods typically exchange the neat,
possibly structural, interpretability of a simple linear specification for the flexibility of nonlinear
and nonparametric models and cannot provide probability-based uncertainty intervals, we do not
consider them in this article. Nevertheless, they do often provide good predictive performance,
especially in classification problems17. An intermediate method was proposed in Hernández et al.
(2017), who combine elements of both Bayesian additive regression trees and random forests, to

14Strictly speaking, the choice between model averaging and model selection is related to the decision problem
that we aim to solve. In most typical situations, however, the implicit loss function we specify will lead to model
averaging. Examples are where we are interested in maximizing accuracy of prediction or of estimation of covariate
effects.

15The oracle property implies that an estimating procedure identifies the “true” model asymptotically if the latter
is part of the model space and has the optimal square root convergence rate. See Fan and Li (2001).

16For example, George (1999a) states that “BMA is well suited to yield predictive improvements over single se-
lected models when the entire model class is misspecified. In a sense, the mixture model elaboration is an expansion
of the model space to include adaptive convex combinations of models. By incorporating a richer class of models,
BMA can better approximate models outside the model class.”

17Domingos (2000) finds that BMA often fails to beat the machine learning methods in classification problems,
and conjectures that this is a consequence of BMA “overfitting”, in the sense that the sensitivity of the likelihood to
small changes in the data carries over to the weights in (4).
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offer a model-based algorithm which can deal with high-dimensional data.

3 Bayesian Model averaging

3.1 Bayesian Model Averaging: The prior and some properties

The natural Bayesian response to model uncertainty is Bayesian Model Averaging, as already
explained in Section 2. Here, BMA methods are defined as those model averaging procedures for
which the weights used in the averaging are based on exact or approximate posterior model prob-
abilities and the parameters are integrated out for prediction, so there is a (sometimes implicit)
prior for both models and model-specific parameters.

This paper mainly focuses on the most commonly used prior choices. Such prior structures,
based on (6), have also has been shown (Bayarri et al., 2012) to have optimal properties in the
sense that they satisfy several formal desirable criteria. In particular, these priors are measurement
and group invariant and satisfy exact predictive matching.18

3.1.1 Priors on model parameters

When deciding on the priors for the model parameters, i.e. p(θj|Mj) in (2), it is important to real-
ize that the prior needs to be proper on model-specific parameters. Indeed, any arbitrary constant
in p(θj|Mj) will similarly affect the marginal likelihood p(y|Mj) defined in (2). Thus, if this con-
stant emanating from an improper prior multiplies p(y|Mj) and not the marginal likelihoods for
all other models, it clearly follows from (3) that posterior model probabilities are not determined.
If the arbitrary constant relates to a parameter that is common to all models, it will simply cancel
in the ratio (3), and for such parameters we can thus employ improper priors (Fernández et al.,
2001a; Berger and Pericchi, 2001). In our normal linear model in (5), the common parameters
are the intercept α and the variance σ2, and the model-specific parameters are the βjs.

In this paper, we will primarily focus on the prior structure proposed by Fernández et al.
(2001a), which is in line with the majority of the current literature19. Fernández et al. (2001a) start
from a proper conjugate prior specification, but then adopt Jeffreys-style non-informative priors
for α and σ2. For the regression coefficients βj , they propose a g-prior specification (Zellner,

18See Bayarri et al. (2012) for the precise definition of these criteria for “objective” model selection priors.
19A textbook treatment of this approach can be found in Chapter 11 of Koop (2003).
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1986) for the covariance structure20. The prior density21 is then as follows:

p(α, βj, σ |Mj) ∝ σ−1f
kj
N (βj|0, σ2g(Z ′jZj)

−1), (6)

where f qN(·|m,V ) denotes the density function of a q-dimensional Normal distribution with mean
m and covariance matrix V . It is worth pointing out that the dependence of the g-prior on the de-
sign matrix is not in conflict with the usual Bayesian precept that the prior should not involve the
data, since the model in (5) is a model for y given Zj , so we simply condition on the regressors
throughout the analysis. The regression coefficients not appearing in Mj are exactly zero, repre-
sented by a prior point mass at zero. The amount of prior information requested from the user is
limited to a single scalar g > 0, which can either be fixed or assigned a hyper-prior distribution.
In addition, the marginal likelihood for each model (and thus the Bayes factor between each pair
of models) can be calculated in closed form (Fernández et al., 2001a). In particular, the posterior
distribution for the model parameters has an analytically known form as follows:

p(βj |α, σ,Mj) = f
kj
N (βj | δ(Z ′jZj)−1Z ′jy, σ

2δ(Z ′jZj)
−1) (7)

p(α |σ,Mj) = f 1
N(α | ȳ, σ2/n) (8)

p(σ−2 |Mj) = fGa

(
σ−2 | n− 1

2
,
sδ
2

)
, (9)

where δ = g/(1 + g), ȳ = 1
n

∑n
i=1 yi, sδ =

[
δy′QXjy + (1− δ)(y − ȳι)′(y − ȳι)

]
with QW =

In−W (W ′W )−1W ′ for a full column rank matrixW andXj = (ι : Zj) (assumed of full column
rank, see footnote 10). Furthermore, fGa(· | a, b) is the density function of a Gamma distribution
with mean a/b. The conditional independence between βj and α (given σ) is a consequence of
demeaning the regressors. After integrating out the model parameters as above, we can write the
marginal likelihood as

p(y|Mj) ∝ (1 + g)
n−1−kj

2 [1 + g(1−R2
j )]
−n−1

2 , (10)

where R2
j is the usual coefficient of determination for model Mj , defined through 1 − R2

j =

y′QXjy/[(y − ȳι)′(y − ȳι)], and the proportionality constant is the same for all models, includ-
ing the null model. In addition, for each model Mj , the marginal posterior distribution of the
regression coefficients βj is a kj-variate Student-t distribution with n − 1 degrees of freedom,
location δ(Z ′jZj)

−1Z ′jy (which is the mean if n > 2) and scale matrix δsδ(Z ′jZj)
−1 (and vari-

ance δsδ
n−3

(Z ′jZj)
−1 if n > 3). The out-of-sample predictive distribution for each given model

(which in a regression model will of course also depend on the covariate values associated with
20In line with most of the literature, in this paper g denotes a variance factor rather than a precision factor as in

Fernández et al. (2001a).
21For the null model, the prior is simply p(α, σ) ∝ σ−1.
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the observations we want to predict) is also a Student-t distribution with n − 1 degrees of free-
dom. Details can be found in equation (3.6) of Fernández et al. (2001a). Following (4), we can
then conduct posterior or predictive inference by simply averaging these model-specific distri-
butions using the posterior model weights computed (as in (3)) from (10) and the prior model
distributions described in the next subsection.

There are a number of suggestions in the literature for the choice of fixed values for g, among
which the most popular ones are:

• The unit information prior of Kass and Wasserman (1995) corresponds to the amount of
information contained in one observation. For regular parametric families, the “amount of
information” is defined through Fisher information. This gives us g = n, and leads to log
Bayes factors that behave asymptotically like the BIC (Fernández et al., 2001a).

• The risk inflation criterion prior, proposed by Foster and George (1994), is based on the
Risk inflation criterion (RIC) which leads to g = k2 using a minimax perspective.

• The benchmark prior of Fernández et al. (2001a). They examine various choices of g
depending on the sample size n or the model dimension k and recommend g = max(n, k2).

When faced with a variety of possible prior choices for g, a natural Bayesian response is
to formulate a hyperprior on g. This was already implicit in Zellner and Siow (1980) who use
a Cauchy prior on the regression coefficients, corresponding to an inverse gamma prior on g.
This idea was investigated further in Liang et al. (2008a), where hyperpriors on g are shown to
alleviate certain paradoxes that appear with fixed choices for g. Sections 3.1.3 and 3.1.4 will
provide more detail.

The g-prior is a relatively well-understood and convenient prior with nice properties, such
as invariance under rescaling and translation of the covariates (and more generally, invariant to
reparameterization under affine transformations), and automatic adaption to situations with near-
collinearity between different covariates (Robert, 2007, p. 193). It can also be interpreted as the
conditional posterior of the regression coefficients given a locally uniform prior and an imaginary
sample of zeros with design matrix Zj and a scaled error variance.

This idea of imaginary data is also related to the power prior approach (Ibrahim and Chen
(2000) initially developed on the basis of the availability of historical data (i.e. data arising
from previous similar studies). In addition, the mechanism of imaginary data forms the basis
of the expected-posterior prior (Pérez and Berger, 2002). In Fouskakis and Ntzoufras (2016b)
the power-conditional-expected-posterior prior is developed by combining the power prior and
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the expected-posterior prior approaches for the regression parameters conditional on the error
variance.

Som et al. (2015) introduce the block hyper-g/n prior for so-called “poly-shrinkage”, which
is a collection of ordinary mixtures of g-priors applied separately to groups of predictors. Their
motivation is to avoid certain paradoxes, related to different asymptotic behaviour for different
subsets of predictors. Min and Sun (2016) consider the situation of grouped covariates (occurring,
for example, in ANOVA models where each factor has various levels) and propose separate g-
priors for the associated groups of regression coefficients. This also circumvents the fact that in
ANOVA models the full design matrix is often not of full rank.

A similar idea is used in Zhang et al. (2016) where a two-component extension of the g-prior
is proposed, with each regressor being assigned one of two possible values for g. Their prior
is proper by treating the intercept as part of the regression vector in the g-prior and by using a
“vague” proper prior22 on σ2. They focus mostly on variable selection.

A somewhat different approach was advocated by George and McCulloch (1993, 1997), who
use a prior on the regression coefficient which does not include point masses at zero. In particular,
they propose a normal prior with mean zero on the entire k-dimensional vector of regression
coefficients β given the model Mj which assigns a small prior variance to the coefficients of
the variables that are “inactive”23 in Mj and a larger variance to the remaining coefficients. In
addition, their overall prior is proper and does not assume a common intercept.

Raftery et al. (1997b) propose yet another approach and use a proper conjugate24 prior with
a diagonal covariance structure for the regression coefficients (except for categorical predictors
where a g-prior structure is used).

3.1.2 Priors over models

The prior P (Mj) on model space is typically constructed by considering the probability of inclu-
sion of each covariate. If the latter is the same for each variable, say w, and we assume inclusions
are prior independent, then

P (Mj) = wkj(1− w)k−kj . (11)

22Note that this implies the necessity to choose the associated hyperparameters in a sensible manner, which is
nontrivial as what is sensible depends on the scaling of the data.

23Formally, all variables appear in all models, but the coefficients of some variables will be shrunk to zero by the
prior, indicating that their role in the model is negligible.

24Conjugate prior distributions combine analytically with the likelihood to give a posterior in the same class of
distributions as the prior.
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This implies that prior odds will favour larger models if w > 0.5 and the opposite if w < 0.5.
For w = 0.5 all model have equal prior probability 1/k. Defining model size as the number of
included regressors in a model, a simple way to elicit w is through the prior mean model size,
which is wk.25 As the choice of w can have a substantial effect on the results, various authors
(Brown et al., 1998; Clyde and George, 2004; Ley and Steel, 2009b; Scott and Berger, 2010)
have suggested to put a Beta(a, b) hyperprior on w. This results in

P (Mj) =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ kj)Γ(b+ k − kj)
Γ(a+ b+ k)

, (12)

which leads to much less informative priors in terms of model size. Ley and Steel (2009b)
compare both approaches and suggest choosing a = 1 and b = (k − m)/m, where m is the
chosen prior mean model size. This means that the user only needs to specify a value for m.
The large differences between the priors in (12) and (11) can be illustrated by the prior odds they
imply. Figure 2 compares the log prior odds induced by the fixed and random w priors, in the
situation where k = 67 (corresponding to the growth dataset first used in Sala-i-Martin et al.
(2004)) and using m = 7, 33.5 and 50. For fixed w, this corresponds to w = 7/k, w = 1/2 and
w = 50/67 while for random w, we have used the specification of Ley and Steel (2009b). The
figure displays the prior odds in favour of a model with ki = 10 versus models with varying kj .
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Figure 2: Log of Prior Odds: ki = 10 vs varying kj . From Ley and Steel (2009b).

Note that the random w case always leads to down-weighting of models with kj around k/2,
irrespectively of m. This counteracts the fact that there are many more models with kj around
k/2 in the model space than of size nearer to 0 or k.26 In contrast, the prior with fixed w does
not take the number of models at each kj into account and simply always favours larger models

25So, if our prior belief about mean model size is m, then we simply choose w = m/k.
26This reflects the multiplicity issue analysed more generally in Scott and Berger (2010) who propose to use (12)
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when m > k/2 and smaller ones when m < k/2. Note also the much wider range of values that
the log prior odds take in the case of fixed w. Thus, the choice of m is critical for the prior with
fixed w, but much less so for the hierarchical prior structure, which is naturally adaptive to the
data observed.

George (1999b) raises the issue of “dilution”, which occurs when posterior probabilities are
spread among many similar models, and suggest that prior model probabilities could have a built-
in adjustment to compensate for dilution by down-weighting prior probabilities on sets of similar
models. George (2010) suggests three distinct approaches for the construction of these so-called
“dilution priors”, based on tessellation determined neighbourhoods, collinearity adjustments, and
pairwise distances between models. Dilution priors were implemented in economics by Durlauf
et al. (2008) to represent priors that are uniform on theories (i.e. neighbourhoods of similar mod-
els) rather than on individual models, using a collinearity adjustment factor. A form of dilution
prior in the context of models with interactions of covariates is the heredity prior of Chipman
et al. (1997) where interaction are only allowed to be included if both main effects are included
(strong heredity) or at least one of the main effects (weak heredity). In the context of examin-
ing the sources of growth in Africa, Crespo Cuaresma (2011) comments that the use of a strong
heredity prior leads to different conclusions than the use of a uniform prior in the original paper
by Masanjala and Papageorgiou (2008).27 Either prior is, of course, perfectly acceptable, but
it is clear that the user needs to reflect which one best captures the user’s own prior ideas and
intended interpretation of the results. Using the same data, Moser and Hofmarcher (2014) com-
pare a uniform prior with a strong heredity prior and a tesselation dilution prior and find quite
similar predictive performance (as measured by LPS and CRPS, explained in Section 3.1.5) but
large differences in posterior inclusion probabilities (probably related to the fact that both types
of dilution priors are likely to have quite different responses to multicollinearity).

Womack et al. (2015) propose viewing the model space as a partially ordered set. When
the number of covariates increases, an isometry argument leads to the Poisson distribution as
the unique, natural limiting prior over model dimension. This limiting prior is derived using two
constructions that view an individual model as though it is a “local” null hypothesis and compares
its prior probability to the probability of the alternatives that nest it. They show that this prior
induces a posterior that concentrates on a finite true model asymptotically.

Another interesting recent development is the use of a loss function to assign a model prior.
Equating information loss as measured by the expected minimum Kullback-Leibler divergence

with a = b = 1 implying a prior mean model size of k/2. The number of models with kj regressors inM is given
by
(
k
kj

)
. For example, with k = 67, we have 1 model with kj = 0 and kj = k, 8.7 × 108 models with kj = 7 and

kj = 60 and a massive 1.4× 1019 models with kj = 33 and 34.
27See also Papageorgiou (2011), which is a reply to the comment by Crespo Cuaresma.
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between any model and its nearest model and by the “self-information loss”28 while adding an
adjustment for complexity, Villa and Lee (2016) propose the prior P (Mj) = exp(−ckj) for some
c > 0. This builds on the idea of Villa and Walker (2015).

3.1.3 Empirical Bayes versus Hierarchical Priors

The prior in (6) and (11) only depends on two scalar quantities, g and w. Nevertheless, these
quantities can have quite a large influence on the posterior model probabilities and it is very
challenging to find a single default choice for g and w that performs well in all cases, as explained
in e.g. Fernández et al. (2001a), Berger and Pericchi (2001) and Ley and Steel (2009b). One way
of reducing the impact of such prior choices on the outcome is to use hyperpriors on w and g,
which fits seamlessly with the Bayesian paradigm. Hierarchical priors on w are relatively easy to
deal with and were already discussed in the previous section.

Zellner and Siow (1980) used a multivariate Cauchy prior on the regression coefficients rather
than the normal prior in (6). This was inspired by the argument in Jeffreys (1961) in favour of
heavy-tailed priors29. Since a Cauchy is a scale mixture of normals, this means that implicitly the
Zellner-Siow prior uses an Inverse-Gamma(1/2, n/2) prior on g.

Liang et al. (2008a) introduce the hyper-g priors, which correspond to the following family
of priors:

p(g) =
a− 2

2
(1 + g)−a/2 (13)

where a > 2 in order to have a proper distribution for g > 0. This includes the priors proposed
in Strawderman (1971) in the context of the normal means problem. A value of a = 4 was
suggested by Cui and George (2008) for model selection with known σ, while Liang et al. (2008a)
recommend values 2 < a ≤ 4. Feldkircher and Zeugner (2009) propose to use a hyper-g prior
with a value of a that leads to the same mean of the, so-called, shrinkage factor30 δ = g/(1 + g),
as the unit information or the RIC prior. Ley and Steel (2012) consider the more general class of
beta priors on the shrinkage factor where a Beta(b, c) prior on δ induces the following prior on g:

p(g) =
Γ(b+ c)

Γ(b)Γ(c)
gb−1(1 + g)−(b+c). (14)

28This is a loss function (also known as the log-loss function) for probability statements, which is given by the
negative log of the probability.

29The reason for this was the limiting behaviour of the resulting Bayes factors as we consider models with better
and better fit. In this case, you would want these Bayes factors, with respect to the null model, to tend to infinity.
This criterion is called “information consistency” in Bayarri et al. (2012) and its absence is termed “information
paradox” in Liang et al. (2008a).

30The name “shrinkage factor” derives from the fact that the posterior mean of the regression coefficients for a
given model is the OLS estimator times this shrinkage factor, as clearly shown in (7) and the ensuing discussion.
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This is an inverted beta distribution31 (Zellner, 1971, p. 375) which clearly reduces to the hyper-g
prior in (13) for b = 1 and c = (a/2)− 1. Generally, the hierarchical prior on g implies that the
marginal likelihood of a given model is not analytically known, but is the integral of (10) with
respect to the prior of g. Liang et al. (2008a) propose the use of a Laplace approximation for this
integral, while Ley and Steel (2012) use a Gibbs sampler approach to include g in the Markov
chain Monte Carlo procedure (see footnote 40). Some authors have proposed Beta shrinkage
priors as in (14) that lead to analytical marginal likelihoods by making the prior depend on the
model: the robust prior of Bayarri et al. (2012) truncate the prior domain to g > [(n + 1)/(kj +

1)] − 1 and Maruyama and George (2011) adopt the choice b + c = (n − kj − 1)/2 with c <
1/2. However, the truncation of the robust prior is potentially problematic for cases where n
is much larger than a typical model size (as is often the case in economic applications). Ley
and Steel (2012) propose to use the beta shrinkage prior in (14) with mean shrinkage equal
to the one corresponding to the benchmark prior of Fernández et al. (2001a) and the second
parameter chosen to ensure a reasonable prior variance. They term this the benchmark beta prior
and recommend using b = cmax{n, k2} and c = 0.01.

An alternative way of dealing with the problem of selecting g and w is to resort to so-called
“empirical Bayes” (EB) procedures, which use the data to suggest appropriate values to choose
for w and g. Of course, this amounts to using data information in selecting the prior, so is not
formally in line with the Bayesian way of thinking, which prescribes a strict separation between
the information in the data being analysed and that used for the prior32. Often, such EB methods
are adopted for reasons of convenience and because they are sometimes shown to have good
properties. In particular, they provide “automatic” calibration of the prior and avoid the (relatively
small) computational complications that typically arise when we adopt a hyperprior on g.

Motivated by information theory, Hansen and Yu (2001) proposed a local EB method which
uses a different g for each model estimated by maximizing the marginal likelihood. George and
Foster (2000) develop a global EB approach, which assumes one common g and w for all models
and borrows strength from all models by estimating g and w through maximizing the marginal
likelihood, averaged over all models. Liang et al. (2008a) propose specific ways of estimating g
in this context.

There is some evidence in the literature regarding comparisons between fully Bayes and EB
procedures: Cui and George (2008) largely favour (global) EB in the context of known σ and

31Also known as a gamma-gamma distribution (Bernardo and Smith, 1994, p. 120).
32This is essentially implicit in the fact that the prior times the likelihood should define a joint distribution on the

observables and the model parameters (so that e.g. the numerator in the last expression in (2) is really p(y, θj |Mj)

and we can use the tools of probability calculus). Incidentally, it is the prior dependence on y that creates the
problem, and not on Z, as the sampling model in (5) and the entire inference is implicitly conditional on Z.
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k = n, whereas Liang et al. (2008a) find that there is little difference between EB and fully
Bayes procedures (with unknown σ and k < n). Scott and Berger (2010) focus on EB and fully
Bayesian ways of dealing with w, which, respectively, use maximum likelihood33 and a Beta(1,1)
or uniform hyperprior on w. They remark that both fully Bayesian and EB procedures exhibit
clear multiplicity adjustment: as the number of noise variables increases, the posterior inclusion
probabilities of variables decrease (the analysis with fixed w shows no such adjustment; see
also footnote 26). However, they highlight some theoretical differences, for example the fact
that EB will assign probability one to either the full model or the null model whenever one of
these models has the largest marginal likelihood. They also show rather important differences in
various applications, one of which uses data on GDP growth. Overall, they recommend the use
of fully Bayesian procedures.

Li and Clyde (2017) compare EB and fully Bayes procedures in the more general GLM
context (see Section 3.8.1), and find that local EB does badly in simulations from the null model
in that it almost always selects the full model.

3.1.4 Consistency and paradoxes

One of the desiderata in Bayarri et al. (2012) for objective model selection priors is model selec-
tion consistency (introduced by Fernández et al. (2001a)), which implies that if data have been
generated by Mj , then the posterior probability of Mj should converge to unity with sample size.
Fernández et al. (2001a) present general conditions for the case with non-random g and show
that consistency holds for e.g. the unit information and benchmark priors (but not for the RIC
prior). When we consider hierarchical priors on g, model selection consistency is achieved by
the Zellner-Siow prior in Zellner and Siow (1980) but not by local and global EB priors nor by
the hyper-g prior in Liang et al. (2008a), who therefore introduce a consistent modification, the
hyper-g/n prior, which corresponds to a beta distribution on g/(n+ g). Consistency is shown to
hold for the priors of Maruyama and George (2011), Feldkircher and Zeugner (2009) (based on
the unit information prior) and the benchmark beta prior of Ley and Steel (2012).

Moreno et al. (2015) consider model selection consistency when the number of potential
regressors k grows with sample size. Consistency is found to depend not only on the priors for
the model parameters, but also on the priors in model space. They conclude that if k = O(nb),
the unit information prior, the Zellner-Siow prior and the intrinsic prior34 lead to consistency for

33This is the value ofw that maximizes the marginal likelihood ofw summed over model space, or argmaxw p(y)

in (3), which can be referred to as type-II maximum likelihood.
34Intrinsic priors were introduced to justify the intrinsic Bayes factors (Berger and Pericchi, 1996). In principle,

these are often based on improper reference or Jeffreys priors and the use of a so-called minimal training sample
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0 ≤ b < 1/2 under the uniform prior over model space, while consistency holds for 0 ≤ b ≤ 1 if
we use a Beta(1,1) hyperprior on w in (12). Wang and Maruyama (2016) investigate Bayes factor
consistency associated with the prior structure in (6) for the problem of comparing nonnested
models under a variety of scenarios where model dimension grows with sample size. They show
that in some cases, the Bayes factor is consistent whichever the true model is, and that in others,
the consistency depends on the pseudo-distance between the models. In addition, they find that
the asymptotic behaviour of Bayes factors and intrinsic Bayes factors are quite similar.

Sparks et al. (2015) consider posterior consistency for parameter estimation, rather than
model selection. They consider posterior consistency under the sup vector norm (weaker than
the usual l2 norm) in situations where k grows with sample size and derive necessary and suffi-
cient conditions for consistency under the standard g-prior, the Empirical Bayes specification of
George and Foster (2000) and the hyper-g and Zellner-Siow mixture priors.

Mukhopadhyay et al. (2015) show that in situations where the true model is not one of the
candidate models, the use of g-priors leads to selecting a model that is in a sense closest to
the true model. In addition, the loss incurred in estimating the unknown regression function
under the selected model tends to that under the true model. These results have been shown
under appropriate conditions on the rate of growth of g as n grows and for both the cases when
the number of potential predictors remains fixed and when k = O(nb) for some 0 < b < 1.35

Mukhopadhyay and Samanta (2017) extend this to the situation of mixtures of g-priors and derive
consistency properties for growing k under a modification of the Zellner-Siow prior, that continue
to hold for more general error distributions.

Using Laplace approximations, Xiang et al. (2016) prove that in the case of hyper-g priors
with growing model sizes, the Bayes factor is consistent when k = O(nb) for some 0 < b ≤ 1,
even when the true model is the null model. For the case when the true model is not the null
model, they show that Bayes factors are always consistent when the true model is nested within
the model under consideration, and they give conditions for the non-nested case. In the specific
context of analysis-of-variance (ANOVA) models, Wang (2017) shows that the Zellner-Siow prior
and the beta shrinkage prior of Maruyama and George (2011) yield inconsistent Bayes factors

to convert the improper prior to a proper posterior. The latter is then used as a prior for the remaining data, so that
Bayes factors can be computed. As the outcome depends on the arbitrary choice of the minimal training sample,
such Bayes factors are typically “averaged” over all possible training samples. Intrinsic priors are priors that (at least
asymptotically) mimic these intrinsic Bayes factors.

35Unlike Moreno et al. (2015), they do not explicitly find different results for different priors on the model space,
which looks like an apparent contradiction. However, their results are derived under an assumption (their (A3))
bounding the ratio of prior model probabilities. Note from our Figure 2 that ratio tends to be much smaller when we
use a hyperprior on w.
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when k is proportional to n due to the presence of an inconsistency region around the null model.
To solve the latter inconsistency, Wang (2017) propose a variation on the hyper-g/n prior, which
generalizes the prior arising from a Beta distribution on g/(n

k
+ g).

Finally, consistency for the power-expected-posterior approach using independent Jeffreys
baseline priors is shown by Fouskakis and Ntzoufras (2016a).

A related issue is that Bayes factors can asymptotically behave in the same way as infor-
mation criteria. Kass and Wasserman (1995) investigate the relationship between BIC (see Sec-
tion 2.1) and Bayes factors using unit information priors for testing non-nested hypotheses and
Fernández et al. (2001a) show that log Bayes factors with gj = n/f(kj) (with f(·) some function
which is finite for finite arguments) tend to BIC. When k is fixed, this asymptotic equivalence to
BIC extends to the Zellner-Siow and Maruyama and George (2011) priors (Wang, 2017) and also
the intrinsic prior (Moreno et al., 2015).

Liang et al. (2008a) remark that analyses with fixed g tend to lead to a number of paradoxical
results. They mention the Bartlett (or Lindley) paradox, which is induced by the fact that very
large values of g will induce support for the null model, irrespective of the data36. Another
paradox they explore is the information paradox, where as R2

i tends to one, the Bayes factor in
favour of Mi versus, say, the null model does not tend to ∞ but to a constant depending on g
(see also footnote 29). From (16) this latter limit is ( w

1−w )ki(1 + g)(n−ki−1)/2. Liang et al. (2008a)
show that this information paradox is resolved by local or global EB methods, but also by using
hyperpriors p(g) that satisfy

∫
(1 + g)(n−ki−1)/2p(g)dg =∞ for all ki ≤ k, which is the case for

the Zellner-Siow prior, the hyper-g prior and the benchmark beta priors (the latter two subject to
a condition, which is satisfied in most practical cases).

3.1.5 Predictive performance

Since any statistical model will typically not eliminate uncertainty and it is important to capture
this uncertainty in forecasting, it is sensible to consider probabilistic forecasts, which have be-
come quite popular in many fields. In economics, important forecasts such as the quarterly Bank
of England inflation report are presented in terms of predictive distributions, and in the field of
finance the area of risk management focuses on probabilistic forecasts of portfolio values. Rather
than having to condition on estimated parameters, the Bayesian framework has the advantage that
predictive inference can be conducted on the basis on the predictive distribution, as in (1) where
all uncertainty regarding the parameters and the model is properly incorporated. This can be used

36This can be seen immediately by considering (16), which behaves like a constant times (1 + g)(kj−ki)/2 as
g →∞.
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to address a genuine interest in predictive questions, but also as a model-evaluation exercise. In
particular, if a model estimated on a subset of the data manages to more or less accurately pre-
dict data that were not used in the estimation of the model, that intuitively suggests satisfactory
performance.

In order to make this intuition a bit more precise, scoring rules provide useful summary
measures for the evaluation of probabilistic forecasts. Suppose the forecaster wishes to maximize
the scoring rule. If the scoring rule is proper, the forecaster has no incentive to predict any
other distribution than his or her true belief for the forecast distribution. Details can be found in
Gneiting and Raftery (2007).

Two important aspects of probabilistic forecasts are calibration and sharpness. Calibration
refers to the compatibility between the forecasts and the observations and is a joint property of the
predictions and the events that materialize. Sharpness refers to the concentration of the predictive
distributions and is a property of the forecasts only. Proper scoring rules address both of these
issues simultaneously. Popular scoring rules, used in assessing predictive performance in the
context of BMA are

• The logarithmic predictive score (LPS), which is the negative of the logarithm of the pre-
dictive density evaluated at the observation. This was introduced in Good (1952) and used
in the BMA context in Madigan et al. (1995), Fernández et al. (2001a,b) and Ley and Steel
(2009b).

• The continuous ranked probability score (CRPS). The CRPS measures the difference be-
tween the predicted and the observed cumulative distributions as follows37:

CRPS(Q, x) =

∫ ∞
−∞

[Q(y)− 1(y ≤ x)]2 dy, (15)

where Q is the predictive distribution, x is the observed outcome and 1(·) is the indicator
function. CRPS was found in Gneiting and Raftery (2007) to be less sensitive to outliers
than LPS and was introduced in the context of growth regressions by Eicher et al. (2011).

Simple point forecasts do not allow us to take into account the uncertainty associated with
the prediction, but are popular in view of their simplicity, especially in more complicated models
incorporating e.g. dynamic aspects or endogenous regressors. Such models are often evaluated

37An alternative expression is given by Gneiting and Raftery (2007) asCRPS(Q, x) = 1
2EQ|X−Z|−EQ|X−x|,

where X and Z are independent copies of a random variable with distribution function Q and finite first moment.
This shows that CRPS generalizes the absolute error, to which it reduces if Q is a point forecast.
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in terms of the MSFE (mean squared forecast error) or the MAFE (mean absolute forecast error)
calculated with respect to a point forecast.

There is a well-established literature indicating the predictive advantages of BMA. For ex-
ample, Madigan and Raftery (1994) state that BMA predicts at least as well38 as any single model
in terms of LPS and Min and Zellner (1993) show that expected squared error loss of point (pre-
dictive mean) forecasts is always minimized by BMA provided the model space includes the
model that generated the data. Raftery et al. (1997a) report that predictive coverage is improved
by BMA with respect to prediction based on a single model. Similar results were obtained by
Fernández et al. (2001a), who also use LPS as a model evaluation criterion in order to compare
various choices of g in the prior (6). Fernández et al. (2001b) find, on the basis of LPS that
BMA predicts substantially better than single models (such as the model with highest posterior
probability) in growth data. Ley and Steel (2009b) corroborate these findings, especially with a
hyperprior on w, as used in (12). Piironen and Vehtari (2017) focus on model selection methods,
but state that “From the predictive point of view, best results are generally obtained by accounting
for the model uncertainty and forming the full BMA solution over the candidate models, and one
should not expect to do better by selection.” In the context of volatility forecasting of non-ferrous
metal futures, Lyócsa et al. (2017) show that averaging of forecasts substantially improves the
results, especially where the averaging is conducted through BMA.

3.2 BMA in practice: Numerical methods

One advantage of the prior structure in (6) is that integration of the model parameters can be
conducted analytically, and the Bayes factor between any two given models can be computed
quite easily, given g. The main computational challenge is then constituted by the typically very
large model space, which makes complete enumeration impossible. In other words, we simply
can not try all possible models, as there are far too many of them39.

A first possible approach is to (drastically) reduce the number of models under consideration.

38This optimality holds under the assumption that the data is generated by the predictive in (1) rather than a
single “true” model. George (1999a) comments that “It is tempting to criticize BMA because it does not offer better
average predictive performance than a correctly specified single model. However, this fact is irrelevant when model
uncertainty is present because specification of the correct model with certainty is then an unavailable procedure.
In most practical applications, the probability of selecting the correct model is less than 1, and a mixture model
elaboration seems appropriate.”

39In areas such as growth economics, we may have up to k = 100 potential covariates. This implies a model space
consisting of K = 2100 = 1.26× 1030 models. Even with fast processors, this dramatically exceeds the number of
models that can be dealt with exhaustively. In other fields, the model space can even be much larger: for example,
in genetics k is the number of genes and can well be of the order of tens of thousands.
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One way to do this is the Occam’s window algorithm, which was proposed by Madigan and
Raftery (1994) for graphical models and extended to linear regression in Raftery et al. (1997b).
It uses a search strategy to weed out the models that are clearly dominated by others in terms of
posterior model probabilities and models that have more likely submodels nested within them. An
algorithm for finding the best models is the so-called leaps and bounds method used by Raftery
(1995) for BMA, based on the all-subsets regression algorithm of Furnival and Wilson (1974).
The resulting set of best models can then still be reduced further through Occam’s window if
required. The Occam’s window and the leaps and bounds algorithms are among the methods
implemented in the BMA R package of Raftery et al. (2010) and the leaps and bounds algorithm
was used in e.g. Masanjala and Papageorgiou (2008) and Eicher et al. (2011).

However, this tricky issue of exploring very large model spaces is now mostly dealt with
through so-called Markov chain Monte Carlo (MCMC) methods40. In particular, a popular strat-
egy is to run an MCMC algorithm in model space, sampling the models that are most promising:
the one that is most commonly used is a random-walk Metropolis sampler usually referred to
as MC3, introduced in Madigan and York (1995) and used in e.g. Raftery et al. (1997a) and
Fernández et al. (2001a). On the basis of the application in Masanjala and Papageorgiou (2008),
Crespo Cuaresma (2011) finds that MC3 leads to rather different results from the leaps and bounds
method, which does not seem to explore the model space sufficiently well.

The original prior in George and McCulloch (1993) is not conjugate in that the prior variance
of β does not involve σ2 (unlike (6)); this means that marginal likelihoods are not available
analytically, but an MCMC algorithm can easily be implemented by a Gibbs sampler on the
space of the parameters and the models. This procedure is usually denoted as Stochastic Search
Variable Selection (SSVS). George and McCulloch (1997) also introduce an alternative prior
which is conjugate, leading to an analytical expression for the marginal likelihoods and inference
can then be conducted using an MCMC sampler over only the model space (like MC3).

40Suppose we have a distribution, say π, of which we do not know the properties analytically and which is difficult
to simulate from directly. MCMC methods construct a Markov chain that has π as its invariant distribution and
conduct inference from the generated chain. The draws in the chain are of course correlated, but ergodic theory still
forms a valid basis for inference. Various algorithms can be used to generate such a Markov chain. An important
one is the Metropolis-Hastings algorithm, which takes an arbitrary Markov chain and adjusts it using a simple
accept-reject mechanism to ensure the stationarity of π for the resulting Markov chain. Fairly mild conditions then
ensure that the values in the realized chain actually converge to draws from π. Another well-known algorithm is
the Gibbs sampler, which partitions the vector of random variables which have distribution π into components and
replaces each component by a draw from its conditional distribution given the current values of all other components.
Various combinations of these algorithms are also popular (e.g. a Gibbs sampler where one or more conditionals are
not easy to draw from directly and are treated through a Metropolis-Hastings algorithm). More details can be found
in e.g. Robert and Casella (2004) and Chib (2011).
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Clyde et al. (2011) remark that while the standard algorithms MC3 and SSVS are easy to
implement, they may mix poorly when covariates are highly correlated. More advanced algo-
rithms that utilize other proposals can then be considered, such as adaptive MCMC41 (Nott and
Kohn, 2005) or evolutionary Monte Carlo (Liang and Wong, 2000). Clyde et al. (2011) propose a
Bayesian adaptive sampling algorithm (BAS), that samples models without replacement from the
space of models. In particular, the probability of a model being sampled is proportional to some
probability mass function with known normalizing constant. Every time a new model is sampled,
one needs to account for its mass by subtracting off its probability from the probability mass
function to ensure that there is no duplication and then draw a new model from the renormal-
ized distribution. The model space is represented by a binary tree structure indicating inclusion
or exclusion of each variable, and marginal posterior inclusion probabilities are set at an initial
estimate and then adaptively updated using the marginal likelihoods from the sampled models.

Generic numerical methods were compared in Garcı́a-Donato and Martı́nez-Beneito (2013),
who identify two different strategies:

i) MCMC methods to sample from the posterior (3) in combination with estimation based on
model visit frequencies and

ii) searching methods looking for “good” models with estimation based on renormalization
(i.e. with weights defined by the analytic expression of posterior probabilities, such as in
(16)).

Despite the fact that it may, at first sight, appear that ii) should be a more efficient strategy, they
show that i) is potentially more precise than ii) which could be biased by the searching procedure.
Nevertheless, implementations of ii) have lead to fruitful contributions, and a lot of the most
frequently used software (see Section 6) uses this method. Of course, if the algorithm simply
generates a chain through model space in line with the posterior model probabilities (such as
MC3 using the prior in (6)) then both strategies can be used to conduct inference on quantities of
interest, i.e. to compute the model probabilities to be used in (4). Indeed, Fernández et al. (2001a)
suggest the use of the correlation between posterior model probabilities based on i) and ii) as an
indicator of convergence of the chain. However, some other methods only lend themselves to one
of the strategies above. For example, the prior of George and McCulloch (1993) does not lead
to closed form expressions for the marginal likelihood, so SVSS based on this prior necessarily
follows the empirical strategy i). Examples of methods that can only use strategy ii) are BAS

41MCMC methods often require certain parameters (of the proposal distribution) to be appropriately tuned for
the algorithm to perform well. Adaptive MCMC algorithms achieve such tuning automatically. See Atchadé and
Rosenthal (2005) for an introduction.
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in Clyde et al. (2011), which only samples each model once, and the implementation in Raftery
(1995) based on a leaps and bound algorithm which is used only to identify the top models.
These methods need to use the renormalization strategy, as model visit frequencies are not an
approximation to posterior model probabilities in their case.

MC3 uses a Metropolis sampler which proposes models from a small neighbourhood of the
current model, say Mj , namely all models with one covariate less or more. Whereas this works
well for moderate values of k, it is not efficient in variable selection problems with large k where
we expect parsimonious models to fit the data well. This is because the standard MC3 algorithm
(using a uniform distribution on the model neighbourhood) will propose to add a covariate with
probability (k − kj)/k, which is close to 1 if k >> kj . Therefore, the algorithm will much
more frequently propose to add a variable than to delete one. However, the acceptance rate of
adding a new variable is equal to the acceptance rate of deleting a variable if the chain is in
equilibrium. Thus, a large number of adding moves are rejected and this leads to a low between-
model acceptance rate. Brown et al. (1998) extend the MC3 proposal by adding a “swap” move
where one included and one excluded covariate are selected at random and the proposed model
is the one where they are swapped. They suggest to generate a candidate model by either using
the MC3 move or the swap move. Lamnisos et al. (2009) extend this further by decoupling the
MC3 move into an “add” and a “delete” move (to avoid proposing many more additions than
deletions) and uniformly at random choosing whether the candidate model is generated from an
“add”, a “delete” or a “swap” move. In addition, they allow for less local moves by adding,
deleting or swapping more than one covariate at a time. The size of the blocks of variables
used for these moves is drawn from a binomial distribution. This allows for faster exploration of
the model space. In Lamnisos et al. (2013) an adaptive MCMC sampler is introduced where the
success probability of the binomial distribution is tuned adaptively to generate a target acceptance
probability of the proposed models. They successfully manage to deal with problems like finding
genetic links to colon tumours with n = 62 and k = 1224 genes in a (more challenging) probit
model context (see Section 3.8.2), where their algorithm is almost 30 times more efficient42 than
MC3 and the adaptive Gibbs sampler of Nott and Kohn (2005). Problems with even larger k
can be dealt with through more sophisticated adaptive MCMC algorithms. Griffin et al. (2017)
propose such algorithms which exploit the observation that in these settings the vast majority of
the inclusion indicators of the variables will be virtually uncorrelated a posteriori. They are shown
to lead to orders of magnitude improvements in efficiency compared to the standard Metropolis-
Hastings algorithm, and are successfully applied to an extremely challenging problem with k =

42The efficiency is here standardized by CPU time. Generally, the efficiency of a Monte Carlo method is pro-
portional to the reciprocal of the variance of the sample mean estimator normalized by the size of the generated
sample.
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22, 576 possible covariates and n = 60 observations.

3.3 Role of the prior

It has long been understood that the effect of the prior distribution on posterior model probabilities
can be much more pronounced than its effect on posterior inference given a model (Kass and
Raftery, 1995; Fernández et al., 2001a). Thus, it is important to better understand the role of the
prior assumptions in BMA. While Fernández et al. (2001a) examined the effects of choosing fixed
values for g, a more systematic investigation of the interplay between g and w was conducted in
Ley and Steel (2009b) and Eicher et al. (2011).

From combining the marginal likelihood in (10) and the model space prior in (11), we obtain
the posterior odds between models, given g and w:

P (Mi | y, w, g)

P (Mj | y, w, g)
=

(
w

1− w

)ki−kj
(1 + g)

kj−ki
2

(
1 + g(1−R2

i )

1 + g(1−R2
j )

)−n−1
2

. (16)

The three factors on the right-hand side of (16) correspond to, respectively, a model size (or
complexity) penalty induced by the prior odds on the model space, a model size penalty resulting
from the marginal likelihood (Bayes factor) and a lack-of-fit penalty from the marginal likelihood.
It is clear that for fixed g and w, the complexity penalty increases with g and decreases with
w (see also the discussion in Section 3.7 and in Eicher et al. (2011)). Ley and Steel (2012)
consider each of the three factors separately, and define penalties as minus the logarithm of the
corresponding odds factor, which ties in well with classical information criteria, which, in some
cases, correspond to the limits of log posterior odds (Fernández et al., 2001a). The complexity
penalty induced by the prior odds can be in favour of the smaller or the larger model, whereas
the penalties induced by the Bayes factor are always in favour of the smaller and the better fitting
models.

Ley and Steel (2012) find that the choice of the hyperpriors on g and w can have a large effect
on the induced penalties for model complexity but does not materially affect the impact of the
relative fit of the models. They also investigate how the overall complexity penalty behaves if we
integrate over g and w. Figure 3 plots the logarithm of the approximate posterior odds for Mi

versus Mj as a function of kj when fixing ki = 10, for different values of the prior mean model
size, m, using a beta hyperprior on w as in Ley and Steel (2009b) and the benchmark beta prior
on g in (14) with c = 0.01. We use n = 72 and k = 41 (as in the growth data of Fernández et al.
(2001b)). We contrast these graphs with those for fixed values of θ and g (corresponding to the
values over which the priors are centered) as derived from (16) with R2

i = R2
j . Whereas the log

posterior odds are linear in (ki − kj) for fixed values of θ and g, they are much less extreme for
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the random θ and g case, and consistently penalize models of size around k/2. This reflects the
multiplicity penalty (see Section 3.1.2) which is implicit in the prior and analyzed in Scott and
Berger (2010) in a more general context, and in Ley and Steel (2009b) in this same setting. The
behaviour is qualitatively similar to that of the prior odds in Figure 2. The difference with Figure
2 is that we now consider the complexity penalty in the posterior, which also includes an (always
positive) size penalty resulting from the Bayes factor. No fixed w can induce a multiplicity
correction. As in Figure 2, the (relatively arbitrary) choice of m matters very little for the case
with random w (and g), whereas it makes a substantial difference if we keep w (and g) fixed.
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Figure 3: Posterior odds as a function of kj when ki = 10 with equal fit, using m = 7 (solid), m = k/2 (dashed),
and m = 2k/3 (dotted). Bold lines correspond to random w and g. From Ley and Steel (2012).

Thus, marginalising out the posterior model probabilities with the hyperpriors on w and g
induces a much flatter model size penalty over the entire range of model sizes. This then makes
the analysis less dependent on (usually arbitrary) prior assumptions and increases the relative
importance of the data contribution (the model fit) to the posterior odds.

3.4 Data Robustness

Generally, in the social sciences, the quality of the data may be problematic. An important issue is
whether policy conclusions and key insights change when data are revised to eliminate errors, in-
corporate improved data or account for new price benchmarks. For example, the Penn World Ta-
ble (PWT) income data, a dataset frequently used in cross-country empirical work in economics,
have undergone periodic revisions. Ciccone and Jarociński (2010) applied the methodologies
of Fernández et al. (2001b) and Sala-i-Martin et al. (2004) for investigating the determinants
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of cross-country growth to data generated as in Sala-i-Martin et al. (2004) from three different
versions of the PWT, versions 6.0-6.2. Both methods led to substantial variations in posterior
inclusion probabilities of certain covariates between the different datasets.

It is, of course, not surprising that solving a really complicated problem (assessing the pos-
terior distribution on a model space that contains huge quantities of models) on the basis of a
very small number of observations is challenging, and if we modify the data in the absence of
strong prior information, we can expect some (perhaps even dramatic) changes in our inference.
Clearly, if we add prior information such changes would normally be mitigated. The perhaps
most relevant question is whether we can conduct meaningful inference using BMA with the
kinds of prior structures that we have discussed in this paper, such as (6).

Using the formal BMA approach, Feldkircher and Zeugner (2012) examine more in detail
what causes the lack of robustness found in Ciccone and Jarociński (2010). One first conclusion
is that the changes are roughly halved if the analyses with the different PWT data use the same
set of countries. They also stress that the use of the fixed value of g as in the benchmark prior
leads to a very large g and it is clear from (16) that this amplifies the effect of differences in
the fit on posterior odds. Thus, small differences in the data can have substantial impact on the
results. They propose to use a hyper-g prior which allows the model to adjust g to the data,
and this dramatically reduces the instability. Interestingly, this is not a stronger prior, but a less
informative one. The important thing is that fixing g at a value which is not warranted by the
data quality leads to an exaggerated impact of small difference in model fit. They find that the
analysis with stochastic g leads to much smaller values of g. The same behaviour was also found
in Ley and Steel (2012) where three datasets were analysed: two cross-country growth datasets
as in Fernández et al. (2001b) (with n = 72 and k = 41) and Sala-i-Martin et al. (2004) (with
n = 88 and k = 67) and the returns-to-schooling data of Tobias and Li (2004) (n = 1190 and
k = 26). In all these examples, the data favour43 values of g in the range 15-50, which contrasts
rather sharply with the fixed values of g that the benchmark prior would suggest, namely 1681,
4489 and 1190, respectively. As a consequence of the smaller g, differences between models will
be less pronounced and this can be seen as a quite reasonable reaction to relatively low-quality
data.

Rockey and Temple (2016) consider restricting the model space by imposing the presence of
initial GDP per capita and regional dummies, i.e. effectively using a more informative prior on
the model space. They conclude that this enhances robustness even when the analysis is extended
to more recent vintages of the Penn World Table (they also consider PWT 6.3-8.0).

43This can be inferred from the likelihood which is marginalised with respect to all parameters but g and averaged
over models; see expression (9) in Ley and Steel (2012) which is plotted in their Figure 9.
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3.5 Collinearity and Jointness

One of the primary outputs of a BMA analysis is the posterior distribution of the regression co-
efficients, which is a mixed distribution (for each coefficient a continuous distribution with mass
point at zero, reflecting exclusion of the associated regressor) of dimension k, which is almost
invariably large. Thus, this is a particularly hard object to describe adequately. Summarizing this
posterior distribution merely by its k marginals is obviously a gross simplification and fails to
capture the truly multivariate nature of this distribution. Thus, efforts have been made to define
measures that more adequately reflect the posterior distribution. Such measures should be well
suited for extracting relevant pieces of information. It is important that they provide additional
insight into properties of the posterior that are of particular interest, and that they are easy to
interpret. Ley and Steel (2007) and Doppelhofer and Weeks (2009) propose various measures of
“jointness”, or the tendency of variables to appear together in a regression model. Ley and Steel
(2007) formulate four desirable criteria for such measures to possess:

• Interpretability: any jointness measure should have either a formal statistical or a clear
intuitive meaning in terms of jointness.

• Calibration: values of the jointness measure should be calibrated against some clearly de-
fined scale, derived from either formal statistical or intuitive arguments.

• Extreme jointness: the situation where two variables always appear together should lead to
the jointness measure reaching its value reflecting maximum jointness.

• Definition: the jointness measure should always be defined whenever at least one of the
variables considered is included with positive probability.

The jointness measure proposed in Ley and Steel (2007) satisfies all of these criteria and is defined
as the posterior odds ratio between those models that include a set of variables and the models
that only include proper subsets. If we consider the simple case of bivariate jointness between
variables i and j, and we define the events ı̃ and ̃ as the exclusion of i and j, respectively,
this measure is the probability of joint inclusion relative to the probability of including either
regressor, but not both:

J ◦ij =
P (i ∩ j | y)

P (i ∩ ̃ | y) + P (̃ı ∩ j | y)
.

Ley and Steel (2009a) discuss how this and the other jointness measures proposed by Doppelhofer
and Weeks (2009) and Strachan (2009) compare on the basis of these criteria. AsJ ◦ is a posterior
odds ratio, its values can be immediately interpreted as evidence in favour of jointness (values
above one) or disjointness (values below one, suggesting that variables are more likely to appear
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on their own than jointly). Disjointness can occur, e.g., when variables are highly collinear and are
proxies or substitutes for each-other. In the context of two growth data sets, Ley and Steel (2007)
find evidence of jointness only between important variables, which are complements in that each
of them has a separate role to play in explaining growth. They find many more occurrences of
disjointness, where regressors are substitutes and really should not appear together. However,
these latter regressors tend to be fairly unimportant drivers of growth. Man (2017) compares
different jointness measures using data from a variety of disciplines and finds that results differ
substantially between the measures of Doppelhofer and Weeks (2009) on the one hand and Ley
and Steel (2007) on the other hand. In contrast, results appear quite robust across different prior
choices. Man (2017) suggests the use of composite indicators, which combine the information
contained in the different concepts, often by simply averaging over different indicators. Given
the large differences in the definitions and the properties of the jointness measures considered, I
would actually expect to find considerable differences. I would recommend selecting a measure
that makes sense to the user while making sure the interpretation of the results is warranted by the
properties of the specific measure chosen. The use of composite indicators, however interesting it
may be from the perspective of combining information, seems to me to make interpretation much
harder.

Ghosh and Ghattas (2015) investigate the consequences of strong collinearity for Bayesian
variable selection. They find that strong collinearity may lead to a multimodal posterior distri-
bution over models, in which joint summaries are more appropriate than marginal summaries.
They recommend a routine calculation of the joint inclusion probabilities for correlated covari-
ates, in addition to marginal inclusion probabilities, for assessing the importance of regressors in
Bayesian variable selection.

Crespo Cuaresma et al. (2016) propose a different approach to deal with patterns of inclusion
such as jointness among covariates. They use a two-step approach starting from the posterior
model distribution obtained from BMA methods, and then use clustering methods based on la-
tent class analysis to unveil clusters of model profiles. Inference in the second step is based on
Dirichlet process clustering methods. They also indicate that the jointness measures proposed in
the literature (and mentioned earlier in this subsection) relate closely to measures used in data
mining (see their footnote 1). These links are further explored in Crespo Cuaresma et al. (2017),
who propose a new measure of jointness which is a regularised version of the so-called Yule’s
Q association coefficient, used in the machine learning literature on association rules. They use
insights from the latter to extend the set of desirable criteria outlined above, and show they are
satisfied by the measure they propose.
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3.6 Approximations

The use of the prior structure in (6) for the linear normal model immediately leads to a closed-
form marginal likelihood, but for other Bayesian models this may not be the case. In particular,
the use of more complex models (such as described in Section 3.8) often do not lead to an analytic
expression. One approach to addressing this problem is to use an approximation to the marginal
likelihood, which is based on the ideas underlying the development of BIC (or the Schwarz
criterion). In normal (or, more generally, regular44) models, BIC can be shown (see Schwarz,
1978 and Raftery, 1995) to provide an asymptotic approximation to the log Bayes factor. In
the specific context of the normal linear model with prior (6), Fernández et al. (2001a) provide
a direct link between the BIC approximation and the choice of g = n (the unit information
prior, which essentially leaves the asymptotics unaffected). Thus, in situations where closed-form
expressions for the Bayes factors are not available (or very costly to compute), BIC has been used
to approximate the actual Bayes factor. For example, some available procedures for models with
endogenous regressors and models using Student-t sampling are based on BIC approximations
to the marginal likelihood.

Sala-i-Martin et al. (2004) use asymptotic reasoning in the specific setting of the linear model
with a g-prior to avoid specifying a prior on the model parameters and arrive at a BIC approxi-
mation in this manner. They call the resulting procedure BACE (Bayesian averaging of classical
estimates). This approach was generalized to panel data by Moral-Benito (2012), who proposed
Bayesian averaging of maximum likelihood estimates (BAMLE).

An alternative approximation of posterior model probabilities is through the (smoothed) AIC.
Burnham and Anderson (2002) provide a Bayesian justification for AIC (with a different prior
over the models than the BIC approximation) and suggest the use of AIC-based weights as pos-
terior model probabilities. The smoothed AIC approximation is used in the context of assessing
the pricing determinants of credit default swaps in Pelster and Vilsmeier (2016).

3.7 Prior robustness: illusion or not?

Previous sections have already stressed the importance of the choices of the hyperparameters and
have made the point that settings for g and w are both very important for the results. However,
there are examples in the literature where rather different choices of these hyperparameters led
to relatively similar conclusions, which might create the impression that these choices are not
that critical. For example, if we do not put hyperpriors on g and w, we note that the settings

44Regular models are such that the sampling distribution of the maximum likelihood estimator is asymptotically
normal around the true value with covariance matrix equal to the inverse expected Fisher information matrix.
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used in Fernández et al. (2001b) and in Sala-i-Martin et al. (2004) lead to rather similar results
in the analysis of the growth data of Sala-i-Martin et al. (2004), which have n = 88 and k = 67.
The choices made in Fernández et al. (2001b) are w = 0.5 and g = k2, whereas the BACE
analysis in Sala-i-Martin et al. (2004) is based on w = 7/k (giving a prior mean model size
m = 7) and g = n. As BACE attempts to avoid specifying a prior on the model parameters,
the latter is not immediate, but follows from the formula used for the Bayes factors, which is
essentially a close approximation to Bayes factors for the model with prior (6) using g = n.
There is, however, an important tradeoff between values for g and w, which was visually clarified
in Ley and Steel (2009b) and was also mentioned in Eicher et al. (2011). In particular, Ley
and Steel (2009b) present a version of Figure 4 which shows the contours in (g,m) space of
the values of fit (R2

i ) of Model Mi that would give it equal posterior probability to Mj , when
n = 88, k = 67, ki = 8, kj = 7, and R2

j = 0.75.
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Figure 4: Equal Posterior Probability Contours for different values of R2
i , using n = 88, k = 67, ki = 8, kj = 7,

and R2
j = 0.75. The left panel is for fixed w and also indicates the choices of (g,m) in Fernández et al. (2001b)

(FLS) and Sala-i-Martin et al. (2004) (SDM). The right panel corresponds to random w. Adapted from Ley and Steel
(2009b).

From the left panel in Figure 4 the particular combinations of (g, w) values underlying the
analyses in Fernández et al. (2001b) and in Sala-i-Martin et al. (2004) are on contours that are
quite close, and thus require a very similar increase in R2 to compensate for an extra regressor
(in fact, the exact values are R2

i = 0.7731 for FLS and R2
i = 0.7751 for SDM). Remember

from Section 3.3 that the model complexity penalty increases with g and decreases with w (or
m = wk), so the effects of increasing both g and w (as in Fernández et al. (2001b) with respect
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to Sala-i-Martin et al. (2004)) can cancel each-other out, as they do here.

In conclusion, it turns out that certain (often used) combinations happen to give quite sim-
ilar results. However, this does not mean that results are generally robust with respect to these
choices, and there is ample evidence in the literature (Ley and Steel, 2009b; Eicher et al., 2011)
that these choices matter quite crucially. Also, it is important to point out that making certain
prior assumptions implicit (as is done in BACE) does not mean they no longer matter. Rather,
it seems to me more useful to be transparent about prior choices and to attempt to robustify the
analysis by using prior structures that are less susceptible to subjectively chosen quantities. This
is illustrated in the right panel of Figure 4, where the equal probability contours are drawn for
the case with a Beta(1, (k − m)/m) hyperprior on w. As discussed in Section 3.1.2, this prior
is much less informative, which means that the actual choice of m matters much less and the
trade-off between g and w has almost disappeared. A hyperprior can also be adopted for g, as in
Section 3.1.3, which would further robustify the analysis (see also Section 3.3).

3.8 Other sampling models

This section describes the use of BMA in the context of other sampling models, which are some-
times fairly straightforward extensions of the normal linear regression model (for example, the
Hoeting et al. (1996) model for outliers in Section 3.8.4 or the Student-tmodel mentioned in Sec-
tion 3.8.5) and sometimes imply substantial challenges in terms of prior elicitation and numerical
implementation. Many of the models below are inspired by issues arising in economics, such as
dynamic models, spatial models, models for panel data and models with endogenous covariates.

3.8.1 Generalized linear models

Generalized Linear Models (GLMs) describe a more general class of models (McCullagh and
Nelder, 1989) that covers the normal linear regression model but also regression models where
the response variable is non-normal, such as binomial (e.g. logistic or logit regression models,
probit models), Poisson, multinomial (e.g. ordered response models, proportional odds models)
or gamma distributed. Sabanés Bové and Held (2011b) consider the interpretation of the g-prior
in linear models as the conditional posterior of the regression coefficients given a locally uniform
prior and an imaginary sample of zeros with design matrix Zj and a scaled error variance, and
extend this to the GLM context. Asymptotically, this leads to a prior which is very similar to
the standard g-prior, except that it has an extra scale factor c and a weighting matrix W in the
covariance structure. In many cases, c = 1 and W = I , which leads to exactly the same structure
as (6). This idea was already used in the conjugate prior proposed by Chen and Ibrahim (2003),

36



although they only considered the case with W = I and do not treat the intercept separately. For
priors on g, Sabanés Bové and Held (2011b) consider a Zellner-Siow prior and a hyper-g/n prior.
Both choices are shown to lead to consistent model selection in Wu et al. (2016).

The priors on the model parameters designed for GLMs in Li and Clyde (2017) employ a
different type of “centering” (induced by the observed information matrix at the MLE of the
coefficients), leading to a g-prior that displays local orthogonality properties at the MLE. In
addition, they use a wider class of (potentially truncated) hyper-priors for g45. Their results rely
on approximations, and, more importantly, their prior structures are data-dependent (depending
on y, not just the design matrix). Interestingly, on the basis of theoretical and empirical findings
in the GLM context, they recommend similar hyper-priors46 as recommended by Ley and Steel
(2012) in a linear regression setting.

The power-conditional-expected-posterior prior of Fouskakis and Ntzoufras (2016b) has also
been extended to the GLM setting in Perrakis et al. (2015).

3.8.2 Probit models

A popular approach for modelling dichotomous responses uses the probit model, which is an
example of a GLM. If we observe y1, . . . , yn taking the values either zero or one, this model
assumes that the probability that yi = 1 is modeled by yi|ηi ∼ Bernoulli(Φ (ηi)) where Φ is the
cumulative distribution function of a standard normal random variable and η = (η1, η2, . . . , ηn)′

is a vector of linear predictors modelled as η = αι+ Zjβj, where α, βj and Zj are as in (5).

Typical priors have a product structure with a normal prior on βj (for example a g-prior) and
an improper uniform on α. Generally, posterior inference for the probit model can be facilitated
by using the data augmentation approach of Albert and Chib (1993).

When dealing with model uncertainty, this model is often analysed through a Markov chain
Monte Carlo method on the joint space of models and model parameters, since the marginal like-
lihood is no longer analytically available. This complicates matters with respect to the linear
regression model as this space is larger than model space and the dimension of the model param-
eters varies with the model. Thus, reversible jump Metropolis-Hastings methods (Green, 1995)
are typically used here. Details and comparison of popular algorithms can be found in Lamnisos
et al. (2009).

45In particular, they use the class of compound confluent hypergeometric distributions, which contains most hy-
perpriors used in the literature as special cases.

46Namely, the hyper-g/n prior and the benchmark beta prior.
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3.8.3 Generalized additive models

Generalized additive models are generalized linear models in which the linear predictor depends
linearly on unknown smooth functions of the covariates, so these models can account for nonlin-
ear effects; see e.g. Hastie et al. (2009). In the context of the additive model47, Sabanés Bové and
Held (2011a) consider using fractional polynomials for these smooth functions in combination
with a hyper-g prior. They combine variable selection with flexible modelling of additive effects
by expanding the model space to include different powers of each potential regressor. To explore
this very large model space, they propose an MCMC algorithm which adapts the Occam’s win-
dow strategy of Raftery et al. (1997b). Using splines for the smooth functions, Sabanés Bové
et al. (2015) propose hyper-g priors based on an iterative weighted least squares approximation
to the nonnormal likelihood. They conduct inference using an algorithm which is quite similar to
that in Sabanés Bové and Held (2011b).

3.8.4 Outliers

The occurrence of outliers (atypical observations) is a general problem that may affect both pa-
rameter estimation and model selection, and the issue is especially relevant if the modelling
assumptions are restrictive, for example by imposing normality. In the context of normal linear
regression, Hoeting et al. (1996) propose a Bayesian method for simultaneous variable selection
and outlier identification, using variable inflation to model outliers. They use a proper prior and
recommend the use of a pre-screening procedure to generate a list of potential outliers, which are
then used to define the model space to consider. Ho (2015) applies this methodology to explore
the cross-country variation in the output impact of the global financial crisis in 2008-9.

Outliers are also accommodated in Doppelhofer et al. (2016). In the context of growth data,
they also introduce heteroscedastic measurement error, with variance potentially differing with
country and data vintage. The model also accounts for vintage fixed effects and outliers. They
use data from eight vintages of the PWT (extending the data used in Sala-i-Martin et al. (2004))
to estimate the model, and conclude that 18 variables are relatively robustly associated with GDP
growth over the period 1960 to 1996, even when outliers are allowed for. The quality of the data
seems to improve in later vintages and varies quite a bit among the different countries. They
estimate the model using JAGS, a generic MCMC software package which determines the choice
of sampling strategy, but this approach is very computer-intensive48.

47This is where the link function is the identity link, so we have a normally distributed response variable.
48They comment that a single MCMC run takes about a week to produce, even with the use of multiple computers

and parallel chains.
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Of course, the use of more flexible error distributions such as scale mixtures of normals (like,
for example, the Student-t regression model mentioned in the next section) can be viewed as a
way to make the results more robust against outliers.

3.8.5 Non-normal errors

Doppelhofer and Weeks (2011) use a Student-t model as the sampling model, instead of the
normal in (5) in order to make inference more robust with respect to outliers and unmodelled
heterogeneity. They consider either fixing the degrees of freedom of the Student-t or estimat-
ing it and they use the representation of a Student-t as a continuous scale mixture of normals.
Throughout, they approximate posterior model probabilities by the normality-based BIC, so the
posterior model probabilities remain unaffected and only the estimates of the model parameters
are affected49. Oberdabernig et al. (2017) use a Student-t sampling model with fixed degrees of
freedom in a spatial BMA framework to investigate the drivers of differences in democracy levels
across countries.

Non-normality can, of course, also be accommodated by transformations of the data. Hoeting
et al. (2002) combine selection of covariates with the simultaneous choice of a transformation of
the dependent variable within the Box-Cox family of transformations. Charitidou et al. (2017)
consider four different families of transformations along with covariate uncertainty and use model
averaging based on intrinsic and fractional Bayes factors.

3.8.6 Dynamic models

In the context of simple AR(F)IMA time-series models, BMA was used in e.g. Koop et al. (1997).

Raftery et al. (2010) propose the idea of using state-space models in order to allow for the
forecasting model to change over time while also allowing for coefficients in each model to
evolve over time. Due to the use of approximations, the computations essentially boil down to
the Kalman filter. In particular, they use the following dynamic linear model, where the subscript
indicates time t = 1, . . . , T :

yt ∼ N(z
(j)′

t θ
(j)
t , H(j)) (17)

θ
(j)
t ∼ N(θ

(j)
t−1, Q

(j)
t ), (18)

and the superscript is the model index with models differing in the choice of covariates in the first
equation. Choosing Q(j)

t sequences is not required as they propose to use a forgetting factor (dis-
count factor) on the variance of the state equation (18). Using another forgetting factor, Raftery

49For each model they propose a simple Gibbs sampler setup after augmenting with the mixing variables.
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et al. (2010) approximate the model probabilities at each point in time, which greatly simplifies
the calculations. Dynamic model averaging (DMA) is where these model weights are used to
average in order to conduct inference, such as predictions, and dynamic model selection (DMS)
uses a single model for such inference (typically the one with the highest posterior probability)
at each point in time. Koop and Korobilis (2012) apply DMA and DMS to inflation forecasting,
and find that the best predictors change considerably over time and that DMA and DMS lead to
improved forecasts with respect to the usual autoregressive and time-varying-parameter models.
Drachal (2016) investigates the determinants of monthly spot oil prices between 1986 and 2015,
using Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS). Although some
interesting patterns over time were revealed, no significant evidence was found that DMA is su-
perior in terms of forecast accuracy over, for example, a simple ARIMA model (although this
seems to be based only on point forecasts, and not on predictive scores). Finally, Onorante and
Raftery (2016) introduce a dynamic Occam’s window to deal with larger model spaces.

van der Maas (2014) proposes a dynamic BMA framework that allows for time variation in
the set of variables that is included in the model, as well as structural breaks in the intercept and
conditional variance. This framework is then applied to real-time forecasting of inflation.

Other time-varying Bayesian model weight schemes are considered in Hoogerheide et al.
(2010), who find that they outperform other combination forecasting schemes in terms of pre-
dictive and economic gains. They suggest forecast combinations based on a regression approach
with the predictions of different models as regressors and with time-varying regression coeffi-
cients.

3.8.7 Endogeneity

If one or more of the covariates is correlated with the error term in the equation corresponding
to (5), we talk of endogeneity. In particular, we consider the following extension of the model in
(5):

y = αι+ xγ + Zjβj + ε (19)

x = Wδ + ν, (20)

where x is an endogenous regressor50 and W is a set of instruments, which are independent
of ε. Finally, the error terms corresponding to observation i are identically and independently
distributed as follows:

(εi, νi)
′ ∼ N(0,Σ), (21)

50For simplicity, we focus the presentation on the case with one endogenous regressor, but this can immediately
be extended.
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with Σ = (σij) a 2× 2 covariance matrix. It is well-known that whenever σ12 6= 0 this introduces
a bias in the OLS estimator of γ and a standard classical approach is the use of Two-Stage Least
Squares (2SLS) instead. For BMA it also leads to misleading inference on coefficients and model
probabilities, even as sample size grows, as shown in Miloschewski (2016).

Tsangarides (2004) and Durlauf et al. (2008) consider the issue of endogenous regressors
in a BMA context. Durlauf et al. (2008) focus on uncertainty surrounding the selection of the
endogenous and exogenous variables and propose to average over 2SLS model-specific estimates
for each single model. Durlauf et al. (2012) consider model averaging across just-identified
models (with as many instruments as endogenous regressors). In this case, model-specific 2SLS
estimates coincide with LIML estimates, which means that likelihood-based BIC weights have
some formal justification.

Lenkoski et al. (2014) extend BMA to formally account for model uncertainty not only in
the selection of endogenous and exogenous variables, but also in the selection of instruments.
They propose a two-step procedure that first averages across the first-stage models (i.e. linear
regressions of the endogenous variables on the instruments) and then, given the fitted endogenous
regressors from the first stage, it again takes averages in the second stage. Both steps use BIC
weights. Their approach was used in Eicher and Kuenzel (2016) in the context of establishing
the effect of trade on growth, where feedback (and thus endogeneity) can be expected.

Koop et al. (2012) use simulated tempering to design an MCMC method that can deal with
BMA in the endogeneity context in one step. It is, however, quite a complicated and computa-
tionally costly algorithm and it is nontrivial to implement.

Karl and Lenkoski (2012) propose IVBMA, which is based on the Gibbs sampler of Rossi
et al. (2006) for instrumental variables models and use conditional Bayes factors to include model
selection in this Gibbs algorithm. It hinges on certain restrictions (e.g. joint Normality of the er-
rors is important and the prior needs to be conditionally conjugate), but the algorithm is very
efficient and is implemented in an R-package. Jetter and Parmeter (2016) apply IVBMA to
corruption determinants with a large number of endogenous regressors, and conclude that i.a.
income levels and the extent of primary schooling emerge as important predictors.

3.8.8 Panel data and individual effects

Panel (or longitudinal) data contain information on individuals (i = 1, . . . , N ) over different time
periods (t = 1, . . . , T ). Correlation between covariates and error term might arise through a
time-invariant individual effect, denoted by ηi in the model

yit = z′itβ + ηi + εit. (22)
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Moral-Benito (2012) uses BMA in such a panel setting with strictly exogenous regressors (un-
correlated with the εits but correlated with the individual effects). In this framework, the vector
of regressors can also include a lagged dependent variable (yit−1) which is then correlated with
εit−1. Moral-Benito (2012) considers such a dynamic panel model within the BMA approach
by combining the likelihood function discussed in Alvarez and Arellano (2003) with the unit
information g-prior.

Tsangarides (2004) addresses the issues of endogenous and omitted variables by incorporat-
ing a panel data system Generalized Method of Moments (GMM) estimator. This was extended
to the limited information BMA (LIBMA) approach of Mirestean and Tsangarides (2016) and
Chen et al. (2017), in the context of short-T panel models with endogenous covariates using a
GMM approximation to the likelihood. They then employ a BIC approximation of the limited
information marginal likelihood. Moral-Benito (2016) remarks on the controversial nature of
combining frequentist GMM procedures with BMA, as it is not firmly rooted in formal statisti-
cal foundations and GMM methods may require mean stationarity. Thus, Moral-Benito (2016)
proposes the use of a suitable likelihood function (derived in Moral-Benito (2013)) for dynamic
panel data with fixed effects and weakly exogenous51 regressors, which is argued to be the most
relevant form of endogeneity in the growth regression context. Posterior model probabilities are
based on the BIC approximation of the log Bayes factors with a unit-information g-prior and a
uniform prior over model space (see Section 3.6).

León-González and Montolio (2015) develop BMA methods for models for panel data with
individual effects and endogenous regressors, taking into account the uncertainty regarding the
choice of instruments and exogeneity restrictions. They use reversible jump MCMC methods
(developed by Koop et al. (2012)) to deal with a model space that includes models that differ in
the set of regressors, instruments, and exogeneity restrictions in a panel data context.

3.8.9 Spatial data

If we wish to capture spatial interactions in the data, the model for panel data in (22) can be
extended to a Spatial Autoregressive (SAR) panel model as follows:

yit = ρ

N∑
j=1

wijyjt + z′itβ + ηi + ξt + εit, (23)

where i = 1, . . . , N denotes spatial location and wij is the (i, j)th element of the spatial weight
matrix reflecting spatial proximity of the N regions, with wii = 0 and the matrix is normalized

51This implies that past shocks to the dependent variable can be correlated with current covariates, so that there is
feedback from the dependent variable to the covariates
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to have row-sums of unity. Finally, there are regional effects ηi and time effects ξt, t = 1 . . . , T .
BMA in this model was used in LeSage (2014), building on earlier work, such as LeSage and Par-
ent (2007). Crespo Cuaresma et al. (2017) use SAR models to jointly model income growth and
human capital accumulation and mitigate the computational requirements by using an approx-
imation based on spatial eigenvector filtering as in Crespo Cuaresma and Feldkircher (2013).
Hortas-Rico and Rios (2016) investigate the drivers of urban income inequality using Spanish
municipal data. They follow the framework of LeSage and Parent (2007) to incorporate spatial
effects in the BMA analysis. Piribauer and Crespo Cuaresma (2016) compare the relative per-
formance of the BMA methods used in LeSage and Parent (2007) with two different versions
of the SVSS method (see Section 3.2) for spatial autoregressive models. On simulation data the
SVSS approaches tended to perform better in terms of both in-sample predictive performance
and computational efficiency. Oberdabernig et al. (2017) examine democracy determinants us-
ing BMA and find that spatial spillovers are important even after controlling for a large number
of geographical covariates, using a student-t version of the SAR model (with fixed degrees of
freedom).

An alternative approach was proposed by Dearmon and Smith (2016), who use the nonpara-
metric technique of Gaussian process regression to accommodate spatial patterns and develop a
BMA version of this approach. They apply it to the FLS growth data augmented with spatial
information.

3.8.10 Duration models

BMA methods for duration models were first examined by Volinsky et al. (1997) in the context
of proportional hazard models and based on a BIC approximation. Kourtellos and Tsangarides
(2015) set out to uncover the correlates of the duration of growth spells. In particular, they inves-
tigate the relationship between inequality, redistribution, and the duration of growth spells in the
presence of other possible determinants. They employ BMA for Cox hazards models and extend
the BMA method developed by Volinsky et al. (1997) to allow for time-dependent covariates in
order to properly account for the time-varying feedback effect of the variables on the duration of
growth spells. Traczynski (2017) uses a Bayesian model-averaging approach for predicting firm
bankruptcies and defaults at a 12-month horizon using hazard models. The analysis is based on a
Laplace approximations for the marginal likelihood, arising from the logistic likelihood and a g-
prior. On model space, a collinearity-adjusted dilution prior is chosen. Exact BMA methodology
was used to identify risk factors associated with dropout and delayed graduation in higher edu-
cation in Vallejos and Steel (2017), who employ a discrete time competing risks survival model,
dealing simultaneously with university outcomes and its associated temporal component. For
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each choice of regressors, this amounts to a multinomial logistic regression model, which is a
special case of a GLM. They use the prior as in Sabanés Bové and Held (2011b) in combination
with the hyper-g/n prior of Liang et al. (2008b).

4 Frequentist model averaging

Frequentist methods52 are inherently different to Bayesian methods, as they tend to focus on esti-
mators and their properties (often, but not always, in an asymptotic setting) and do not require the
specification of a prior on the parameters. Instead, parameters are treated as fixed, yet unknown,
and are not assigned any probabilistic interpretation associated with prior knowledge or learning
from data. Whereas Bayesian inference on parameters typically centers around the uncertainty
(captured by a full posterior distribution) that remains after observing the sample in question,
frequentist methods usually focus on estimators that have desirable properties in the context of
repeated sampling from a given experiment.

Early examples of Frequentist Model Averaging (FMA) can be found in the forecasting lit-
erature, such as the forecast combinations of Bates and Granger (1969). This literature on fore-
cast combinations has become quite voluminous, see e.g. Granger (1989) and Stock and Watson
(2006) for reviews, while useful surveys of FMA can be found in Wang et al. (2009) and Burnham
and Anderson (2002).

In the context of the linear regression model in (5), FMA estimators can be described as

β̂FMA =
K∑
j=1

ωjβ̂j, (24)

where β̂j is an estimator based on model j and ωj, j = 1 . . . , K are weights in the unit simplex
within <K . The critical choice is then how to choose the weights.

Buckland et al. (1997) construct weights based on different information criteria. They pro-
pose using

ωj =
exp(−Ij/2)∑K
i=1 exp(−Ii/2)

, (25)

where Ij is an information criterion for model j, which can be the AIC or the BIC. Burnham
and Anderson (2002) recommend the use of a modified AIC criterion, which has an additional
small-sample second order bias correction term. They argue that this modified AIC should be
used whenever n/k < 40.

52This is the “classical” statistical methodology which still underlies most introductory textbooks in statistics and
econometrics.
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Hjort and Claeskens (2003) build a general large-sample likelihood framework to describe
limiting distributions and risk properties of estimators post-selection as well as of model averaged
estimators. Their approach also explicitly takes modeling bias into account. Besides suggesting
various FMA procedures (based on e.g. AIC, the focused information criterion, FIC, of Claeskens
and Hjort (2003) and empirical Bayes ideas), they provide a frequentist view of the performance
of BMA schemes (in the sense of limiting distributions and large sample approximations to risks).

Hansen (2007) proposed a least squares model averaging estimator with model weights se-
lected by minimizing the Mallows’ criterion (Cp). This estimator, known as Mallows model av-
eraging (MMA), is easily implementable for linear regression models and has certain asymptotic
optimality properties, since the Mallows’ criterion is asymptotically equivalent to the squared er-
ror. Therefore, the MMA estimator minimizes the squared error in large samples. Hansen (2007)
shows that the weight vector chosen by MMA achieves optimality in the sense conveyed by Li
(1987).

Hansen and Racine (2012) introduced another estimator within the FMA framework called
jackknife model averaging (JMA) that selects appropriate weights for averaging models by min-
imizing a cross-validation (leave-one-out) criterion. JMA is asymptotically optimal in the sense
of reaching the lowest possible squared errors over the class of linear estimators. Unlike MMA,
JMA has optimality properties under heteroscedastic errors and when the candidate models are
non-nested.

Liu (2015) derives the limiting distributions of least squares averaging estimators for linear
regression models in a local asymptotic framework. The averaging estimators with fixed weights
are shown to be asymptotically normal and a plug-in averaging estimator is proposed that mini-
mizes the sample analog of the asymptotic mean squared error. This estimator is compared with
the FIC, MMA and JMA estimators. The asymptotic distributions of averaging estimators with
data-dependent weights are shown to be nonstandard and a simple procedure to construct valid
confidence intervals is proposed.

Liu et al. (2016) extend MMA to linear regression models with heteroscedastic errors, and
propose a model averaging method that combines generalized least squares (GLS) estimators.
They derive Cp-like criteria to determine the model weights and show they are optimal in the
sense of asymptotically achieving the smallest possible MSE. They also consider feasible ver-
sions using both parametric and nonparametric estimates of the error variances. Their objective
is to obtain an estimator that generates a smaller MSE, which they achieve by choosing weights
to minimize an estimate of the MSE. They compare their methods with those of Magnus et al.
(2011), who also average feasible GLS estimators.

Most asymptotically optimal FMA methods have been developed for linear models, but
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Zhang et al. (2016) specifically consider GLMs (see Section 3.8.1) and generalized linear mixed-
effects models53 and propose weights based on a plug-in estimator of the Kullback-Leibler loss
plus a penalty term. They prove asymptotic optimality for fixed or growing numbers of covari-
ates.

FMA was used for forecasting with factor-augmented regression models in Cheng and Hansen
(2015). In the context of growth theory, Sala-i-Martin (1997) uses (24), but focuses on the “level
of confidence”54, using weights that are either uniform or based on the maximized likelihood.

Another model-averaging procedure that has been proposed in Magnus et al. (2010) and re-
viewed in Magnus and De Luca (2016) is weighted average least squares (WALS), which can
be viewed as being in between BMA and FMA. The weights it implies in (24) can be given a
Bayesian justification. However, it assumes no prior on model space and thus can not produce
inference on posterior model probabilities. WALS is easier to compute than BMA or FMA, but
quite a bit harder to explain and inherently linked to a nested linear regression setting. Mag-
nus and De Luca (2016) provide an in-depth description of WALS and its relation to BMA and
FMA. They state: “The WALS procedure surveyed in this paper is a Bayesian combination of
frequentist estimators. The parameters of each model are estimated by constrained least squares,
hence frequentist. However, after implementing a semiorthogonal transformation to the auxiliary
regressors, the weighting scheme is developed on the basis of a Bayesian approach in order to
obtain desirable theoretical properties such as admissibility and a proper treatment of ignorance.
The final result is a model-average estimator that assumes an intermediate position between strict
BMA and strict FMA estimators [....] Finally we emphasize (again) that WALS is a model-
average procedure, not a model-selection procedure. At the end we cannot and do not want to
answer the question: which model is best? This brings with it certain restrictions. For exam-
ple, WALS cannot handle jointness (Ley and Steel, 2007; Doppelhofer and Weeks, 2009). The
concept of jointness refers to the dependence between explanatory variables in the posterior dis-
tribution, and available measures of jointness depend on posterior inclusion probabilities of the
explanatory variables, which WALS does not provide.” An extension called Hierarchical WALS
was proposed in Magnus and Wang (2014) to jointly deal with uncertainty in concepts and in
measurements within each concept, in the spirit of dilution priors (see Section 3.1.2).

Implementation of FMA does require some way of dealing with the potentially large number
of models in (24). In the context of growth applications with large model spaces, Amini and
Parmeter (2012) introduce an operational version of MMA by using the same semiorthogonal

53These models are GLMs with so-called random effects, e.g. effects that are subject-specific in a longitudinal or
panel data context.

54This was defined as the maximum probability mass one side of zero for a Normal distribution centred at the
estimated regression coefficient with the corresponding estimated variance.
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transformations as adopted in WALS.

Wagner and Hlouskova (2015) consider frequentist model averaging for principal compo-
nents augmented regressions illustrated with the FLS data set on economic growth determinants.
In addition, they compare and contrast their method and findings with BMA and with the WALS
approach, finding some differences but also some variables that are important in all analyses.
Another comparison of different methods on growth data can be found in Amini and Parmeter
(2011). They consider BMA, MMA and WALS and find that results (in as far as they can be
compared: for example, MMA and WALS do not provide posterior inclusion probabilities) for
three growth data sets are roughly similar.

Finally, Henderson and Parmeter (2016) use FMA techniques to deal with uncertainty in
a nonparametric setting and propose a nonparametric regression estimator averaged over the
choices of kernel, bandwidth selection mechanism and local-polynomial order.

4.1 Density forecast combinations

As mentioned earlier, there is a large literature in forecasting which combines forecasts from dif-
ferent models in an equation such as (24) to provide more stable and better-performing forecasts.
Of course, the choice of weights in combination forecasting is important. For example, we could
consider weighting better forecasts more heavily. In addition, time-varying weights have been
suggested. Stock and Watson (2004) examine a number of weighting schemes in terms of the
accuracy of point forecasts and find that forecast combinations can perform well in comparison
with single models, but that the best weighting schemes are often the ones that incorporate little
or no data adaptivity.

There is an increasing awareness of the importance of probabilistic or density forecasts, as de-
scribed in Section 3.1.5. Thus, a recent literature has emerged on density forecast combinations
or weighted linear combinations (pools) of prediction models. Density forecasts combinations
were discussed in Wallis (2005) and further developed by Hall and Mitchell (2007), where the
combination weights are chosen to minimize the Kullback-Leibler “distance” between the pre-
dicted and true but unknown density. The latter is equivalent to optimizing LPS as defined in
Section 3.1.5. The properties of such prediction pools are examined in some detail in Geweke
and Amisano (2011), who show that including models that are clearly inferior to others in the
pool can substantially improve prediction. Also, they illustrate that weights are not an indica-
tion of a predictive model’s contribution to log score. This approach is extended by Kapetanios
et al. (2015), who allow for more general specifications of the combination weights, by letting
them depend on the variable to be forecast. They specifically investigate piecewise linear weight
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functions and show that estimation by optimizing LPS leads to consistency and asymptotic nor-
mality55. They also illustrate the advantages over density forecast combinations with constant
weights using simulated and real data.

5 Applications in Economics

There is a large and rapidly growing literature where model averaging techniques are used to
tackle empirical problems in economics. Before the introduction of model averaging methods,
model uncertainty was typically dealt with in a less formalized manner and perhaps even sim-
ply ignored in many cases. Without attempting to be exhaustive, this chapter briefly mentions
some examples of model averaging in economic problems. Most of these applications relate to
macroeconomic data, since the problem of model uncertainty may be more acute when dealing
with these data which typically contain relatively small samples (n only a bit larger than k)56.

5.1 Growth regressions

Traditionally, growth theory has been an area where many potential determinants have been sug-
gested and empirical evidence has struggled to resolve the open-endedness of the theory (see
footnote 9). Early attempts at finding a solution include the use of EBA (see Section 2.1) in
Levine and Renelt (1992) who investigate the robustness of the results from linear regressions
and find that very few regressors pass the extreme bounds test, while Sala-i-Martin (1997) em-
ploys a less severe test based on the “level of confidence” of individual regressors averaged over
models (uniformly or with weights proportional to the likelihoods). These more or less intuitive
but ad-hoc approaches were precursors to a more formal treatment through BMA discussed and
implemented in Brock and Durlauf (2001) and Fernández et al. (2001b).

Hendry and Krolzig (2004) present an application of general-to-specific modelling (see Sec-
tion 2.1) in growth theory, as an alternative to BMA. However, there is a long list of applications
in this area where BMA is used, and some examples are given below.

The question of whether energy consumption is a critical driver of economic growth is in-
vestigated in Camarero et al. (2015). This relates to an important debate in economics between

55Formally, this is shown for known thresholds of the piecewise linear weights, and is conjectured to hold for
unknown threshold parameters.

56However, there are lots of examples with n >> k with substantial model uncertainty; for example, Ley and
Steel (2012) find that the returns to schooling data of Tobias and Li (2004) where n = 1190 and k = 26 lead to
MCMC chains that visit in the order of 105 different models if we use the recommended priors of the type (6) with
random g and (12).
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competing economic theories: ecological economic theory (which considers the scarcity of re-
sources as a limiting factor for growth) and neoclassical growth theory (where it is assumed
that technological progress and substitution possibilities may serve to circumvent energy scarcity
problems). There are various earlier studies that concentrate on the bivariate relationship between
energy consumption and economic growth, but of course the introduction of other relevant covari-
ates is key. In order to resolve this in a formal manner, they use the BMA framework on annual
US data (both aggregate and sectoral) from 1949 to 2010, with up to 32 possible covariates. Ca-
marero et al. (2015) find that energy consumption is an important determinant of aggregate GDP
growth (but their model does not investigate whether energy consumption really appears as an en-
dogenous regressor, so that they can not assess whether there is also feedback) and also identify
energy intensity, energy efficiency, the share of nuclear power and public spending as important
covariates. Sectoral results support the conclusion about the importance of energy consumption,
but show some variation regarding the other important determinants.

A specific focus on the effect of measures of fiscal federalism on growth was adopted in
Asatryan and Feld (2015). They conclude that, after controlling for unobserved country hetero-
geneity, no robust effects of federalism on growth can be found.

Man (2015) investigates whether competition in the economic and political arenas is a robust
determinant of aggregate growth, and whether there exists jointness among competition variables
versus other growth determinants. This study also provides a comparison with EBA and with
“reasonable extreme bounds analysis”, which also takes the fit of the models into account. Evi-
dence is found for the importance and positive impact on growth of financial market competition,
which appears complementary to other important growth determinants. Competition in other
areas does not emerge as a driver of economic growth.

Piribauer (2016) estimates growth patterns in a spatial econometric framework, building on
threshold estimation approaches (Hansen, 2000) to account for structural heterogeneity in the
observations. The paper uses the prior structure by George and McCulloch (1993, 1997) with
SSVS (see Section 3.2).

Lanzafame (2016) derives the natural or potential growth rates of Asian economies (using a
Kalman filter on a state-space model) and investigates the determinants of potential growth rates
through BMA methods (while always including some of the regressors).

The influence of trade on growth is analysed in Eicher and Kuenzel (2016), who use BMA
methods while taking into account the endogeneity of trade variables, through the two-stage
BMA approach of Lenkoski et al. (2014). They find that sectoral export diversity serves as a
crucial growth determinant for low-income countries, an effect that weakens with the level of
development.
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The effect of government investment versus government consumption on growth in a period
of fiscal consolidation in developed economies is analysed in Jovanovic (2017). Using BMA
and a dilution prior (using the determinant of the correlation matrix), it is found that public
investment is likely to have a bigger impact on GDP than public consumption in the countries
with high public debt. Also, and more controversially, the (investment) multiplier is likely to be
higher in countries with high public debt than in countries with lower public debt. The results
suggest that fiscal consolidation should be accompanied by increased public investment.

Arin and Braunfels (2017) examine the existence of the “natural resource curse” focusing on
the empirical links between oil reserves and growth. They find that oil revenues have a positive
effect on growth. When they include interactions and treat them simply as additional covariates,
they find that the positive effect can mostly be attributed to the interaction of institutional quality
and oil revenues, which would suggest that institutional quality is a necessary condition for oil
revenues to have a growth-enhancing effect. However, if they use a prior that adheres to the
strong heredity principle (see Section 3.1.2), they find instead that the main effect of oil rents
dominates.

5.2 Inflation and Output Forecasting

In the context of time series modelling with ARIMA and ARFIMA57 models, BMA was used for
posterior inference on impulse responses for real GNP in Koop et al. (1997).

Cogley and Sargent (2005) consider Bayesian averaging of three models for inflation using
dynamic model weights. Another paper that uses time-varying BMA methods for inflation fore-
casting is van der Maas (2014). The related strategy of dynamic model averaging, due to Raftery
et al. (2010) and described in Section 3.8.6, was used in Koop and Korobilis (2012). Forecasting
inflation using BMA has also been examined in Eklund and Karlsson (2007), who propose the
use of so-called predictive weights in the model averaging, rather than the standard BMA based
on posterior model probabilities.

Shi (2016) models and forecasts quarterly US inflation and finds that Bayesian model av-
eraging with regime switching leads to substantial improvements in forecast performance over
simple benchmark approaches (e.g. random-walk or recursive OLS forecasts) and pure BMA or
Markov switching models.

Ouysse (2016) considers point and density forecasts of monthly US inflation and output
growth that are generated using principal components regression (PCR) and Bayesian model

57ARFIMA stands for Autoregressive Fractionally Integrated Moving Average models, which are used to allow
for long memory behaviour
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averaging (BMA). A comparison between 24 BMA specifications and 2 PCR ones in an out-
of-sample, 10-year rolling event evaluation leads to the conclusion that PCR methods perform
best for predicting deviations of output and inflation from their expected paths, whereas BMA
methods perform best for predicting tail events. Thus, risk-neutral policy-makers may prefer the
PCR approach, while the BMA approach would be the best option for a prudential, risk-averse
forecaster.

Bencivelli et al. (2017) investigate the use of BMA for forecasting GDP relative to simple
bridge models58 and factor models. They conclude that for the euro area, BMA bridge models
produce smaller forecast errors than a small-scale dynamic factor model and an indirect bridge
model obtained by aggregating country-specific models.

Ductor and Leiva-Leon (2016) investigate the time-varying interdependence among the eco-
nomic cycles of the major world economies since the 1980’s. They use a BMA panel data ap-
proach (with the model in (22) including a time trend) to find the determinants of pairwise de-
synchronization between the business cycles of countries. They also use WALS and find that it
indicates the same main determinants as BMA.

A probit model is used for forecasting US recession periods in Aijun et al. (2017). They
use a Gibbs sampler based on SSVS (but with point masses for the coefficients of the excluded
regressors), and adopt a generalized double Pareto prior (which is a scale mixture of normals) for
the included regression parameters along with a dilution prior based on the correlation between
the covariates. Their empirical results on monthly U.S. data (from 1959:02 until 2009:02) with
108 potential covariates suggest the method performs well relative to the main competitors.

5.3 VAR and DSGE modelling

A popular econometric framework for modelling several variables is the vector autoregressive
(VAR) model. BMA methodology has been applied by Garratt et al. (2003) for probability fore-
casting of inflation and output growth in the context of a small long-run structural vector error-
correcting model of the U.K. economy. George et al. (2008) apply BMA ideas in VARs using
SSVS methods with priors which do not induce exact zero restrictions on the coefficients, as in
George and McCulloch (1993). Koop and Korobilis (2016) extend this to Panel VARs where
the restrictions of interest involve interdependencies between and heterogeneities across cross-
sectional units.

58Bridge models relate information published at monthly frequency to quarterly national account data, and are
used for producing timely “now-casts” of economic activity.
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Feldkircher and Huber (2016) use a Bayesian VAR model to explore the international spillovers
of expansionary US aggregate demand and supply shocks, and of a contractionary US monetary
policy shock. They use SVSS priors and find evidence for significant spillovers, mostly transmit-
ted through financial channels and with some notable cross regional variety.

BMA methods for the more restricted dynamic stochastic general equilibrium (DSGE) mod-
els were used in Strachan and van Dijk (2013), with a particular interest in the effects of investment-
specific and neutral technology shocks. Evidence from US quarterly data from 1948-2009 sug-
gests a break in the entire model structure around 1984, after which technology shocks appear
to account for all stochastic trends. Investment-specific technology shocks seem more important
for business cycle volatility than neutral technology shocks.

Koop (2017) provides an intuitive and accessible overview of these types of models.

5.4 Crises and finance

Following the work of Rose and Spiegel (2011) and the earlier BMA approach of Giannone
et al. (2011), Feldkircher (2014) uses BMA to identify the main macroeconomic and financial
market conditions that help explain the real economic effects of the global financial crisis of 2008-
9. Feldkircher et al. (2014) focus on finding leading indicators for exchange market pressures
during the crisis and their BMA results indicate that inflation plays an important aggravating
role, whereas international reserves act as a mitigating factor. Early warning signals are also
investigated in Christofides et al. (2016) who find that the importance of such signals is specific
to the particular dimension of the crisis being examined. Ho (2015) investigates the causes of
the 2008-9 crisis, using BMA, BACE and the approach of Hoeting et al. (1996) (see Section
3.8.4) to deal with outliers, and finds that the three methods lead to broadly similar results. The
same question about the determinants of the 2008 crisis was addressed in Chen et al. (2017),
who use a hierarchical prior structure with groups of variables (grouped according to a common
theory about the origins of the crisis) and individual variables within each group. They use
BMA to deal with uncertainty at both levels and find that “financial policies and trade linkages
are the most relevant groups with regard to the relative macroeconomic performance of different
countries during the crisis. Within the selected groups, a number of pre-existing financial proxies,
along with measures of trade linkages, were significantly correlated with real downturns during
the crisis. Controlling for both variable uncertainty and group uncertainty, our group variable
selection approach is able to identify more variables that are significantly correlated with crisis
intensity than those found in past studies that select variables individually.”

The drivers of financial contagion after currency crises were investigated through BMA meth-
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ods in Dasgupta et al. (2011). They use a probit model for the occurrence of a currency crisis in
54 to 71 countries for four years in the 1990s and find that institutional similarity is an impor-
tant predictor of financial contagion during emerging market crises. Puy (2016) investigates the
global and regional dynamics in equity and bond flows, using data on portfolio investments from
international mutual funds. In addition, he finds strong evidence of global contagion. To assess
the determinants of contagion, he regresses the fraction of variance of equity and bond funding
attributable to the world factor on a set of 14 structural variables, using both WALS and BMA.

Moral-Benito and Roehn (2016) explore the relationship between financial market regulation
and current account balances. They use a dynamic panel model and combine the BMA method-
ology with a likelihood-based estimator that accommodates both persistence and unobserved
heterogeneity.

The use of BMA in forecasting exchange rates by Wright (2008) leads to the conclusion that
BMA provides slightly better out-of-sample forecasts (measured by mean squared prediction er-
rors) than the traditional random walk benchmark. This is confirmed by Ribeiro (2017), who
also argues that a bootstrap-based method, called bumping, performs even better. Iyke (2015)
analyses the real exchange rate in Mauritius using BMA. Different priors are adopted, including
empirical Bayes. There are attempts to control for multicollinearity in the macro determinants
using three competing model priors incorporating dilution, among which the tessellation prior
and the weak heredity prior (see Section 3.1.2). Adler and Grisse (2017) examine behavioral
equilibrium exchange rates models, which relate a long-run cointegration relationship between
real exchange rates to fundamental macroeconomic variables, in a panel regression across cur-
rencies. They use BACE to deal with model uncertainty and find that some variables are robustly
linked with real exchange rates. The introduction of fixed country effects in the models greatly
improves the fit to real exchange rates over time.

BMA applied to a meta-analysis is used by Zigraiova and Havranek (2016) to investigate
the relationship between bank competition and financial stability. They find some evidence of
publication bias59 but encounter no clear link between bank competition and stability, even when
correcting for publication bias and potential misspecifications.

Devereux and Dwyer (2016) examine the output costs associated with 150 banking crises
using cross country data for years after 1970. They use BMA to identify important determinants
for output changes after crises and conclude that for high-income countries the behavior of real

59Generally, this is the situation that the probability of a result being reported in the literature (i.e. of the paper
being published) depends on the sign or statistical significance of the estimated effect. In this case, the authors found
some evidence that some authors of primary studies tend to discard estimates inconsistent with the competition-
fragility hypothesis, one of the two main hypotheses in this area.
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GDP after a banking crisis is most closely associated with prior economic conditions, where
above-average changes in credit tend to be associated with larger expected decreases in real GDP.
For low-income economies, the existence of a stock market and deposit insurance are linked with
quicker recovery of real GDP.

Pelster and Vilsmeier (2016) use Bayesian Model Averaging to assess the pricing-determinants
of credit default swaps. They use an autoregressive distributed lag model with time-invariant
fixed effects and approximate posterior model probabilities on the basis of smoothed AIC. They
conclude that credit default swaps price dynamics can be mainly explained by factors describing
firms’ sensitivity to extreme market movements, in particular variables measuring tail dependence
(based on so-called dynamic copula models).

Horvath et al. (2017) explore the determinants of financial development as measured by fi-
nancial depth (both for banks and stock markets), the efficiency of financial intermediaries (both
for banks and stock markets), financial stability and access to finance. They use BMA to analyse
financial development in 80 countries using nearly 40 different explanatory variables and find that
the rule of law is a major factor in influencing financial development regardless of the measure
used. In addition, they conclude that the level of economic development matters and that greater
wealth inequality is associated with greater stock market depth, although it does not matter for
the development of the banking sector or for the efficiency of stock markets and banks.

The determinants of US monetary policy are investigated in Wölfel and Weber (2017), who
conclude from a BMA analysis that over the long-run (1960-2014) the important variables in
explaining the Federal Funds Rate are inflation, unemployment rates and long-term interest rates.
Using samples starting in 1973 (post Bretton-Woods) and 1982 (real-time data), the fiscal deficit
and monetary aggregates were also found to be relevant. Wölfel and Weber (2017) also account
for parameter instability through the introduction of an unknown number of structural breaks
and find strong support for models with such breaks, although they conclude that there is less
evidence for structural break since the 1990s.

Watson and Deller (2017) consider the relationship between economic diversity and unem-
ployment in the light of the economic shocks provided by the recent “Great Recession”. They
use a spatial BMA model allowing for spatial spillover effects on data from U.S. counties with
a Herfindahl diversity index computed across 87 different sectors. They conclude that increased
economic diversity within the county itself is associated with significantly reduced unemploy-
ment rates across all years of the sample (2007-2014). The economic diversity of neighbours is
only strongly associated with reduced unemployment rates at the height of the Great Recession.

Ng et al. (2016) investigate the relevance of social capital in stock market development using
BMA methods and conclude that trust is a robust and positive determinant of stock market depth
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and liquidity.

BMA was used to identify the leading indicators of financial stress in 25 OECD countries by
Vašı́ček et al. (2017). They find that financial stress is difficult to predict out of sample, either
modelling all countries at the same time (as a panel) or individually.

5.5 Other applications

Havranek et al. (2015) use BMA in a meta-analysis of intertemporal substitution in consump-
tion. Havranek and Sokolova (2016) investigate the mean excess sensitivity reported in studies
estimating consumption Euler equations. Using BMA methods, they control for 48 variables re-
lated to the context in which researchers obtain their estimates in a sample of 2,788 estimates
reported in 133 published studies. Reported mean excess sensitivity seems materially affected
by demographic variables, publication bias and liquidity constraints and they conclude that the
permanent income hypothesis seems a pretty good approximation of the actual behavior of the
average consumer. Havranek et al. (2017) consider estimates of habit formation in consumption
in 81 published studies and try and relate differences in the estimates to various characteristics of
the studies. They use BMA (with MC3) and FMA60 and find broadly similar results using both
methods. Another example of the use of BMA in meta-analysis is Philips (2016) who investi-
gates political budget cycles and finds support for some of the context-conditional theories in that
literature.

The determinants of export diversification are examined in Jetter and Ramı́rex Hassan (2015)
who conclude that Primary school enrollment has a robust positive effect on export diversifica-
tion, whereas the share of natural resources in gross domestic product lowers diversification lev-
els. Using the IVBMA approach of Karl and Lenkoski (2012) they find that these findings are
robust to accounting for endogeneity.

Kourtellos et al. (2016) use BMA methods to investigate the variation in intergenerational
spatial mobility across commuter zones in the US using model priors based on the dilution idea.
Their results show substantial evidence of heterogeneity, which suggests exploring nonlinearities
in the spatial mobility process.

Returns to education have been examined through BMA in Tobias and Li (2004). Koop et al.
(2012) use their instrumental variables BMA method in this context. Cordero et al. (2016) use

60Here they follow the approach suggested by Amini and Parmeter (2012), who build on Magnus et al. (2010)
and use orthogonalization of the covariate space, thus reducing the number of models that need to be estimated from
2k to k. In individual regressions they use inverse-variance weights to account for the estimated dependent variable
issue.
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BMA methods to assess the determinants of cognitive and non-cognitive educational outcomes
in Spain.

Daude et al. (2016) investigate the drivers of productive capabilities (which are important for
growth) using BACE based on bias-corrected least squares dummy variable estimates (Kiviet,
1995) in a dynamic panel context with country-specific effects.

Through a spatial BMA model, Oberdabernig et al. (2017) analyse determinants of democ-
racy differences. Also using a model with spatial effects, Hortas-Rico and Rios (2016) examine
the main drivers of urban income inequality using Spanish municipal data.

Cohen et al. (2016) investigate the social acceptance of power transmission lines using a
survey that was conducted in the EU. An ordered probit model was used to model the level of
acceptance and the fixed country effects of that regression were then used as dependent variables
in a BMA analysis, to further explain the heterogeneity between the 27 countries covered in the
survey.

In the context of production modelling through stochastic frontier models, Bayesian meth-
ods were introduced by van den Broeck et al. (1994). They deal with the uncertainty regarding
the specification of the inefficiency distribution through BMA. McKenzie (2016) considers three
different stochastic frontier models with varying degrees of flexibility in the dynamics of produc-
tivity change and technological growth, and uses Bayesian model averaging to conduct inference
on productivity growth of railroads.

Pham (2017) investigates the impact of different globalization dimensions (both economic
and non-economic) on the informal sector and shadow economy in developing countries. The
methodology of León-González and Montolio (2015) is used to deal with endogenous regressors
as well as country-specific fixed effects.

The effect of the abundance of resources on the efficiency of resource usage is explored in
Hartwell (2016). This paper considers 130 countries over various time frames from 1970 to 2011,
both resource-abundant and resource-scarce, to ascertain a link between abundance of resources
and less efficient usage of those resources. Efficiency is measured by e.g. gas or oil consumption
per unit of GDP, and 3SLS estimates are obtained for a system of equations. Model averaging is
then conducted according to WALS. The paper concludes that for resource-abundant countries,
the improvement of property rights will lead to a more environmentally sustainable resource
usage.

Wei and Cao (2017) use dynamic model averaging (DMA) to forecast the growth rate of
house prices in 30 major Chinese cities. They use the MCS test (see Section 2.1) to conclude that
DMA achieves significantly higher forecasting accuracy than other models in both the recursive
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and rolling forecasting modes. They find that the importance of predictors for Chinese house
prices varies substantially over time and that the Google search index for house prices has recently
surpassed the forecasting ability of traditional macroeconomic variables. Housing prices in Hong
Kong were analysed in Magnus et al. (2011) using a GLS version of WALS.

Robust determinants of bilateral trade are investigated in Chen et al. (2017), using their
LIBMA methodology (see Section 3.8.8). They find evidence of trade persistence and of im-
portant roles for the exchange rate regime, several of the traditional “core” variables of the trade
gravity model and trade creation and diversion through trade agreements.

6 Software and resources

The free availability of software is generally very important for the adoption of methodology
by applied users. There are a number of publicly available computational resources for con-
ducting BMA. Early contributions are the code by Raftery et al. (1997a) (now published as an
R package in Raftery et al. (2010)) and the Fortran code used by Fernández et al. (2001a).
Recently, a number of R-packages have been created, in particular the frequently used BMS
package (Feldkircher and Zeugner, 2014). Details about BMS are given in Zeugner and Feld-
kircher (2015). Two other well-known R-packages are BAS (Clyde, 2017), explained in Clyde
et al. (2011), and BayesVarSel (Garcı́a-Donato and Forte, 2015), described in Garcı́a-Donato and
Forte (2016). When endogenous regressors are suspected, the R-package ivbma (Lenkoski et al.,
2014) implements the method of Karl and Lenkoski (2012). For situations where we wish to al-
low for flexible nonlinear effects of the regressors, inference for (generalized) additive models as
in Sabanés Bové and Held (2011a) and Sabanés Bové et al. (2015) can be conducted by the pack-
ages glmBfp (Gravestock and Sabanés Bové, 2017) on CRAN and hypergsplines (Sabanés Bové,
2011) on R-Forge, respectively. For dynamic models, an efficient implementation of the DMA
methodology of Raftery et al. (2010) is provided in the R package eDMA (Catania and Nonejad,
2017b), as described in Catania and Nonejad (2017a). This software uses parallel computing if
shared memory multiple processors hardware is available,

In addition, code exists in other computing environments; for example LeSage (2015) de-
scribes Matlab code for BMA with spatial models. Błażejowski and Kwiatkowski (2015) present
a package that implements Bayesian model averaging (including jointness measures) for gretl.61

Using the BMS package Amini and Parmeter (2012) successfully replicate the BMA results
of Fernández et al. (2001b), Masanjala and Papageorgiou (2008) and Doppelhofer and Weeks

61Gretl is a free, open-source software (written in C) for econometric analysis with a graphical user interface.
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(2009). Forte et al. (2017) provide a systematic review of R-packages publicly available in CRAN
for Bayesian model selection and model averaging in normal linear regression models. In partic-
ular, they examine in detail the packages BAS, BayesFactor (Morey et al., 2015), BayesVarSel,
BMS and mombf (Rossell et al., 2014) and highlight differences in priors that can be accom-
modated (within the class described in (6)), numerical implementation and posterior summaries
provided. All packages lead to very similar results on a number of real data sets, and generally
provide reliable inference within 10 minutes of running time on a simple PC for problems up to
p = 100 or so covariates. They find that BAS is overall faster than the other packages considered
but with a very high cost in terms of memory requirements and, overall, they recommend BAS
with estimation based on model visit frequencies62. If memory restrictions are an issue (for mod-
erately large p or long runs) then BayesVarSel is a good choice for small or moderate values of
n, while BMS is preferable when n is large.

A number of researchers have made useful BMA resources freely available:

• Feldkircher and Zeugner: http://bms.zeugner.eu/resources/ a dedicated re-
source page with lots of free software and introductory material.

• Raftery: http://www.stat.washington.edu/raftery/Research/research.
html for his papers and http://www.stat.washington.edu/raftery/software.
html for software and data.

• Clyde: http://stat.duke.edu/˜clyde/software for BAS and her papers can
be found at http://www2.stat.duke.edu/˜clyde/research/.

• Steel: http://www.warwick.ac.uk/go/msteel/steel_homepage/bma has
BMA papers that I contributed to as well as code (Fortran) and data.

A number of computational resources also exists for FMA. In particular, the R packages
MuMIn (Bartoń, 2016) and AICcmodavg (Mazerolle, 2017) can handle a wide range of different
models. The model confidence set approach (as described in Section 2.1) can be implemented
through the R package MCS (Catania and Bernardi, 2017) as described in Bernardi and Catania
(2017).

62The BAS package also has the option to use the sampling method (without replacement) called Bayesian Adap-
tive Sampling (BAS) described in Clyde et al. (2011), which is based on renormalization and leads to less accurate
estimates in line with the comments in Section 3.2
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7 Conclusions and recommendations

The choice between BMA versus FMA is to some extent a matter of taste and may depend on
the particular focus and aims of the investigation. For this author, the theoretically optimal, finite
sample nature of BMA makes it particularly attractive for use in situations of model uncertainty.
Also, the availability of posterior inclusion probabilities for the regressors and the easy inter-
pretation of model probabilities (which also allows for model selection if required) seem to be
clear advantages of BMA. In addition, BMA also has important optimality properties in terms of
shrinkage in high-dimensional problems. In particular, Castillo et al. (2015) prove that BMA in
linear regression leads to an optimal rate of contraction of the posterior on the regression coeffi-
cients to a sparse “true” data-generating model (a model where many of the coefficients are zero),
provided the prior sufficiently penalizes model complexity. Rossell and Telesca (2017) show that
BMA leads to fast shrinkage for spurious coefficients (and explore so-called nonlocal priors that
provide even faster shrinkage in the BMA context).

Clearly, priors matter for BMA and it is crucial to be aware of this. Looking for solutions
that do not depend on prior assumptions can realistically only be achieved by hiding the implicit
prior assumptions. I believe it is much preferable to be explicit about the prior assumptions
and the recent research in prior sensitivity should serve to highlight which aspects of the prior are
particularly critical for the results and how we can “robustify” our prior choices. A recommended
way to do this is through the use of hyperpriors on hyperparameters such as w and g, given a
prior structure such as the one in (6). We can then, typically, make reasonable choices for our
robustified priors by eliciting simple quantities, such as prior mean model size. The resulting
prior avoids being unintentionally informative and has the extra advantage of adapting to the
data. For example, in cases of weak or unreliable data it will tend to favour smaller value of g,
avoiding unwarranted precise distinctions between models. This may well lead to larger model
sizes, but that can easily be counteracted by choosing a prior on the model space that is centered
over smaller models.

Given the importance of prior assumptions, a reasonable question is whether one can assess
the quality of priors or limit the array of possible choices. In principle, any coherent63 prior
which does not use the data can be seen as “valid”. Nevertheless, there are legitimate questions
one could (and, in my view, should) ask about the prior:

• does it adequately capture the prior beliefs of the user? Is the prior a “sensible” reflection of
prior ideas, based on aspects of the model that can be interpreted? This could, for example,

63This means the prior is in agreement with the usual rules of probability, and prevents “Dutch book” scenarios,
which would guarantee a profit in a betting setting, irrespective of the outcome.
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be assessed through (transformations of) parameters or predictive quantities implied by the
prior.

• does it matter for the results? If inference and decisions regarding the question of interest
are not much affected over a wide range of “sensible” prior assumptions, it indicates that
you need not spend a lot of time and attention to finesse these particular prior assumptions.
Unfortunately, when it comes to model choice, the prior is often surprisingly important.

• what is the predictive ability (as measured by e.g. scoring rules)? The immediate avail-
ability of probabilistic forecasts that formally incorporate both parameter and model un-
certainty provides us with a very useful tool for checking the quality of the model. If a
Bayesian model predicts unobserved data well, it reflects well upon both the likelihood and
the prior components of this model.

• are the desiderata of Bayarri et al. (2012) for “objective” priors satisfied? These theoretical
principles, such as consistency and invariance, can be used to motivate the main prior setup
in this paper.

• what are the frequentist properties? Even though frequentist arguments are, strictly speak-
ing, not part of the underlying rationale for Bayesian procedures, these procedures often
perform well in repeated sampling experiments, and BMA is not an exception64.

Sensitivity analysis (over a range of different priors and even different sampling models) is
indispensable if we want to convince our colleagues, clients and policy makers. Providing an
explicit mapping from these many assumptions to the main results is a key aspect of careful
applied research, and should not be neglected. There are many things that theory and prior
desiderata can tell us, but there will always remain a lot that is up to the user, and then it is
important to try and capture a wide array of possible reasonable assumptions underlying the
analysis. In essence, this is also the key message of averaging and we should take it to heart
whenever we do empirical research, certainly in non-experimental sciences such as economics.

Model uncertainty is a pervasive (and sometimes not fully recognized) problem in economic
applications. BMA is a natural approach for fully taking model uncertainty into account, using
simple and well-defined probabilistic arguments. We now have a good understanding about the
influence of prior settings in the normal linear regression model and extensions to more com-
plicated models have been developed. Furthermore, publicly available and well-documented

64However, there is no guarantee that BMA will do well in frequentist terms and, for example, there is anecdotal
evidence that it can perform worse in terms of, say, mean squared error than simple least squares procedures for
situations with small k.
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software exists which can deal with quite large model spaces using standard computing equip-
ment in a matter of minutes. In summary, I would strongly recommend the use of BMA with
an appropriately elicited “robust” prior as a practical and easily interpretable tool for researchers
dealing with economic data.
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