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PRACTICAL NOTES ON PANEL DATA MODELS WITH

INTERACTIVE EFFECTS

JUSHAN BAI AND KUNPENG LI

Abstract. This note is intended for researchers who want to use the inter-

active effects model for empirical modeling. We consider how to estimate
interactive effects models when some of the factors and factor loading are

observable. Observable factors are common regressors which do not vary

across individuals such as macroeconomic variables, but their regression co-
efficients are individual-dependent. Observable factor loadings correspond to

time-invariant regressors such that race, gender and education, but their re-

gression coefficients are time dependent. This note elaborates the estimation
procedures in Bai (2009) in the presence of such regressors.

Keywords: observable factors, observable factor loadings, common regressors,
time-invariant regressors

1. Observable factors

Consider the model

yit = x′itβ + φ′igt + λ′ift + uit

with
i = 1, 2, ..., N ; t = 1, ..., T.

Observable variables are (yit, xit, gt), all the rest are unobservable. The regressors
gt are observable, but they do not vary over i. We refer gt as the common regres-
sors. These can be policy variables or macroeconomic variables (e.g., interest rates,
unemployment, inflation etc). Write the model in vector form

Yi = Xiβ +Gφi + Fλi + ui,

where Yi is T×1, Xi = (xi1, xi2, .., xiT )′, G = (g1, g2, ..., gT )′, and F = (f1, f2, ..., fT )′.
Define the projection matrix

MG = IT −G(G′G)−1G′.

Do transformation and use MGG = 0,

MGYi = MGXiβ +MGFλi +MGui.

Renaming variables
Y ∗i = X∗i β + F ∗λi + u∗i

where Y ∗i = MGYi, etc. The transformation eliminates the observable factors. Data
in “*” form conforms with the model in Bai (2009). From here, we can use the
method in Bai (2009) to estimate β, F ∗, and λi for each i. A MATLAB program is
available for estimating the model (https://ideas.repec.org/c/boc/bocode/m430011.html).
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Next to estimate φi, the coefficients of the common regressors gt, we have to
make an assumption that G and F are orthogonal, that is, G′F = 0. Otherwise,
φi is not identifiable (φi and λi are not separable). Orthogonality between G and
F implies F ∗ = MGF = F . Now given that β, F and λi are estimable, moving
relevant terms to the left hand side

Yi −Xiβ − Fλi = Gφi + ui

or

Y †i = Gφi + ui

where Y †i = Yi−Xiβ−Fλi, which can be assumed known (at least it is estimable).

Least squares regression of Y †i on G gives an estimate for φi. That is,

φ̂i = (G′G)−1G−1Y †i , i = 1, 2, ..., N

2. observable factor loadings

Suppose there are regressors that are time-invariant (equivalent to factor loadings
being observable)

yit = x′itβ + z′iγt + λ′ift + uit

Observable variables are (yit, xit, zi), where zi is time invariant, such as race, gender
and education. Write the model as

Yt = Xtβ + Zγt + Λft + ui

where Yt = (y1t, y2t, ..., yNt)
′ is N × 1; Z = (z1, ..., zN )′, and Λ = (λ1, ..., λN )′. Let

MZ = IN − Z(Z ′Z)−1Z ′, and do transformation

MZYt = MZXtβ +MZΛft +MZui

or more compactly

Ẏt = Ẋtβ + Λ̇ft + u̇i

where Ẏt = MZYt, etc. The model again conforms with that of Bai (2009) so that

β, Λ̇, ft are estimable. To estimate γt, we assume Z and Λ are orthogonal (i.e.,

Z ′Λ = 0) to eliminate rotational indeterminacy. Then Λ̇ coincides with Λ. Notice

Yt −Xtβ − Λft = Zγt + ut

or

Ÿt = Zγt + ut

with Ÿt = Yt −Xtβ − Λ̇ft. Least squares regression of Ÿt on Z gives the estimator
of γt:

γ̂t = (Z ′Z)−1Z ′Ÿt, t = 1, 2..., T

3. Observable factor and factor loadings

A more general model is the presence of both common regressors gt and time-
invariant regressors zi:

yit = x′itβ + z′iγt + φ′igt + λ′ift + uit

Observable variables are (yit, xit, gt, zi). For this case, see Bai and Li (2014) for
details.
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Suppose that xit is a k × 1 vector (containing k regressors) such that xit =
(xit,1, ..., xit,k)′. Define the N × T matrix Xj = [xit,j ]N×T for the jth explanatory
variable (j = 1, 2, ..., k). Write the model as

(3.1) Y = X1β1 + · · ·+Xkβk + ZΓ′ + ΦG′ + ΛF ′ + u

so each term is an N × T matrix, then left multiply MZ and right multiply MG to
get

(3.2) MZYMG = (MZX1MG)β1+...+(MZXkMG)βk+(MZΛ)(F ′MG)+MZuMG

or equivalently

Ÿ = Ẍ1β1 + · · ·+ Ẍkβk + Λ̈F̈ ′ + ü

with Ÿ = MZYMG, Ẍj = MZXjMG, ü = MZuMG, Λ̈ = MZΛ and F̈ = MGF .
The transformation eliminates both the observable and time-invariant regressors.
The model now reduces to that of Bai (2009) again.

Let β̂, ̂̈Λ and ̂̈F be the estimator of Bai (2009) for the above model and define
the residuals with the original data (untransformed) Y and Xj

Ỹ = Y −X1β̂1 − · · · −Xkβ̂k − ̂̈Λ ̂̈F ′.
Under the identification condition Z⊥Λ, Z⊥Φ, F⊥G, we estimate Φ, the coefficient
matrix of common regressors, by

Φ̂ = (MZ Ỹ G)(G′G)−1

and estimate Γ, the coefficient matrix of time invariant regressors, by

Γ̂ = (Ỹ − Φ̂G′)′Z(Z ′Z)−1

Bai and Li (2014) also study the maximum likelihood estimation of the model.
Remarks: One can equally work with T ×N data matrices, where each column

represents a time series, and ith column belongs to the ith individual. That will
simply be the transpose of the above model. Alternatively one can stack the data
into a long vector. From vec(ABC) = (C ′ ⊗A)vec(B), vectorization of (3.1) gives

y = xβ + (IT ⊗ Z)vec(Γ′) + (G⊗ IN )vec(Φ) + vec(ΛF ′) + vec(u)

where y = vec(Y ), x = [vec(X1), ..., vec(Xk)]NT×k. Left multiplying the matrix
MG ⊗ MZ will eliminate terms involving Z and G. This will be equivalent to
vectoring (3.2). The idea is that whether one works with data matrices of format
N × T or T ×N or long format NT × k, transformation can be easily performed.
Notationwise, equation (3.1) or its transpose appears to be easier.

The preceding discussion assumes the coefficients of zi are time varying, and the
coefficients of gt are individual-dependent. Now consider the model in which these
coefficients are constant

yit = x′itβ + z′iγ + g′tφ+ λ′ift + uit.

Let x̃it = (x′it, z
′
i, g
′
t)
′ and θ = (β′, γ′, φ′)′, the above model is equivalent to

yit = x̃′itθ + λ′ift + uit.

We can still use the estimation procedure of Bai (2009) to estimate θ. It is important
to note that we cannot further allow unobservable additive fixed effects in this
model. That is, the interactive effects λ′ift must be genuine. Mathematically,
this requires [1N , Z,Λ] be of a full column rank, where 1N is an N × 1 vector of
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1s. Also, [1T , G, F ] must be of full column rank (see Bai, 2009). The full-column
rank assumptions are necessary for identification of γ and φ. These assumptions
permit zi to be correlated with the unobservable λi and gt to be correlated with
the unobservable ft, an important feature of panel data models.
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