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Abstract

Recent empirical studies conclude that small firms have higher but more variable growth

rates than large firms. To explore the effect of this empirical regularity on moral hazard and

investment, we develop a continuous-time agency model with time-varying firm size. Firm

size is a diffusion process with two features: the drift is controlled by the agent’s effort and

the principal’s investment decision, and the volatility is proportional to the square root of firm

size. We characterize the optimal contract when both parties have CARA utility. The firm

improves on production efficiency as it grows, and wages are back-loaded when size is small

but front-loaded when it is large. Furthermore, there is under-investment in a small firm but

over-investment in a large firm.
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1. Introduction

Recent empirical studies conclude that the dynamics of a firm are negatively associated with

size. It is now well documented that within an industry, small firms grow faster but have a

higher volatility of growth rates than large firms. Interpreting the volatility as corporate risk,

this empirical pattern—referred to as the size-dependence regularity by Cooley and Quadrini

(2001)—implies that the degree of risk a corporation faces depends on its size. Then, in a dy-

namic agency problem in which firm size changes over time, this regularity has important

implications for moral hazard and investment, as both are inextricably linked with the charac-

teristic of shocks. In this article, we propose a continuous-time principal-agent model in which

firm size follows a diffusion process with a diminishing volatility of the growth rate, which

sheds light on the impact of the regularity on dynamic incentives and investment.

There is a growing body of literature, initiated by He (2009), studying how time-varying

firm size affects the structure of an optimal contract in a continuous-time framework. However,

for the sake of tractability, most of that literature assumes that firm size evolves according to

a geometric Brownian motion which, in contrast with the regularity, entails a constant growth

rate volatility.1 Our model features two main departures from the existing models, and they

lead to a distinctive firm size process. First, to describe a firm’s growth path, we adopt a

capital accumulation model in which the principal can increase firm size through investment,

and embed it into a dynamic contracting framework. This gives rise to the drift of firm size

controlled by the agent’s hidden action and the principal’s investment decision. Secondly,

to incorporate the regularity, we postulate that the volatility of firm size is proportional to the

square root of size.2 The volatility thereby increases with size, but their relationship diminishes

as the firm grows. The model provides a simple framework by which we can explore the impact

of the regularity on both moral hazard and investment, and delivers qualitatively different

predictions about the optimal contract, depending on firm size.

Specifically, the model describes an environment in which a risk-averse principal delegates

the management of a firm to a risk-averse agent and offers the agent a long-term contract

with full commitment. The contract specifies a flow of compensation for the agent and a flow

of dividends for the principal. At each time t, the firm produces output or cash flow with

1In He (2009), the agent’s hidden action affects the drift of firm size, but not the volatility; the volatility is assumed
to be directly proportional to the current firm size.

2With the square-root volatility that gives a flavor of the CIR process in Cox et al. (1985), we can easily derive
sufficient conditions under which the process reaches zero. This is one advantage of working with the square-root
volatility rather than other general increasing concave ones. See Online Appendix for the details.
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two inputs: (i) the firm’s capital stock kt which also represents the current firm size and (ii)

the agent’s costly but unobservable effort. The production technology is multiplicative with

respect to these two inputs, so the agent’s effort has a bigger impact on the firm’s profitability

in a large firm. To introduce a moral hazard problem, we assume that production is exposed to

shocks proportional to
√

kt, and this is the only source of uncertainty in our model. The realized

output can be used for paying compensation and dividends and for investment to expand firm

size. The investment plan, defined as the remaining output after payments to both parties,

determines the drift of kt and, moreover, plays a role in transmitting the production shock to

the kt process. As a result, the volatility of kt is also proportional to
√

kt.

In this setup, we characterize an optimal long-term contract which maximizes the prin-

cipal’s expected lifetime payoff accruing from dividends, subject to the standard individual

rationality and incentive compatibility conditions. To this end, we first utilize the martingale

method developed by Sannikov (2008) to derive a stochastic representation for the agent’s con-

tinuation payoff qt. As in the previous literature, qt plays the role of a state variable, and its

volatility provides the agent with an incentive for putting forth the necessary effort. Using

a recursive definition of the principal’s value function, we then formulate the dynamic con-

tract problem into a Hamilton-Jacobi-Bellman equation. However, as our model involves time-

varying firm size, the principal’s value function inevitably depends on the two state variables,

kt and qt. Put differently, given current size and promised value to the agent, the principal has

to decide how to control the agent’s effort and how to expand her own business.

In general, this two-dimensional problem gives rise to partial differential equations which

are often difficult to solve even numerically.3 For the sake of tractability, we assume that both

contracting parties have CARA utility á la Holmström and Milgrom (1987). As is well-known,

CARA utility allows us to abstract away from the wealth effect on both sides.4 The absence of

wealth effects on the agent’s side implies that the agent’s promised payoff qt does not affect his

optimal choice of effort. A more important feature of our framework is that on the principal’s

side, the absence of wealth effects implies that qt does not influence her investment decision.

Taking advantage of these two implications, we can characterize the optimal contract by a

system of ordinary differential equations in terms of kt only. On top of that, we can provide

an explicit formula for the evolution of each state variable. In particular, unlike the previous

literature in which the contract is characterized by a function of the agent’s continuation value

3To circumvent such difficulty, most literature (e.g., He (2009), Biais et al. (2010), DeMarzo et al. (2012)) exploits the
scale-invariance principle that stems from (i) the homogeneity of degree 1 of geometric Brownian motions and (ii) the
risk-neutrality of contracting parties.

4If the principal is risk-neutral, the
√

kt volatility has no meaningful implications for dynamic investment.
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per capita (see footnote 3), using the formula for qt, we can state every contractual policy in

terms of firm size only. This enables us to address the question of how a change in firm size

affects the optimal contract, which we will refer to as ”the firm size effect” hereafter.

We start with the optimal effort policy. The agent’s CARA utility leads to the optimal level

of effort which is determined by firm size only. This facilitates comparison with the first-best

level, so that we can analyze how the degree of distortion arising from moral hazard varies

with firm size. As in a standard agency model, the optimal effort is below the first-best level

for every firm size. However, in our model, this distortion dwindles away as the firm grows.

In Section 4, we prove that the optimal effort converges to the efficient level, and under a

very mild condition, the large firm retrieves production efficiency in the sense that there is no

wedge in the marginal product of capital between the two environments. To understand this

result, note that the agent’s effort affects the expected flow of output, which is proportional

to kt because of the multiplicative production technology. On the other hand, the production

shock is proportional to
√

kt. Therefore, in a large firm, effort has a larger effect on the level of

output relative to the shock; put simply, the signal-to-noise ratio increases with firm size. This

increased ratio enhances informativeness of the realized output about the agent’s hidden effort,

thereby reducing the cost of incentive provision and also contributing to a negative relationship

between pay-performance sensitivity (Jensen and Murphy (1990)) and firm size.

We next investigate the firm size effect on the instantaneous payment scheme (or the flow

of compensations) and the agent’s continuation value. Unlike the effort policy, the payment

scheme naturally depends on both state variables in that the principal should pay for the

promised value qt through the payment. Thus, a change in kt has a direct effect and an in-

direct one on the scheme via qt. To ascertain the exact effect of firm size, therefore, we use the

explicit formula of qt for its relationship kt, and reformulate the scheme in terms of firm size

only. It turns out that qt keeps track of all histories of the firm’s growth, i.e., {ks, s ∈ [0, t]},

and thus the reformulated scheme depends not only on the firm’s current size but also on its

past growth path.5 This fact creates a link to the previous literature, which studies a dynamic

agency problem between parties with CARA utility but assumes time-invariant firm size. The

payment scheme in our model aggregates information about the firm’s past growth, whereas

the lump-sum payment scheme in Holmström and Milgrom (1987) or Schättler and Sung (1993)

aggregates information about the agent’s past performance.

5Recall that in a dynamic moral hazard model with time-invariant firm size, the continuation value contains all
records of the agent’s past performances. Refer to Spear and Srivastava (1987) for a discrete-time setting and Sannikov
(2008) for a continuous-time setting.
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In order to compare with the lump-sum payment scheme and highlight the role of time-

varying firm size, in Section 4, we decompose our payment scheme into six components in

a similar fashion as Holmström and Milgrom (1987). In addition to the standard four com-

ponents, the scheme comprises two distinctive components which result in interesting wage

dynamics. The first one accounts for the adjustment of compensations due to the firm’s invest-

ment motive. The agent in a small firm is not fully compensated for the cost of effort, and the

spare amount of money is spent in investment to expand firm size. Instead of deferring the

payment, the principal promises to pay more later by increasing the drift of the continuation

payoff. The second component captures exactly the payment from a change in qt over time.

Therefore, when firm size is small, the continuation payoff has a upward drift, implying that

wages are back-loaded. When firm size is large, however, the opposite happens: The princi-

pal starts paying for her liability by rewarding the agent more than the cost of effort, thereby

lowering the drift of qt. The resulting downward drift of qt corresponds to front-loaded wages.

Lastly, we consider the optimal investment plan in Section 5. After paying compensation

to the agent from output, the principal faces a decision problem of distributing the remaining

output into dividend payment for her current interest and investment for future production. In

this problem, the continuation value affects the level of the remaining output, but not the return

on investment. Accordingly, thanks to the principal’s CARA utility, the optimal investment

plan is determined by kt only. Relying on this property, we examine the firm size effect on

investment distortions.

When firm size is small, the model predicts under-investment. This is consistent with what

is unambiguously predicted by a broad class of agency models, irrespective of firm size. In con-

trast, our model surprisingly delivers the opposite prediction when firm size is large: A large

firm is prone to over-investment. To understand the intuition behind this result, recall that

the agency problem leads to a loss in the marginal product of capital in the optimal contract,

which is the main driving force of under-investment. But, as discussed earlier, such distortions

do not occur in a large firm due to the increased signal-to-noise ratio. Hence all that matters

to the risk-averse principal is the amount of risks generated by investment she has to bear, be-

cause investment increases the volatility of future production.6 However, the optimal contract

trades off some benefits from risk-sharing for incentive provision, so the principal would be

exposed to a smaller amount of risk than the Pareto-efficient one. This reduces the implicit cost

of investment, thereby leading to over-investment in the optimal contract. We also discuss the

6Thus, if the principal is assumed to be risk-neutral, then there is no investment distortion in a large firm. This is the
case in DeMarzo et al. (2012) in which the degree of under-investment dwindles away as the state variable, qt/kt, rises.
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implications of over-investment for marginal Tobin’s Q and dividend smoothing.

Literature Review

There has been rapidly growing literature on dynamic contracting such as Biais et al. (2010),

DeMarzo et al. (2012), He (2009, 2011) and other references therein.7 One of our contributions

to the literature is that we investigate the impact of the size-dependence regularity on incentive

provisions and investment. The early literature on dynamic contracting employed the arith-

metic Brownian motion setting (e.g., DeMarzo and Sannikov (2006) and Sannikov (2008)), in

which firm size is assumed to be time-invariant. Afterwards, a strand of literature such as He

(2009, 2011), and DeMarzo et al. (2012) studied the Geometric Brownian motion (GBM) type

model.8 However, in these models, the volatility of the firm size process linearly increases

with size, which is not consistent with the empirical regularity.

The most important feature distinguishing our study from the literature is that we model

the diminishing growth rate volatility and explicitly characterize the incentive scheme and in-

vestment in terms of firm size only. This characterization has several advantages. First, we

can directly investigate how the incentive scheme and investment change as firm size expands

or declines. Second, several implications resulting from our characterization are rather easily

testable in the aspect that it is unnecessary to come up with an empirical proxy related to the

agent’s continuation value. In most of the articles that involve time-varying firm size referred

to above, the principal’s value function becomes homogenous in size. This size-homogeneity

enables the agent’s continuation value per unit of capital to be a sufficient statistic for charac-

terizing the optimal contract, so it helps to obtain tractable solutions. However, the interesting

properties of incentives and investment changing as firm size evolves have largely been sim-

plified. For example, DeMarzo et al. (2012) studied dynamic contracting linked with Q theory

of investment.9 Biais et al. (2010) study a dynamic moral hazard model with large and infre-

quent risks. Similar to He (2009), both DeMarzo et al. (2012) and Biais et al. (2010) investigate

the incentive provisions through the size-adjusted continuation value process. However, it is

quite challenging in their models to directly extract the firm size effect that is tightly blended

with the whole past history of the continuation value (per capita) process. In contrast, the solu-

7See also Ai and Li (2015), DeMarzo and Sannikov (2006), and DeMarzo and Fishman (2007).
8To our best knowledge, there is one exception He (2011), which permitted a general class of firm dynamics. How-

ever, its main focus (the impact of agency problems on firm value and capital structure) is investigated under the GBM
model.

9In DeMarzo et al. (2012), the continuation value (per capital) can be interpreted as a measure of the firm’s liquid
reserves or financial slack. Although they provided rich implications based on financial slack, past profitability and
investment, they are silent about the firm size effect on dynamic incentives and investment.
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tion in our model does not exhibit such homogeneity because of the square-root volatility, but

we are able to explicitly specify the payment scheme and investment decision in terms of firm

size only. We will further discuss the differences between our study and the aforementioned

dynamic contracting literature in the main body of the article.

The related literature on dynamic contracting with firm dynamics also includes Albu-

querque and Hopenhayn (2004), Clementi and Hopenhayn (2006), and Clementi et al. (2010).

Albuquerque and Hopenhayn (2004) and Clementi and Hopenhayn (2006) analyze the opti-

mal debt contract, by which they account for the size-dependence regularity. Our focus is to

investigate the contracting problem between the manger and the shareholders and how the

incentive changes under the size-dependence regularity, not to generate such regularity. The

focus of Clementi et al. (2010) is on dynamics as a firm gets older, and more precisely, the

decrease of firm size for old firms, whereas our focus is on the cross-sectional aspect.

There is also a significant body of literature on over- or under-investment issues. Here in-

stead of surveying all those articles, we shall introduce the models with dynamic features in

order to narrow the scope. According to Stein (2003), there are two broad categories of litera-

ture with respect to the investment issue: one with models of agency conflicts, and the other

with models of costly external finance. The former generally predicts over-investment and the

latter generally predicts under-investment. For instance, Dow et al. (2005) and Albuquerque

and Wang (2008) predict over-investment. Dow et al. (2005) is based on the free cash flow the-

ory of Jensen (1986). Albuquerque and Wang (2008) consider the agency conflict between the

controlling shareholder and outside investors. In both models, investment decision makers

such as empire builders or controlling shareholders have incentives to over-invest. The inef-

ficient investment in our model is generated by the deviation from optimal risk sharing for

incentive provision, not by the imperfect protection of the shareholders.

On the other hand, the usual dynamic contracting theory referred to above often predicts

underinvestment.10 Albuquerque and Wang (2008) point out that over-investment is likely to

be the dominant issue for large firms around the world, whereas the underinvestment implied

by these contracting models is potentially more important for small firms. To our knowledge,

our model is the first that has both under- or over-investment features depending on firm size.

We hope that this article sheds light on the integration of two separate views of the investment

decisions of small and large firms.

10Probably one exception is Gryglewicz and Hartman-Glaser (2015). In a real option framework, they show that
severe moral hazard can lead to an early exercise of real options, which can be interpreted as over-investment in their
case.
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The remainder of the article is organized as follows. In Section 2 we present the general

theme of our model and formulate the optimal contract problem. In Section 3, we characterize

the optimal contract and provide an explicit formula for the evolution of each state variable

when both contracting parties have CARA preferences and the firm’s production technology is

multiplicative. In Section 4 we analyze the optimal contract in details with an emphasis on the

firm size effect on the effort policy, the incentive scheme, wage dynamics, and pay-performance

sensitivity. In Section 5 we analyze the investment plan. Concluding remarks are gathered in

Section 6. The first-best contract is characterized in Appendix A, and all omitted proofs are

relegated to Appendix B. Online Appendix provides some technical detail on the boundary

behavior of the firm size process.

2. The Model

We consider a continuous-time agency model in which a principal (shareholders) delegates

the management of a firm to an agent (executives). During any time interval [t, t + dt), the

firm produces output or cash flow with two inputs, the agent’s effort et and the firm’s capital

stock kt. Throughout the article, the capital stock kt will be used as a unique metric to judge

firm size or the firm’s market value at time t. Also, the firm’s production is subject to risks

whose volatility is dependent on kt. Specifically, the cumulative output Yt up to time t evolves

according to

(2.1) dYt = f (kt, et)dt + σ
√

kt dWt.

Here, the drift f (kt, et) represents the firm’s production technology, Wt is a Brownian motion

in standard probability space (Ω,F , P), and the volatility term σ
√

kt dWt indicates the size-

dependent production shock. The set of feasible effort levels, denoted E , is a compact set of

progressively measurable processes with respect to Ft.

The realized output is publicly observable and verifiable, but the agent’s choice of effort

et ∈ E is unobservable to the principal due to the production shock. To provide the agent with

an incentive to work, the principal offers a contract with commitment at time t = 0. A contract

explicitly specifies a flow of compensation ct to the agent and a flow of dividends dt to the

principal during any time interval [t, t + dt). The flow of compensation yields the agent a flow

of utility u(ct, et) when the agent chooses et, and the flow of dividends yields the principal

8



v(dt). ct is the only income source for the agent and he cannot save or borrow money.11

On top of the payoff, a contract determines the firm’s growth path, which describes the evo-

lution of kt over time. To formulate this path, we adopt a simple capital accumulation model in

which the firm’s capital stock accumulates by investment dIt, where It denotes the cumulative

investment up to time t with I0 = 0, but depreciates at a rate of δ ∈ [0, 1). That is, kt evolves

according to dkt = dIt − δktdt. Also, as is standard in the capital accumulation model (e.g.,

Greenwood et al. (1997)), instantaneous investment dIt is determined by the remaining output

after paying pecuniary compensations to both parties.12 We thereby provide a unified frame-

work in which the agent’s incentive scheme and the corporate growth path are simultaneously

determined by a simple contract.

Combining with the output process laid in (2.1), we obtain the following stochastic differ-

ential equation (SDE) of kt:

(2.2) dkt = dYt − (ct + dt)dt︸ ︷︷ ︸
=dIt

−δktdt =
[

f (kt, et)− ct − dt − δkt

]
dt + σ

√
kt dWt.

The production shock is therefore transmitted into the kt process through investment or the

remaining output after compensation, and it constitutes the volatility of kt. Attentive readers

may be concerned about the existence of a solution to the SDE (2.2), because the volatility

σ
√

kt is not Lipschitz-continuous. However, the classic result of Yamada and Watanabe (1971)

establishes the existence and uniqueness of a solution to a large class of stochastic differential

equations, and the class subsumes (2.2) as a special case. The discrete time analogue of our

model can be written by

kt+1 = (1− δ)kt + it and it = f (kt, et)− ct − dt + σ
√

kt εt,

where it is the amount of investment at time t and the random noise εt is i.i.d. standard normal.

The reason why we work with the square-root process is two-fold. First, the process does

not allow kt to go below zero, which is analogous to a geometric Brownian motion employed

by He (2009) for a firm-size process. kt is bounded below by zero as its volatility is otherwise

undefined. For a diffusion process with constant volatility like the arithmetic Brownian motion,

there can be substantial drops in kt and thus the process is unbounded below. Accordingly, the

firm is at risk of default during any time interval, which is apparently unappealing.

11For this reason, we sometimes call ct the flow of consumption depending on the context. In Section 6, we briefly
discuss how the results would change if we allow the agent to privately save money.

12An implicit assumption we make here is that the capital price is normalized to one.
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Secondly and more importantly, the square-root process reflects two empirical patterns on

the dynamics of a firm. It is well-documented by a large literature, beginning with Hymer and

Pashigian (1962), that (i) an aggregate underlying shock induces larger swings in cash flows

of large firms than in those of small firms, but (ii) large firms have a lower standard deviation

of the growth rate compared to small firms (see also Evans (1987), Hall (1987), Cooley and

Quadrini (2001), and Bottazzi et al. (2011)). In fact, the SDE laid out in (2.2) captures this size-

dependence regularity; the volatility of kt itself increases with firm size, but the growth rate of

kt

dkt

kt
=

[
f (kt, et)− ct − dt − δkt

kt

]
dt +

σ√
kt

dWt

has a decreasing volatility with size.13

In this circumstance, we formally define a long-term contract as a history-dependent triplet

(ct, dt, et)t∈[0,∞) or simply (c, d, e) by suppressing the time subscripts. The consumption and

dividend plans are the explicit part of a contract, whereas the agent’s recommended action is

the implicit part. We say that a contract is feasible if all contractual terms (ct, dt, et) at each time

t are contingent on the completion of the σ-algebra generated by all possible histories of capital

{ks}s≤t. We will denote by S the set of such feasible contracts.

We assume that both parties discount the future payoff at a common rate β ∈ (0, 1). The

expected lifetime utility from a contract can be written as

V0(c, d, e) ≡ E

[∫ ∞

0
e−βtv(dt) dt

]
and U0(c, d, e) ≡ E

[∫ ∞

0
e−βtu(ct, et) dt

]

for the principal and the agent, respectively.

Given the firm-size process (2.2), the principal’s problem is then to offer a feasible contract

that maximizes her expected lifetime utility, satisfying the two standard constraints: (i) Indi-

vidual Rationality (IR), that the contract promises the agent a higher expected utility than his

reservation utility q0; and (ii) Incentive Compatibility (IC), that the contract implements the

recommended effort process e = {et}t∈[0,∞) so the agent can maximize his expected utility by

13The standard deviation of the growth rate of a firm, σ(dk/k), is known to satisfy the power law, σ(dk/k) ∼ ebk

for some coefficient b. In various industries, the values of b have been estimated as being negative. The negative
association is also in line with the macroeconomic literature that studies a relationship between the mean growth rate
and its volatility at the country level. Refer to Section 3.2 of Jones and Manuelli (2005) for a survey on this strand of the
literature.
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following the instruction. Formally, the problem is stated as follows:

max
(c,d,e)∈S

V0(c, d, e)

subject to (2.2),

U0(c, d, e) ≥ q0, and(IR)

e ∈ argmax
e′∈E

U0(c, d, e′).(IC)

Note that the above formulation of (IC) implies sequential incentive compatibility; the agent is

willing to follow the instruction at any time t and irrespective of what history occurred up to t.

Also, the condition (IR) implicitly assumes that the agent can commit himself to participation

in the contract.14

Incentive Compatibility

In this subsection we employ the martingale method developed by Sannikov (2008) to charac-

terize the (IC) condition in terms of the agent’s continuation value, which is now a central tool

in the dynamic contract literature.

Given a long-term contract (c, d, e) and a history Ft up to time t, we define the continuation

value qt—the agent’s expected future payoff promised by the contract—as

qt(c, d, e) ≡ Ee
[∫ ∞

t
e−β(s−t)u(cs, es) ds

∣∣∣∣Ft

]
,

where Ee indicates the expectation with respect to the probability measure Pe induced by the

agent’s choice of effort. Using qt, we can write the agent’s expected lifetime utility evaluated

at time t as

Ut ≡ Ee
[∫ ∞

0
e−βsu(cs, es)ds

∣∣∣∣Ft

]
=
∫ t

0
e−βsu(cs, es)ds + e−βtqt.

Key to the martingale method is the fact that the process Ut becomes a Pe-martingale, i.e.,

Ee[UT |Ft] = Ut for every 0 ≤ t ≤ T. Thus, by the martingale representation theorem, Ut can be

represented as an Itô’s integral, Ut = U0 +
∫ t

0 e−βs Γs σ
√

ks dWe
s for a progressively measurable

14If the agent could quit at any time of the contract, then we need additional participation constraints that require the
agent be assured of his reservation utility at each history, that is, qt(c, d, e) ≥ q0 for all Ft and t ≥ 0. We briefly discuss
in Section 6 how the agent’s inability to commit himself to participating affects our results.
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process Γt and a Brownian motion We
t under Pe. This provides the following dynamics of qt

and characterization of (IC) as well.

PROPOSITION 1. Given a feasible contract (c, d, e) ∈ S , there exists a progressively measurable process

{Γt}t∈[0,∞) such that the agent’s continuation value qt evolves according to

(2.3) dqt =
(

βqt − u(ct, et)
)
dt + Γt

(
dYt − f (kt, et)dt

)︸ ︷︷ ︸
=σ
√

kt dWe
t

with Ee[
∫ t

0 Γ2
s ds] < ∞ for all t ∈ [0, ∞). The contract satisfies the (IC) condition if and only if

(2.4) et ∈ argmax
e′∈E

u(ct, e′) + Γt f (kt, e′)

for all t ∈ [0, ∞) and Pe-almost surely.

PROOF OF PROPOSITION 1: The evolution of qt is derived from the two expressions of Ut

above. Differentiating them with respect to t, equating the two derived equations of dUt, and

then solving for dqt gives (2.3). The proof of characterization of (IC) is relegated to Appendix

B. �

The drift part of qt follows from the promise-keeping condition; u(ct, et)dt + dqt, the total

flow of utility during [t, t + dt), must increase at a rate of βqt over time. The volatility part Γt of

qt, on the other hand, measures sensitivity of the process in response to a change in output dYt,

and thus it provides the agent with an incentive to work and plays a crucial role in character-

ization of the (IC) condition. Furthermore, the size-dependent production technology in (2.4)

suggests that kt also affects the agent’s choice of optimal effort and, in turn, the consumption

plan. Note also that the objective function in (2.4) exhibits complementarity between the choice

variable e′ and parameter Γ, implying that a higher volatility leads to a higher level of effort.

The HJB Equation

We now use the results in Proposition 1 to restate the optimal contract problem into a recursive

form. As in the other dynamic moral hazard literature stemming from Spear and Srivastava

(1987), the agent’s continuation value serves as a state variable that determines the contractual

terms (c, d, e) and controls the agent’s hidden action. In addition, because our model involves

time-varying firm size, the principal’s value function inevitably depends on kt as well.

Indeed, the two variables (kt, qt) provide a Markovian structure with our model in the sense
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that the two variables keep a record of full histories up to t, so the principal can design the

forward contractual terms on the basis of kt and qt only. For this reason, we denote by J(kt, qt)

the principal’s continuation value function, that is, her expected maximum payoff from time t

on given a state (kt, qt). Let k0 denote an initial firm size and q0 the agent’s reservation utility.

We then write the optimal contract problem as follows.

J(k0, q0) ≡ max
(c,d,e)∈S

V0(c, d, e)

subject to the two SDEs:

dkt = [ f (kt, et)− ct − dt − δkt]dt + σ
√

kt dWt(2.2)

dqt = [βqt − u(ct, et)]dt + Γt σ
√

kt dWt with Γt satisfying (2.4).(2.3)

Using the recursive structure, we can reformulate the above problem into the following

Hamilton-Jacobi-Bellman (HJB, hereafter) equation:

(HJB)

βJ(k, q) = max
(c,d,e)∈S

{
v(d) + Jk

[
f (k, e)− c− d− δk

]
+ Jq

[
βq− u(c, e)

]
+

1
2

[
Jkk + 2JkqΓ + JqqΓ2

]
σ2k

}
,

where Γ is the volatility of q that satisfies the incentive compatibility condition (2.4) in Proposi-

tion 1, and the (double) subscripts of J denote its (second-order) partial derivatives. Intuitively,

the principal’s expected flow of value βJ(k, q) on the left side must equal the sum of the instan-

taneous flow of utility from dividends and the expected change in her continuation value due

to the drift and volatility of each state variable.

3. The Optimal Contract

In this section, we characterize an optimal contract. We first specify the contracting parties’

utility functions and the firm’s production technology. We then conjecture a solution to the

HJB equation, derive Euler equations that an optimal contract has to satisfy, and verify that a

solution to the equations is indeed optimal.
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CARA Preferences and Multiplicative Technology

For the sake of tractability, the general formulation presented in the previous section is special-

ized as follows. First, we consider a simple multiplicative production function that entails a

marginal product of the agent’s effort increasing with firm size:

f (kt, et) = (kt + h)et,

where the parameter h > 0 represents the agent’s working skills or human capital. In our

model, it serves to set the lower bound for the marginal product of the agent’s effort. We

assume that h is constant over time; there is no learning effect through experience.

Second, we assume the constant absolute risk aversion (CARA) preferences for both parties

in the same spirit of Holmström and Milgrom (1987). As is well-known, CARA utility abstracts

away from the income effect and thus greatly simplifies our algebra work. Specifically, each

party’s utility function takes a form of

v(d) = − 1
R

exp(−Rd) and u(c, e) = −1
r

exp
(
−r
(

c− (k + h)e2

2a

))
.

Here, R and r indicate the constant risk aversion coefficient for the principal and for the agent,

respectively. The agent’s monetary cost from exerting effort is assumed to be quadratic with

respect to e, and the constant a > 0 in the denominator determines the optimal level of effort

with full information, as is illustrated in Appendix A. This facilitates comparison with the

second-best effort policy in the next section. Also, the cost function scales with firm size,

reflecting that the agent incurs a higher opportunity cost for management of a large firm.

In order to make our problem interesting, we shall impose the following condition on the

parameters defined above:

ASSUMPTION 1 (Feller Condition I).

a
2
> δ + β

[
1 +

Rrσ2

2(R + r)

]
.

This is a version of the Feller condition tailored to our firm-size process with the
√

kt volatility,

which plays a crucial role in analyzing the process in the first-best contract. To be specific, the

condition ensures the drift of kt to be positive for all kt > 0, so that it prevents the process

from reaching its boundary zero almost surely (or the firm from being liquidated; see Section

3). As is illustrated in Online Appendix, the condition is somewhat weaker than the one for
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kt not to reach zero in a finite time. Throughout the remainder of this article we will maintain

Assumption 1, although we do not explicitly mention it.

Ordinary Differential Equations

In this subsection, from the HJB equation, we derive Euler equations that characterize the

optimal contract. Although the HJB equation is a two-dimensional partial differential equation

(PDE), it turns out that the resulting Euler equations can be simplified into a pair of more

tractable ordinary differential equations (ODEs) under the CARA utility environment.

We first describe the possibility of terminating a contract or liquidating a firm in line with

Sannikov (2008), which is necessary for getting a boundary condition of the ODEs.15 For

an illustration, we assume that at the time of signing a contract, the two parties agree to

liquidate the firm when kt reaches zero. When the firm goes into liquidation, say at τ ≡

inf {t > 0| kt = 0}, the principal promises the agent a constant flow of severance pay c from

τ on, but the agent is allowed to choose zero effort. Hence the agent’s flow of utility is

u(c, 0) = − exp(−rc)/r. The amount of c the agent receives is determined by his continua-

tion value at the time of liquidation, qτ . More precisely, the agent receives ct = c for all t ≥ τ

as much as his expected payoff from the flow of utility u(c, 0) from τ on equals the promised

payoff by the original contract:

E

[∫ ∞

τ
e−β(t−τ)u(c, 0) dt

]
= qτ or c = ln(−qτrβ)−

1
r .

On the other hand, from the time of liquidation onward, the principal’s flow of utility becomes

v(−c) = − exp(Rc)/R. Similar to the agent’s case, the expected payoff from this flow must

match with the principal’s continuation value at the liquidation state, that is, J(0, qτ). Conse-

quently, we have

(3.1) J(0, qτ) = E

[∫ ∞

τ
e−β(t−τ)v(−c)dt

]
= − (−qτrβ)−λ

Rβ
,

where λ ≡ R/r is the ratio of the risk aversion coefficients. As is revealed shortly, this value-

matching condition (3.1) translates into a boundary condition.

In light of the principal’s CARA utility function and the condition (3.1), we conjecture

that the value function takes a form of J(k, q) = −(−q)−λ exp(−θ(k)) for some C2-function

15In Sannikov (2008), there is another boundary condition for the principal’s value function, which results from the
agent’s income effects. When the continuation value is large enough, it is optimal for the principal to retire the agent
on account of costly incentives. This type of boundary condition is not necessary in the absence of income effects.
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θ(k). To ensure that the conjectured function is strictly concave in the two variables, we re-

strict our attention to the set of possible functions θ(k) satisfying that (i) the function θ(k)

is twice continuously differentiable, (ii) its derivative θ′(k) is strictly positive and bounded,

and (iii) (θ′(k))2 > (λ + 1)θ′′(k) holds for all k ∈ [0, ∞). Also, it follows from (3.1) that

θ(0) = ln
[
Rβ(rβ)λ

]
. We will later verify that J(k, q) satisfying the above conditions repre-

sents the principal’s maximum possible value.

We are now ready to derive the desired Euler equations from the HJB equation and charac-

terize the optimal contract.

PROPOSITION 2 (Optimal Contract). Let (e∗(k), θ(k)) denote a C1-solution to the system of first-

order ordinary differential equations,

e′(k) = F(θ(k), e(k), k) and θ′(k) = G(e(k), k),

satisfying the boundary condition (e∗(0), θ(0)) =
(
a, ln

[
Rβ(rβ)λ

])
. The exact functional forms of F

and G are given in the proof. Define a function ψ∗ as

ψ∗(k) ≡ 1 +
r(k + h)

a
e∗(k)(e∗(k)− a),

and write the flow of consumption and dividend as

c∗(k, q) =
(k + h)e∗(k)2

2a
− 1

r
ln
[
(−q)

λ
θ′(k)ψ∗(k)

]
and d∗(k, q) =

1
R

[
θ(k) + ln

(−q)λ

θ′(k)

]
,

respectively. Then J(k, q) = −(−q)−λ exp(−θ(k)) is the solution to the HJB equation and the triplet

(c∗, d∗, e∗) constitutes the optimal contract. Under the optimal contract (c∗, d∗, e∗), the two state

variables evolve according to

dkt =
[
(kt + h)e∗(kt)− c∗(kt, qt)− d∗(kt, qt)− δkt

]
dt + σ

√
kt dWt(3.2)

dqt

qt
=

[
β− 1

R
θ′(kt)ψ

∗(kt)

]
dt− σ

λa
θ′(kt)e∗(kt)ψ

∗(kt)
√

kt dWt.(3.3)

PROOF OF PROPOSITION 2: See Appendix B. �

In general, a two-dimensional optimal control problem like ours gives rise to partial differ-

ential equations which are difficult to solve even using a numerical method. We circumvent

this difficulty by using the properties of exponential utility. The absence of the wealth effect
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on the agent’s side enables us to derive the second ODE G from the first-order condition [e],

meaning that the optimal effort policy is independent of q. On the principal’s side, CARA util-

ity not only allows us to conjecture J(k, q) as a multiplicative separable function, but renders

the drift of k independent of q; in particular, q does not affect the optimal investment plan. As

a result, we can reduce the HJB equation into the uni-dimensional ODE F by canceling out all

q terms.

The system of ODEs in Proposition 2 is numerically tractable. Moreover, without the aid

of its explicit solutions, we can deduce and establish several properties of the optimal contract

directly from the functional forms of F and G. We also prove the existence and uniqueness of a

solution to the system in Appendix B.

The following lemma about the asymptotic behavior of θ′(k) is at the heart of our subse-

quent results. It asserts that in the optimal contract, the marginal rate of return on investment,

θ′(k) = −Jk(k, q)/J(k, q), converges to zero as firm size rises.

LEMMA 1. Let (e∗(k), θ(k)) denote the unique solution to the ODEs in Proposition 2, and suppose

that limk→∞ ψ∗(k) exists. Then the function θ′(k) = G(e∗(k), k) converges to zero as k→ ∞:

lim
k→∞

θ′(k) = 0.

PROOF OF LEMMA 1: See Appendix B. �

The following condition is analogous to Assumption 1:

ASSUMPTION 2 (Feller Condition II). θ′(0) > Rβ.

As a counterpart to Assumption 1, Assumption 2 ensures the drift of kt to be positive for all

kt > 0 in the optimal contract, so that the firm does not undergo liquidation almost surely even

when its size is very close to zero. The condition is weaker than the sufficient condition for the

firm to survive permanently, i.e., P{τ = ∞} = 1. Refer to Online Appendix for more details.

Verification

To complete our analysis, we need verify that the conjectured value function is indeed the max-

imum value the principal can achieve from any incentive-compatible contract. This procedure

exploits two lemmas that will appear later (Lemma 2 in the next section and Lemma 3 in Ap-

pendix B) and several results obtained from characterizing the system of ODEs in Proposition

2. Thus, readers may find it sufficient to skip the proof of the theorem at the first reading.
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THEOREM 1 (Verification). A solution J(k, q) to the HJB equation provides the principal’s value func-

tion: Given initial firm size k0 and the agent’s reservation utility q0, the value the principal can accrue

from any incentive-compatible contract is at most J(k0, q0).

PROOF OF THEOREM 1: See Appendix B. �

4. Firm Size and Incentive Provision

In a classic article about dynamic moral hazard, Spear and Srivastava (1987) has shown that

the continuation value qt aggregates all the information on the agent’s past performance, and

that using qt as a state variable, the history-dependent optimal contract (Rogerson (1985)) has

a simple stationary representation. In a dynamic agency model like ours, which incorporates

time-varying firm size, the current firm size kt plays a role as another state variable that records

the firm’s past growth path. However, as was pointed out earlier, the corresponding two-

dimensional problem often poses an issue of tractability. Most of the recent literature circum-

vents the issue by taking advantage of the scale invariance principle, and characterizes the

optimal contract using the continuation value per capita qt/kt as a unique state variable. The

variable qt/kt can be interpreted as a measure of the agent’s stake inside the firm, or a measure

of the firm’s financial slack in another context (See DeMarzo et al. (2012)).

The invariance principle, however, is not applicable to our framework, because the model

involves the square-root process kt and deals with a contract between two risk-averse parties.

Indeed, the optimal compensation and dividend plans characterized in Proposition 2 rest on

both kt and qt, which interactively evolve over time in a complicated fashion. This reflects the

difficulty of condensing them into a one-dimensional variable. The main feature of our mod-

eling approach, distinct from the previous ones, is that by separating kt and qt, we can address

the question of how firm size affects the optimal contract. The main goal of the next two sec-

tions is to clarify this firm size effect on the corporate decisions about incentive provision and

investment.

The Optimal Effort Policy

We begin by studying the effect of firm size on the optimal effort policy e∗. Recall that the

agent’s optimal choice of effort is invariant to any translation of wealth under the assumption

of exponential utility. Hence e∗ is unaffected by the continuation value qt. This property greatly
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simplifies our analysis of the firm size effect on e∗.16 It is quite challenging to obtain an explicit

form of e∗(k) from the system of ODEs. Even without such an analytical solution, however, we

can establish several important properties of e∗(k) from the second ODE θ′(k) = G(e∗(k), k)

and the assumption that θ′(k) is strictly positive and bounded. All the properties are formally

stated in Lemma 2 and displayed in Figure 1.

We first consider the case when firm size is small, in particular, when kt is close to zero.

Note that the size of production shocks σ
√

kt dWt is assumed to be positively related with kt.

Thus, as the firm shrinks through downsizing, the diffusion of the output process dwindles

away. This implies that when kt is close to zero, dYt ≈ hetdt provides perfect information about

the agent’s effort, so that the principal can easily infer et from realized output. Accordingly, as

firm size approaches zero, the optimal contract implements the first-best effort level (eF = a;

see Appendix A).

Aside from this limiting case, the firm’s production is exposed to shocks, so the moral

hazard problem arises from imperfect monitoring of et. This naturally leads to an inefficient

level of effort e∗(k) < a. Part (a) of Lemma 2 also asserts that for every k > 0, the optimal

effort policy is bounded below by e†(k). Here, e†(k) indicates the minimum level of effort

required for the marginal rate of return on investment, −Jk/J = θ′(k), to remain positive.

Hence e∗(k) > e†(k) implies that the principal encourages the agent to exert a certain level of

effort, to the extent that the firm can expand through investment when performance is good.

As is noted in footnote 18, the lower bound lies in the interval between 0 and a for every k,

although it does not necessarily increase with k.

Part (b) of the lemma describes the optimal effort policy when firm size is sufficiently large.

It demonstrates that as firm grows large, the optimal contract retrieves efficiency by imple-

menting the first-best level of effort. Hence e∗(k) is U-shaped as displayed in Figure 1. This

result may sound counterintuitive; due to the size-dependent production shock, the provi-

sion of incentives gets costly as the firm grows. There is a countervailing firm size effect in

our model, however. Recall that the agent’s effort determines the expected flow of output

f (kt, et) = (kt + h)et which is linear with respect to kt. Therefore, the signal-to-noise ratio in-

creases with kt, because the expected output (signal) is a function of degree 1 in k whereas the

production shock (noise) is a function of degree 1/2.17 This increased ratio in turn strengthens

16If the agent’s payoff function is additively separable, the optimal effort varies with q depending on the income
effect and the cost of risk premium. In one extreme case in which the agent is very patient, Radner (1985) documented
that the efficient level of effort is achieved by the optimal contract and e∗(k, q) decreases with q due to the income effect.

17In the previous version, we examined the additive production function f (kt, et) = kt + het, which exhibits a con-
stant return to scale. In this case, the signal-to-noise ratio decreases with k, so that e∗(k) approaches a lower bound as k
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informativeness of the realized output, thereby reducing the cost of incentive provision.

A similar result - that the agency problem is alleviated as the state variable increases - can

be found in He (2009) and the ensuing works, in which firm size follows a geometric Brownian

motion and the optimal contract is characterized in terms of the continuation value per capita,

qt/kt. In comparison with the previous arithmetic Brownian motion model that essentially

assumes firm size to be time-invariant, He (2009) demonstrates that the time-varying firm size

process provides a free incentive by granting the agent a large stake in the firm, equivalently,

by increasing qt/kt. If the firm’s good performance drives qt/kt up to a threshold that is the

minimum volatility of qt/kt for incentive provision, then the agent works voluntarily as he

owns enough shares of the firm. The key difference, therefore, lies in the agent’s continuation

value: irrespective of qt, the optimal contract attains the first-best effort in our model.

(Insert Figure 1 here.)

LEMMA 2. The optimal effort policy e∗(k) satisfies

(a) limk→0 e∗(k) = a and e†(k) < e∗(k) < a for every k > 0, where a = eF is the first-best effort

level (See Appendix A) and e†(k) is the largest solution to the following cubic equation:18

r(k + h)e3 − r(k + h)ae2 + ae =
Ra2

R + r
.

(b) limk→∞ e∗(k) = a. In addition, if limk→∞ ψ∗(k) exists, limk→∞ e∗′(k) = 0.

PROOF OF LEMMA 2: See Appendix B. �

The results established in Lemma 2 have important implications for the convergence rate

of e∗(k) to the efficient level and for the efficiency of the firm’s production.

PROPOSITION 3. The function (k + h)(a− e∗(k)) is bounded with respect to k such that

0 < (k + h)(a− e∗(k)) <
1

R + r
, ∀ k ∈ (0, ∞).

Furthermore, suppose that limk→∞(k + h)(a − e∗(k)) exists and the function k2e∗′(k) is bounded.

Then limk→∞(k + h)(a− e∗(k)) = 1
R+r and limk→∞ ke∗′(k) = 0.

grows. Hence the square-root process itself is not sufficient to achieve the first-best effort level.
18 The cubic equation is driven by setting −λa + (λ + 1)eψ(k, e), one factor of the denominator of θ′(k) in (B.5), equal

to 0. As the left-hand side of the equation takes on 0 at e = 0 but a2 at e = a and its derivative remains positive for all
e ≥ a for every k ≥ 0, it follows by the intermediate value theorem that the largest solution e†(k) lies between 0 and a.
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PROOF OF PROPOSITION 3: The lower and upper bounds are immediate from the inequal-

ity e†(k) < e∗(k) < a in Lemma 2. For the remaining results, refer to Lemma 4 in Appendix B. �

Note that given k, the expected flow or the drift of output is (k + h)e∗(k) in the optimal

contract, but (k + h)a in the first-best one. Thus, the function (k + h)(a− e∗(k)) in Proposition

3, defined by their difference, can be interpreted as a measure of production inefficiency arising

from moral hazard. The proposition demonstrates that the function is bounded for all k > 0.

Its lower and upper bounds are derived from e∗(k) < a and e∗(k) > e†(k), respectively, and

both bounds are independent of firm size.

As the function (k + h)(a− e∗(k)) is bounded and differentiable for every k, its limit would

exist unless e∗(k) keeps oscillating between a and e†(k). Proposition 3 says that, except for such

a oscillating effort policy, the convergence of e∗(k) to the efficient level is fast, of order 1/k, and

thus limk→∞ ke∗′(k) = 0. This implies that as k→ ∞,

∂(k + h)(a− e∗(k))
∂k

= a− e∗(k) + ke∗′(k)→ 0,

because e∗(k)→ a by Lemma 2. In other words, the firm improves on production efficiency as

it grows, in the sense that there is no distortion in the marginal product of capital.

The Optimal Compensation Scheme

In this subsection we turn to the optimal rate of instantaneous payment in Proposition 2,

(4.1) c∗t =
(kt + h)e∗(kt)2

2a
+

1
r

ln
(

λ

θ′(kt)ψ∗(kt)

)
− 1

r
ln(−qt),

and discuss the effect of firm size on c∗t . Unlike the effort policy, the payment scheme naturally

depends on the continuation value qt as well; in order to keep her promise with the agent, the

principal has to pay for the promised value qt through the instantaneous payment. To see how

c∗t responds to a change in kt, therefore, we need take into account kt’s direct effect as well as

its indirect effect via qt. From the expression of c∗t above, it is easy to see that a change in kt

directly affects the shape of c∗t through the first two terms. To accommodate the indirect effect,

we apply Itô’s lemma to the explicit formula of dqt/qt in (3.3), and obtain the expression of
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ln(−qt) as follows:

ln(−qt) = ln(−q0) +
∫ t

0

(
β− 1

R
θ′(ks)ψ

∗(ks)

)
ds−

∫ t

0

σ

λa
θ′(ks)e∗(ks)ψ

∗(ks)
√

ks dWs

− 1
2

∫ t

0

( σ

λa
θ′(ks)e∗(ks)ψ

∗(ks)
√

ks

)2
ds.

Note that qt keeps track of histories on firm size until time t. Thus, besides the agent’s

reservation utility ln(−q0), it yields the three distinct integral terms, suggesting that the shape

of c∗t is also dependent upon the firm’s growth path, {ks}s∈[0,t]. Substituting the obtained

expression of ln(−qt) into (4.1), we can characterize the optimal payment scheme in terms

of firm size only.

PROPOSITION 4. The optimal rate of instantaneous payment can be decomposed into the following six

terms:

(4.2)

c∗(ks, s ∈ [0, t]) = − 1
r

ln(−q0)︸ ︷︷ ︸
(i)

+
(kt + h)e∗(kt)2

2a︸ ︷︷ ︸
(ii)

+
∫ t

0

σ

Ra
θ′(ks)e∗(ks)ψ

∗(ks)
√

ks dWs︸ ︷︷ ︸
(iii)

+
r
2

∫ t

0

( σ

Ra
θ′(ks)e∗(ks)ψ

∗(ks)
)2

ks ds︸ ︷︷ ︸
(iv)

+
1
r

ln
(

λ

θ′(kt)ψ∗(kt)

)
︸ ︷︷ ︸

(v)

+
1
r

∫ t

0

(
1
R

θ′(ks)ψ
∗(ks)− β

)
ds.︸ ︷︷ ︸

(vi)

Each term in (4.2) can be interpreted as follows:

(i) reservation utility

(ii) compensation for the effort cost

(iii) compensation risk due to moral hazard

(iv) risk premium due to the compensation risk

(v) adjustment of compensation for future production

(vi) allocation of compensation over time.

The formula (4.2) disentangles the indirect effect of kt, thereby capturing the exact firm size

effect on the optimal payment scheme. In particular, we decompose c∗t in a similar fashion

to the (lump-sum) payment rules in Holmström and Milgrom (1987) and Schättler and Sung

(1993), in which the contracting parties have exponential utility like in our model. Hence the

formula facilitates comparison with their payment rules (see footnote 19). Apart from the role
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of firm size, a key difference between their schemes and ours lies in the timing of the payment

being made: in those two models, compensation is paid only once at the end of the contract,

whereas in our case it is paid continuously over time. As we will explain shortly, these two

differences drive the scheme (4.2) to have two distinctive components.

The role of each term from (i) to (iv) is well appreciated. The first two terms provide the

agent with his reservation utility and compensation for the cost from exerting e∗(kt). The

stochastic integrand of the term (iii), which is proportional to the volatility of the growth rate

of qt, provides short-term incentives for effort at time t. The term (iv) represents an indemnity

to the agent for the risk generated by (iii). Apart from their dependence on firm size, the first

four terms also appear in Holmström and Milgrom (1987) and Schättler and Sung (1993).19

Before we proceed, it is worth remarking on the incentive term (iii), in particular, concern-

ing how the compensation risk varies with firm size. To this end, we exploit several results

established in in Appendix B that as k grows large, e∗(k) → a, θ′(k) → 0, and ψ∗(kt) → λ
λ+1 .

As a consequence, the integrand of (iii) representing the volatility of dqt/qt,

θ′(kt)e∗(kt)ψ
∗(kt)→ 0 as k→ ∞,

implying that the agent’s continuation value has a stable growth rate in a large firm. This also

suggests that the compensation risks for a short-term incentive would be small relative to those

in a small firm. The intuition derives from the increasing signal-to-noise ratio over firm size:

as k increases, the agent’s effort becomes more important relative to the amount of random

variation in the level of output. Hence the optimal compensation risk, the weight assigned

to the random variation, must decrease with k. As we will prove in the next subsection, the

diminishing risk contributes to decreasing pay-performance sensitivity over firm size.

In addition to the four standard components, our framework gives rise to two distinctive

terms, (v) and (vi), in the payment scheme. The term (v) establishes a link between the current

compensation and the investment plan. Recall that investment corresponds to the firm’s free

19Writing the optimal lump-sum payment scheme of Holmström and Milgrom (1987) in our notations, we have

LT = − ln(−q0) +
∫ T

0
C(et)dt +

∫ T

0
C′(et)dWt +

r
2

∫ T

0
σ2C′(et)

2dt,

where LT is the lump-sum payment at the end of the contract, T, and C(e) is the effort cost function. Each term in LT
plays the same role as the term, from (i) to (iv), in (4.2). The way to provide the agent with incentives through the third
term of LT is straightforward: When C(e) is convex, then its derivative C′(e) is an increasing function. Consequently, if
the principal wants to implement a higher level of effort, then the wage schedule becomes more volatile. Because firm
size is fixed over time and LT is paid only once at time T in their framework, the terms (v) and (vi) do not appear in LT .
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cash flow. This hints at the possibility that c∗t is adjusted to supplement investment for growth,

which is captured by the term (v). To elaborate on its role, we disregard the indirect effect of

kt on c∗ by fixing the level of qt in (4.1). Note that as θ′(kt) → 0 as kt → ∞, the term (v) is

asymptotically positive; that is, there exists a k > 0 such that − ln(θ′(kt)ψ∗(kt)) > 0 for all

kt > k. This illustrates the adjustment of payments for investment. The agent in a small firm

(kt < k) is not fully compensated for the actual effort cost, and the spare amount of money is

spent on investment to expand the firm. Instead of deferring the instantaneous payment, the

principal promises to pay more later by increasing the drift of qt. As we will explain shortly,

this results in a upward drift of qt. On the other hand, the agent in a large firm (kt > k)

is rewarded more than the effort cost, but he is promised a lower continuation value in the

future, which results in a downward drift of qt.

Finally, payment in our model is continuously made over time, so that the principal has to

take into account the tradeoff between the immediate compensation c∗t and the future expected

payoffs qt. The term (vi), whose integrand is the drift part of qt, captures this tradeoff and

represents the allocation of payments over time. In a standard agency model where the agent’s

utility has income effects, the cost of incentive provision determines the direction of the drift

of qt (Sannikov (2008)). In our model, on the other hand, where the agent’s utility has no in-

come effects but the firm can expand or shrink over time, the return on investment determines

whether the drift is upward or downward. Just as the return varies with firm size, so does the

sign of the drift.20 To see how it changes over kt, note that by Lemma 3, when kt is small, the

function θ′(kt)ψ∗(kt) > Rβ, implying that qt has a upward drift. Also, by Lemma 1, when kt is

large, the inequality is reversed so qt has a downward drift. Therefore, the model predicts that

the wage is back-loaded in a small firm but front-loaded in a large firm.

Firm Size and Pay-Performance Sensitivity

It has been a subject prolific of controversy in executive compensation how CEO pay varies

relative to changes in firm performance across firm size. The controversy was sparked by a

seminal work by Jensen and Murphy (1990), who defined pay-performance sensitivity as the

dollar change in CEO wealth per dollar change in firm value and reported that the estimated

sensitivity decreases over firm size.21 In addition to its tiny estimated value ($3.25 increase in

20Recall that as the agent has a negative exponential utility function, his continuation value is always negative, too.
To avoid any confusions, therefore, it is convenient to multiply both sides by −qt for the drift of qt in (3.3). As the
resulting drift is (−qt) [θ

′(kt)ψ
∗(kt)/R− β], its sign is determined by the value of θ′(kt)ψ

∗(kt).
21Schaefer (1998) has argued that the regression model in Jensen and Murphy (1990) ∆cit = γ0 + γc∆kit implicitly as-

sumes that pay-performance sensitivity γc is invariant to firm size. For this reason, he developed a simple econometric
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CEO pay per $1, 000 increase in firm value), the decreasing sensitivity with firm size also has

been a controversial issue because if the sensitivity is a primary measure of CEO incentives

then the empirical result simply implies that the incentives are lower for a large firm.22

Although decreasing sensitivity is often attributed to a large standard deviation or weak

governance in the market value of a Fortune 500 company, we propose an alternative expla-

nation based on the signal-to-noise ratio scaling with size. Put briefly, with a multiplicative

production function, the agent’s effort has a bigger impact on the firm’s profitability in a large

firm, whereas the relative size of the random variation of profitability is small. Hence the agent

has an incentive to exert effort even at a low sensitivity. This intuition is very similar to the one

in Edmans et al. (2009), but there is a major difference in modeling approaches: they employed

a (static) talent assignment model of Gabaix and Landier (2008) with moral hazard, but we

employ a dynamic contract model.23

To derive the sensitivity from our model, we regard the state variable kt as a measure of the

market value of the firm at time t. Then pay-performance sensitivity, denoted as γc hereafter,

can be approximated by the volatility ratio of c∗t to kt:

γc(kt) ≡
∆c∗t
∆kt

=
c∗t+∆t − c∗t
kt+∆t − kt

∣∣∣∣
∆t→0

=
volatility of c∗t
volatility of kt

.

As the volatility of kt is given by σ
√

kt, what is necessary for computation of γc(kt) is the

volatility of c∗t , but c∗t is influenced by both state variables. For a precise measure of relation-

ship between managerial compensation and firm value, therefore, we use the decomposition

formula of c∗t in Proposition 4 to compute the volatility of c∗t .

To go into details, we apply Itô’s lemma only to the terms (ii), (iii), and (v) in (4.2), because

the variation arising from the other terms will influence the drift of ct only. We then divide the

resulting expression by the volatility of kt. This leads us to

(4.3) γc(k) =
(e∗(k))2

2a
+

(k + h)e∗(k)e∗′(k)
a

− 1
r

[
θ′′(k)
θ′(k)

+
ψ∗′(k)
ψ∗(k)

− 1
λa

θ′(k)e∗(k)ψ∗(k)
]

,

where ψ∗′(k) denotes the derivative of the function ψ∗(k) defined in Proposition 2.

model (allowing γc(k) to vary with k) on the basis of agency theory to show that γc(k) is proportional to 1/
√

k.
22γ̂c = d log cit/d log kit—referred to as pay-performance elasticity in Murphy (1999)—is another prominent measure

of the linkage between CEO pay and performance. With regard to its relationship with size, Gibbons and Murphy
(1992) reported that, unlike sensitivity, γ̂c is invariant to firm size. As Murphy (1999) has argued, however, there are
pros and cons for each measure. See Baker and Hall (2004) and Edmans et al. (2009) for related discussions.

23He (2011) also derived a closed-form expression of pay-performance sensitivity in a contract setting with hidden
savings, and provided a sufficient and necessary condition for the sensitivity to have a negative relationship with firm
size.
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The next proposition is then an immediate consequence of Lemma 2 and the results estab-

lished in Appendix B. Consistent with the empirical prediction, it shows the asymptotically

decreasing sensitivity with firm size.

PROPOSITION 5. Pay-performance sensitivity asymptotically decreases with firm size. That is,

lim
k→∞

γc(k) < lim
k→0

γc(k).

PROOF OF PROPOSITION 5: See Appendix B. �

5. The Optimal Investment Plan

In this section we discuss the effect of firm size on investment. Recall that instantaneous invest-

ment dIt is determined by the residual cash flow after paying compensations and dividends.

Thus, dI∗t = dYt − (c∗t + d∗t )dt in the optimal contract. Given an admissible state (kt, qt), we

take the conditional expectation and define the rate of (expected) investment by

I∗t ≡
d
dt

E[I∗t |kt, qt] = (kt + h)e∗(kt)− c∗(kt, qt)− d∗(kt, qt),

which we will refer to as the optimal investment plan in the sequel.24 Similarly, we denote by

IF
t the rate of investment in the first-best contract.

The above expression of I∗t insinuates that, like the remuneration plans c∗ and d∗, the in-

vestment plan is a function of the two state variables. However, from the explicit formulae of

c∗ and d∗ in Proposition 2, it is readily verified that their sum c∗(kt, qt) + d∗(kt, qt) is indepen-

dent of qt. As the optimal effort policy is dependent upon kt only, the optimal investment plan

is unaffected by qt. This allows us to write the investment plan as a function of the current firm

size, namely, I∗t = I∗(kt) and IF
t = IF(kt).

The property of investment being independent of qt is a key implication of the assumption

that the principal’s flow utility is exponential. To understand their link, recall that in a classical

Merton’s portfolio problem, the optimal fraction of wealth being invested in a risky asset is

independent of initial wealth when the investor has exponential utility. The investment plan in

our model is driven from the same type of portfolio problem. After paying c∗t to the agent, the

24Note that the investment plan I∗t constitutes the drift of kt process in the optimal contract, exclusive of the depreci-
ation term.
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principal faces a decision problem of allocating the remaining expected cash flow to her own

dividends and investment. Here, the continuation value affects the level of expected cash flow

or the principal’s wealth, but not the rate of return on investment. Therefore, the investment

plan I∗t is determined by kt, and the same logic also applies to the first-best plan IF
t = IF(kt).

Firm Size and Investment

The above property allows us to address the question of how investment distortions vary with

firm size by directly comparing I∗(kt) and IF(kt). It turns out that, in contrast to the prediction

of traditional agency models, there could be either under- or over-investment in our model,

depending on firm size.

PROPOSITION 6 (Firm Size and Investment Distortions). When firm size is small, there is under-

investment. As the firm grows sufficiently large, however, there is over-investment. More precisely, we

have

lim
k→0

IF(k) > lim
k→0

I∗(k) and lim
k→∞

IF(k) < lim
k→∞

I∗(k).

Consequently, the growth rate of a small (large) firm is smaller (larger) for the optimal contract than for

the first-best case.

PROOF OF PROPOSITION 6: See Appendix B. �

The underinvestment result relative to the first-best benchmark is straightforward, consid-

ering inefficiency due to the moral hazard problem. It is also consistent with what is predicted

by other dynamic contracting literature such as He (2009) and DeMarzo et al. (2012). On the

other hand, because the firm’s production improves efficiency by the optimal effort policy con-

verging to the efficient level, it is natural to conjecture that the degree of underinvestment

becomes smaller as firm size rises. This is the case in the existing models where investment is

increasing in the firm’s realized profits. In DeMarzo et al. (2012), for instance, the continuation

value per capita qt/kt, interpreted as a measure of the agent’s ownership of company shares or

the firm’s financial slack, is positively correlated with profits for provision of incentives. In this

case, high profits boost investment, thereby increasing firm size as well as qt/kt. Consequently,

a high continuation value per capita or large firm size mitigates the moral hazard problem, and

thus investment approaches the efficient level.

However, our asymptotic result sharply differs from others in that a large firm is prone
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to over-investment. To approach this result from a different angle, consider the impact of an

additional unit of capital on firm value or Tobin’s marginal Q. In the optimal contract, marginal

Q (denoted MQ∗) is calculated as the partial derivative of firm value with respect to k:

MQ∗(k, q) ≡ ∂ (J(k, q) + q)
∂k

= Jk(k, q) = θ′(k)(−q)−λ exp (−θ(k)) .

Similarly, replacing the principal’s value function with JF(k, q) characterized in Appendix A,

we can calculate the first-best marginal Q (denoted MQF). To facilitate comparison between

MQ∗ and MQF, we define the ratio of MQ∗ to MQF by

RMQ(k) ≡ MQ∗(k, q)
MQF(k, q)

=
θ′(k)
A1

exp(A1k + B1 − θ(k)).

As we have discussed earlier, the agent’s continuation value does not affect the firm’s

investment decision, so we assumed q to be the same in the two regimes when calculating

RMQ(k). To examine its asymptotic behavior, we use the result in Lemma 5 that shows

limk→∞ θ′(k) = 0. This implies that θ(k) is increasing at a lower rate than A1k for sufficiently

large k, so the exponent A1k + B1 − θ(k) grows large. As a result, RMQ(k) tends to infinity,

meaning that an additional unit of capital has a relatively larger impact on firm value in the

optimal contract. Therefore, the question of why a large firm is prone to over-investment can

be rephrased as follows: Why is MQ∗ larger than MQF in a large firm?

To address this question, we summarize our previous findings and elaborate on their im-

plications for investment. First, the square-root firm size process results in the optimal effort

policy converging to the first-best level, so there is no wedge in the marginal return of invest-

ment between the two regimes. Put briefly,

∂(k + h)a
∂k

≈ ∂(k + h)e∗(k)
∂k

for a large k.

The lower marginal return on investment in the second-best regime is a primary factor, leading

to under-investment in a classic model including ours when firm size is small, in the sense

that the principal cannot fully realize the total gain accruing from investment. Second, the

contracting parties’ utility functions have no wealth effects, so that we can abstract away from

the impact of q on investment. The wealth effect on the agent’s side typically give rise to under-

investment, to the extent that a higher risk premium, resulting from large compensation risks

required for incentive provision, decreases the firm’s cash flow for undertaking investment.
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Excluding the two main sources of investment distortion, what matters from the principal’s

point of view is the management of risks generated by investment. As the firm’s investment

increases the variance of production shocks, it is natural to think the risk-averse principal is

relatively reluctant to invest when she has to bear larger risks. Put differently, marginal Q

would be larger in an environment in which the principal is exposed to smaller risks. However,

one bit of conventional wisdom from the contract literature pioneered by Holmström (1979) is

that a first-best contract achieves Pareto-optimal risk sharing, whereas a second-best contract

trades off risk sharing against provision of incentives. Consequently, in a second-best contract,

a portion of risks that the principal has to take for Pareto-optimal risk sharing is passed on to

the agent. This leads to larger MQ∗ than MQF, so that the principal has an incentive to invest

more in the optimal or second-best contract.

Risk Sharing in a Large Firm

We attributed over-investment in a large firm to deviation from Pareto-optimal risk sharing.

In order to support this argument, we demonstrate that there is indeed such a deviation in the

optimal contract. In this subsection, we compute the optimal sensitivity of each contractual

term to changes in firm value, and show that it is misaligned with the first-best one. This result

partly justifies our argument that the risk-sharing policy in the optimal contract differs from the

Pareto-optimal one. The way to compute the sensitivity is very similar to the one we adopted

for pay-performance sensitivity in Section 4. So we shall exposit the dividend process here and

omit the other details.

Let σF
d and σ∗d denote the volatility of dF(k, q) and d∗(k, q), respectively. To obtain their

explicit formula, we first apply Itô’s lemma to the continuation value process of each contract

((A.3) and (3.3)), and then write the dividend process in terms of k only. Applying Itô’s lemma

again to terms relevant to the volatility, we can explicitly characterize σF
d and σ∗d as a function

of k. The sensitivity of dF and d∗, denoted γF
d and γ∗d , is then calculated as σF

d and σ∗d divided

by the volatility of firm value σ
√

k, respectively. That is,

γF
d =

A1

R(1 + λ)
and γ∗d(k) =

1
R

[
θ′(k)− θ′′(k)

θ′(k)
− 1

a
θ′(k)e∗(k)ψ∗(k)

]
.

It follows from Lemma 5 and Corollary 2 that every term in the bracket of γ∗d(k) converges to

zero as k → ∞, whereas γF
d remains constant over k. Hence γF

d > γ∗d(k) for sufficiently large

k. This result has an implication for dividend smoothing in a dynamic context as well as risk
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sharing; it shows that compared to dF, the flow of dividend in a large firm is less sensitive to

changes in firm value, so that a relatively low risk is put on the principal.

(Insert Table 1 here.)

Table 1 displays sensitivity of each contractual term and its misalignment with the one

from the Pareto-optimal contract. Therefore, Table 1 provides a direct evidence that even in a

large firm with a high signal-to-noise ratio, there is still a moral hazard effect that deviates from

Pareto-optimal risk-sharing for provision of incentives to exert effort. Like the dividend, the

agent’s compensation c∗ turns out to be less sensitive to a change in firm value than the first-

best one. On the other hand, the decrease in sensitivity of c∗ as well as d∗ is backed up by the

increase in the sensitivity of investment. The underlying motive for increasing the sensitivity of

investment rather than compensation is that such policies will improve the agent’s incentives,

without the cost of risk premiums and subsequent firm performance.

6. Concluding Remarks

This article studies how firm size affects the optimal contract and investment decision when the

size evolves over time with a diminishing volatility. By incorporating a capital accumulation

process into a dynamic agency model, the article provides a unified framework where one can

explore the impact of the regularity on both moral hazard and investment. The absence of

wealth effects due to CARA preference simplifies the optimal contracting problem and enables

us to characterize the optimal contract by a system of ordinary differential equations in terms

of firm size only. Taking such advantages, we analyzed the impact of firm size on the dynamic

incentive and investment.

The diminishing volatility plays two significant roles in our model. First, it results in the

increasing signal-to-noise ratio as firm size grows, which in turn leads to improvement on

production efficiency in Proposition 3 and a negative relationship between pay-performance

sensitivity and size in Proposition 5. Secondly, the regularity results in the decreasing marginal

rate of return on investment over size, which is the main driving force behind the downward

drift of the continuation value and over-investment in a large firm.

We conclude by making a remark on two important extensions in dynamic contract theory.

First, we assumed that the agent has no access to credit markets and is forced to consume what

he earns in any period. If the agent can borrow or save freely instead, but if the principal cannot

monitor the saving behavior, then hidden saving would distort the optimal intertemporal in-
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centive provision of contracts. As it has been pointed out by Rogerson (1985), the optimal long-

term contract must impose a punishment for poor performance so that the agent’s marginal

utility from savings is always nonnegative. Accordingly, the risk-averse agent is willing to

save so as to insure himself against future punishments, and then the principal, anticipating

the saving motive, would offer a downside-rigid compensation package. As a result, this dis-

tortion in intertemporal incentives would result in the implementable effort policy being below

the second-best. The CARA specification is not free from this problem.25 Furthermore, it is dif-

ficult to see how firm size affects the agent’s saving motive. Even in a large firm where the

moral hazard problem is not severe due to the high signal-to-noise ratio, the downward-rigid

compensation scheme may hinder the first-best effort policy from being implemented.

Second, we assumed that the agent is able to commit himself to participation of the contract.

Instead, if the agent could quit in any period, we need additional participation constraints at

each possible history. To see how the constraints affect our results, note that in the optimal

contracts, good performance must result in an increase in both qt and kt. Hence the two state

variables must be positively correlated, implying that the limited commitment issue would

not be problematic in a large firm where the participation constraints are likely to be slack.

In a small firm, on the other hand, the constraints are more likely to bind. Then from the

principal’s vantage point, it is difficult to provide proper incentives through qt, as qt is now

downward-protected for all t. So the optimal effort policy proposed in the article would not be

implementable. Furthermore, it is also expected that the proper incentive has to be provided

through ct rather than qt, thereby leading to a higher pay-performance sensitivity in a small

firm compared to the full commitment case.

Appendices

A. First-Best Contract

In this section we present an explicit solution to the contract problem with full information. It

turns out that the first-best contract can be derived in a very similar way to the second-best

contract. We can thus bypass a detailed discussion of the verification procedure.

25In the early dynamic moral hazard models without firm dynamics (for instance, Fudenberg et al. (1990)), the CARA
preference helps to simplify the agent’s dynamic saving problem into a static problem, to the extent that the agent’s
saving motive is independent of the past history—the agent’s continuation value or wealth. However, this is not the
case in our model, because the model involves another state variable (firm size) and it is difficult to pin down its
relationship with the saving decision.
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When the agent’s action is perfectly observable, the volatility term Γ of the agent’s contin-

uation value process is to be chosen by the principal as she is free from the incentive provision

issue. We can therefore reformulate the principal’s problem into the following HJB equation:

(A.1)

βJ(k, q) = max
c,d,e,Γ

{
v(d) + Jk[ f (k, e)− c− d− δk] + Jq [βq− u(c, e)]

+
σ2k
2

(
Jkk + 2JkqΓ + JqqΓ2

)}
.

The only difference from the HJB equation for second-best optimality is that Γ is now another

choice variable for the principal and is used for maximizing her own value. Put differently, Γ

is determined so as to achieve Pareto-optimal risk sharing between the two risk-averse parties.

Assuming the CARA utility and the production technology described in Section 3, we can

explicitly solve the HJB equation (A.1) as follows:

PROPOSITION 7. The first-best contract, denoted (cF, dF, eF), is characterized by eF = a,

cF(k, q) =
(k + h)a

2
− 1

r
ln
(
− qA1

λ

)
, and

dF(k, q) =
1
R
[A1k + B1 + λ ln(−q)− ln A1] ,

where A1 and B1 are constants:

A1 =
a
2 − δ

σ2

2(λ+1) +
1
R

and B1 =
Rha

2
− λ ln λ + (1 + λ)

[
Rβ

A1
− 1 + ln A1

]
.

PROOF OF PROPOSITION 7: The first-order condition with respect to each choice variable is

[Γ] : Γ = −
Jkq

Jqq
;

[c] : −Jk − Jq exp
(
−r
(

c− (k + h)e2

2a

))
= 0;

[d] : exp (−Rd)− Jk = 0; and

[e] : Jk(k + h) + Jq
(k + h)e

a
exp

(
−r
(

c− (k + h)e2

2a

))
= 0.

Like the second-best one, we conjecture that the principal’s value function is of the form

J(k, q) = −(−q)−λ exp(−θ(k)), where θ : [0, ∞) → R is a C2 function and λ = R/r. Just as in

Section 3, we maintain the assumption of θ that θ′(k) ∈ (0, ∞) and (θ′(k))2 > (λ + 1)θ′′(k) to
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ensure that the conjectured value function is concave in the two state variables.

First, the (constant) first-best effort eF = a is immediate from taking ratios of the conditions

[c] to [e] regardless of any functional forms of J. The first 3 conditions along with our guess

determine the optimal volatility term of q, the rate of consumption, and the rate of dividend in

order:

ΓF =
(−q)θ′(k)

λ + 1
, cF =

(k + h)a
2

− 1
r

ln
(
(−q)θ′(k)

λ

)
, dF =

1
R

[
θ(k) + ln

(
(−q)λ

θ′(k)

)]
.

We use (cF, dF, eF) to characterize the drift of the capital process, exclusive of its depreciation

term, into a function of k only:

IF(k) ≡ keF + heF − cF − dF =
(k + h)a

2
− θ(k)

R
+

λ + 1
R

ln θ′(k)− ln λ

r
.

Substituting the optimal policies back into the equation (A.1) delivers the following nonlinear

ordinary differential equation (ODE) of θ(k):

(1 + λ)β = θ′(k)
[

λ + 1
R
− IF(k) + δk

]
+

σ2k
2(λ + 1)

(
θ′(k)

)2 − σ2k
2

θ′′(k).

Due to the ln(θ′(k)) term in IF(k), it is natural to put θ(k) as a linear function of k. Plugging

θ(k) = A1k + B1 into the ODE above and then solving for the two constants A1 and B1, we can

explicitly characterize them as follows:

A1 =
a
2 − δ

σ2

2(λ+1) +
1
R

and B1 =
Rha

2
− λ ln λ + (1 + λ)

[
Rβ

A1
− 1 + ln A1

]
. �

Proposition 7 also shows us how the two state variables evolve over time.

COROLLARY 1. The capital {kt}t∈[0,∞) and the agent’s continuation value {qt}t∈[0,∞) processes in the

first-best contract evolve as follows:

dkt =

[(
a
2
− δ− A1

R

)
kt − (1 + λ)

(
β

A1
− 1

R

)]
dt + σ

√
kt dWt(A.2)

dqt

qt
=

(
β− A1

R

)
dt− A1

λ + 1
σ
√

kt dWt.(A.3)

To keep kt positive and its process well-defined over time, we make assumptions about the

primitives so that the drift term of kt remains positive for all kt.26 This is a version of the Feller

26The coefficient of kt in the drift term a
2 − δ− A1

R is always positive for all feasible primitives.
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condition we remarked on in Assumption 1:

β

A1
− 1

R
≤ 0 ⇒ A1 ≥ βR.

B. Omitted Proofs

Proofs of Proposition 1

Given a contract (c, d, e) ∈ S , consider the agent’s expected payoff evaluated at time t,

Ût =
∫ t

0
e−βsu(cs, ês)ds + e−βtqt(c, d, e),

when the agent chooses an alternative level of effort ê up to t and follows the recommended

level of effort e from t on. Differentiating Ût with respect to t gives

(B.1) dÛt = e−βt [u(ct, êt) + Γt f (kt, êt)− u(ct, et)− Γt f (kt, et)] dt + e−βtΓtσ
√

kt dW ê
t ,

where we used the dynamics of qt in (2.3) for simplifying d(e−βtqt) and the relationship be-

tween We
t under Pe and W ê

t under Pê,

σ
√

kt dWe
t = σ

√
kt dW ê

t + ( f (kt, êt)− f (kt, et))dt.

For necessity, suppose to the contrary that (2.4) does not hold on a set of positive measure.

Then it follows from (B.1) that Ût has a positive drift by choosing êt to maximize u(ct, êt) +

Γt f (kt, êt) and thus Eê[Ût] > Û0 = q0(c, d, e), violating the (IC) condition. For sufficiency,

suppose (2.4) holds. Then the drift of Ût becomes negative, meaning that the process is a

supermartingale for every deviation ê. Therefore, we have q0(c, d, e) ≥ Eê[Û∞] = q0(c, d, ê).27

�

Proofs of Proposition 2

We begin with the volatility of the agent’s continuation value, Γt. The multiplicative production

technology and the CARA preferences allow us to pinpoint Γt necessary for implementation

27The proof is basically the same as the proof of Proposition 2 in Sannikov (2008), but we provide our own proof
for a self-contained article. A more general proof can be found in Proposition 5.1 in Williams (2013) or Theorem 4.2 in
Schättler and Sung (1993).
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of an instruction et. To see this, recall from Proposition 1 that, for the instruction to be self-

enforced, et should maximize the objective function u(ct, e) + Γt f (kt, e), which is now globally

concave in e. Thus, Γt is uniquely determined by the following first-order condition:

Γt = −
ue(ct, et)

fe(kt, et)
= − ret

a
u(ct, et),

which suggests that the volatility can be written as a function of ct and et; so let us write

Γt = Γ(ct, et). Suppressing the time subscript, the relationship between Γ and u driven by the

condition can also be used to simplify the first-order partial derivatives of Γ and u as follows:

(B.2) Γc(c, e) = −rΓ, Γe(c, e) =
a + r(k + h)e2

ae
Γ, uc(c, e) =

aΓ
e

, ue(c, e) = −(k + h)Γ.

We then take the derivative of the HJB equation with respect to each contractual term,

identify the first-order conditions, and use (B.2) to simplify the conditions into

[c] : − Jk − Jq
aΓ
e
−
(

JkqΓ + JqqΓ2
)

rσ2k = 0

[d] : exp(−Rd)− Jk = 0

[e] : Jk(k + h) + Jq(k + h)Γ +
(

JkqΓ + JqqΓ2
) a + r(k + h)e2

ae
σ2k = 0.

From the first-order conditions for [c] and [e], we obtain the following alternative expression

of Γ:

(B.3) Γ = − Jk
Jq

[
1 +

r(k + h)
a

e(e− a)
]

e
a
=

e
λa

(−q)θ′(k)ψ(k, e),

where ψ(k, e) ≡ 1+ r(k+h)
a e(e− a) represents the expression in the bracket above. Equating the

two expressions of Γ and then solving for c, we obtain the flow of consumption

c(k, q) =
(k + h)e2

2a
− 1

r
ln
(

1
λ
(−q)θ′(k)ψ(k, e)

)
.

Solving the remaining first-order condition [d] gives the flow of dividend,

d(k, q) =
1
R
[
θ(k) + λ ln(−q)− ln θ′(k)

]
.

We then use (c, d) to write the drift term of the capital evolution process, exclusive of capital
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depreciation, as

(B.4) I(k, e) = (k + h)e− (k + h)e2

2a
+

1
r

ln
(

θ′(k)ψ(k, e)
λ

)
− 1

R
[
θ(k)− ln θ′(k)

]
.

Notice that the function I(k, e) which we will refer to as the investment policy in Section 5, is

independent of the agent’s continuation payoff.

Now we derive the system of ODEs for the remaining two functions, e and θ(k), which

completely characterizes the optimal contract together with (c, d, I, Γ) specified above. For

θ(k) in the conjectured value function, we substitute Γ in (B.3) into the first-order condition [e]

and solve for θ′(k) to obtain

(B.5) θ′(k) =
a(k + h)λ(a− e)

σ2kψ(k, e)[−λa + (λ + 1)eψ(k, e)]
≡ G(e, k)

Note that the expression on the right side is a function of e and k so we label it by G(e, k). Also,

the equation (B.5) suggests that the optimal effort is a function of k only.

Denoting by e(k) the optimal effort policy, we substitute the above (c, d, Γ) into the HJB

equation to obtain the following second-order ODE:

(B.6)

(1 + λ)β = θ′(k)
[

1
R
− I(k) + δk +

ψ(k, e(k))
r

]
+

σ2k
2
(
θ′(k)

)2
[

1− 2
e(k)ψ(k, e(k))

a
+

λ + 1
λ

(
e(k)ψ(k, e(k))

a

)2
]
− σ2k

2
θ′′(k),

where the investment policy I(k) = I(e(k), k) reduces to a function of k after substitution

e = e(k). Rearranging and substituting θ′(k) = G(e(k), k) into (B.6) yields

(B.7)

kθ′′(k) =
2
σ2 G(e(k), k)

[
1
R
− I(k) + δk +

ψ(k, e)
r

]
+ kG2(e(k), k)

[
1− 2

e(k)ψ(k, e(k))
a

+
λ + 1

λ

(
e(k)ψ(k, e(k))

a

)2
]
− 2(1 + λ)β

σ2

≡ H(θ(k), e(k), k).

Note that the right-hand side of (B.7) is a function of θ(k), e(k) and k, and thus we will label it

by H(θ(k), e(k), k). Now we take the derivative of both sides of (B.5) with respect to k to obtain

(B.8) θ′′(k) = Ge(e(k), k)e′(k) + Gk(e(k), k).
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Then the desired second ODE follows from (B.7) and (B.8):

e′(k) =
1

Ge(e(k), k)

[
H(θ(k), e(k), k)

k
− Gk(e(k), k)

]
≡ F(θ(k), e(k), k).

In summary, the system of ODEs is given by


θ′(k) = G(e(k), k)

e′(k) = F(θ(k), e(k), k)

with the boundary condition (e(0), θ(0)) =
(
a, ln

[
Rβ(rβ)λ

])
. The first boundary condition

follows from Lemma 2, and the second from solving (3.1) for θ(0). We discuss the existence

and uniqueness of their solutions in Appendix B.

Denote by e∗(k) the solution to the system of ODEs. Substituting e = e∗(k) into the func-

tional forms of c and d above leads to the optimal consumption and dividend policies, c∗(k, q)

and d∗(k, q). Lastly, substituting (c∗, d∗, e∗) into the k- and q-process provides the evolution of

the two state variables under the optimal contract. The existence and uniqueness of (k, q) pro-

cesses satisfying the system of stochastic differential equations (3.2) and (3.3) are established

by Yamada and Watanabe (1971), as
√

k is Hölder-continuous with exponent 1/2. The proof is

now complete. �

Existence and Uniqueness of the System of ODEs in Proposition 2

Define by X a set of (e(k), θ(k)) such that e(k) ≤ a for all k and θ(k) has a bounded deriva-

tive. As we prove in Lemma 2 below, both e∗(k) and ψ∗(k) are uniformly bounded, which

guarantees that G(e∗(k), k) and θ′(k) are also uniformly bounded. Consequently, we can re-

strict ourselves to the set X for finding a solution to the ODEs. In addition, note that the two

functions F and G consisting of ODEs in are continuously differentiable and do not explode.

Choose k0 > 0 as an initial value of capital and let (θ(k0), e(k0)) be the corresponding

initial value condition. By the standard theory on the system of first order non-linear ordinary

differential equations, there exists a unique C1 solution (θ(k), e∗(k)) in some neighborhood of

k0. This local existence and uniqueness result is readily extended to any arbitrary finite capital

level kM < ∞ so long as the solution is bounded as k → kM, which is the case in our problem.

In other words, the solution uniquely exists for k ∈ [k0, kM].

Finally, the above argument is easily extended to the case where k0 → 0, because in our

problem the boundary values are in fact derived by calculating the limit of the solutions. More
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specifically, for the effort policy, limk0↓0 e∗(k0) = a as is shown in Lemma 2. For the initial value

of θ(k), given any k0 > 0, we can compute J(k0, q) and thus θ(k0) by assuming that the firm

is liquidated at k0, like we defined θ(0) in Section 3. Then the desired initial value is simply

driven by taking the limit: limk0↓0 θ(k0) = θ(0). �

Proof of Theorem 1

Suppose that J(k, q) is a solution to the HJB equation. For every incentive-compatible contract

(c, d, e), we define the principal’s auxiliary gain process V = {Vt}t∈[0,∞) as

Vt(c, d, e) ≡
∫ t

0
e−βsv(ds)ds + e−βt J(kt, qt).

Here kt and qt are the two state variables at time t induced by (c, d, e), and hence Vt represents

the principal’s expected total payoffs (evaluated at time t) when she offered the contract (c, d, e)

until time t but plans to offer the optimal contract (c∗, d∗, e∗) afterwards. We now show that

the process V is a super-martingale, but is a martingale when the contract (c, d, e) is optimal.

Using Itô’s lemma, we compute the differential of V:

dVt = e−βt Atdt + βe−βtσ
√

kt

{
Jk − qt Jq

1
λa

θ′(kt)e(kt)ψ(kt, e(kt))

}
dWt

where the drift term At is

At ≡ v(dt)− βJ + Jk [I(kt, qt)− δkt] + Jq [βqt − u(ct, et)] +
σ2k
2

[
Jkk + 2JkqΓt + JqqΓ2

t

]
.

Then it follows by definition of the HJB equation that At ≤ 0 for every incentive-compatible

contract and At = 0 for the optimal contract. It remains to show that the diffusion of V is

square-integrable in the optimal contract. To this end, we substitute the computed derivatives

(Jk and Jq) into the diffusion term of Vt and rewrite the term as

βσ exp(−θ(kt))θ
′(kt)

(
1− 1

a
e(kt)ψ(kt, e(kt))

)
e−βt

√
kt

(−qt)λ
.

We prove in Lemma 2 and 5 that θ′(kt), e(kt), and ψ(kt, e(kt)) are all bounded. Hence it suffices

to show that the remaining term e−βt√kt
(−qt)λ is square-integrable. This is immediate, however, from

the fact that the agent’s continuation value qt is bounded above by 0 for any time t; qt = 0

under the CARA preferences implies that the rate of payment must be infinite after time t with
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positive probability, but this is never feasible. �

Proof of Lemma 2

Suppose that a continuously differentiable effort policy e∗(k) solves the ODE θ′(k) =

G(e∗(k), k) in Proposition 2, which takes a form of

(B.9) θ′(k) =
a(k + h)λ(a− e∗(k))

σ2kψ(k, e∗(k)) [−λa + (λ + 1)e∗(k)ψ(k, e∗(k))]
.

To prove limk→0+ e∗(k) = a, note that the denominator of (B.9) converges to zero as k → 0+

due to the factor k. For θ′(k) to be bounded, therefore, the factor a− e∗(k) on the numerator

must be zero, as θ′(k) would otherwise diverge.

To prove that the optimal effort is below the first-best level, first observe that the function

ψ(k, e) = 1 at e = a irrespective of k. This implies that the denominator is positive in a

neighborhood of k = 0; more precisely, there exists an ε > 0 such that for every k ∈ (0, ε),

the denominator is strictly positive, because by the continuity of e∗(k),

ψ(k, e∗(k)) [−λa + (λ + 1)e∗(k)ψ(k, e∗(k))] ≈ a > 0.

To obtain θ′(k) > 0 in this neighborhood, therefore, the numerator of (B.9) must be strictly

positive, leading to e∗(k) < a for k ∈ (0, ε). Furthermore, e∗(k) < a is readily extended to all

k > 0, for otherwise θ′(k) < 0 for some k > 0 by the intermediate value theorem.28 Hence we

establish e∗(k) < a for all k > 0.

To prove that e∗(k) is bounded below by e†(k), we define a function g(k, e) ≡ −λa + (λ +

1)eψ(k, e) on the space (k, e). Then e†(k), defined in the statement of Lemma 2, is simply the

largest solution to the equation g(k, ·) = 0. With this in mind, we first shall prove e†(k) < a

by contradiction. Suppose e†(k) ≥ a. Then it follows from ψe(k, e) > 0 for all e ≥ a and

g(k, e†(k)) = 0 that

λa
(λ + 1)e†(k)

= ψ(k, e†(k)) ≥ ψ(k, a) = 1 or a ≥ (λ + 1)e†(k)
λ

,

leading to a contradiction. For the remaining part, note that as e†(k) is the ”largest” solution,

g(k, e) > 0 for all e > e†(k) and thus ψ(k, e) > 0. This implies that the whole denominator of

28Suppose to the contrary that e∗(k) > a for some k. Then it follows from continuity of e∗(k) and ψ(k, e∗(k)) that there
exists a ko ∈ (0, k) such that (1) e∗(ko) > a but very close to a and (2) ψ(ko, e∗(ko)) is close to one. Because the derivative
θ′(k) will have a negative numerator but a positive denominator for such ko, e∗(k) > a results in a contradiction.
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(B.9) changes its sign from negative to positive at e = e†(k). Hence for a positive θ′(k), e∗(k)

must lie in the interval between e†(k) and a. This completes the proof of part (a).

(Insert Figure 2 here.)

For part (b), note that e†(k) < e∗(k) < a implies

λ

λ + 1
< ψ(k, e†(k)) < ψ(k, e∗(k)) < ψ(k, a) = 1 ∀ k > 0,

that is, the function ψ∗(k) ≡ ψ(k, e∗(k)) is bounded. Refer to Figure 2. Taking the limit of ψ∗(k)

as k→ ∞ gives

λ

λ + 1
≤ lim

k→∞
ψ∗(k) = lim

k→∞

[
1 +

r(k + h)
a

e∗(k) (e∗(k)− a)
]
≤ 1.

For ψ∗(k) to be bounded, however, it must be the case that limk→∞ e∗(k) = a, as otherwise the

limit would be unbounded below.29

Finally, to prove limk→∞ e∗′(k) = 0, consider the ODE e∗′(k) = F(θ(k), e∗(k), k) =

θ′′(k)−Gk(e∗(k), k)
Ge(e∗(k), k) . Notice that if limk→∞ ψ∗(k) exists, then its value must be λ

λ+1 as is shown in

Lemma 4. Exploiting this result, a little bit of algebra shows that limk→∞ Ge(e(k), k) = −∞

whereas the numerator in the ODE is bounded. This completes the proof. �

Technical Lemmas

In this subsection, we establish several lemmas that articulate the limiting behavior of θ′(k) and

other functions when k is sufficiently small and large, respectively. The lemmas are frequently

used for the proof of the ensuing results.

LEMMA 3. θ′(0) ≡ limk→0+ θ′(k) ≤ A1.

PROOF OF LEMMA 3: Define a function φ : (0, ∞)→ < as

φ(x) =
Rha

2
− λ ln λ + (1 + λ)

[
βR
x

+ ln x− 1
]

.

The function φ(x) is derived from the equation (B.7) by substituting k = 0 in (B.7) and then

solving for θ(0). As a result, φ(θ′(0)) = θ(0) follows by definition and φ(A1) = B1 by straight-

forward computation, where the two constants A1 and B1 are from the first-best contract char-

29Another way to prove limk→∞ e∗(k) = a is to use the sandwich theorem; because e†(k) < e∗(k) < a and e†(k) → a
in the limit as k→ ∞, e∗(k) must converge to a as well. However, we show in Lemma 4 that as k grows, e∗(k) is getting
closer to e†(k) rather than to a, implying that limk→∞ ψ(e∗(k), k) = limk→∞ ψ(e†(k), k) = λ

λ+1 < 1 = limk→∞ ψ(a, k).
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acterized in Proposition 7. Furthermore, it can be readily checked that (i) φ(x) is decreasing on

(0, Rβ) but increasing on (Rβ, ∞), so φ(x) takes on a global minimum value at x = Rβ; and

that (ii) limx→0+ φ(x) = limx→∞ φ(x) = ∞. Refer to Figure 3.

Note that θ(0) ≤ B1, as JF(0, q) ≥ J∗(0, q) for every admissible q. But as A1 and θ′(0) are

larger than Rβ by Assumption 1 and 2, both of them lie in the region where φ(x) is increasing.

Therefore, θ(0) ≤ B1 leads to θ′(0) ≤ A1. �

(Insert Figure 3.)

LEMMA 4. Suppose that limk→∞ ψ∗(k) exists. Then limk→∞ ψ∗(k) = λ
λ+1 .30

PROOF OF LEMMA 4: Recall that in the proof of Lemma 2, we proved λ
λ+1 < ψ∗(k) < 1 for

all k. This inequality allows us to subdivide the set of possible values of limk→∞ ψ∗(k) into

three cases: (i) limk→∞ ψ∗(k) ∈
(

λ
λ+1 , 1

)
; (ii) limk→∞ ψ∗(k) = 1; and (iii) limk→∞ ψ∗(k) = λ

λ+1 .

Below it is shown by contradiction that (i) and (ii) are not true. Before proceeding, notice that

by (B.9) we have limk→∞ θ′(k) = 0 in both (i) and (ii). Also, it is immediate from (B.5) that

limk→∞ kθ′(k) > 0 in case (i) whereas limk→∞ kθ′(k) = 0 in case (ii).

CASE 1: Suppose that limk→∞ ψ∗(k) ∈
(

λ
λ+1 , 1

)
. On account of heavy algebra works, we

shall omit the details and sketch out the way to derive a contradiction.31 We first demonstrate

θ′′(k)→ 0. For this purpose, we rewrite the ODE e∗′(k) = F(θ(k), e∗(k), k) as

(B.10) e∗′(k) =
1

Ge(e∗(k), k)

[
θ′′(k)− Gk(e∗(k), k)

]
,

where we used H(θ(k), e∗(k), k) = kθ′′(k) from (B.7) to create a link between θ′′(k) and e∗′(k).

From the explicit forms of Gk and Ge which can be computed from (B.5), it can be shown that

as k → ∞, both Gk and kGk converge to zero but Ge converges to a negative value. Then, in

order to satisfy (B.10), θ′′(k) must converge to zero, because the left-hand side of (B.10) tends

to zero by Lemma 2.

Next, we substitute the optimal investment plan I∗(k) = I(k, e∗(k)) (Refer to (B.4)) into the

ODE (B.6) and then take the limit of both sides as k→ ∞. This gives us

lim
k→∞

kθ′′(k) = − 2
σ2

[
(1 + λ)β + (a/2− δ) lim

k→∞
kθ′(k)

]
< 0,

30This result can be established with or without the assumption of k2e∗′(k) being bounded. When we assume k2e∗′(k)
to be bounded, the proof becomes a bit more succinct. But we do not rely on this assumption to emphasize that the
desired result holds in either case.

31The exact proof is available from the authors upon request.

41



because limk→∞ kθ′(k) in the bracket takes a positive value and a > 2δ by Assumption 1. On

the other hand, multiplying both sides of (B.10) by k and taking the limit, we have

(B.11) lim
k→∞

ke∗′(k) =
(

lim
k→∞

1
Ge(e∗(k), k)

)(
lim
k→∞

kθ′′(k)
)
> 0

because both limits on the right-hand side are negative. (B.11) results in limk→∞ ψ∗′(k) > 0,

where ψ∗′ represents the total derivative of ψ∗(k) with respect to k:

(B.12) ψ∗′ =
dψ(k, e∗(k))

dk
= ψk + ψee∗′(k) =

r
a

[
e∗(k)(e∗(k)− a) + (2e∗(k)− a)(k + h)e∗′(k)

]
.

Finally, we apply the natural logarithm to (B.9) and then take the derivative of both sides

with respect to k, to obtain

(B.13)
θ′′(k)
θ′(k)

=
1

k + h
− 1

k︸ ︷︷ ︸
(i)

− e∗′(k)
a− e∗(k)︸ ︷︷ ︸

(ii)

− ψ∗′

ψ∗︸︷︷︸
(iii)

− (λ + 1)
ψ∗′e∗(k) + ψ∗e∗′(k)
−λa + (λ + 1)ψ∗e∗(k)︸ ︷︷ ︸

(iv)

Note that although the term (i) clearly approaches zero, the other terms approach positive

constants. As a result, we have limk→∞ θ′′(k)/θ′(k) < 0. However, this leads to a contradiction

because

0 = lim
k→∞

ln(kθ′(k))
k

= lim
k→∞

ln(θ′(k))
k

= lim
k→∞

θ′′(k)
θ′(k)

< 0,

where the first equality follows from the fact that limk→∞ kθ′(k) > 0 and is bounded, the second

is straightforward, and the third equality holds by L’Hôpital’s rule.

CASE 2: Now suppose that limk→∞ ψ∗(k) = 1. We first take the limit of (B.6) as k → ∞

to obtain limk→∞ kθ′′(k) = − 2(λ+1)β

σ2 < 0. Note that limk→∞ ψ∗(k) = 1 implies limk→∞ k(a−

e∗(k)) = 0, which in turn implies limk→∞ ke∗′(k) = 0. With this in mind, we multiply both

sides of (B.13) by kθ′(k) and take the limit. Then it can be easily shown that the terms (i), (iii),

and (iv) in (B.13) converge to zero. For the limit value of (ii), we substitute the ODE (B.5) for

θ′(k) and simplify into

lim
k→∞

e∗′(k)
a− e∗(k)

· kθ′(k) = lim
k→∞

aλ(k + h)e∗′(k)
σ2ψ∗(k) [−λa + (λ + 1)e∗(k)ψ∗(k)]

= 0,

where the last equality results from limk→∞(k + h)e∗′(k) = 0. Therefore, the equation (B.13)

leads to limk→∞ kθ′′(k) = 0, which contradicts with the negative limit value obtained from
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(B.6). The proof is complete. �

LEMMA 5. If limk→∞ ψ∗(k) exists, then limk→∞ θ′(k) = 0.

PROOF OF LEMMA 5: Recall that when ψ∗(k) → λ
λ+1 , the numerator of θ′(k) in the ODE

(B.9) approaches a constant, but the denominator takes an indeterminate form because f (k) ≡

k [−λa + (λ + 1)e∗(k)ψ∗(k)] → ∞ · 0. Nevertheless, below we demonstrate that f (k) diverges

to ∞, which drives θ′(k) approaching zero. In order to show this, we subdivide the set of

possible values of limk→∞ f (k) into three cases: (i) limk→∞ f (k) = 0; (ii) limk→∞ f (k) > 0 but

bounded; and (iii) limk→∞ f (k) = ∞.32 Similar to the preceding proof, we derive a contradic-

tion for the first two cases, which establishes f (k)→ ∞ and θ′(k)→ 0 as well.

CASE 1: Suppose f (k)→ 0. Then ∞ = limk→∞ θ′(k) > A1, so the principal’s value function

would be larger than the value function in the first-best regime for a sufficiently large k, which

is a contradiction.

CASE 2: Suppose that f (k) approaches a positive constant. Then limk→∞ θ′(k) exists and

takes on a positive value. We first show that the limit of θ′′(k) does not exist. For this purpose,

we multiply both sides of (B.10) by Ge(e∗(k), k) and write it as

k2e∗′(k) · Ge(e∗(k), k)
k2 = θ′′(k) + Gk(e∗(k), k).

Suppose that the limit of k2e∗′(k) exists. Then by L’Hôpital’s rule, its limit value must be

1
r(λ+1) .33 When f (k) approaches a positive constant, however, Ge(e∗(k),k)

k2 converges to a neg-

ative one, meaning that limk→∞ θ′′(k) approaches a negative number. This implies that θ′(k)

converges to a negative constant, contradicting with θ′(k) > 0 for every k > 0. Therefore,

neither limk→∞ k2e∗′(k) nor limk→∞ θ′′(k) exists in this case.

Divide both sides of (B.6) by kθ′(k), getting

(B.14)

(1 + λ)β

kθ′(k)
=

1
k

[
1
R
− he∗(k)−

(
1
r
+

1
R

)
ln θ′(k)− 1

r
ln

ψ∗(k)
λ

]

+
σ2θ′(k)

2

[
1− 2

ψ∗(k)e∗(k)
a

+
λ + 1

λ

(
ψ∗(k)e∗(k)

a

)2
]

+

[
δ− e∗(k) +

k + h
2ak

e∗(k)2 +
θ(k)
Rk

]
− σ2

2
θ′′(k)
θ′(k)

.

We now use (B.14) to derive a contradiction. Note that when ψ∗(k) → λ
λ+1 , kθ′(k) diverges to

32Because e∗(k) < a and ψ∗(k) ∈
[

λ
λ+1 , 1

]
for all k > 0, the expression −λa + (λ + 1)e∗(k)ψ∗(k) is always nonnega-

tive. Hence f (k) ≥ 0 for all k > 0.
33Note that ψ∗(k)→ λ

λ+1 implies limk→∞(k + h)(a− e∗(k)) = limk→∞
a−e∗(k)

1/k = limk→∞ k2e∗′(k) = 1
r(λ+1) .
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∞ by (B.9). Then the left-hand side of (B.14) tends to zero, but the right-hand side takes an

indeterminate form due to the presence of θ′′(k)/θ′(k). For this reason, the function f (k) does

not approach any positive value, implying that f (k) must diverge to ∞. �

One immediate consequence of the preceding lemma is the following result:

COROLLARY 2. If limk→∞ ψ∗(k) exists and k2e∗′(k) is bounded for all k > 0, then

lim
k→∞

ψ∗′(k)
ψ∗(k)

= lim
k→∞

θ′′(k)
θ′(k)

= 0.

PROOF OF COROLLARY 2: As we demonstrated in the proof of Lemma 4, limk→∞ ψ∗(k) = λ
λ+1

and limk→∞ ke∗′(k) = 0 under the assumption of bounded k2e∗′(k). This in turn implies that

the derivative of ψ∗(k) in (B.12) tends to zero as k → ∞. For θ′′(k)/θ′(k), it is a routine task to

check that the first three terms in (B.13) would vanish. To figure out the limit of the term (iv),

we multiply the top and bottom by k and then take the limit, getting

lim
k→∞

(λ + 1)
ψ∗′ke∗(k) + ψ∗e∗′(k)k

k [−λa + (λ + 1)ψ∗e∗(k)]
= lim

k→∞
(λ + 1)

ψ∗′ke∗(k)
k [−λa + (λ + 1)ψ∗e∗(k)]

= 0.

Recall that the denominator now diverges to ∞ as we have proved in Lemma 5. The first

equality follows from e∗′(k)k→ 0 and the second follows from the fact that ψ∗′(k)k is bounded.

�

Proof of Proposition 5

We first compute pay-performance sensitivity in the optimal contract when firm size is large

enough. For this, we exploit the above lemmas to show that every term in (4.3), except the first,

vanishes in the limit as k→ ∞. Hence γc(k) converges to a/2.

We begin with the last term in (4.3), which consists of 3 terms in the bracket. The first

two terms in the bracket converge to zero by Corollary 2, and the last also converges to zero by

Lemma 5 and the fact that both e∗(k) and ψ∗(k) are bounded. The second term in (4.3) vanishes

as well, because (k + h)e∗′(k) → 0 results from the assumption of k2e∗′(k) being bounded and

e∗′(k)→ 0 by Lemma 2. Therefore, we obtain limk→∞ γc(k) = a/2.

In case k→ 0, direct computation yields

lim
k→0

γc(k) =
a
2
+ he∗′(0)− 1

r

{
θ′′(0)
θ′(0)

+ ψ∗k (0) + ψ∗e (0)e
∗′(0)− 1

λ
θ′(0)

}
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=
a
2
+

(θ′(0))2 − λθ′′(0)
θ′(0)R

,

where we used e∗(0) = a, ψ∗(0) = 1, and ψ∗e (0) = rh. To prove that γc(0) is larger than a/2,

recall (θ′(k))2 > (λ+ 1)θ′′(k) for all k ∈ [0, ∞) which is a necessary condition for the principal’s

value function to be concave. Hence (θ′(0))2−λθ′′(0)
θ′(0)R must be positive. �

Proof of Proposition 6

Using the expression of IF(k) in Appendix A and the expression of I∗(k) in Appendix B, we

simplify their difference into

(B.15)

IF(k)− I∗(k) =
k + h

2a
(a− e∗(k))2 +

1
R
[θ(k)− A1k]−

(
1
r
+

1
R

)
ln θ′(k)

− ah
2
− 1

r
ln

ψ∗(k)
λ
− (1 + λ)

(
β

A1
− 1

R

)
.

Recall that according to the function φ(x) defined in Lemma 3, the two values θ(0) and θ′(0)

are interrelated in the following manner:

θ(0) =
Rha

2
− λ ln λ + (1 + λ)

[
Rβ

θ′(0)
− 1 + ln θ′(0)

]
.

Using this relationship and the fact that limk→0 ψ∗(k) = 1 and limk→0 e∗(k) = a, the limit of the

difference in (B.15) as k→ 0 reduces to

lim
k→0

(
IF(k)− I∗(k)

)
= β(1 + λ)

(
1

θ′(0)
− 1

A1

)
.

Because θ′(0) ≤ A1 as we proved in Lemma 3, there is under-investment when firm size is

sufficiently small.

To see over-investment at the other extreme k → ∞, notice that every term on the second

line, on top of the very first term on the first line in (B.15), is bounded as we have verified above.

The remaining terms 1
R [θ(k)− A1k]−

(
1
r +

1
R

)
ln θ′(k) diverge to−∞, because limk→∞ θ′(k) =

0 by Lemma 5. �
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Figure 1: The Optimal Effort Policy over Firm Size for h = a = 1, β = δ = 0.01, R = 0.05, r = 4, and σ = 0.28. The
straight line displays the first-best effort policy eF(k) = a, the upper curve the second-best one e∗(k), and the lower
curve the lower bound e†(k).

E

ψ

λa
(λ+1)e†(k)

λ
λ+1

1

ψ∗(k) ≡ ψ(k, e∗(k))

e†(k) ae∗(k)

{(e, ψ)| g = 0}

{(e, ψ)| g = a}

ψ = ψ(k, e)
ψ(k′, e)

Figure 2: The two curves, labeled by {(e, ψ)| g = 0} and {(e, ψ)| g = a}, are a level set of the function g where g takes
on zero and a > 0, respectively. The other curve ψ = ψ(k, e) describes the trajectory of the function ψ (regarding ψ as
a function of e but holding k fixed) in the neighborhood of e = a. As k increases to k′, the curve becomes steeper but
always passes through the point (a, 1). Note that by definition of e†(k), the point

(
e†(k), λa

(λ+1)e†(k)

)
should be located

at the intersection of {(e, ψ)| g = 0} and ψ. Hence, the result e†(k) < e∗(k) < a in part (a) leads to λ
λ+1 < ψ∗(k) < 1.
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<

φ(x)

θ(0)

B1

A1Rβ θ′(0)

Figure 3: By Assumption 1 (Rβ ≤ A1), the function φ(x) must increase with x in a neighborhood of x = A1. Because
φ(θ′(0)) = θ(0) ≤ B1 and θ′(0) > Rβ by Assumption 2, we have θ′(0) ≤ A1.

Pareto-Optimal Risk Sharing Second-Best Risk Sharing

Compensation
a
2
+

λ

λ + 1
· A1

R
a
2

Dividend
1

λ + 1
· A1

R
0

Investment
a
2
− A1

R
a
2

Sum a a

Table 1: Comparison of Risk-Sharing Policies in a Large Firm - Each entry in the middle column indicates
the Pareto-optimal sensitivity of a contractual term to changes in firm value k. The entry in the last column indicates
the ”limit value” of the sensitivity as k→ ∞ in the optimal contract.

50


