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A b s t r a c t  

In this paper an asymmetric autoregressive conditional heteroskedasticity (ARCH) model and 

a Levy-stable distribution are applied to some well-known financial indices (DAX30, FTSE20, 

FTSE100 and SP500), using a rolling sample of constant size, in order to investigate whether 

the values of the estimated parameters of the models change over time. Although, there are 

changes in the estimated parameters reflecting that structural properties and trading 

behaviour alter over time, the ARCH model adequately forecasts the one-day-ahead volatility. 

A simulation study is run to investigate whether the time variant attitude holds in the case of a 

generated ARCH data process revealing that even in that case the rolling-sampled 

parameters are time-varying.  

 

Keywords: ARCH model, GED distribution, Leverage effect, Levy-stable distribution, Rolling 

sample, Spill over, Value at risk. 
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1 .  I n t r o d u c t i o n  

In the recent literature, regarding the description of the characteristics of financial markets, 

one can find a vast number of specifications of both ARCH and Stochastic Volatility (SV) 

processes that have been considered for. However, the SV models1 are not as popular as the 

ARCH processes in applied studies. The purpose of the present study is to apply an 

asymmetric ARCH model to some well known financial indices, using a rolling sample of 

constant size, in order to observe the changes over time in the values of the estimated 

parameters. A thorough investigation is conducted by comparing the parameters of the full-

sampled estimated model to the parameters of the rolling sub-sample estimated models. We 

conclude that the values of the estimated parameters change over time, indicating a data set 

that alters across time reflecting the information that financial markets reveal. The analysis is 

extended to simulated time series indicating that the time-varying estimated coefficients 

characterize the ARCH data generating process itself.   

In ARCH modelling, the distribution of stock returns has fat tails with finite or infinite 

unconditional variance and time dependent conditional variance. Estimation of stable 

distributions is an alternative approach in modelling the unconditional distribution of returns. 

Thus, we adopt the estimation procedure of McCulloch (1986) and the parameters of the 

Levy-stable distribution are estimated at each of a sequence of points in time, using a rolling 

sample of constant size. The empirical findings suggest that the parameters of the 

unconditional distribution are also not constant over time.  

Reviewing the relevant literature we notice absence of studies showing that although 

the parameters of a well-specified model vary significantly over time, their time varying attitude 

does not influence model’s forecasting ability. The main object of our study is to provide 

evidence that model’s parameters should be re-estimated on a frequent base in order to 

reflect any changes that have been occurred in the stock market and have been incorporated 

in the prices of assets.  

The paper is divided in six sections. Section 2 lays out the asymmetric ARCH model 

that is applied in the FTSE20, DAX30, FTSE100 and SP500 stock indices. In section 3, the 

estimated rolling-sampled parameters of the asymmetric ARCH model are discussed. In 

section 4, a simulation study examines whether the parameters are time-varying in the case of 

a generated ARCH process. In section 5, the unconditional distribution of returns is estimated 

and the phenomenon of time-variant parameters is investigated in the Levy-stable distribution.  

Finally, in section 6 we summarize the main conclusions. 

2 .  A n  a s y m m e t r i c  A R C H  m o d e l  

A wide range of proposed ARCH models is covered in surveys such as Andersen and 

Bollerslev (1998), Bera and Higgins (1993), Bollerslev et al. (1992), Bollerslev et al. (1994), 

                                                 
1
 The reader who is interested in SV models is referred to Barndorff-Nielsen et al. (2002), Chib et al. (1998), 

Ghysels et al. (1996), Jacquier et al. (1999), Shephard (2004), Taylor (1994). 
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Degiannakis and Xekalaki (2004) and Poon and Granger (2003). The Nobel price award to 

R.F. Engle for ARCH volatility modeling is the uncontested proof of the contribution of ARCH 

models in time series and econometric modelling (Diebold 2003). A plethora of studies applied 

ARCH models to predict future volatility by updating the available information set at each of a 

sequence of points in time. Among others, Balaban and Bayar (2005) tested in 14 countries 

the relationship between stock market returns and their forecast volatility, Blair et al. (2001) 

compared the information content of implied volatilities and intraday returns in the context of 

forecasting S&P100 volatility, Wei (2002) forecast China’s weekly stock market volatility and 

Yu (2002) predicted stock price volatility using daily New Zealand data. Angelidis et al. (2004), 

Degiannakis (2004), Brooks and Persand (2003) and Giot and Laurent (2003) predicted 

Value-at-Risk (VaR) measures, while Degiannakis and Xekalaki (2001), Engle et al. (1997) 

and Noh et al. (1994) used rolling ARCH models to forecast volatility of options. 

An ARCH process,   t , can be presented as 
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where   is a vector of unknown parameters,  .f  is the density function of tz ,  .g  is a linear 

or non-linear functional form and t  is a vector of predetermined variables included in 

information set I  at time t . Since very few financial time series have a constant conditional 

mean of zero, an ARCH model can be presented in a regression form by letting t  be the 

unpredictable component of the conditional mean 

  tttAtA IyEy  1,, | , (

2) 

where  1,,, ln  tAtAtA PPy  denotes the continuously compound rate of return from time 1t  

to t , and tAP ,  is the asset price A at time t . In order to investigate the characteristics of stock 

market A, we apply an ARCH model of the following form: 

ttAtAtA yey
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where  vGED ;1,0  denotes the generalized error distribution (GED), v  is the tail thickness 

parameter of the GED, L  is the lag operator and tN  is the number of non-trading days 

preceding the tht  day. The density function of a GED random variable is given by 
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for  z ,  v0 , where  .  denotes the gamma function and 
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The conditional variance specification has the form of the exponential GARCH, or EGARCH 

model, which is suggested by Nelson (1991). The EGARCH model captures the asymmetric 

effect exhibited in financial markets, as the conditional variance, 
2

t , depends on both the 

magnitude and the sign of lagged innovations. Assuming GED distributed innovations with 

EGARCH specification for the conditional variance we take into account that i) the 

unconditional distribution of innovations is symmetric but with excess kurtosis and ii) their 

conditional distribution is asymmetric and leptokurtotic. Parameter   allows for the leverage 

effect. The leverage effect, first noted by Black (1976), refers to the tendency of changes in 

stock returns to be negatively correlated with changes in returns volatility, i.e. volatility tends to 

rise in response to ‘bad news’ and to fall in response to ‘good news’. Moreover, the logarithmic 

transformation ensures that the forecasts of the variance are non-negative. Parameter 0  

allows us to explore the contribution of non-trading days to volatility. According to Fama 

(1965) and French and Roll (1986) information that accumulates when financial markets are 

closed is reflected in prices after the markets reopen. The conditional mean is modeled such 

as to capture the relationship between investors’ expected return and risk2 ( 1 ), the non-

synchronous trading effect3 ( 2 ), and the inverse relation between volatility and serial 

correlation4 ( 3 ). 

                                                 
2
 The relationship between investors’ expected return and risk was presented in an ARCH framework, by Engle et 

al. (1987). They introduced the ARCH in mean model where the conditional mean is an explicit function of the 

conditional variance. 
3
 According to Campbell et al. (1997), ‘The non-synchronous trading or non-trading effect arises when time 

series, usually asset prices, are taken to be recorded at time intervals of one length when in fact they are recorded 

at time intervals of other, possible irregular lengths.’ 
4
 LeBaron (1992) found a strong inverse relation between volatility and serial correlation for SP500, CRSP and 

Dow Jones returns. As LeBaron stated, it is difficult to estimate 
4

  in conjunction with 
3

  when using a gradient 

type of algorithm. So, 
4

  is set to the sample variance of the series. 
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Model (3) is expanded in order to take into account the phenomenon of volatility spill 

over from one market to the other5: 
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where the parameters 1  and 2  account for the volatility spill over from B and C stock 

markets to the A stock market, respectively. In order to account for the volatility spill over 

effect from one market to the others, when (6) is estimated for stock market A, the daily 

conditional volatilities of stock markets B and C are regarded as exogenous variables that 

have been estimated according to framework (3)6. 

The data set used in this paper consists of the Financial Times Stock Exchange 20 

(FTSE20) index for Greece, the Deutscher Aktien Index 30 (DAX30) for Germany, the 

Financial Times Stock Exchange 100 (FTSE100) index for U.K. and the Standard & Poor's 

500 (SP500) index for U.S.A. The period covered for the FTSE20, DAX30, FTSE100 and 

SP500 is from January 3rd 1996, January 14th 1992, January 9th 1992 and January 7th 1992 to 

July 5th 2002, respectively. A thorough investigation is conducted by comparing the 

parameters of the full-sampled estimated model to the parameters of the rolling sub-sample 

estimated models. Maximum likelihood estimates of the parameters are obtained by numerical 

maximization of the log-likelihood function using the Marquardt (1963) algorithm. 

INSERT TABLE 1 ABOUT HERE 

Table 1 presents the estimated parameters of model (6) for each market separately. 

The standardized residuals, 
1

,



tAt , and their squared values, 
2

,

2 

tAt  , from all models obey the 

standard assumptions of autocorrelation and heteroskedasticity absence. Indicatively, we 

present the Ljung-Box Q-statistic for the null hypothesis that there is not autocorrelation up to 

20th order computed on 
1

,



tAt  and 
2

,

2 

tAt  . Briefly discussing the values of the parameters, we 

note that i) the relation of the conditional variance with the risk premium, although positive, is 

statistically insignificant (coefficient 1 ), ii) the non-synchronous trading effect is not present 

in the estimated models (coefficient 2 ) and iii) concerning the cases of the FTSE20 and 

SP500 stock indices, the daily serial correlation is inversely related to its conditional volatility 

                                                 
5
 Engle et al. (1990) evaluated the role of the information arrival process in the determination of volatility in a 

multivariate framework providing a test of two hypotheses: heat waves and meteor showers. Using meteorological 

analogies, they supposed that information follows a process like a heat wave so that a hot day in New York is 

likely to be followed by another hot day in New York but not typically by a hot day in Tokyo. On the other hand, 

a meteor shower in New York, which rains down on the earth as it turns, will almost surely be followed by one in 

Tokyo. Thus, the heat wave hypothesis is that the volatility has only country specific autocorrelation, while the 

meteor shower hypothesis states that volatility in one market spills over to the next. See also Kanas (1998). 
6
 For example, in the case of the FTSE20 index daily returns, the conditional variance of the DAX30 and SP500 

returns were regarded as exogenous variables. In order to estimate the conditional variance of the DAX30 and 

SP500 indices, their daily returns were used for the period of January 1992 to July 2002, or 1000 trading days 

prior January 3
rd

, 1996. 
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(coefficient 3 ). Moreover, the leverage effect is not present in the Greek and German stock 

markets. On the contrary, for the SP500 and FTSE100 stock indices, the estimated value of 

parameter   is statistically significant at 1% level of significance. The volatility spill over effect 

is statistically significant for the U.K. stock market. Regarding the SP500 index daily returns, 

there is evidence that volatility spillovers from Frankfurt to Chicago stock market. Finally, for 

the FTSE20, DAX30 and SP500 cases, parameter v  is statistically different to the value of 2 

at any level of significance, justifying the use of a thick-tailed distribution. The estimated value 

of 0  is about 0.187 and statistically significant only in the case of the Greek market indicating 

that a non-trading day contributes less than a fifth as much to volatility as a trading day. 

3 .  R o l l i n g - s a m p l e d  p a r a m e t e r s  o f  t h e  a s y m m e t r i c  A R C H  m o d e l  

Our purpose is to examine if the estimated parameters of the asymmetric ARCH model 

change over time and whether there is any impact of time-varying estimated parameters on 

volatility forecasting accuracy. The ARCH process is estimated, at each of a sequence of 

points in time, using a rolling sample of constant size equal to 1000 trading days, a sample 

size that is preferred7 by the majority of applied studies. 

We produce one-day-ahead conditional volatility predictions for the trading days of 11th 

January 2000 to 5th July 2002. Since the ARCH model is estimated at each point in time, we 

use the maximum likelihood estimates at time 1t  as starting values for the iterative 

maximization algorithm at time t . Figure 1 depicts the rolling-sampled estimated parameters 

for the FTSE20 index as well as the 06.2  times the conditional standard deviation 

confidence interval of the parameters estimated using the full data sample8. From visual 

inspection, the estimated rolling parameters are, clearly, out of the confidence interval bounds 

in many cases. Table 2 presents the percentage of rolling-sampled estimations, which are 

outside of the 95% confidence interval of the full-sampled parameters. Characteristic 

examples of the change in the parameter values are 1  and v  for DAX30 as well as 1  for 

FTSE20 and SP500. However, there are rolling parameters which do not change significantly 

across time, such as   (leverage effect), and 0  (contribution of non-trading days to 

volatility). An important characteristic, which is extracted from the rolling-sampled estimated 

parameters, is the fact that the estimated values do not fluctuate in a mean reverting form but 

they change gradually. Sudden changes of the values of the rolling estimated parameters, 

which are characterized by a mean reverting form, should indicate an improperly maximum 

likelihood estimation procedure. On the other hand, gradual changes of the estimated 

                                                 
7
 Engle et al. (1993), Engle et al. (1997), Noh et al. (1994), Angelidis et al. (2004) note that the size of the rolling 

sample turns out to be rather important while Frey and Michaud (1997), Hoppe (1998) and Degiannakis and 

Xekalaki (2006) comment that the use of short sample sizes generates more accurate volatility forecasts, since it 

incorporates changes in trading behaviour more efficiently. 
8
 Figures of the estimated rolling parameters for the DAX30, FTSE100 and SP500 indices, similar to Figure 1, are 

available upon request. 
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coefficients indicate a data set that alters from time to time, forcing us to believe that the 

values of the estimated parameters reflect the information that financial markets reveal. 

INSERT FIGURE 1 ABOUT HERE  

INSERT TABLE 2 ABOUT HERE 

The percentage of estimated rolling parameters that are statistically different from the 

parameter values estimated using the full data sample, as presented in Table 3, is also 

indicative for the changes of the estimated values across time. There are four parameters, in 

the case of the Greek market, whose rolling-sampled estimators differ statistically significant 

from their full-sampled estimators in more than 10% of the trading days. Although, in the case 

of the FTSE100 index, only the rolling estimators of 1  parameter differ statistically from their 

full data sample estimator, in the case of the SP500 index there are four parameters, which 

show a statistically significant difference from their full-sampled estimators in more than 20% 

of the trading days. 

INSERT TABLE 3 ABOUT HERE 

The values of the rolling parameters indicate that the characteristics of the markets 

change during the examined period. According to Table 4, which presents the percentage of 

trading days that the rolling parameters are statistically insignificant, there are parameters 

whose rolling-sampled estimations are statistically insignificant while their full-sampled 

estimations are significant. For example, parameters 3  and 1  for the SP500 index, as well 

as parameter   for FTSE100 index, although they appear to be significant in the full sample, 

almost all their rolling-sampled estimations are insignificant at 5% level of significance.  

Therefore, in the full sample, an inverse relation between volatility and serial correlation 

characterizes FTSE20 index, but the values of rolling 3  are not different to zero in most of 

the cases. Of course, there are parameters whose estimations are statistically different to zero 

in both the full sample and the rolling samples (i.e. the parameter 1  for the FTSE20, DAX30 

and SP500 indices). Hence, we may infer that the values of the estimated parameters change 

across time, reflecting the individual features of particular periods that characterize financial 

markets. 

INSERT TABLE 4 ABOUT HERE 

However, although the estimated parameters are time varying, the in-sample and out-

of-sample forecasting ability of the model is accurate. There are 31, 19, 17 and 29 cases, or 

4.99%, 2.99%, 2.66% and 4.57%, observed returns outside the 95% confidence intervals for 

the FTSE20, DAX30, FTSE100 and SP500 indices, respectively. In Figure 2.a, the 95% in-

sample confidence interval of the FTSE20 index of daily returns is plotted from 11th January 

2000 to 5th July 2002. However, a model that uses a large number of parameters may exhibit 

an excellent in-sample fit but a poor out-of-sample performance. Studies such as Heynen and 

Kat (1994), Hol and Koopman (2000) and Pagan and Schwert (1990) examined a variety of 
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volatility prediction models with in-sample and out-of-sample data sets. We investigate the 

possibility that model over-fitting can be occurred and evaluate the performance of the 

estimated ARCH model by computing the out-of-sample forecasts. In the sequel, the one-day-

ahead 95% prediction intervals are constructed. Let us compute the one-day-ahead 

conditional mean, 
   t

t

ttt IyEy |1|1   , and conditional variance, 
   t

t

ttt IE |2

1

2

|1    , 

using the following formulas: 
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where 
                          ttttttttttttt va ,,,,,,,,,,, 2111003210    is the parameter vector 

that is estimated using the sample data set which is available at time t ,  tttt IE ||    

denotes the prediction error conditional on the information set that is available at time t , and 

 ttttA IE |2

|,    is the conditional standard deviation which is computed by the ARCH 

model, in equation (6), using the information set available at time t . Note that for 

 vGEDzt ;1,0~ , the expected value of its absolute price is equal to 

          2/1
1

, 312


 
ttt

tAt vvvE  . 

Figure 2.b plots the one-day-ahead 95% prediction interval, which is constructed as the 

one-day-ahead conditional mean  2.06 times the conditional standard deviation, both 

measurable to tI  information set, or 
   ttA

t

ttA vGEDy |1,|1, 025.0,;1,0    , where 
  avGED t ,;1,0  

is the  a1100  quantile of the GED distribution. Hence, each trading day, ( t ), the next 

trading day’s, ( 1t ), prediction intervals are constructed, using only information available at 

current trading day, t . There are 29, 22, 21 and 32 observations or 4.67%, 3.46%, 3.29% and 

5.04% for the FTSE20, DAX30, FTSE100 and SP500 indices, respectively, outside the 95% 

prediction intervals9. 

INSERT FIGURE 2 ABOUT HERE 

For a more formal method of evaluating forecasting adequacy, we apply two 

hypotheses tests that measure the forecasting accuracy in a VaR framework. One-day-ahead 

VaR at a given probability level, a , is the next trading day’s predicted amount of financial loss 

of a portfolio, or      ttA

t

t avGEDaVaR |1,1|1 ,;1,01    . Kupiec (1995) introduced a likelihood 

                                                 
9
 Figures, similar to Figure 2, that depict the in-sample 95% confidence interval and the one-day-ahead 95% 

prediction intervals for the DAX30, FTSE100 and SP500 indices are also available upon request. 
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ratio statistic for testing the null hypothesis that the proportion of confidence interval violations 

is not larger than the VaR forecast. The test statistic, which is asymptotically 
2

1X  distributed, 

is computed as ])1(ln())1()[ln((2 nNnnNn

K ppNnNnLR   , where 

n      
N

i ttt aVaRyd
1 |11 2/   2/1|11 aVaRyd ttt    is the number of trading days over 

the out-of-sample period N  that a violation has occurred, for    12/|11   aVaRyd ttt  if 

ttt VaRy |11    and    02/|11   aVaRyd ttt  otherwise, and p  is the expected frequency of 

violations. Christoffersen (1998) developed a likelihood ratio statistic that jointly investigates 

whether i) the proportion of violations is not larger than the VaR forecast and ii) the violations 

are independently distributed. The statistic is computed as CLR ))1(2ln(- nnN pp   

)))1()1(2ln( 11100100

11110101

nnnn   , where 
j

ijijij nn and ijn  is the number of 

observations with value i  followed by j , for 1,0, ji . The values 1, ji  denote that a 

violation has been made, while 0, ji  indicate the opposite. Under the null hypothesis, the 

CLR  is asymptotically chi-squared distributed with two degrees of freedom. The main 

advantage of Christoffersen’s test is that it can reject a VaR model that generates either too 

many or too few clustered violations. Both tests do not reject the null hypothesis of correct 

proportion of violations in all the cases, except for the 95%-VaR of the FTSE100 index. In the 

case of Kupiec’s test the p-values are 70.28%, 6.08%, 3.45% and 96.37% for 95%-VaR and 

8,15%, 13.63%, 56.56% and 52.70% for 99%-VaR, for the FTSE20, DAX30, FTSE100 and 

SP500 indices, respectively. Testing the null hypothesis of whether the violations are equal to 

the expected ones as well as if they are independent, we observe that the relative p-values 

are 40.03%, 16.42%, 0.15% and 95.19% in the 95%-VaR case and 17.98%, 32.51%, 7.10% 

and 73.92% in the 99%-VaR case, for the FTSE20, DAX30, FTSE100 and SP500 indices, 

respectively.  

Despite the fact that the values of the estimated coefficients change over time, the 

model adequately forecasts the one-day-ahead volatility. Thus, changes in the values of the 

estimated parameters do not indicate inadequacy of the model in describing the data. On the 

contrary, model’s parameters should be re-estimated on a daily base in order to reflect any 

changes that have been occurred in the stock market and have been incorporated in the 

prices of assets10. 

                                                 
10

 In order to investigate whether the phenomenon of time-variant values of estimated parameters is related to a 

specific structural characteristic of the model specification, we estimate another ARCH specification. Degiannakis 

(2004) and Giot and Laurent (2003) used an ARCH model with the APARCH volatility specification of Ding et 

al. (1993) and the skewed student-t distribution for the standardized innovations. We estimated such a model for 

our datasets and found similar qualitative results. The estimated parameters are time varying. We have also re-

estimated model (6) using alternatively i) larger sample sizes of rolling parameters, ii) the BHHH algorithm 

(Berndt et al. 1974) instead of the Marquardt algorithm in estimating the maximum likelihood parameters and iii) 

the same starting values at each point in time, instead of the estimates at time 1t  as starting values for the 
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4 .  R o l l i n g - s a m p l e d  p a r a m e t e r s  f r o m  s i m u l a t e d  p r o c e s s e s  

A simulation study could shed light in rolling-sampled estimated parameters’ behaviour. A 

series of simulations is run in order to investigate if the time-variant attitude holds even in the 

case of an ARCH data generating process. We generate a series of 32000 values from the 

standard normal distribution,  1,0~
...

Nz
dii

t . Then an AR(1)GARCH(1,1) process is created, 

 32000

1tty , where ttt yy  115.00005.0 , by multiplying the i.i.d. process with a specific 

conditional variance form 
2

ttt z   , for 
2

1

2

1

2 90.005.00005.0   ttt  . The 

AR(1)GARCH(1,1) model is applied on the  32000

1002tty  generated data. Dropping out the first 

1001 data, maximum likelihood rolling-sampled estimates of the parameters are obtained by 

numerical maximization of the log-likelihood function, using a rolling sample of constant size 

equal to 1000. According to Table 5, about 58% of the 30000 conditional variance rolling-

sampled parameters are outside the 95% confidence interval of the parameters estimated 

using the whole sample set of the 30000 simulated data. The procedure is repeated for an 

AR(1)EGARCH(1,1) conditional variance form,    2

11

1

1

1

1

10

2 lnln 
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but the results are robust to the choice of the conditional variance specification. 

A series of 32000 values from the first order autoregressive process are also 

produced. The AR(1) process is created as ttt zyy  112.00001.0 , for  1,0~
...

Nz
dii

t . 

Dropping out the first 1001 data, 30000 maximum likelihood rolling-sampled estimates of the 

parameters are also obtained. As far as the case of the AR(1) process is concerned, we infer 

that the rolling estimated parameters are time-invariant, as on average 5% of the estimated 

rolling parameters are outside the 95% confidence levels.  

Both the AR(1)GARCH(1,1) and the AR(1) processes were simulated for various sets 

of parameters, but there are no qualitative differences to the fore mentioned conclusions. 

Moreover, a series of simulations were repeated i) for ARCH volatility forms without any 

conditional mean specification, ii) based on estimation procedures of the most well known 

packages, EVIEWS® 4.1 and OX-G@ARCH® 3.4, iii) for larger rolling samples of 5000 values, 

iv) for non-overlapping data samples, but there were no qualitative differences in any of these 

cases11. 

So, the simulation study provides evidence that the time-variant attitude of rolling-

sampled parameters estimations characterizes not only the examined data sets but the ARCH 

data generating process itself as well.  

INSERT TABLE 5 ABOUT HERE 

                                                                                                                                                           
likelihood algorithm at time t . Despite the slight changes occurred in each case, the rolling parameters are time-

variant for all cases. 
11

 All the simulation studies are available to the readers upon request. 
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5 .  R o l l i n g - s a m p l e d  p a r a m e t e r s  f r o m  a  L e v y - s t a b l e  d i s t r i b u t i o n  

In this section, we investigate whether the phenomenon of parameter changing across time is 

related with the unconditional distribution of returns also. Mandelbrot (1963) and Fama (1965) 

made the first re-examination of the unconditional distribution of stock returns. Mandelbrot 

(1963) concluded that price changes can be characterized by a stable Paretian distribution 

with a characteristic exponent, a , less than two, thus exhibiting fat tails and infinite variance. 

Fama (1965) examined the distribution of thirty stocks of the Dow Jones Industrial Average; 

his results were consistent with Mandelbrot’s. Thereafter, it has been accepted that the stock 

returns distributions are fat-tailed and peaked. In an attempt to model the unconditional 

distribution of stock returns several researchers have considered alternative approaches. See 

for example, Blattberg and Gonedes (1974), Bradley and Taqqu (2002), Clark (1973), Kon 

(1984), McDonald (1996), Mittnik and Rachev (1993), Panas (2001), Rachev and Mittnik 

(2000).12  

The probability density function of a stable distribution cannot be described in a closed 

mathematical form. By definition, a univariate distribution function is stable if and only if its 

characteristic function has the form 
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  if 1a . The 

particular distribution represented by its characteristic function is determined by the values of 

four parameters: a ,  ,   and  . The parameter a , 20  , is called the characteristic 

exponent. It measures the thickness of the tails of a stable distribution. The smaller the value 

a , the higher the probability in the distribution tails. If 2a  then we have thicker tails than the 

tails of normal distribution. Thus, stable distributions have thick tails and consequently 

increase the likelihood of the occurrence of large shocks. The skewness parameter  , 

11   , is a measure of the asymmetry of the distribution. The distribution is symmetric, if 

0 . As   approaches one, the degree of skewness increases. The scale parameter  , 

0 , is a measure of the spread of the distribution. It is similar to the variance of the normal 

distribution, 2  . However, the scale parameter   is finite for all stable distributions, 

despite the fact that the variance is infinite for all 2a . The location parameter  , 

  , is the mean of the distribution, for 1a , and the median for 10  a . The 
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 De Vries (1991), Ghose and Kroner (1995) and Groenendijk et al. (1995) demonstrate that ARCH models share 

many of the properties of Levy-stable distribution but the true data generating process for an examined set of 

financial data is more likely ARCH than Levy-stable. A number of studies, such as Liu and Brorsen (1995), 

Mittnik et al. (1999), Panorska et al. (1995), Tsionas (2002), examined the properties of ARCH models with 

Levy-stable distributed innovations. 
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case of 2a , 0  corresponds to the normal distribution, while 1a , 0  corresponds 

to the Cauchy distribution. 

In estimating the parameters of the stable distribution of index returns, we adopt the 

estimation procedure suggested by McCulloch (1986). The estimation procedure is a quantile 

method and works for 26.0  a  and any value of the other parameters. Essentially, 

McCulloch suggests that if we have a random variable x , which follows a stable distribution 

and denotes the 
thp  quantile of this distribution by  px , then the population quantile can be 

estimated by the sample quantile  px̂ . McCulloch’s estimator uses five quantiles to estimate 

a  and   as  
   
   25.0ˆ75.0ˆ

05.0ˆ95.0ˆ
ˆ

xx

xx




  and  

     
   05.0ˆ95.0ˆ

50.0ˆ205.0ˆ95.0ˆ
ˆ

xx

xxx




 . Since  a  is 

monotonic in a  and    is monotonic in  , we are able to find a  and   by inverting  a  

and   , thus      ˆ,ˆˆ
1 aga   and      ˆ,ˆˆ

2 ag . McCulloch tabulated 1g  and 2g  for 

various values of  a  and   . A similar procedure is also applied for the scale and location 

parameters. An alternative procedure to estimate the parameters of the stable distribution is 

the regression method proposed by Koutrouvelis (1980). 

Following a procedure similar to that of ARCH modelling, the parameters of the stable 

distribution are estimated, at each of a sequence of points in time, using a rolling sample of 

constant size equal to 1000 trading days. The empirical findings, for the case of the Greek 

stock market, are graphically summarized in Figure 3, which plots the rolling-sampled 

estimates of parameters along with the 95% confidence interval of the parameters estimated 

using the full data sample. Inspection of Figure 3 shows that the estimates of a  are less than 

two. The case of FTSE20 reveals that 92% of the a ’s rolling-sampled estimates are between 

1.44 and 1.55. The parameter   is greater than zero, which implies skewness to the right. 

The rolling values of   are positive and range from 0.003 to 0.22 but there are not outside the 

95% confidence interval for any case13.  

INSERT FIGURE 3 ABOUT HERE 

In Table 6, we present the estimates of the parameters of stable distribution based on 

all data available as well as the standard deviation of the rolling-sampled estimated 

parameters. The estimates of a  do not approach the value of two in any of the examined 

indices. However, there are estimated rolling parameters that are statistically different from the 

parameter values estimated using the full data sample. For example, the rolling-sampled 

estimates of the tail index ( a ) are statistically different to the full sample estimated parameter 

in the 51.46% of the trading days for the case of the SP500 index. The rolling estimates of 
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 Figures depicting the rolling-sampled estimates of the parameters for the DAX30, FTSE100 and SP500 indices 

are available upon request. 

 



13 

parameter   are statistically different to the relevant full-sampled values in 9.59% and 9.42% 

of the trading days for the DAX30 and FTSE100 indices, respectively, whereas the location 

( ) parameters are time-variant in none of the cases. Another important parameter of the 

stable distribution, from the point of view of portfolio theory, is the scale parameter,  . As far 

as the FTSE20 index is concerned, the rolling-sampled estimates of the scale parameter differ 

statistically from its full-sampled value in the 56.48% of the trading days. Hence, the 

parameter estimates, using the full data sample are statistically different from the parameter 

values estimated using the rolling samples of constant size for one parameter in each index. 

INSERT TABLE 6 ABOUT HERE 

6 .  D i s c u s s i o n  

We estimated an asymmetric ARCH model using daily returns of the FTSE20, DAX30, 

FTSE100 and SP500 indices and concluded that although the estimated parameters of the 

model change over time, the model does not lose its ability to forecast the one-day-ahead 

volatility accurately. Furthermore, the rolling parameter analysis was applied to the 

unconditional distribution of returns. We observed the phenomenon of parameter changing 

across time for both the conditional (ARCH process) and the unconditional (Levy-stable) 

distribution of returns. Even in the case of a simulated ARCH process, the property of time 

varying rolling-sampled parameters holds. One possible reason for parameter instability might 

be that the behaviour of the market participants has undergone fundamental changes. 

Parameters instability indicates a change in market behavior but we can not determine the 

source of that change. The term ‘a data set that alters’, could incorporate a wide range of 

possible sources, i.e. financial legislation, market microstructure, market participants’ 

perspective, technological revolution or even macroeconomic policy.  

Gallant et al. (1991), Stock (1988), Lamoureux and Lastrapes (1990) and Schwert 

(1989) among others have aimed at explaining the economic interpretation of the ARCH 

process. As Engle et al. (1990) and Lamoureux and Lastrapes (1990) have noted, the 

explanation of the ARCH process must lie either in the arrival process of news or in market 

dynamics in response to the news. Based on some earlier work by Clark (1973) and Tauchen 

and Pitts (1983), Gallant et al. (1991) provided a theoretical interpretation of the ARCH effect. 

They assumed that the asset returns are defined by a stochastic number of intra-period price 

revisions and information flows into the market in an unknown rate. As the daily information 

does not come to the stock market in a constant and known rate, the estimation of the ARCH 

stochastic process that explains the dynamics of the stock market could be revised at regular 

time intervals. In our case the ARCH process is estimated using daily returns. Thus, the 

parameters of the model may be revised on a daily base, because of the observed 

phenomenon of changes in the estimated parameters. If we used data of higher frequency, i.e. 

ten-minutes intra-daily returns, the estimated model might be revised more frequent than on a 

daily base. 
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To the best of authors’ knowledge, this is the first study that investigates the 

phenomenon of time varying estimated parameters either i) in real-world financial data or ii) in 

a simulated data generating process. A natural extension of this study would be to analyse the 

change and the relative economic interpretation of the estimated values of the parameters in 

intra-daily high-frequency data sets. 
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T a b l e s  a n d  F i g u r e s  

Table 1. Parameter estimates for the FTSE20, DAX30, FTSE100 and SP500 index daily returns 

(January 3rd, 1996 to July 5th, 2002). 

     

Parameter Coefficient Coefficient / Standard error 

 FTSE20 DAX30 FTSE100 SP500 FTSE20 DAX30 FTSE100 SP500 

0  -0.001 0.000 -0.000 -0.001 -1.898 0.596 -0.067 -1.027 

1  2.853 1.995 1.251 4.297 1.634 0.736 0.319 1.071 

2  0.053 0.024 0.005 -0.100 1.103 0.398 0.078 -1.620 

3  0.317b -0.075 0.144 0.333a 2.809 -0.544 1.140 2.745 

0a  -6.833a -9.858a -1.326b -4.059a -6.341 -10.727 -2.538 -5.929 

0  0.187a 0.095 0.012 0.039 3.382 1.880 0.342 0.956 

1  0.394a 0.190a 0.056 0.060 19.79 27.847 0.892 1.378 

1  0.920a 0.973a -0.001 0.785a 38.34 73.455 -0.003 28.040 

  -0.064 -0.068 -0.108a -0.236a -1.043 -0.856 -2.969 -2.975 

1  0.010 -0.008 0.694a 0.081b 0.415 -0.688 4.822 2.295 

2  0.002 0.004 0.201b 0.041 0.103 0.386 2.116 1.314 

v  1.335a 1.735a 1.858 1.689 -15.540 -9.137 -1.495 -8.184 

20Q  20.065 22.597 23.913 24.090 [0.391] [0.256] [0.200] [0.193] 

2

20Q  16.663 23.747 24.696 13.003 [0.615] [0.206] [0.171] [0.838] 

Notes: With v =1.335, v =1.735, v =1.858, v =1.689, the 97.5% point of the generalized error distribution 

are 2.06, 2.00, 1.98 and 2.00, respectively. With v =1.335, v =1.735, v =1.858, v =1.689, the 99.5% point 

of the generalized error distribution are 2.94, 2.70, 2.65 and 2.72, respectively. For the FTSE20 index, 

parameters 1  and 2  present the volatility spillover from the SP500 and DAX30 indices, respectively. For 

the DAX30 index, parameters 1  and 2  present the volatility spillover from the FTSE100 and SP500 

indices, respectively. For the FTSE100 index, parameters 1  and 2  present the volatility spillover from 

the DAX30 and SP500 indices, respectively. For the SP500 index, parameters 1  and 2  present the 

volatility spillover from the DAX30 and FTSE100 indices, respectively. 20Q  and 
2

20Q  are the Q-statistics of 

order 20 computed on the standardized residuals and their squared values, respectively. The relative p-

values are presented in brackets. 

a 
Indicates that the coefficient is statistically significant at 1% level of significance. 

b 
Indicates that the coefficient is statistically significant at 5% level of significance. 
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Table 2. Percentage of rolling-sampled estimated parameters that are outside the 95% 

confidence interval. (Values in parenthesis present the lower and upper bounds of the 95% 

confidence interval). 

 FTSE20 DAX30 

0  (-0.002 0.000) 
 

56.48% (-0.001 0.002) 33.18% 

1  (-1.780 7.485) 
 

7.04% (-4.989 8.978) 0.00% 

2  (-0.075 0.181) 
 

0.00% (-0.133 0.182) 0.00% 

3  (0.017 0.617) 
 

0.32% (-0.431 0.281) 0.00% 

0a  (-9.694 -3.972) 
 

14.88% (-12.227 -7.489) 3.20% 

0  (0.040 0.334) 
 

1.12% (-0.035 0.224) 0.00% 

1  (0.342 0.447) 
 

13.12% (0.172 0.207) 62.24% 

1  (0.856 0.984) 
 

54.40% (0.939 1.007) 22.08% 

  (-0.227 0.099) 
 

0.00% (-0.271 0.136) 0.00% 

1  (-0.056 0.076) 
 

5.12% (-0.038 0.022) 3.04% 

2  (-0.059 0.064) 
 

32.16% (-0.025 0.034) 1.60% 

v  (1.222 1.449) 
 

26.88% (1.660 1.811) 46.72% 

 FTSE100 SP500 

0  (-0.001 0.001) 24.11% (-0.002 0.001) 20.66% 

1  (-8.762 11.263) 0.80% (-5.978 14.572) 16.48% 

2  (-0.148 0.157) 1.28% (-0.258 0.058) 0.00% 

3  (-0.178 0.465) 12.32% (0.022 0.644) 0.48% 

0a  (-2.659 -0.007) 16.64% (-5.812 -2.306) 24.00% 

0  (-0.080 0.105) 0.00% (-0.065 0.142) 0.00% 

1  (-0.104 0.215) 0.00% (-0.052 0.173) 20.96% 

1  (-0.472 0.471) 1.12% (0.713 0.857) 60.48% 

  (-0.201 -0.015) 1.12% (-0.439 -0.033) 0.48% 

1  (0.327 1.062) 0.48% (-0.009 0.171) 0.00% 

2  (-0.041 0.444) 0.00% (-0.039 0.121) 35.36% 

v  (1.616 2.100) 0.48% (1.591 1.787) 9.44% 
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Table 3. Percentage of rolling-sampled estimated parameters that are statistically different 

from the parameter values estimated using the full data sample. 

 FTSE20 DAX30 FTSE100 SP500 

Parameter 

5% 

sign. 

Level 

1% 

sign. 

Level 

5% 

sign. 

Level 

1% 

sign. 

Level 

5% 

sign. 

Level 

1% 

sign. 

Level 

5% 

sign. 

Level 

1% 

sign. 

Level 

0  21.86% 1.29% 13.67% 0.80% 4.02% 0.00% 14.15% 4.34% 

1  0.96% 0.00% 0.00% 0.00% 0.16% 0.00% 8.52% 0.64% 

2  0.00% 0.00% 0.00% 0.00% 1.13% 0.00% 0.00% 0.00% 

3  0.00% 0.00% 0.00% 0.00% 3.22% 0.64% 0.00% 0.00% 

0a  17.20% 3.86% 16.72% 7.40% 0.48% 0.00% 24.28% 6.59% 

0  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.73% 0.00% 

1  7.40% 0.00% 0.00% 0.00% 0.00% 0.00% 7.56% 0.00% 

1  18.97% 10.13% 2.57% 0.00% 14.47% 5.79% 31.67% 3.54% 

  0.00% 0.00% 5.14% 0.00% 4.50% 0.00% 36.17% 10.13% 

1  0.00% 0.00% 0.00% 0.00% 0.80% 0.32% 0.00% 0.00% 

2  12.54% 0.16% 0.00% 0.00% 0.16% 0.00% 24.92% 0.00% 

v  1.29% 0.00% 16.72% 0.32% 0.00% 0.00% 0.00% 0.00% 

 

 

 

Table 4. Percentage of the rolling-sampled estimated parameters that are statistically insignificant at 5% 

and 1% levels of significance. 

 FTSE20 DAX30 FTSE100 SP500 

Parameter 
5% sign. 

Level 

1% sign. 

Level 

5% sign. 

Level 

1% sign. 

Level 

5% sign. 

Level 

1% sign. 

Level 

5% sign. 

Level 

1% sign. 

Level 

0  30.06% 76.21% 88.36% 99.37% 94.69% 100% 66.35% 84.28% 

1  32.80% 97.11% 93.87% 100% 99.22% 100% 57.08% 87.26% 

2  99.84% 100% 100% 100% 99.22% 100% 100% 100% 

3  65.11% 87.78% 100% 100% 79.69% 96.56% 92.77% 100% 

0a  0.00% 0.48% 0.00% 0.00% 17.81% 40.78% 1.57% 18.08% 

0  27.65% 57.07% 81.45% 100% 100% 100% 100% 100% 
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1  0.00% 0.00% 0.00% 0.00% 100% 100% 100 100 

1  0.00% 0.00% 0.00% 0.00% 31.25% 38.91% 0.00% 0.00% 

  100% 100% 100% 100% 100% 100% 0.00% 44.18% 

1  100% 100% 100% 100% 0.00% 0.16% 94.03% 100% 

2  89.55% 99.84% 100% 100% 67.97% 96.56% 59.91% 91.19% 

v  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

 

 

Table 5. AR(1)GARCH(1,1) simulated process. Percentage of rolling-

sampled estimated parameters that are outside the 95% confidence 

interval. 

ttt yy   110  

2

ttt z   ,  1,0~
...

Nz
dii

t  

2

12

2

110

2

  ttt aaa   

 0  
1  0a  

1a  2a  

Simulated Values 0.005 0.150 0.040 0.0500 0.900 

Estimated Values 

(Full Data Sample) 
-0.003 0.158 0.037 0.0138 0.895 

Rolling parameters 

outside the 95% c.i. 
11.70% 3.32% 73.17% 30.88% 72.17% 

 

 

Table 6. Stable parameter estimates, using the full data sample, of the 

FTSE20, DAX30, FTSE100 and SP500 index daily returns, their standard 

errors and the percentage of rolling-sampled estimated parameters that are 

statistically different from the parameter values estimated using the full data 

sample at 5% level of significance. 

 Tail index 

a  

Skewness 

  

Location 

  

Scale 

  

FTSE20 

Coefficient 1.48303 0.07799 -0.00033 0.01005 

Standard error 0.05606 0.07965 0.00143 0.00081 

5% sign. Level 0.32% 0.00% 0.00% 56.48% 

DAX30 
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Coefficient 1.58306 -0.14798 0.00101 0.00754 

Standard error 0.15725 0.18828 0.00069 0.00217 

5% sign. Level 1.53% 9.59% 0.12% 0.00% 

FTSE100 

Coefficient 1.68238 -0.06489 0.00046 0.00591 

Standard error 0.10944 0.25581 0.00039 0.00165 

5% sign. Level 2.13% 9.42% 0.49% 0.00% 

SP500 

Coefficient 1.49172 -0.11841 0.0005 0.00525 

Standard error 0.07160 0.09609 0.00052 0.00218 

5% sign. Level 51.46% 5.00% 0.00% 0.00% 

Notes: The standard error of parameter a  is computed as the standard deviation 

of the rolling-sampled estimated parameters, 
 tâ , for Tt ,...,1  trading days, i.e. 

      





T

t

Tt aaT
1

21
ˆ1 , where 

   



T

t

tT aTa
1

1 ˆ . 

 



24 

 

 

Figure 1. The rolling-sampled estimated parameters of the ARCH model and the 95% confidence 

interval of the parameters estimated using the full data sample. 
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Notes: The 95% confidence interval is constructed as   10001621ˆ025.0,335.1;1,0ˆ


 SGED , where ̂  denotes 

the parameter vector estimated using the full data sample, 
Ŝ  is the standard deviation of ̂  and  avGED ,;1,0  

is the  a1  percentile of the GED distribution, with v  denoting the tail thickness parameter.  
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Figure 2.a. In-sample 95% confidence interval of the FTSE20 index daily returns for the 

ARCH model (11th January 2000 to 5th July 2002). 
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Figure 2.b. One-step-ahead 95% prediction interval of the FTSE20 index daily returns for 

the ARCH model (11th January 2000 to 5th July 2002). 
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Figure 3. FTSE20 index daily returns. The rolling-sampled 

estimated parameters of the stable distribution and the 95% 

confidence interval of the parameters estimated using the full 

data sample. 
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