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Abstract

We draw from documented characteristics of the biopharmaceutical industry to construct a
model where two firms can choose to outsource R&D to an external unit, and/or engage in in-
ternal R&D, before competing in a final market. We investigate the tension between internal and
outsourced operations, the distribution of profits among market participants, and the incentives to
coordinate outsourcing activities or to integrate R&D and production. Consistent with the empir-
ical evidence, we find that: (i) internal and external operations are neither substitutes nor comple-
ments in general, as each firm’s in-house effort level can be reduced or stimulated by the external
unit’s activities, depending on the nature of R&D returns; (ii) an aggregate measure of techno-
logical externalities drives the distribution of industry profits, with higher returns to the external
unit for development (clinical trials) than for research (drug discovery); (iii) in the latter case, the
delinkage of investment incentives from industry value, and the vulnerability of investors’ re-
turns to negative shocks, both suggest the abandonment of projects with economic and medical
value as a likely consequence of outsourcing; (iv) upstream entry is stimulated by the long-run
perspective for founders of a research biotech, more than of a clinical services unit, to extract – or
reappropriate – industry profits by selling the equity to a client firm.
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1 Introduction

There is evidence that pharmaceutical firms that engage in internal R&D (research and development)

increasingly outsource specific tasks. Morton and Kyle (2012) report a worldwide compound annual

growth rate of 16.6% in contract R&D, with expenses rising from US$ 14 billion in 2003 to 47 billion

in 2011. This trend is viewed as an attempt to reverse a decline in R&D productivity observed over

several decades (Munos, 2009; Pammolli et al., 2011; Mestre-Ferrandiz et al., 2012).

While the number of new molecular entities and biologics that are approved annually by the US

Food and Drug Administration (FDA) has remained around the same level since 1950, when mea-

sured per billion US dollars spent on R&D this number has halved roughly every 9 years (Scannell

et al., 2012). Although the reasons for this long-term decline are multiple, industry experts point

to technological challenges as a key driver of the rise in R&D costs. The scale of the productivity

problem can be gauged by considering changes in the average full cost estimate of bringing a new

compound to the market. This estimate is $451 million in DiMasi et al. (1991), $1,031 million in Di-

Masi et al. (2013), and $2,558 million in DiMasi et al. (2016).1 Despite this cost escalation, as gross

margins have evolved in parallel with R&D spending (Scherer, 2001, 2010), the net profit returns have

remained persistently high at the aggregated industry level.

It is believed in the industry that R&D outsourcing can reduce costs by increasing efficiency in

the discovery and testing steps toward new medicines (Schuhmacher et al., 2016). The tasks that

firms choose to contract out cover a large spectrum of activities, from basic research to late-stage

development, including genetic engineering, target validation, assay development, safety and effi-

cacy tests in animal models, and clinical trials involving human subjects. At the same time, large

pharmaceutical firms invest large amounts of financial resources to acquire specialized innovative

units involved in promising projects. For example, in the oncology domain, AbbVie agreed to buy

Pharmacyclics for $21 billion in 2015, and Pfizer acquired Medivation for $14 billion in 2016. Some of

the targets are also involved in clinical trials, like Medarex which evolved from a research entity to a

development company before Bristol-Myers Squibb acquired it for $2.4 billion in 2009. Such acquisi-

tions are viewed by industry leaders as another response to the declining R&D productivity problem

1Here we focus on estimates based on the same methodology to estimate costs, which include out-of-pocket R&D costs
and time cost (i.e., cost of capital). The estimate in DiMasi et al. (2016) is in 2013 prices, and the cost estimates in DiMasi et
al. (1991, 2003) have been updated to US$ 2011 prices in Mestre-Ferrandiz et al. (2012). The latter paper offers a detailed
discussion on the approaches used to estimate the full cost of bringing a new compound to the market.
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(Comanor and Scherer, 2013). The absorption of an independent specialized unit by a pharmaceutical

firm substitutes for a contractual relation between the two entities, and the two technology outsourc-

ing alternatives amount to R&D expenditures. Still the high transaction prices observed in the equity

market suggest that pharmaceutical firms pay more for R&D by acquiring an external unit than by

contracting with it as a client firm, or by carrying out the R&D internally (Pisano, 2015).

Over the past two decades, a growing stream of economics literature – which we review below

– has investigated a variety of issues that pertain to R&D outsourcing. However, most theoretical

contributions adopt a general approach without specific reference to the particularities of the bio-

pharmaceutical sector, and several empirical analyses offer mixed results that leave important ques-

tions unanswered. Does R&D outsourcing necessarily coincide with a disinvestment of big pharma

firms from internal drug discovery or clinical trial activities? Can technological characteristics of

contracted-out operations, and the nature of the R&D tasks, explain the low average profitability of

biotech units that engage in basic research, or the higher financial returns of contract research orga-

nizations involved in later-stage development? Do big pharma firms effectively pay more for R&D

by acquiring an external unit than by contracting with it? From the viewpoint of the external unit’s

owners, do incentives to participate in the equity market depend on the nature of R&D activities?

In order to answer these questions, we draw on documented characteristics of the biopharmaceu-

tical industry to construct a model in which a for-profit independent unit (e.g., a biotech startup, or

a contract research organization) conducts specific tasks as solicited non-cooperatively by two firms

(big pharma), which also run R&D operations internally, before competing in a final market. The

external unit interacts with the two firms by responding to their contractual offers, and can choose

to serve both firms, only one, or none. The firms can substitute internal resources for some or all of

the external unit’s operations, and their contractual offers reflect multi-stage strategic interactions in

the intermediate R&D market and in the final product market. Incentives to pay for outsourced R&D

depend on the exact effects of the received technology, and of the related internal R&D, on the firms’

respective cost and demand conditions. The model allows us (i) to determine whether outsourced

and in-house R&D perform as complements or rather as substitutes, then (ii) to identify technological

drivers of the distribution of profits among the external unit and its sponsors, and (iii) to character-

ize the incentives for the client firms, and the payoff consequences for the upstream investors, to

integrate R&D and production vertically, or to opt for other organizational arrangements.
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Overall, the formal analysis leads to new insights on the functioning of R&D outsourcing and

its implications for biopharmaceutical firms and their external partners, with strong and intelligible

connections to the recent empirical evidence on the relation between contracted-out and in-house

technological activities, on the nature of knowledge externalities in discovery and clinical develop-

ment, and on merger activity in the equity market.

More specifically, our model produces three sets of results. First, we characterize the circum-

stances in which outsourced R&D either stimulates or reduces the internal R&D levels (Proposition

1). This is made possible by the specification that, unlike the models that we know in the theoretical

R&D literature, the choices by the external unit, and by the firms on the demand side of the market

for technology, are not a priori complementary or substitutable. We find that each firm’s equilibrium

internal effort level increases or decreases with the R&D sourced from the external unit, and that

the sign of the relationship does not depend on technological spillovers. More specifically, a firm’s

internal effort decreases in the outsourced R&D if and only if the gross profits (before incurring R&D

costs) have decreasing returns to the same firm’s own R&D (i.e., the R&D that it specifically buys

from the external unit or that it runs internally). This theoretical characterization echoes the most

recent empirical investigations (e.g., Hagedoorn and Wang, 2012; Ceccagnoli, Higgins, and Palermo,

2014) that show that external and internal R&D, in the biopharmaceutical industry, are neither com-

plements nor substitutes in general, as the exact connection between the two channels is rooted in

complex specifications that differ across the set of examined cases.

Second, we establish simple conditions on the model primitives for the total equilibrium R&D

benefits to be either fully appropriated by the two firms, or partially retained by the external unit.

These conditions relate to the sign and respective magnitudes of indirect and direct technological

externalities, and can explain the persistently low average profitability of biotech firms (Pisano, 2006,

2010). There are indirect technological externalities if the cost of R&D, as conducted by the external

unit for the two firms, reflects economies or diseconomies of scope. There are direct technologi-

cal externalities if some of the R&D received or produced by a firm impacts the gross profit of its

competitor. Our conditions notably establish that the external unit exactly breaks even (for a zero

economic profit) when the indirect (through the external unit) and direct (inter-firm) externalities are

positive (Proposition 2). This first theoretical situation receives empirical support from several inves-

tigations that find evidence of economies of scope and significant knowledge spillovers in early-stage
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discovery activities (Henderson and Cockburn, 1996; Cockburn and Henderson, 2001; Bloom et al.,

2013) on which biotech units focus. This case thus describes circumstances where outsourcing can

reduce the costs of discovering new medicines but still, where investors have no positive incentive to

engage financial resources. And this occurs precisely for the research tasks of the most fundamental

nature. The risks involved in such technological uncertainties make this situation of market failure

even more problematic. In our model, the contractual transfer payments in fact protect the client

firms from the risk inherent to upstream operations (we illustrate this feature with specific functional

forms in several examples). With an expected payoff exactly equal to zero in equilibrium, an unfa-

vorable draw in the distribution implies a negative return and leads the external unit to shut down,

although its activities generate a positive – and possibly very high – profit at the industry level.

This outcome suggests that protection measures for the external unit (e.g., the financial back-up of a

partner university) are necessary to avoid the abandonment of socially valuable research projects.

However, in our model the external unit can also appropriate a positive share – that can be de-

rived analytically – of total profits when the externalities are negative, in which case the client firms

earn only their marginal contribution to the industry profits (Proposition 3). This second situation is

consistent with the empirical studies that identify diseconomies of scope and nonexistent spillovers

in the late-phase clinical trials of candidate drugs (Danzon et al. 2005; Macher and Boerner, 2006),

such as conducted by specialized contract research organizations (see section 2). In that case the prof-

its to the external unit are an effect of competition between the contract offers of the two firms for the

orientation of R&D resources toward specific needs. The intensity of that competition depends on

the nature of the R&D activities, both inside the external unit and in the firms’ internal facilities, and

then on the effect of such activities on the downstream cost and demand characteristics, which in the

end also impact final market interactions.

From these results emerge unambiguous connections between the nature of research and (distinc-

tively) development activities with the sign of technological externalities and with the distribution of

profits among participants in the market for R&D market. These connections allow us to identify cir-

cumstances where incentives to invest in the external unit are delinked from the value generated to

the exclusive benefit of downstream sponsors (Corollary 1), and where efficient projects at the indus-

try level are vulnerable to unfavorable technological events (Corollary 2). Such circumstances sug-

gest the abandonment of projects with economic and medical value as a likely consequence of R&D
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outsourcing, and lead us to put in perspective the widespread belief, among business profession-

als in the biopharmaceutical industry, that the externalization of discovery and clinical development

activities can only contribute to solving the R&D productivity issue.

A third set of results connects the technological conditions that drive the distribution of R&D

benefits to the firms’ incentives to participate in the equity market. We identify two categories of

cases that depend on the ability of firms to bid or not for the external unit, depending on financial,

managerial, or governance constraints of all kinds. If such constraints are binding, either positive

technological externalities dominate and the firms remain independent, or negative externalities lead

the firms to choose to coordinate horizontally their R&D outsourcing (as in Majewski, 2004). Other-

wise, should the firms be unable to commit to not unilaterally considering vertical integration, one

of them does acquire the external unit. Whether one or the other firm is the acquirer occurs with

equiprobability, independently of firm asymmetries. The main outcome is that the competition for

the control of the external unit leads to overbidding (a case discussed in Higgins and Rodriguez,

2006), although the premium can be nil in the case of negative externalities (diseconomies of scope

and inexistant inter-firm spillovers), as characteristic of late-stage development tasks (Proposition 6).

We thus obtain that principally biotech founders engaged in early-stage research reappropriate in the

equity market part of the value transferred to their sponsors in the R&D market (Corollary 3).

Our model specifications depart from those of recent theoretical papers where research and de-

velopment operations are not considered separately, but are viewed as a single activity that is fully

performed either by an external unit or, exclusively so, internally by a firm. In Lai, Riezman, and

Wang (2009), a single client firm (a principal) offers a contract to the external unit (an agent), al-

though some technological information can be leaked subsequently to a competitor. When writing

the contract, the firm trades-off between the benefit of the external unit’s superior R&D efficiency

and the revenue loss caused by the leakage. For some parameter values, the firm finds it profitable

to externalize R&D with a lump-sum contract even though this allows the leakage to occur. In Ho

(2009), after the external unit accepts the contract and incurs the fixed cost, if successful then it can

secretly offer the technology to a final-market competitor of the principal for a higher total revenue,

before reporting a failure to the outsourcing firm. Any contract that incentivizes the external unit not

to leak the technology it shown to necessarily result in a lower net profit to the principal than the

status quo (no outsourcing).
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R&D operations are also formalized as a single activity in Vencatachellum and Versaevel (2009),

although we share with the latter contribution the focus on the strategic interactions of two firms

(principals), which simultaneously offer competing contracts to an external unit (a common agency

situation). An observable “active” leakage occurs when the contracts incentivize the external unit to

serve both firms, together with a “passive” (unsolicited) leakage captured by an inter-firm spillover

parameter. As a result, with positive economies of scope, but limited spillovers, the two firms receive

specific R&D services and earn higher equilibrium profits than by relying on internal resources.

Complete information also excludes secret reselling in Spulber (2013), where a set of competing

external inventors – or a multiproject monopoly inventor – engage in uncertain R&D projects for a

new production technology. After the R&D takes place upstream, client firms observe the inventions

together with their respective inventors’ two-part royalty offers, and simultaneously make adoption

and product pricing decisions. In equilibrium, all firms adopt the most efficient technology. When the

downstream firms vertically integrate R&D and production operations – a possibility also considered

in our model – and agree to share the best invention obtained from all projects before competing in

prices in the final market, the R&D activity is suboptimal.

A important specification of our model is that a vertical division of labour in R&D activities may

occur, like in Allain, Henry, and Kyle (2015) where an external research unit, which generates new

technology of uncertain value, faces a set of potential client firms which compete in an auction for the

exclusive benefit of the technology. When the research unit is ex ante more confident about the value

of the innovation than the firms, it chooses to develop it on its own for a higher expected benefit if

and only if its cost disadvantage is not too large. The latter situation is more likely if, following an

increase in the number of firms, the positive effect on the license fee resulting from the auction (more

bidders participate) dominates the negative effect on gross profits (more downstream competition).2

We share with Spulber (2013) and Allain et al. (2015) the assumption that complete information

or property rights prevent secret reselling, together with the characterization of the connection be-

tween the nature of competition among client firms and incentives to engage in R&D operations. Our

approach is complementary to both contributions, where the intensity of downstream competition

is driven by the number of client firms. In our model, the number of firms on the demand side of

the R&D market is constant, and the intensity of competition is a consequence of the exact effects

2Allain et al. (2015) also construct a large dataset on exclusive licensing deals and investigate the drivers of the decision,
by a research unit that has discovered a drug candidate, to proceed also to development operations.
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of external and internal R&D operations on cost and demand conditions. As in Allain et al. (2015),

the intensity of competition among client firms drives the vertical division of labor in R&D opera-

tions, and as in Spulber (2013) an appropriability problem may lead to integrate R&D and production

vertically. We also share with Ho (2009), Lai, Riezman, and Wang (2009) and Vencatachellum and Ver-

saevel (2009) the assumption that the firms write contract offers, to which the external unit responds,

and which can lead to multi-contracting. A key specific feature of our model, consistently with the

biopharmaceutical context, is that the firms, which also run internal research and/or development

tasks, condition their payments on a measure of the external unit’s operations, formalizing some kind

of dialogue in the market for technology (so the external unit’s operations are not conducted before

the client firms’ choice of payment schemes).

Our formal analysis also connects to the empirical evidence on the organization of R&D in the

biopharmaceutical industry. The endogeneity of the respective efforts of the external unit and its

client firms, in our model, captures the observation that the distribution of tasks between a spe-

cilized R&D supplier and its sponsors might vary significantly on a case by case basis. Recent results

appear notably in Hagedoorn and Wang (2012), where a panel sample of incumbent pharmaceutical

firms is used, with the innovative output (the dependent variable) measured as the number of annual

biotechnology patents granted to these firms. The level of internal R&D expenditure is found to drive

the interactive effect between external and internal R&D strategies. Above (below) a threshold level

of internal R&D investments, the marginal returns to internal R&D are higher (lower) when new

technology is sourced externally through alliances or acquisitions, which indicates complementar-

ity (substitutability). An ambiguous conclusion is also reached in Ceccagnoli, Higgins, and Palermo

(2014), where another panel dataset from the biopharmaceutical industry is used to estimate the

partial cross-derivative of an innovation production function (the output is the yearly stock of com-

pounds in a firm’s pipeline) with respect to external (in-licensing) and internal R&D expenditure.

The results suggest that external and internal R&D are neither complements nor substitutes, and

that complementarity increases with a few drivers (e.g., prior licensing experience). Our first formal

proposition, in Section 4, accords with these empirical results.3

Another set of papers use data collected at the firm level and at the level of individual R&D

3Papers such as Veugelers and Cassiman (1999, 2005), and Cassiman and Veugelers (2006) find similar results by using
cross-sectional data on R&D active firms, and conclude that the complementarity between external and internal sources of
technology is context related.
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projects in order to distinguish between economies of scale and economies of scope in the production

of intellectual property. The evidence depends on the nature of technological activities. Henderson

and Cockburn (1996), Cockburn and Henderson (2001), and Bloom, Schankerman, and Van Reenen

(2013) find economies of scope and significant knowledge spillovers in early-stage drug “discovery”

tasks (those on with biotech units typically focus). However, Danzon, Nicholson, and Sousa Pereira

(2005), and Macher and Boerner (2006), identify diseconomies of scope and nonexistent spillovers

in the late-phase clinical trials of candidate medicines (the “development” activities that are usually

outsourced to specialized CROs). Two of our theoretical propositions, in Section 4, clearly echo these

contrasted empirical results, and show their relevance for explaining the distribution of industry

profits between an external unit and its client firms.

A few other recent papers point to the ability of client firms, in the biopharmaceutical industry,

to contractually control the behavior of external technology suppliers. Robinson and Stuart (2007)

study the features of early-stage (discovery) research contractual agreements, in which large firms

sponsor small biotech companies. Their results suggest that a client firm can obtain broader termi-

nation rights when provisions on unverifiable research decisions are included in a contract, and thus

enhance the ex ante incentives of the external research unit to uphold the contract. Higgins (2007) also

analyzes R&D alliances between a firm and a biotech company. The milestone payment structure,

in 90 percent of the contracts, is found to protect the client firm from misbehavior by conditioning

financing on clearly identified objectives. Lerner and Malmendier (2010) examine agreements that

involve a biotech firm as an R&D provider. They find that termination rights, which are assigned

to the financing firm in 96 percent of the contracts, incentivize the subcontractor to remain focused

on the objectives specified in the agreement.4 The fine tuning of the client firms’ payments with the

operations of the external unit in our model is consistent with these conclusions.

Another set of papers focuses on the drivers or implications of mergers and acquisitions in the

pharma industry. Higgins and Rodriguez (2006) examine the performance of acquisitions by estab-

lished pharmaceutical firms of smaller competitors and/or biotech units to understand the effect of

R&D outsourcing acquisitions on an individual firm’s R&D productivity. They notably find that ac-

quisitions supplement a firm’s internal R&D efforts, and that firms with greater R&D intensity are

4In a model that precedes their empirical analysis, Lerner and Malmendier (2010) show that if the R&D supplier is not
financially constrained, the termination rights coupled with transfer payments can result in the same outcome as a simple
complete contract.
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more likely to engage in acquisitions. Danzon, Epstein, and Nicholson (2007) examine the determi-

nants and effects of a sample of operations that include the purchase by pharmaceutical firms of an

equity stake in biotech firms. They find in particular that financially strong firms are less likely to

be part of an acquisition, either as a target or as an acquirer. We use these findings to comment our

results in Section 5.

The paper is organized as follows. Characteristics of the biopharmaceutical industry are pre-

sented in Section 2, in connection to the model specifications introduced in Section 3. The interplay

of outsourced and internal endogenous R&D levels, and the distribution of industry profits, are both

characterized in Section 4. Incentives to shift to a more integrated industry structure are investigated

in Section 5. Final remarks are in Section 6.

2 The Industry Context

We derive our theoretical results from model specifications that are carefully related to documented

characteristics of the biopharmaceutical “market for technology” (Arora et al., 2001, 2004), where the

industry usually divides research and development activities into two sets. The early-stage research

(“R”) consists in the discovery of new chemical compounds, vaccine candidates, or other biologics.

The later-stage development (“D”) tasks aim at assessing the safety and efficacy of the therapeutic

or prophylactic properties of a candidate medicine on increasingly large populations of individuals.

This stage moves toward the approval of a drug or the licensure of a vaccine by a government agency.

Outsourced R&D activities include early-stage research in the biotechnology field, where from

the early years onward,

“[b]ecause different commercial products were based on similar basic technologies, the

costs ... could be shared by clients” (Pisano, 1991, p. 241) and then “[v]irtually every

new entrant ... formed at least one, and usually several, contractual relationships with

established pharmaceutical (and sometimes chemical) companies” (Pisano, 2006, p. 87).5

A well-documented case is the multi-year collaboration initiated by Merck and Sandoz with

5According to Higgins (2007), who uses a large data set of alliances in the biopharmaceutical industry, from 1994 to 2001
each biotechnology firms had on average six alliance partnerships with large pharmaceutical firms.
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Repligen in 1987 and 1989, respectively, for HIV therapeutics.6 A more recent case involves Cure-

Vac, which contracted with Johnson & Johnson in 2013, and with Sanofi in 2014, for the development

of prophylactic vaccines. Another example involves Moderna Therapeutics, which in 2016 partnered

with AstraZeneca, and a few months later with Merck, to develop RNA-based candidates for the

treatment or prevention of a range of cancers. Accordingly, in our model an external unit can serve

up to two client firms simultaneously.

Another important characteristic of the current market for biotechnology is that established phar-

maceutical firms do not only give a biotech firm (external unit) access to finance and to manufactur-

ing or marketing resources, they also operate internal biotechnology functions. The situation was

different when the biotechnology market emerged in the mid-1970s. At that time there was a clear

dichotomy in the R&D focus of suppliers and buyers. On the supply side, a typical new biotech firm

used advances in cell and molecular biology for the design of a new therapeutic agent (e.g., a protein).

On the demand side, the established pharmaceutical firms, whose technological competence focused

on the random screening of compounds against disease targets, procured research in the market for

biotechnology before engaging in clinical development. Since then, the largest pharmaceutical firms

have acquired capabilities in molecular genetics and recombinant DNA technology (Galambos and

Sturchio, 1998), so that the dichotomy has eroded:

“[e]stablished firms have embraced biological approaches, including genomics, to drug

discovery, while ‘biotech firms’ employ chemistry” (Pisano, 2006; p. 17). In other words,

“[a]lthough the general trend toward increasingly outsourcing what was formerly in-

house research is there for all to see, a number of cases of the opposite philosophy, adding

in-house research where it previously didn’t exist, is also occasionally in evidence” (Ry-

dzewski, 2008; p. 56).

Outsourced R&D also relates to late-stage development activities. Once a new compound, or

a candidate vaccine, has been discovered, and tested in animal models, it must go through clinical

trials conducted on human subjects. These trials need to produce evidence of safety and efficacy, as

required for regulatory approval by government agencies (e.g., the FDA) before market introduction.

There are three phases that involve increasingly large samples of subjects from a few dozen (phase

1) to, in case of success, several hundred (phase 2), and then to several thousand subjects (phase 3).

6For a case study see Bower and Whittaker (1993).
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Industry studies show persistent growth worldwide in the proportion of expenditures for clinical

trials outsourced to specialized contract research organizations (CROs), from 26% in 2003 to 38% in

2010 (Aldrich, 2012), for higher financial returns than in the case of early-stage activities.7 As in the

case of biotechs, a subcontractor of clinical trial services forms simultaneous contractual relationships

with several clients. In 2011, for example, Parexel entered into multi-year contractual agreements

with both Merck and Pfizer. The contracting firms do not restrict their strategies to either make or

buy clinical trial services as “[f]or a given study, sponsors can choose to retain some functions in

house while contracting out others” (Azoulay, 2004; p. 1594). By outsourcing the latter tasks the

firms attempt to benefit from economies of scale and scope (Macher and Boerner, 2006), and thereby

to reduce their clinical trial costs, which are estimated at around US$220 million for a new drug

(Mestre-Ferrandiz, Sussex, and Towse, 2012).8

In our model, the respective efforts of the external unit and its client firms are endogenous, so

that the vertical division of R&D activities can occur at any point between total outsourcing and full

integration. This specification is consistent with the observation that the collaboration of big pharma

firms with biotech units or clinical trial providers creates joint inputs across the two sides of the

contractual relationship, with an exact balance that might vary significantly on a case by case basis.

At all stages of the R&D process, the demand side usually designs the contracts that organize a

technological relationship. This is explained by the fact that, when internal resources are available,

the capacity of established pharmaceutical firms to “go for it alone” – though possibly at a higher

cost – increases their bargaining power (Arora et al., 2004). Other factors include the severe financial

constraints faced by specialized biotech units (Lerner and Merges, 1998; Golec and Vernon, 2009), to-

gether with a high rate of entry on the supply side (Rothaermel, 2001; Argyres and Liebeskind, 2002)

while incumbents on the demand side remain highly concentrated. Although the latter structural

features describe a “buyer’s market”, we show that they cannot fully explain the persistently low

average profitability of biotech firms since the late 1970s (Pisano, 2006, 2010).9 Indeed, in the anal-

7For example, business experts observe that “[t]he robust fundamental drivers fuelling CRO market growth and consol-
idation have, for a number of years, also attracted the attention of private equity investors and, more recently, the capital
markets. (...) Key features that make this growth segment of the healthcare industry particularly attractive to private in-
vestors seeking to realise high annual returns and exits within 3-5 years include: high visibility of revenues, excess cash
generation, strong balance sheets and limited exposure to a number of risks that commonly affect biopharma companies
(...)” (Bali, de Lima, and Yang, Results Healthcare, http://resultshealthcare.com, 2013.)

8The out-of-pocket cost of clinical testing depends on the number of patients required to collect sufficient data as de-
manded from regulatory agencies. It is even higher in the case of preventive vaccine candidates, as the size of human
subject test samples is often larger than for drugs (Scherer, 2011; Keith et al., 2013).

9Over the last years the average profitability of biotech companies has remained low: “Of the 286 biotech companies
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ysis that follows we identify circumstances where the external unit appropriates the total industry

profit, for any probability of R&D success, with client firms that behave as principals and are no less

informed than the common independent contractor.

Detailed studies of R&D agreements find that contracts incorporate complex clauses to fine tune

the financial mechanism (equity participation, milestone payments, licensing fees, ...) with the tech-

nology supplied (or not) by the external unit to other possible client firms. Non-compete clauses

delineate the know-how that the external unit may not use with a third party, except as expressly au-

thorized. Such clauses typically include a “right of first refusal” (Folta, 1998; Hagedoorn and Hesen,

2007) that allows a firm to purchase the rights – or only a selection – to the R&D outcomes of a biotech

supplier before such an option is offered to third parties. Other clauses introduce a “right to match of-

fer”, whereby the external unit commits contractually to notify the client firm of its intent to contract

with another party, and thereby to reveal the technological and financial terms of the competing offer

(e.g., the amount and timing of any milestone payments).10 Such clauses thus form a contractual link

between the payments received by the external unit from a client firm and the technology that can be

supplied to a competitor. Accordingly, in our model each firm can condition its payment scheme on

the verifiable operations that are conducted inside the external unit, including those that relate to a

third party. This assumption does not mean that a technology received from the external unit cannot

partly benefit a competitor. Unsolicited and non contractible technological spillovers, both through

the external unit and across firms, are introduced in the analysis.

Several theoretical analyses in the literature, with no reference to a particular industry (see the

introduction), specify a research unit that is more knowledgeable than its client firms11, or that can

contract secretly with competitors. In the biopharmaceutical context, secret reselling is unlikely when

biotech firms and clinical trial suppliers alike enhance their reputation by communicating on their

contractual partners and on the content of agreements.12 We thus choose to investigate a comple-

trading on public exchanges today, 241 focus on drug development, a slight drop in numbers from last year. Of these 241
in the biopharmaceutical space, only 28 (12%) had both a product on the market and positive net income for FY 2012.”(D.
Thomas, Inside Bio Industry Analysis, http://www.biotech-now.org, 05/16/2013.)

10For example, non-compete clauses of this kind appear in contractual agreements between Merck and Tularik (dated
Dec. 22, 1996), and between Eli Lilly and the same biotech company (Sep. 24, 1999). The contracts are available at:
http://contracts.onecle.com/alpha

11In theoretical models of R&D with asymmetric information, the innovator, usually specified as an agent, is assumed to
be better informed than a firm, specified as a principal. Such an assumption captures circumstances where, for example,
a biotech has accumulated more knowledge on the value of a project than its downstream industrial partners. However,
in many other circumstances, pharma firms that conduct R&D operations internally can also be more informed on the
technological potential of a research program than a CRO that performs systematic tests on lead products candidates.

12Moreover, “the identities of partners and descriptions of alliances figure prominently in biotechnology companies’
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mentary approach where client firms, which can engage in research and development operations,

are not less competent than an external unit, and are not threatened by some form of misbehavior.

Uncertainty, in our model, is a risk of failure in technological activities, as conducted externally or

internally, or in downstream commercial operations, that is faced by all parties, without assuming

superior information on the supply side of the R&D market. This approach is motivated by well-

documented observations in science-based businesses:

“Uncertainty related to the success/failure of R&D activities is the major concern for R&D

managers in the biopharmaceutical industry. If the R&D activity is unsuccessful, indeed,

there is no product to commercialize.” (Pennings and Sereno, 2011; p. 375).

Our model specifications are consistent with early-stage (research) and phase 1 clinical trial (de-

velopment) activities, when the outcomes of operations are a priori uncertain to all parties.13 In any

case, for all drugs, vaccines, or other biologics, contracting problems in later-stage alliances are also

limited if “contingencies can be readily specified and outcomes are subject to external validation”

(Robinson and Stuart, 2007; p. 7), for example when “the biotechnology researchers have to perform

specifiable experiments on a lead product candidate” (Lerner and Malmendier, 2010; p. 215).

Finally, big pharma firms also take part in the equity market to acquire external R&D units. Re-

cent examples include Merck taking control of Idenix (antiviral therapeutics) in 2014, AstraZeneca of

Acerta Pharma (oncology and autoimmune diseases) and AbbVie of Pharmacyclics (immune-related

disorders) in 2015. Acquisitions usually conclude a bidding contest where several big pharma rivals

vie for the same buyout target.14 Accordingly, in our model we assume that the firms’ owners can bid

for the control of the external unit, and assess the claim by industry experts that equity valuations

are often excessive.15

securities registration statements” when an initial public offering is in preparation (Stuart et al., 1999, p. 327; see also
Baum, Calabrese, Silverman, 2000), and government agencies scrutinize all the steps before possible market introduction
and public authorization.

13The specification that an agent in charge of an innovation project with uncertain payoff has no superior information
before acting than its client firms can be seen as “a reasonable assumption if we are at the initial stages of a research
undertaking” (Holmström, 1989; p. 310).

14“For several days, Johnson & Johnson was considered the most likely acquirer of Pharmacyclics, and there were er-
roneous news reports on Wednesday before the markets closed that it had won the bidding. But AbbVie stepped in with
a higher bid ...” (www.nytimes.com, March 5, 2015); or “AstraZeneca Plc and Pfizer Inc. are among firms considering a
counteroffer for Medivation Inc., challenging Sanofi’s $9.3 billion bid for the company ...” (www.bloomberg.com, April 29,
2016).

15“AbbVie shares were down 3% in Thursday trading, as some investors and analysts expressed concern the company
was overpaying for Pharmacyclics, of Sunnyvale, Calif, which sells a drug called Imbruvica with partner Johnson & John-
son.” (www.wsj.com, May 5, 2015); and “GlaxoSmithKline CEO Andrew Witty questioned the ... valuations of recent
deals” ... and stated that “[s]ome of these valuations look stretched.” (www.firstwordpharma.com, May 11, 2015).
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3 The Model

In this section we draw on the industry characteristics described above to construct a formal model.

There are two related research and development (R&D) stages in an intermediate market for tech-

nology, and a final product market. Upstream, a for-profit independent unit (hereafter, “the lab”)

supplies new technology.16 Downstream, two firms can outsource R&D to the lab, and/or conduct

in-house R&D operations, before competing in the final market, where they supply substitutable

(possibly imperfectly so) goods.

Profit functions — The non-negative external R&D levels, as chosen by the lab specifically for each

firm, are described by x .
= (x1, x2). The internal R&D levels, as chosen by the two firms, are described

by y .
= (y1, y2). The final-market strategies are denoted by z .

= (z1, z2).17

The lab’s net profit is

v0(x)
.
= t1(x) + t2(x)− f0(x), (1)

where f0 is the lab’s cost, and ti is firm i’s transfer payment, both functions of x. In line with the

stylized facts described in section 2, the latter transfer function formalizes the fine tuning of firms’

payments with the verifiable operations inside the external unit, as made possible by complex non-

compete contractual clauses.18

Each firm i’s net profit is

vi(x, y, z) .
= gi

(
xi + yi, xj, yj, z

)
− fi (yi)− ti(x), (2)

i, j = 1, 2, j 6= i, where fi is the firm-specific cost of sourcing yi internally, and gi is a gross profit

function.19 In the latter function, firm i’s external and internal R&D levels xi and yi are added as an

16Here we describe R&D as an output, that is as a service or technology delivered to clients. However it can also be con-
sidered as an input, that is as a pecuniary investment level chosen by the lab. Formal examples of the two interpretations
are given in Section 4.

17The argument z can represent prices or quantities, indifferently, or refer to more elaborate competitive interactions.
18Our common agency model is thus of the public kind (Martimort, 2006). This specification differs from most papers

that focus on consumer goods markets, where less sophisticated non-compete clauses, hardly verifiable activities, and
various antitrust regulations can justify the assumption that a principal can contract exclusively on what it specifically
receives from the agent, with no possible connection between payments and the other activities of the agent that benefit a
competitor (e.g., Martimort and Stole, 2003).

19The form of net profit functions is similar to that considered by Crémer and Riordan (1987) for the modelling of
multilateral transactions with bilateral contracts, but with transfer payments that are here contingent on the lab’s possible
choice of R&D levels.
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argument, which formalizes the assumption that external R&D tasks can also be performed inside

the firm. However, the respective equilibrium values are the outcome of distinct decision processes

that can result in substitutes or complements (y∗i can be either decreasing or increasing in xi in Propo-

sition 1, below). The competitor’s variables xj and yj are arguments of the same function, allowing

for technological spillovers through the lab and directly from the competitor. The gross profit also

depends on final-market non-cooperative strategies, z.

Timing — There are four stages, as follows:

(i) The two firms simultaneously and non-cooperatively choose a transfer function ti(x) ≥ 0,

i = 1, 2, that they offer to the lab.

(ii) The lab accepts either both contractual offers simultaneously, or only one, or none, and

chooses the firm-specific R&D levels in x that maximize v0(x).

At this stage the lab refuses all contracts if they imply lower benefits than the reservation value

v0 = 0, and it takes only one of the two offers if this implies higher benefits than accepting the two

contracts.20 Formally, for any given tj offered by firm j, the lab accepts firm i’s contract offer only if

v0(x) ≥ sup
{

0, max
x
{tj (x)− f0 (x)}

}
, (3)

for some x ≥ (0, 0), i, j = 1, 2, j 6= i. As the firms’ payments cannot be negative, in equilibrium the

participation constraints in (3) are always exactly satisfied.21 This however does not imply that the

equilibrium R&D levels and transfer functions are symmetric, nor that payments are both positive. It

can be the case that firm i offers a “null” contract, where ti (x) = 0, all x, and still receives technology.

This occurs for example if limiting inter-firm technological spillovers is prohibitively costly for the

lab.

(iii) The firms simultaneously and non-cooperatively choose their own internal R&D level yi ≥ 0.

(iv) The firms simultaneously and non-cooperatively choose their final-market strategy zi ≥ 0.

Information — The two firms (principals) know the strategies available to the other players and the

20As the lab (an agent) can choose to accept only a subset of contracts offered by the two firms (principals), this is a
“delegated common agency” model in the terminology introduced by Bernheim and Whinston (1986a).

21Should in equilibrium the for-profit lab contract exclusively with, say, firm 1, to deliver x̃ ∈ arg maxx{t1 (x)− f0 (x)},
for any t2 (x̃) > (=)0 it would earn t1 (x̃)− f0 (x̃) < (=) t1 (x̃) + t2 (x̃)− f0 (x̃), a contradiction, so (3) is satisfied. More-
over, should the lab supply x̂ to earn t1 (x̂) + t2 (x̂)− f0 (x̂) > t1 (x̃)− f0 (x̃), then firm 2 would find it profitable to reduce
its transfer to t′2 (x̂) = t2 (x̂)− ϕ, where ϕ

.
= (t1 (x̂) + t2 (x̂)− f0 (x̂))− (t1 (x̃)− f0 (x̃)), for (3) to hold with equality.
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related payoffs. This specification does not apply to the lab (an agent), which needs not know the

downstream cost and demand conditions. In case of non-deterministic R&D outcomes (see examples

2 and 3 below), the contracts are written ex ante, that is before the lab tests technological options, so

it has no superior understanding of the stochastic project returns than the client firms (see section 2

on the biopharmaceutical industry context). Information is verifiable by an external enforcer, so that

all parties are committed to their contracts.22

Equilibrium concept — The results presented in the next section refer to reduced-form expressions

of the payoff functions introduced in (2). For any (x, y), henceforth we assume that there exists a

unique final-market Nash equilibrium z∗(x, y), so that we may introduce ĝi
(
xi + yi, xj, yj

) .
= gi(xi +

yi, xj, yj, z∗(x, y)), firm i’s reduced-form gross profit.23 For any x, we also assume that there exists

a unique internal R&D stage Nash equilibrium y∗(x), which allows for the introduction of g̃i (x)
.
=

ĝi(xi + y∗i (x), xj, y∗j (x)) − fi (y∗i (x)), firm i’s profit net of internal R&D costs. Finally, for any given

t .
= (t1, t2) denote by X(t) the set of R&D choices that maximize the lab’s profits, that is X(t) .

=

arg maxx v0(x(t)).

The following definitions are needed before introducing the solution concept: (1) for any x ∈

X(ti, tj) and x′ ∈ X(t′i, tj), firm i’s transfer function ti is a best response to the other firm’s tj if g̃i (x)−

ti(x) ≥ g̃i (x′)− t′i(x
′), all t′i; (2) the transfer function ti is truthful relative to x̃ if ti(x)

.
= sup{0, g̃i(x)−

[g̃i (x̃)− ti(x̃)]}.24

The solution concept is the truthful subgame-perfect Nash equilibrium (TSPNE). The four-tuple

(t̃, x̃, ỹ, z̃) is a TSPNE if, for i, j = 1, 2, j 6= i : (i) z̃ = z∗(x̃, ỹ); (ii) ỹ = y∗(x̃); (iii) x̃ ∈ X(t̃); (iv) t̃i is a

best response to t̃j; and (v) t̃i is truthful relative to x̃. It follows that t̃i(x) = sup{0, g̃i(x)− v∗i }, where

the constant v∗i
.
= g̃i(x̃)− t̃i(x̃) is firm i’s equilibrium payoff.

Truthfulness is a standard refinement in delegated common agency games, and two properties

in the theoretical literature offer a strong justification for using it (Bernheim and Whinston, 1986b;

Laussel and Le Breton, 2001; Martimort, 2007). A first property is that for any set of transfer offers by

22R&D contracts usually include provisions for dispute resolution and point to an external private arbitrager, or to a
specific Court, in case of litigation (e.g., Robinson and Stuart, 2007).

23Here we follow Amir et al. (2003) by interpreting the reduced-form gross profit function ĝi as the overall payoff of an
infinite-horizon multi-stage game in the product market. Then R&D choices can be seen as long-term decisions, followed
by a series of short-term final-market decisions.

24When the gross profits g̃i (x) exceed ṽi(x̃), the difference between the transfer proposals ti(x) and ti (x̃) is equal to the
difference between g̃i (x) and g̃i (x̃); otherwise the transfer ti(x) is set to zero. On its positive part, a truthful contractual
offer thus exactly reflects firm i’s valuation of x relative to x̃.
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any of the two firms, there exists a truthful strategy in the other firm’s best-response correspondence.

A firm can thus restrict itself to truthful strategies. A second property is that all truthful Nash equi-

libria are coalition-proof. Therefore, the two firms’ joint net profits in a TSPNE are not lower than

in any other subgame-perfect Nash equilibrium. 25 The proofs of several propositions in Section 4

present the technical challenge26 of extending fundamental results of this common agency literature

to a context where firms not only interact as principals in the intermediate market for external R&D,

but also compete in internal technological decisions and in final-market commercial strategies.

Technological assumptions — Each firm’s gross profit function is (weakly) increasing in its own R&D

levels, as received from the lab or sourced internally (formally ∂ĝi/∂si ≥ 0 where si
.
= xi + yi, i = 1, 2).

However ĝi can be decreasing, or not, in the rival’s arguments, xj and yj. In any case a firm’s gross

profit is (weakly) more impacted by its own R&D, as either purchased from the lab or produced

in-house, than by its rival’s arguments:

∂ĝi

∂xi
≥
∥∥∥∥ ∂ĝi

∂xj

∥∥∥∥ , (4)

= ≤

∂ĝi

∂yi
≥
∥∥∥∥∂ĝi

∂yj

∥∥∥∥ , (5)

i, j = 1, 2, j 6= i. The vertical comparison of the terms on the RHS of the inequality sign in (4) and

(5) specifies that the R&D leaks emanating from the lab are more informative than the technological

spillovers received from the competitor’s internal facilities.27

For both firms, returns to R&D can be either non-increasing (that is, ∂2 ĝi/∂s2
i ≤ 0, i = 1, 2), or in-

creasing. The sign of all partial cross-derivatives can also be either non-positive (that is, ∂2 ĝi/∂xi∂xj ≤

0, ∂2 ĝi/∂xi∂yj ≤ 0, ∂2 ĝi/∂yi∂xj ≤ 0, and ∂2 ĝi/∂yi∂yj ≤ 0, i, j = 1, 2, j 6= i), or positive. In all cases, the

second-order impact of a firm’s R&D, either produced in-house or received from the lab, on its own

25A Nash equilibrium is coalition-proof if it is robust to credible threats of deviations by any subset of principals (for
a formal definition see Bernheim, Peleg, and Whinston, 1987). With two principals only, a coalition-proof equilibrium is
Pareto-efficient among principals (Bernheim and Whinston, 1986b). For a discussion on truthfulness as an equilibrium
refinement, see Martimort (2007).

26In the appendix, the proofs of Lemmas A.1 and A.2 establish connections between properties of ĝi (x, y) and g̃i (x)
which are used in combination with theorems by Laussel and Le Breton (2001) and extensions by Billette de Villemeur and
Versaevel (2003) to obtain Propositions 2, 3, and 4.

27In the words of Lai, Riezman, and Wang (2009), “information leakage is much more severe in the absence of internal
controls when R&D is outsourced” (p. 487).
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marginal gross profit, is higher than the second-order effect of its competitor’s R&D:

∥∥∥∥ ∂2 ĝi

∂yi∂xi

∥∥∥∥ ≥ ∥∥∥∥ ∂2 ĝi

∂yi∂xj

∥∥∥∥ , (6)

= ≤∥∥∥∥∂2 ĝi

∂y2
i

∥∥∥∥ ≥ ∥∥∥∥ ∂2 ĝi

∂yi∂yj

∥∥∥∥ , (7)

i, j = 1, 2, j 6= i. Again, the vertical comparison of cross-derivatives in (6) and (7) indicates that each

firm’s marginal gross profit is more impacted by the technological leakages that emanate from the

lab than from its competitor.

These technological assumptions are very mild and encompass many possible specifications of

gross profit and cost functions as introduced in the literature (we illustrate with examples of specific

algebraic forms in the next section).

Standalone values — The lab can guarantee for itself the value v0 = 0 (a normalization). As for the

firms, in order to define their outside option, suppose that j has exclusive access to the lab, implying

that firm i can rely only on internal resources, i, j = 1, 2, j 6= i. Then the contractual relationship

between the lab and firm j results in x∗j ∈ arg maxx[g̃j (x)− f0(x)], and firm i can guarantee for itself

the standalone value vi
.
= g̃i(x∗j ). Here x∗j

.
= (x∗i , x∗j ), with x∗i ≥ 0, so firm i can possibly receive

technology, without financial compensation, in spite of firm j’s exclusive relationship with the lab.

For an equilibrium to exist it must be the case that v∗i ≥ vi, for both firms.

4 Technological Conditions and Equilibrium Analysis

In this section, we investigate the circumstances in which technology outsourcing either reduces or

stimulates internal R&D levels, before deriving conditions for the lab to appropriate a share of R&D

profits, or to exactly break-even to the benefit of the outsourcing firms.

As a first result, we find that in equilibrium each firm’s internal R&D level y∗i can be substitutable

or a complementary to the level xi received from the lab. The sign of the relation between y∗i and xi

depends on the nature of R&D returns, but not on technological spillovers.

Proposition 1 (external/internal R&D) The equilibrium level of a firm’s internal R&D activity y∗i is de-
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creasing in the contracted external lab’s activity xi if and only if the gross profit functions ĝi have decreasing

returns in (xi, yi). More formally, for si
.
= xi + yi, and i = 1, 2:

dy∗i
dxi
Q 0⇔ ∂2 ĝi

∂s2
i
Q 0.28 (8)

A first message in this proposition is that whether contracted-out R&D reduces or raises internal

activity does not depend on inter-firm technological spillovers, because the second-order effect in

(8) bears only on each firm i’s own argument si, not on xj or yj, i, j = 1, 2, i 6= j. This property con-

trasts with the well-known lesson received from many papers that adopt the analytical framework of

d’Aspremont and Jacquemin (1988) in order to focus on horizontal technological interactions. In these

papers, the strategic substitutability or complementarity of the firms’ technological choice variables

depends entirely on whether a spillover parameter is low or high, respectively. In our model, the

firms also interact vertically by competing in their contractual offers to the external unit. This verti-

cal interaction, which is more direct because it occurs through contracting, appears to dominate the

horizontal effects for what regards the substitutability/complementarity outcome.

Another message in Proposition 1 is that the relationship between external sourcing and internal

R&D activity is formally ambiguous. This ambiguity is structural, in that it depends on the func-

tional form of firms’ gross profit. Here contracted-out R&D reduces internal activity if and only if

there are decreasing returns to the introduction of cost-reducing or demand-enhancing technology in

the firms’ operations. This theoretical result is reminiscent of several recent empirical analyses that

indicate a context-specific relationship between external and internal R&D sources in the biopharma-

ceutical industry. In Hagedoorn and Wang (2012) the estimated sign of the marginal effect of internal

R&D expenditure on the innovative output is negative, with the marginal returns to internal R&D

being possibly lower (higher) than when technology is sourced externally, reflecting a case of substi-

tutability (complementarity). In Ceccagnoli, Higgins, and Palermo (2014), the estimated sign of the

partial cross-derivative of an innovation production function with respect to external and internal

R&D expenditure is found to depend on a series of factors. These empirical investigations and our

formal characterization share the conclusion that external and internal R&D are neither complements

not substitutes per se, and are rather context related, as captured here by the sign of a second-order

effect.

28More specifically, dy∗i
dxi

= 0 if and only if either (i) ∂2 ĝi
∂s2

i
= 0, or (ii) ∂2 ĝi

∂x2
i
=

∂2 ĝi
∂xi∂yj

< 0, ∂2 ĝj

∂x2
j
=

∂2 ĝj
∂xj∂xj

< 0, and ∂2 f j

∂y2
j
= 0,

where i, j = 1, 2, j 6= i (see Appendix A.2).
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In what follows we build on Proposition 1 by first considering separately situations of non-

increasing returns (∂2 ĝi/∂s2
i ≤ 0), before discussing the robustness of our results when we shift

to non-decreasing returns (∂2 ĝi/∂s2
i ≥ 0). In the two cases, to characterize the distribution of R&D

profits among the intermediate R&D market participants, we need defining as a value function the

highest joint profit for the lab together with any subset of firms, that is

v (S) .
= max

x

(
∑
i∈S

g̃i (x)− f0(x)

)
, (9)

where S ∈ {∅, {1}, {2}, {1, 2}}.

We assume that v(∅) = v0 = 0, which describes the no contract situation, and that v ({i}) ≥ vi,

implying that firm i’s exclusive control of the lab dominates its standalone value, i = 1, 2. Hereafter,

for conciseness we denote the maximum industry profit v ({1, 2}) by Λ.

The value function v(.) in (9) is instrumental for the caracterization of equilibrium outcomes in

the intermediate market for technology, as it captures the interplay of indirect and direct techno-

logical externalities: there are indirect technological externalities if the lab’s cost f0 of conducting

firm-specific R&D tasks is characterized by economies or diseconomies of scope; there are direct ex-

ternalities if the R&D received or generated by firm i enters in the gross profit function ĝj of its com-

petitor, i, j = 1, 2, j 6= i.29 Indirect (through the lab) and direct (inter-firm) technological externalities

can differ in magnitude and in sign, and an aggregate measure of the combination of both categories

of externalities is given by the structural parameter

ε
.
= Λ− v ({1})− v ({2}) . (10)

If ε < 0, that is v(.) is strictly subadditive, the maximization in x of joint profits generates less

value than the sum of individual profits as obtained by each firm when it exclusively controls the

lab, a situation where negative externalities dominate. Otherwise v(.) is superadditive, and positive

externalities (weakly) dominate.

29In (9), recall that g̃i (x)
.
= ĝi(xi + y∗i (x), xj, y∗j (x))− fi

(
y∗i (x)

)
, so that firm i’s profit does not depend only on xj, but

also on yj.
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� Non-increasing returns to R&D. In this section we assume that

∂2 ĝi

∂s2
i
≤ 0, (11)

i = 1, 2. Simple sufficient conditions on the primitives of the model can now be derived for the joint

R&D benefits in equilibrium to be either fully appropriated by the two firms, or partly retained by

the lab. These conditions bear on the sign of indirect and direct R&D externalities, hence on the lab’s

costs f0 (x) and the firms’ reduced-form gross profit functions ĝi
(
xi + yi, xj, yj

)
, respectively.

Non-negative R&D externalities. Suppose, as a first case, that indirect and direct R&D externalities

are non-negative. Formally, for i, j = 1, 2, j 6= i,

∂2 f0

∂xi∂xj
≤ 0, (12)

∂ĝi

∂xj
≥ 0,

∂ĝi

∂yj
≥ 0. (13)

Proposition 2 (non-negative R&D externalities) Conditions (12-13) imply that ε ≥ 0. There exists a

continuum of firm equilibrium payoffs (v∗1 , v∗2) ≥ (v1, v2) that verify

v∗1 + v∗2 = Λ, (14)

and the lab exactly breaks even, that is

v∗0 = 0. (15)

In (12) the non-positive sign of the cross-derivatives of f0 in the dimensions of x describes economies

of scope in the production of R&D inside the external lab. Selecting a higher xi, as demanded by firm

i, makes it less costly for the lab to satisfy firm j.30 This condition is consistent with empirical in-

vestigations that evidence the presence of economies of scope in drug discovery (Henderson and

Cockburn, 1996) and clinical trials (Cockburn and Henderson, 2001).

For an interpretation of the conditions in (13), recall from the structure of each firm’s gross profit

function in (2) that R&D decisions generate not only technological (or knowledge) spillovers (xj and

yj are arguments of gi, j 6= i) but also a product-market rivalry effect (firm j’s external and internal

30As Pisano (2006) puts it, “knowledge and capabilities accumulated in the pursuit of one therapeutic area can often be
leveraged to others” (p. 101).
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R&D impacts firm i’s strategy zi, j 6= i). As the two non-negative derivatives in (13) relate to the

reduced-form ĝi of the gross profit expression, they capture situations where technological spillovers

dominate the negative business stealing effect. This specification points to situations of substantial

spillovers, as observed by Henderson (1994) and Henderson and Cockburn (1996) between pharma-

ceutical firms. It is also consistent with Bloom et al. (2013) where significant technological spillovers,

and business stealing effects, are found in the pharma industry, together with strategic complemen-

tarity in R&D (e.g., the latter property applies in Example 4 below, case β ≥ 1/2).

Non-negative indirect and direct externalities reflect circumstances of weak technological rivalry

among the two firms, both in their contractual offers to the lab and in their internal operations, imply-

ing a limited ability of the external lab to appropriate R&D benefits. This theoretical characterization

is consistent with the empirical observation that the average profitability of biotech units is persis-

tently low. Proposition 2 actually establishes that the two firms appropriate all industry profits, and

the lab exactly breaks even.31 Therefore:

Corollary 1 When conditions (12-13) hold, incentives to invest in the external unit are delinked from the

value generated to the exclusive benefit of downstream sponsors.

The following example illustrates Proposition 2 with specific cost and demand functional forms

borrowed from the R&D literature.

Example 1 � Symeonidis (2003) constructs a duopoly model with product R&D. For each firm inverse de-

mand is pi
(
qi, qj

)
= S

(
1− 2qi

u2
i
− σ

ui

qj
uj

)
, i, j = 1, 2, j 6= i, where S is the number of identical consumers,

σ ∈ (0, 2) captures horizontal product differentiation, and ui measures firm i’s product quality, which depends

on R&D. Specifically, let ui = ε (si)
1/4 + εβ

(
sj
)1/4, where ε > 0 is an inverse cost measure, β ∈ [0, 1] is an

inter-firm technological parameter, si
.
= xi + yi and sj

.
= xj + yj.32 If x1 = x2 = 0 we have the original model,

otherwise external R&D contributes to innovation. We set S = σ = ε = 1, β = 1/2, and production costs

to zero for simplicity, and solve for the firms’ market stage Cournot-Nash equilibrium quantities q∗1(x, y) and

q∗2(x, y). Inserting the latter expressions in gi
(
si, xj, yj, q

)
= pi

(
qi, qj

)
qi leads to ĝi

(
si, xj, yj

)
. We obtain

∂2 ĝi
∂s2

i
< 0 (decreasing returns) for all si > 0, so that from Proposition 1 we have dy∗i

dxi
< 0 (contracted-out R&D

reduces internal activity). Moreover ∂ĝi
∂xj

> 0 and ∂ĝi
∂yj

> 0 (positive direct externalities) for all xi, xj > 0, so

31In Appendix A.4 we show that there always exists v∗i ≥ vi, i = 1, 2, such that the pair (v∗1 , v∗2) verifies (14). The
continuum of equilibrium payoffs is thus well defined.

32This functional form is adapted from Motta (1992).
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that (13) is satisfied.33 Then any additive cost function for the external lab, e.g. f0 (x) = x1 + x2, satisfies

(12), hence Proposition 2 applies, and the client firms fully appropriate R&D benefits. �

Negative R&D externalities. Suppose now that indirect and direct R&D externalities are negative,

that is for i, j = 1, 2, j 6= i,
∂2 f0

∂xi∂xj
> 0, (16)

∂ĝi

∂xj
≤ 0,

∂ĝi

∂yj
≤ 0. (17)

Proposition 3 (negative R&D externalities) Conditions (16-17) imply that ε < 0. There is a unique pair

of firm equilibrium payoffs (v∗1 , v∗2), which are

v∗i = v({i})− |ε| ≥ vi, (18)

i = 1, 2, and the lab appropriates a share of industry profits

v∗0 = |ε| > 0. (19)

The condition on f0 in (16) formalizes a case of congestion, or diseconomies of scale, in the pro-

duction of R&D by the external lab. Supplying more R&D to a given firm makes it more costly to

serve the other firm. The conditions on ĝi in (17) describe circumstances in which more of firm j’s

R&D, as sourced externally or produced internally, weakly reduces firm i’s reduced-form gross profit,

all other things remaining equal. Together, these formal conditions relate to real-world circumstances

that strongly differ from the ones captured by conditions (12− 13). Unlike the empirical evidence

mentioned in the previous section on early-stage discovery activities that involve biotech entities,

diseconomies of scope (Macher and Boerner, 2006) and nonexistent technological spillovers (Danzon

et al. 2005; Macher and Boerner, 2006) have been found in later-stage development activities, notably

in phase 2 and phase 3 clinical trials, which involve CROs. The formal conditions in (16) and (17)

clearly point to these development activities.

In such cases of negative indirect and direct externalities, the client firms compete for the con-

trol of the lab’s operations in the intermediate R&D market, and are also penalized by the in-house

activity of their competitor. These circumstances are favorable to the lab. Proposition 3 establishes

33The expressions of derivatives are omitted for space limitation. They are available from the authors on request.
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that negative externalities fully drive the distribution of R&D benefits. Unlike the payoff in the pre-

vious section, the lab here appropriates a positive share of industry profits, in direct proportion to−ε

which is positive. Each firm’s payoff is equal to v({i}), i = 1, 2, as would be earned by controlling

the lab exclusively, truncated by |ε|. The latter payoff can be shown to be greater that the standalone

value vi.34 The theoretical outcome that the external unit extracts a positive share is consistent with

the observation that CROs involved in clinical trials, unlike biotech units, on average earn superior

average financial returns.

Differentiability — Although stated in terms of cross-derivatives, the condition in (16) can be rewritten

in discrete form as f0(x ∧ x′) + f0(x ∨ x′)− f0(x)− f0(x′) ≥ 0, all x, x′ ∈ X, with a strict inequality

whenever x and x′ cannot be compared with respect to ≥ (strict supermodularity). The condition

in (17) can also be rewritten as ĝi
(
xi + yi, xj, yj

)
≥ ĝi(xi + yi, x′j, y′j) for all (x′j, y′j) ≥

(
xj, yj

)
. In the

whole paper differentiability is adopted for notational convenience, but is not required, as illustrated

by the next example.35

Example 2 � Assume that x, y ∈ {0, 1}2, so the decision to invest in a cost-reducing program implies a

lump-sum expenditure. The lab’s R&D costs are f0(x) = 0 if x1 = x2 = 0, f0(x) = 1 if x1 + x2 = 1, and

f0(x) = +∞ otherwise, so that the discrete form of condition (16) is satisfied. Here anti-complementarities

imply that the lab serves at most one firm profitably (x1 = x2 = 1 is excluded).36 Firm i’s internal R&D costs

are fi(yi) = γyi, with γ ≥ 1 capturing a relative inefficiency vis-à-vis the lab. The unit cost of production

is a positive constant ci(xi + yi), with ci(0) = cH and 0 ≤ ci(1) = ci(2) = cL < cH. The two firms sell a

homogeneous good, with total demand q = sup{0, a− p}, with p ≥ 0 and a > cH. Given (x, y), defining

π
.
= (cH − cL) (a− cH), and solving for Bertrand-Nash equilibrium prices, leads to ĝi(xi + yi, xj, yj) = π >

0 if xi + yi ≥ 1 and xj + yj = 0, and ĝi
(
xi + yi, xj, yj

)
= 0 otherwise, so the discrete form of condition (17) is

also satisfied. We assume that internal R&D is worth undertaking, that is γ/π < 1. To compute equilibrium

payoffs, we consider the following two cases: (1) If the lab is inactive (x1 = x2 = 0), there exists a unique Nash

equilibrium in mixed strategies (α∗i , α∗j ) of internal R&D investments, verifying

α∗j × (−γ) +
(

1− α∗j

)
× (π − γ) = α∗j × 0 +

(
1− α∗j

)
× 0, (20)

34See Appendix A.4). From (10) the payoff to the lab can be rewritten as firm i’s marginal contribution to industry profit,
that is v∗i = Λ− v({j}), i, j = 1, 2, j 6= i.

35In Appendix A.4 the proofs of Propositions 2 and 3 are written for any f0 which is either weakly submodular or strictly
supermodular, respectively.

36The cost specification in this example, with f0 strictly supermodular, is borrowed from Laussel and Le Breton (2001).
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i, j = 1, 2, j 6= i. By symmetry37

α∗i = α∗j = 1− γ

π
,

which leads to the payoff vi(α
∗
1 , α∗2) = vi = 0, i = 1, 2.38 So the firms are willing to transact with the

lab. (2) When the lab is active, from the assumption on f0 only one firm is served (xi = 1 > xj = 0),

and no firm invests in internal R&D since ĝi(1 + 1, 0, yj) − fi(1) < ĝi(1 + 0, 0, yj) − fi(0), all yj, and

ĝj(0 + 1, 1, yi)− f j(1) < ĝj(0 + 0, 1, yi)− f j(0), all yi. Therefore, industry value is v ({1, 2}) = v ({1}) =

v ({2}), so that v∗0 = v ({1, 2}) = π − 1, and v∗i = v ({1, 2})− v ({j}) = 0, from Proposition 3. Firms’

interests are so antagonistic in this example as to make the lab fully appropriate industry value. �

Uncertainty — Although the examples above describe a deterministic environment, the structural

conditions in Propositions 2 and 3 also capture circumstances in which R&D outcomes are uncertain

for all parties. To see that, consider the same specifications as in Example 2, but with the lab and the

firms being successful in R&D with probability ρ. Here it can be useful for a firm to invest simulta-

neously with the lab to increase the probability of success. The unit cost of production c (xi + yi) is

now c (0) = cH with certainty, ci (1) = cL with probability ρ and ci (1) = cH with probability 1− ρ,

and ci (2) = cL with probability 1− (1− ρ)2 and ci (2) = cH with probability (1− ρ)2. Here the dis-

tribution of (un)favorable events is common knowledge ex ante, and the true state is discovered only

through the realization of R&D tasks. Condition (16) remains unchanged, and although the process

is now uncertain, condition (17) also remains valid in expectation, as the choice of firm j to attempt to

innovate always reduces firm i’s expected profit. Thus Proposition 3 still holds. We assume as above

that R&D is worth undertaking, even internally, that is γ/(ρπ) < 1. Provided that the probability of

success ρ remains sufficiently close to 1 so that 1− ρ < γ/ (ρπ), again a firm will not engage in R&D

if its rival receives technology from the lab or sources it internally, and we can directly generalise

the baseline example: (1) If the lab is inactive (x1 = x2 = 0), there exists a unique symmetric Nash

equilibrium in mixed strategies

α∗i (ρ) = α∗j (ρ) =
1
ρ

(
1− γ

ρπ

)
,

37Given that in this example firms are assumed to be symmetric, we leave aside the two asymmetric equilibria in pure
strategies (y∗1 = 0, y∗2 = 1) and (y∗1 = 1, y∗2 = 0).

38In this example, when firm i does not participate in the R&D market, its rival j receives technology from the relatively
more efficient lab (so x∗j = 1), exclusively so (x∗i = 0), and finds it profitable not to operate internally (y∗j = 0). Then in
this Bertrand context firm i maximizes profits by not investing in internal R&D, and its standalone value is vi = ĝi(0 +
y∗i , 1, 0)− fi(y∗i ) = ĝi(0 + 0, 1, 0)− fi(0) = 0, i, j = 1, 2, j 6= i.
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for a payoff which again is the same as the standalone value vi (ρ) = 0, i = 1, 2, so the firms have an

incentive to transact with the lab. (2) When the lab is active, again from the assumption on f0 only one

firm is served (xi = 1 > xj = 0), and limited uncertainty does not modify the outcome that no firm

invests internally since, rewritting payoff functions in expected terms, Eρ

[
ĝi(1 + 1, 0, yj)

]
− fi(1) <

Eρ

[
ĝi(1 + 0, 0, yj)

]
− fi(0), all yj, and Eρ

[
ĝj(0 + 1, 1, yi)

]
− f j(1) < Eρ

[
ĝj(0 + 0, 1, yi)

]
− f j(0), all yi.

The payoff of the firm that does not receive external R&D is nil, so that v ({1, 2}) = v ({1}) = v ({2}).

Then v∗0 = v ({1, 2}), and v∗i = v ({1, 2})− v ({j}) = 0, i, j = 1, 2, j 6= i, from Proposition 3.

With these specifications, the lab is granted the (positive) expected industry profit, here equal to

ρπ− 1, while the firm that benefits from the lab’s output exactly breaks even only in expectation, and

its rival earns its standalone value for sure.

In the next example, we show that our results also apply to the polar situation with highly un-

certain R&D. We obtain that, when the competitor or its external contractor might fail with a high

probability, it can be a dominant strategy for the firms to engage in R&D as well.

Example 3 � We consider the specifications of Example 2 with the extension to uncertain R&D considered

above, and focus on the case of rare successful outcomes. R&D can be profitable, that is γ/(ρπ) < 1, although

the probability of success ρ is sufficiently close to 0 for γ/ (ρπ) < (1− ρ)2 to hold. In this case, the like-

lihood that the competitor and the lab succeed in R&D is so low as to make the probability of simultaneous

success negligible. Then everything happens as if, when deciding to engage or not in R&D, each firm were

focusing on its own probability of success only, abstracting from the other players’ actions. Investing in in-

ternal R&D is a dominant strategy: (1) If the lab is inactive (x1 = x2 = 0), the firms’ expected payoff is

(1− ρ)ρπ − γ, which is slightly higher than the standalone level vi (ρ) = (1− ρ)2ρπ − γ, i = 1, 2. (2)

When the lab is active, again the form of f0 implies that only one firm is served (xi = 1 > xj = 0). Still the

distinctive feature here, in comparison to the previous example, is that both firms choose to invest internally as

well: Eρ

[
ĝi(1 + 1, 0, yj)

]
− fi(1) > Eρ

[
ĝi(1 + 0, 0, yj)

]
− fi(0), all yj, and Eρ

[
ĝj(0 + 1, 1, yi)

]
− f j(1) >

Eρ

[
ĝj(0 + 0, 1, yi)

]
− f j(0), all yi. Thus v ({i}) =

[
1− (1− ρ)2] (1− ρ)π−γ− 1 (i.e., π is earned by firm

i when the latter player and the lab do not both fail while firm j fails) and the industry expected value is now

v ({1, 2}) = (3− 2ρ)(1− ρ)ρπ− 2γ− 1 (the sum of firm i’s expected gross payoff
[
1− (1− ρ)2] (1− ρ)π

and of firm j’s gross payoff (1 − ρ)2ρπ net of total R&D costs). Therefore, from Proposition 3 we have

v∗0 = (1− ρ) ρπ − 1 > 0, and v∗i = v ({1, 2}) − v ({j}) = (1− ρ)2 ρπ − γ, which is positive but re-

mains equal to the firms’ standalone level, i, j = 1, 2, j 6= i. By competing for the lab’s resources, the firms earn
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less than if the lab is simply not available.�

There is more in Examples 2 and 3 than an illustration of the applicability of the theoretical propo-

sitions to specific algebraic forms. Only in the latter example, where the probability of success of R&D

operations is assumed to be low, both the lab and its sponsor engage in R&D efforts. This outcome

is consistent with the empirical evidence (Guedj, 2005) that projects with a low probability of success

are more often conducted through a contractual alliance between a large firm and a smaller biotech

company (as in Example 3) than conducted entirely within the same entity (as in Example 2). The

comparison of examples 2 and 3 thus rationalizes the general observation that the reduction in drug

R&D productivity over the last decades – which is formally captured here by a lower probability of

success – has coincided with increasingly frequent situations where large pharma firms and smaller

external biotech units contribute jointly to research and development (Pisano, 2006; Rydzewski, 2008;

Scannell et al., 2012). This is a sufficiently high level of uncertainty, in our theoretical framework, that

triggers an investment by all industry participants.

Another interesting equilibrium property illustrated by examples 2 and 3 is that client firms (prin-

cipals), whose payments to the lab are truthful, are shielded from the uncertainty that is specific to

external R&D operations. The lab (agent), however, bears the risk inherent to its technological activ-

ities. When the equilibrium payoff to the lab, in expectation, is exactly zero (Proposition 2), then an

unfavorable draw necessarily yields a negative net return. To summarize:

Corollary 2 When R&D externalities are non-negative (ε ≥ 0), efficient projects at the industry level are

vulnerable to unfavorable events that affect the external unit.

In order to avoid the abandonment of projects that are characterized by a high degree of tech-

nological uncertainty, but also contribute positively to total industry profits, one can think of some

safeguarding measures that were not considered in our model specifications – including public in-

tervention. Such measures, in light of our results and their connections to the empirical evidence,

appear less relevant for clinical trials (development) than for early-stage research activities (discov-

ery) characterized by significant economies of scope and technological spillovers. The financial back-

up of a partner university, as commonly observed in the early stages of startups since emergence of

biotechnology in the late 1970s, can thus be interpreted in retrospect as a relevant attempt to insure

promising spin-offs from unfavorable events. This interpretation however does not apply to direct
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cash subsidies, since in our model they would only lower the lab’s break-even point, to the benefit of

client firms.

We now consider cases with increasing returns to R&D.

� Non-decreasing returns to R&D. In this section, for i = 1, 2, we assume that

∂2 ĝi

∂s2
i
≥ 0, (21)

where si
.
= xi + yi. We identify simple conditions for Propositions 2 and 3 to remain valid.

Proposition 4 Suppose that returns to R&D are non-decreasing, as in (21). Then Propositions 2 and 3 still

hold if ∂2 ĝj
∂xj∂xi

≥ 0, i, j = 1, 2, j 6= i. Otherwise a sufficient condition is
dy∗j
dxi

> −1.

The interplay of contracted-out and internal R&D levels is central to our results.

From Proposition 1, we know that increasing R&D returns imply that
dy∗j
dxj
≥ 0, which is sufficient

to obtain that dg̃i
dxj

has the same sign as ∂ĝi
∂xj

and ∂ĝi
∂yj

(see Lemma A.1 in Appendix A.3). As for the sign

of dg̃i
dxi

, it depends also on
dy∗j
dxi

. There are two cases. If xj and xi are complementary inside firm i’s gross

payoff function, so that ∂2 ĝj
∂xj∂xi

≥ 0, then y∗j is monotone increasing in xi, that is
dy∗j
dxi
≥ 0. It follows

that dg̃i
dxi

has the same sign as ∂ĝi
∂xj

and ∂ĝi
∂yj

(see Lemma A.2), and Propositions 2 and 3 remain valid with

non-decreasing returns as well. When xi and xj are substitutable, in that ∂2 ĝj
∂xj∂xi

< 0, then y∗j decreases

in xi, that is
dy∗j
dxi

< 0. Here more R&D purchased from the lab reduces the other firm’s internal R&D

level. In the most extreme circumstances, the latter effect could possibly result in dg̃i
dxi

being negative

when ∂ĝi
∂xj

and ∂ĝi
∂yj

are both positive. The latter property however does not occur when the substitution

effect is limited, more specifically when
dy∗j
dxi

> −1.

The next example illustrates all cases predicted by Proposition 4. It shows that while external

and internal R&D tasks are complementary (a consequence of non-decreasing returns to R&D from

Proposition 1), the client firms fully appropriate industry profit (as in Proposition 2) or concede to

the lab a positive share of it (as in Proposition 3).

Example 4 � The cost of the external lab is f0(x) = (x1 + x2)2 − δx1x2/2, with δ ≥ 0, and the internal

R&D cost is fi(yi) = κ + y2
i , i = 1, 2, with κ > 0. The marginal cost of operations is ci(x) = (c− si − βsj),
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with c > 0, with an inter-firm spillover parameter β ∈ [0, 1] as in d’Aspremont and Jacquemin (1988), and

where si = xi + yi can be interpreted as the sum of R (that is, xi) and D (yi) as in Vonortas (1994). The final-

market inverse demand is p(q) = a− qi − qj, with a > c. Non-cooperative profit maximization in quantities

leads to q∗i (x, y) =
[
(a− c) + si (2− β) + sj (2β− 1)

]
/3. We have ∂2 ĝi/∂s2

i = 2 (2− β)2 /9 > 0, so

condition (21) is satisfied for all parameter values (increasing R&D returns). Then, whether Proposition 2

or 3 applies depends on δ and β: (i) if δ ≥ 1 (< 1) then condition (12) (resp. condition (16)) holds; (ii) if

β ≥ 1/2 (< 1/2) then condition (13) (resp. condition (17)) holds, directly from ∂ĝi/∂xj = ∂ĝi/∂yj =

(2/3) (2β− 1) q∗i (x, y). Moreover, ∂2 ĝi/∂xj∂xi = (2/9) (2− β) (2β− 1) ≥ 0 only if β ≥ 1/2, and we

have dy∗j /dxi = 3 (2β− 1) (β− 2) /
[(

β2 − β + 7
) (

β2 − 3β− 1
)]

> −1 for β < 1/2. Therefore, in this

example the non-negative R&D externalities case of Proposition 2 applies if β ≥ 1/2 and δ ≥ 1, and the

negative externalities case of Proposition 3 applies if β < 1/2 and δ < 1. �

An important lesson of Propositions 2 and 3 is that the interplay of indirect (through the lab)

and direct (inter-firm) technological externalities drives the additivity status of the value function v

in (9), which in the end determines the distibution of industry profits. This characterization applies

in all situations where the two types of externalities have the same sign, as formalized by the easy-

to-use benchmark conditions (12-13) and (16-17). It applies also in “mixed” cases where indirect

externalities are negative, while direct externalities are not, or vice versa.

For an illustration, consider again the previous example by setting δ = β = 0, but by assum-

ing that the firms rely exclusivey on the exernal lab (y1 = y2 = 0), so that their gross reduced-form

profits are similar to the ones considered in Ho (2009).39 Here we have non-negative indirect but neg-

ative direct externalities (∂2 f0/∂x1∂x2 = 0 and ∂ĝi/∂xj < 0 for all positive final-market quantities).

Simple computations lead to v({1}) = v({2}) = (a− c)2 /5, and Λ = (a− c)2 /4, a case of strict

subadditivity, implying from (18) that equilibrium payoffs are v∗1 = v∗2 = v∗0/3 = (a− c)2 /20.

5 Incentives for More Integration

The distribution of industry profits can be modified either by a coordination of contract offers by the

two firms, or by a shift to a more vertically integrated structure that unifies the lab with one of the two

39In Ho (2009) the magnitude of the cost reduction, as obtained from the external lab, is specified to be exogenous
(whereas it is chosen by the for-profit lab in the present case), and the final market inverse demand function involves a
slope parameter b (which is set equal to 1 here).
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firms, or both. In this section we investigate the link between the sign of technological externalities

and incentives for more integration of some kind in the intermediate R&D market.40

Suppose that the owners of the three entities can participate in the equity market in order to possi-

bly depart from the initial outsourcing equilibrium characterized in the previous section. We assume

that (i) initially, each entity is owned by distinct sets of individuals (no one can simultaneously be

a seller and a buyer); (ii) when the lab and only one firm integrate vertically, the unified entity can

agree to supply R&D to the other firm by bargaining with it over the sharing of industry profits; and

(iii) transaction costs are nil.

Consider first the situation in which the lab and the two firms all participate in some form of in-

tegration on the intermediate R&D market. This occurs if the lab acquires the two firms and controls

them as subsidiaries, or if the two firms share the ownership of the lab and control it as a joint venture,

with choices of internal R&D and final-market strategies remaining non cooperative (no collusion).

In these two cases there is no gain in joint profits to be earned vis-à-vis equilibrium payoffs of the

common agency structure. This is because the truthfulness of the firms’ equilibrium payment strate-

gies implies that the lab is offered two transfer schedules which exactly reflect the respective shapes

of the firms’ gross profit functions (that is, g̃i (x)
.
= ĝi(xi + y∗i (x), xj, y∗j (x)) − fi (y∗i (x)), i = 1, 2). The

lab thereby internalizes both direct and indirect externalities, and thus is incentivized to supply R&D

outputs that maximize the joint profits of all participants.41 It follows that the net residual share of

joint profits accruing to each buyer of another firm’s equity cannot improve on the amount of net

profits received in the common agency equilibrium. Forward integration (i.e., the two users become

subsidiaries of the lab) would imply the payment of v∗i by the lab to the firms’ owners. Backward

integration (i.e., the lab becomes a joint venture) would require the total payment of v∗0 by the two

firms for the ownership of the upstream assets. The equality v∗0 + v∗1 + v∗2 = Λ holds in all cases,

unless further assumptions are introduced (e.g., cost or demand parameters become a function of the

governance structure). More formally:

40Our choice to characterize first the equilibrium profit distribution in the decentralized common agency setting, before
investigating incentives to integrate in the intermediate market for new biotechnology, reflects industry practice (Folta,
1998; Danzon and Grabowski, 2012).

41To compare, in Spulber (2013) joint profits are not maximized when an upstream inventor charges a two-part royalty
(an up-front lump-sum royalty and a royalty per unit of output produced with its cost-reducing innovation) to downstream
firms, which sell differentiated products in the final market. A positive per-unit royalty is chosen as it results in an implicit
collusion mechanism from which the inventor benefits through the lump-sum royalty. The per-unit royalty implies double
marginalization, and hence suboptimal profits at the industry level.
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Proposition 5 In the initial outsourcing situation, the firms’ non-cooperative equilibrium transfer pay-

ments and the lab’s individual profit-maximizing R&D outputs x̃ result in a maximum industry profit: x̃ ∈

arg maxx∈X (g̃1 (x) + g̃2 (x)− f0(x)). Therefore, unless the firms coordinate internal R&D operations (y) or

collude in final-market commercial decisions (z), there is no incentive for the lab to acquire the two firms and

control them as subsidiaries, nor for the firms to share the ownership of the lab and control it as a joint venture.

In other words, the integration of all market participants is profitable only if the firms neutral-

ize downstream strategic interactions by coordinating internal R&D activities or/and final-market

strategies.

It remains to investigate all alternative forms of integration that can allow the respective owners

of the lab, or of the two firms, to privately appropriate a larger share of the industry maximum Λ

than in the decentralized outsourcing initial situation. Toward an equilibrium industry structure

in the equity market, we consider the following discrete set of possible arrangements: the horizontal

integration of firms 1 and 2 for the joint procurement of external R&D (internal R&D and final-market

choices remaining non cooperative), the vertical integration of the lab with firm 1, or with firm 2. We

consider in turn the situations in which the value function v (in (9)) is superadditive (ε ≥ 0, as in

Proposition 2), then strictly subadditive (ε < 0, as in Proposition 3), depending on the interplay

of indirect (through the lab) and direct (inter-firm) technological externalities. The two cases are

illustrated respectively by Figures 1 and 2, which represent the space of possible partitions of the

maximum industry profit Λ as a 2-simplex, with full appropriation by the lab (i.e., v0 = Λ) at the top

vertex, and by either of the two firms at the bottom vertices. More generally, the payoffs to the lab

and each of the two firms are proportional to the distance of the allocation point to the edge opposite

to their respective vertex.

Non-negative R&D externalities When indirect and direct R&D externalities are both non-

negative, or in “mixed” situations with positive and negative externalities where the former dom-

inate, so that v is superadditive (ε ≥ 0), from Proposition 2 the lab only breaks even in equilibrium

of the common agency structure, that is v∗0 = 0, and the two firms thus appropriate the maximized

industry profit, v∗1 + v∗2 = Λ (where v∗i ≥ vi, k = 1, 2).

As there exists a continuum of firm equilibrium payoffs, the exact distribution (v∗1 , v∗2) can only

reflect circumstances outside of the initial model specifications. Hereafter we formalize such circum-
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stances by the bargaining powers (φ1, φ2) in [0, 1]2, with φ1 + φ2 = 1. They verify

v∗k = vk + φk (Λ− v) , (22)

where k = 1, 2, and (v1, v2) is the disagreement point, with v .
= v1 + v2, so that,

φk =
v∗k − vk

Λ− v
. (23)

Although with non-negative externalities joint R&D procurement cannot increase the firms’ joint

profit, a larger individual share can be earned by a firm if it deviates unilaterally from the outsourc-

ing equilibrium to acquire the lab. By exclusively controlling of the lab, the vertically integrated

entity {0, i} benefits from a stronger bargaining position. In case of disagreement its payoff becomes

v ({i}) ≥ vi, while its rival j’s payoff remains at vj, the standalone value. The bargaining process, in

case of vertical integration, thus determines a payoff to the unified entity equal to

v{0,i}
0+i = v ({i}) + φi

(
Λ− v ({i})− vj

)
≥ v∗i , (24)

and a payoff to the outsider equal to

v{0,i}
j = vj + φj

(
Λ− v ({i})− vj

)
≤ v∗j , (25)

with the weights
(
φi, φj

)
as defined in (23), i, j = 1, 2, j 6= i.42

As they face two competing alternatives, the lab’s owners can choose the firm to integrate with.43

By selling out to firm i, they earn v{0,i}
0 = v{0,i}

0+i − v{0,i}
i , the difference beween the payoff to the unified

entity and the acquirers’ residual claim. The two firms’ respective owners thus compete in the equity

market, and their willingness to pay is the difference between the value they generate by acquiring

42There is a strict inequality sign in (25) if v ({i}) > vi, because firm j has the same disagreement value vj as in the initial

outsourcing equilibrium. In that case, a strict inequality in (24) would follow from v{0,i}
0+i + v{0,i}

j = v∗i + v∗j = Λ, implying

that v{0,i}
0+i − v∗i = v∗j − v{0,i}

j > 0.
43For completeness, if the exclusive control of the lab strictly dominates the standalone option only for firm i, so that

v ({i}) > vi and v ({j}) = vj, then v{0,j}
0+j = v∗j . As there is no incentive for the latter firm j to integrate vertically, in that

case firm i acquires the lab (it pays ε > v∗0 = v{1,2}
0 = 0 with ε arbitrarily small), and the equilibrium structure is {0, i}, with

payoffs as in (24-25). If there is no gain to the exclusive control of the lab for both firms, so that v ({i}) = vi as well, then
no firm is interested in acquiring the lab, and the initial outsourcing equilibrium structure prevails.
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the lab and the value they earn should the lab integrate with the other firm. In comparison to the

initial equilibrium situation, the firm that does not integrate, say firm j, is forced to concede what the

other firm appropriates by acquiring the lab. Firm i’s willingness to pay, as an acquirer, is thus the

sum of what it appropriates, and what the other would have appropriated, that is

v{0,i}
0+i − v{0,j}

i = φj (v ({i})− vi) + φi

(
v ({j})− vj

)
≥ 0, (26)

i, j = 1, 2, j 6= i. Therefore, although firms are asymmetric, and thus appropriate different amounts

by acquiring the lab, the willingness to pay is the same across the two firms. Then competition in the

equity market results in the integration of the lab with any of the two firms, indifferently.
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Figure 1: v is superadditive (ε ≥ 0), so the loci for v ({1}) and v ({2}) intersect inside the simplex. In the initial
equilibrium (point I), the firms fully appropriate industry profits (v∗1 + v∗2 = Λ), so the lab exactly breaks even (v∗0 = 0).
Should a firm integrate the lab at no cost, it would appropriate more industry profits (point A for firm 1, or B for firm 2).
However, competition in the equity market lowers firms’ payoffs to v{0,j}

i , for i, j = 1, 2, j 6= i, and in the lab to appropriate

positive profits, that is v{0,1}
0 = v{0,2}

0 > 0 (point V).

In the equilibrium industry structure, the winning firm i’s owners have bidden their willingness

to pay so they receive only v{0,j}
i ≤ v∗i , and the rival j’s owners, by contracting out for R&D with the

integrated entity {0, i}, earn only v{0,i}
j ≤ v∗j . The lab’s owners earn a payoff equal to the common
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maximum bid, which from (23) and (26) is equal to

v{0,1}
0 = v{0,2}

0 =
v ({1})− v1

Λ− v
(v∗2 − v2) +

v ({2})− v2
Λ− v

(v∗1 − v1) > v∗0 = 0, (27)

with the strict inequality replaced by an equality sign only in the degenerate case where v ({i}) = vi

for the two firms i = 1, 2.44 The lab’s owners, whose payoffs are nil in the initial R&D market

equilibrium, eventually extract a positive share of industry profits in the equity market (point V in

Figure 1). Eventually, this outcome points to long-term incentives to invest in early-stage research

activities (discovery), although the short-term profitability is nil (see Proposition 2).

Negative R&D externalities When indirect and direct R&D externalities are both negative, or

in “mixed” situations with positive and negative externalities where the latter dominate, so that v

is strictly subadditive (ε < 0), from Proposition 3 the equilibrium payoffs in the initial outsourcing

situation are v∗0 = |ε| > 0, and v∗i = v({i}) − |ε| ≥ vi, i = 1, 2, so that v∗1 + v∗2 < Λ. As an

alternative to the initial outsourcing situation, the firms can opt for an horizontal arrangement in

order to procure jointly external R&D. In that case they behave cooperatively as a unique principal on

the intermediate market for technology, and fully appropriate the maximum industry profit, with the

lab breaking even exactly (point H in Figure 2 below).45 We thus have v{1,2}
0 = 0 and v{1,2}

1 + v{1,2}
2 =

Λ (here the superscript {1, 2} refers to the industry structure with firms 1 and 2 procuring jointly).

The initial outsourcing equilibrium payoffs determine the firms’ disagreement point (v∗1 , v∗2) when

they bargain over the agent’s payoff v∗0 = Λ− v∗1 − v∗2 . The outcome payoffs
(

v{1,2}
1 , v{1,2}

2

)
verify

v{1,2}
k = v∗k + ωk (Λ− v∗1 − v∗2) , (28)

where k = 1, 2, implying that bargaining powers (ω1, ω2) in [0, 1]2, with ω1 + ω2 = 1, are

ωk =
v{1,2}

k − v∗k
Λ− v∗1 − v∗2

. (29)

44Otherwise, even if v∗i = vi for one of the two firms (say i = 1), the inequality in (27) remains strict (as necessarily
v∗2 − v2 = Λ− v−

(
v∗1 − v1

)
> 0).

45A horizontal arrangement here relates to the intermediate market for technology, as opposed to the final market for
products, where the firms are assumed to remain competitors. This situation is similar to the cases observed by Majewski
(2004) where firms engaged in a technology alliance jointly choose to outsource their R&D to a third party in order to split
costs.

34



v 2

v({1})

v
1

v(
{2
})

I

(Λ, 0, 0)

(0, Λ, 0)

(0, 0, Λ)

A

H

v ∗1

v
∗ 2

V

v 2
=

0 v
1 =

0

v0 = 0

lab

firm 1 firm 2B

v
{0

,1
}

2
v {0,2}

1

v {0,1}
0+

1
v
{0

,2
}

0+
2

Figure 2: v is strictly subadditive (ε < 0), so the loci for v ({1}) and v ({2}) intersect outside the simplex. In the initial
R&D equilibrium (point I) the firms earn v∗i = v({i})− |ε|, i = 1, 2, and the lab earns v∗0 > 0. By agreeing horizontally
to coordinate R&D outsourcing, the firms fully reappropriate industry profits (point H). Should a firm integrate vertically
with the lab, at no cost, it would increase profits (point A for firm 1, or B for firm 2). The bidding contest to acquire the lab
leads both firms to earn v0,j

i , i, j = 1, 2, j 6= i (point V) in the equilibrium industry structure.

From Proposition 3 we know that v∗0 = Λ− v∗1 − v∗2 > 0, implying that in (28) we have v{1,2}
k ≥ v∗k

for k = 1, 2, with a strict inequality sign for at least one firm, implying that at least one firm earns a

positive gain by shifting to the horizontal arrangement. Moreover, the definition of ε in (10) together

with v∗i = v({i})− |ε| in (18) imply that v∗j = Λ− v ({i}), so that v{1,2}
j ≥ v∗j and v{1,2}

j = Λ− v{1,2}
i

lead to v{1,2}
i ≤ v ({i}), i, j = 1, 2, j 6= i, again with a strict inequality sign for at least one firm. It

follows that

v({k})− |ε| ≤ v{1,2}
k ≤ v ({k}) , (30)

where k = 1, 2, with at least one strict inequality sign. In (30) the first inequality states that any

situation resulting in lower individual payoffs than in the initial equilibrium is rejected. The second

inequality indicates that each firm’s payoff in the horizontal arrangement is bounded from above by

v ({i}), the value generated when it acquires the external lab without contracting with its rival.

While the two firms’ joint profit is maximized in the horizontal arrangement, each firm has an
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incentive to depart unilaterally from {1, 2} by acquiring the lab, for a strictly46 higher disagreement

payoff v ({i}) > v∗i accruing to the integrated entity {0, i}, and a (weakly) lower disagreement payoff

vj ≤ v∗j to the other firm. By controlling the lab and benefitting exclusively from its technology, in

case of disagreement the integrated entity can guarantee for itself the upper bound of the horizon-

tal arrangement payoff in (30), while the outsider earns only its standalone value. The bargaining

process, with vertical integration, implies a payoff to the unified entity equal to

v{0,i}
0+i = v ({i}) + ωi

(
Λ− v ({i})− vj

)
> v{1,2}

i , (31)

and a payoff to the outsider equal to

v{0,i}
j = vj + ωj

(
Λ− v ({i})− vj

)
< v{1,2}

j , (32)

i, j = 1, 2, j 6= i.47 The lab’s owners, as in the non-negative externalities situation of the previous

section, can thus make the two firms compete in the equity market by soliciting bids in order to

reappropriate a positive share of industry profits. Provided that no restriction is introduced that

limits payment offers, again the firms have the same willingness to pay for the lab, that is

v{0,i}
0+i − v{0,j}

i = ωj (v ({i})− vi) + ωi

(
v ({j})− vj

)
> 0, (33)

i, j = 1, 2, j 6= i, and any of them becomes the acquirer with equiprobability. The payoffs structure

already obtained in the non-negative externalities case thus prevails, with each firm’s owners earning

exactly their outside value, v{0,2}
1 < v{1,2}

1 and v{0,1}
2 < v{1,2}

2 , in any of the two possible equilibrium

industry structures.

However, with negative externalities it is not a priori established that the lab’s owners are better-

off post integration than in the initial outsourcing equilibrium. Inserting the expression of the firms’

respective bargaining powers in (33), and reorganizing terms (see Appendix A.6), we find that

v{0,1}
0 = v{0,2}

0 =
v ({1})− v1

|ε|

(
v{1,2}

2 − v∗2
)
+

v ({2})− v2

|ε|

(
v{1,2}

1 − v∗1
)
≥ v∗0 = |ε| . (34)

46In this negative externalities situation (ε .
= Λ− v ({i})− v ({j}) < 0) we have v ({i}) > Λ− v ({j}) = v∗i .

47The strict inequality sign in (32) is a consequence of v ({i}) > v∗i ≥ vi, and possibly of firm j’s strictly lower disagree-
ment value vj < v∗j (this differs from the non-negative externalities case in (25)). Then the strict inequality in (31) follows

from v{1,2}
i + v{1,2}

j = v{0,i}
0+i + v{0,i}

j = Λ, which leads to v{0,i}
0+i − v{1,2}

i = v{1,2}
j − v{0,i}

j > 0.
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This establishes that, with negative externalities, the value that can be extracted by the owners of the

external unit, by selling out to any of the two – possibly asymmetric – client firms (from I to V in

Figure 2), is only weakly superior to the positive profits earned in the initial outsourcing equilibrium.

To summarize:

Proposition 6 Suppose that the exclusive control of the lab strictly dominates a firm’s standalone option

(v ({i}) > vi, i = 1, 2):

(a) If the firms can commit not to integrate the lab they fully appropriate industry profits: (i) with non-

negative R&D externalities (ε ≥ 0), the firms remain independent and the initial outsourcing equilibrium

prevails; (ii) with negative R&D externalities (ε < 0), the firms engage in the horizontal arrangement {1, 2}

to coordinate external technology sourcing; (iii) in both cases the firms fully appropriate industry value Λ,

and the lab’s financial return is nil.

(b) Otherwise, independently of the sign of R&D externalities, one of the two firms acquires the lab with the

same probability 1/2, and competition in the equity market drives firms’ payoffs down to v{0,2}
1 and v{0,1}

2 ,

with v{0,2}
1 + v{0,1}

2 < Λ, to the benefit of the lab’s owners who extract Λ− v{0,2}
1 − v{0,1}

2 ≥ v∗0 .

The latter results point to several simple empirical implications that connect technological char-

acteristics to the type of acquisitions that modify the structure of the market for R&D. In part (a) of

Proposition 6 we focus on cases where the firms, for some exogenous reasons (e.g., a regulation, or

a strategic orientation), rule out the possibility to acquire the lab. When technological externalities

are non-negative (ε ≥ 0), because multi-client R&D operations benefit from economies of scope, or

inter-firm knowledge spillovers are significant, then the industry structure is more likely to remain

decentralized with no downstream coordination. In the alternative where externalities are negative

(ε < 0), the firms are more likely to coordinate technology sourcing from the same external lab. This

second category of situations is reminicent of Majewski (2004), where evidence is found that “when

collaborative agreements involve firms that compete in downstream markets, they tend to outsource

their collaborative R&D to a third party” (p. 2).

Moreover, in part (b) of Proposition 6 we learn that competition among client firms is more prof-

itable to the lab’s owners in the equity market than in the R&D market, independently of the identity

of the acquirer. Competition is tougher in the equity market, as only one firm can acquire the lab,
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whereas in the R&D market firms can partially reconcile their antagonism through finely tuned con-

tract offers. As discussed from an empirical perspective by Higgins and Rodriguez (2006), the firms

overbid for the external unit, and the acquirer succumbs to the winner’s curse. More recently, Pisano

(2015) also reflected on whether “pharmaceutical companies [are] paying more for R&D by acquiring

companies than by carrying out the R&D themselves”. According to our result, pharmaceutical com-

panies pay more for R&D by acquiring an external unit in the market for equity than by contracting

in the market for technology. This theoretical outcome points to the exit payoff as a long-term finan-

cial incentive that can motivate the foundation of a new R&D company in the first place. However,

we have learned above that incentives to sell out the equity are weaker in the case of negative exter-

nalities, since profits are already positive in the initial R&D market equilibrium, and they can only

be weakly augmented in the equity market (comparison of (27) with (34)).

Corollary 3 From the viewpoint of the lab’s owners, incentives to participate in the equity market are weaker in

the case of late-stage development (clinical trials) activities characterized by negative externalities, as compared

with earlier-stage research (discovery).

Financial constraints — Finally, note that Proposition 6 is derived under the assumption that bids are

unrestricted. However, in real-world business circumstances a financial constraint might be intro-

duced that limits firms’ ability to compete for the control of an external entity. In the theoretical

context of the model, the effect of such a constraint can be investigated by assuming that the payoff

to the lab’s owners, in case of vertical integration, cannot be so high as to imply a lower payoff to

the acquiring firm than in the initial outsourcing equilibrium. Formally, the two firms’ respective

financial constraints are thus

v∗i ≤ v{0,i}
i = Λ− v{0,i}

j − v{0,i}
0 , (35)

i, j = 1, 2, j 6= i.

In principle such a constraint makes it more difficult for a firm to acquire the lab when the latter

makes positive profits than when it exactly breaks even. It also helps identifying the profile of the

most agressive bidder. With non-negative R&D externalities (ε ≥ 0), as Λ− v∗i = v∗j from Proposition

2, firm i’s constraint in (35) becomes v{0,i}
0 ≤ v∗j − v{0,i}

j . In other words, firm i’s maximum bid, when

it acquires the lab, must not exceed what firm j has lost, as an outsider, because of the change in

bargaining positions vis-à-vis the outsourcing situation. By using (22) and (25), firm i’s financial

constraint can thus be rewritten v{0,i}
0 ≤ φj (v ({i})− vi), i, j = 1, 2, j 6= i. The lab’s owners face two
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competing bids, and select the highest, say the one of firm i if φj (v ({i})− vi) ≥ φi

(
v ({j})− vj

)
which, by using (23), is equivalent to

v∗i − vi

v ({i})− vi
≤

v∗j − vj

v ({j})− vj
. (36)

The comparison in (36) predicts that the acquirer is the firm whose net equilibrium payoff in the

initial outsourcing situation (that is v∗i − vi), relatively to the net profit that the integrated entity can

guarantee for itself (v ({i})− vi), is lower.

With negative R&D externalities (ε < 0), the same reasoning starting from (35) leads to the fol-

lowing condition for firm i to be the one that acquires the lab:

v{1,2}
i − vi

v({i})− |ε| − vi
≤

v{1,2}
j − vj

v({j})− |ε| − vj
. (37)

Here the acquirer is the firm whose relative gain in the horizontal arrangement (that is v{1,2}
i − vi),

relatively to the initial equilibrium net payoff (v∗i − vi = v({i})− |ε| − vi), is lower. The theoretical

prediction of conditions (36 - 37) is compatible with the empirical evidence that the most active firms

in the equity market are not the ones with the highest profit prospects nor the deepest pockets. In

Higgins and Rodriguez (2006), the firms experiencing a deterioration of their research pipeline are

found to be more likely to engage in the acquisition of a biotech entity. In Danzon, Epstein, and

Nicholson (2007), the financially strong firms appear to be less likely to engage in acquisitions.

6 Conclusion

Our analysis offers a rationalization of the general proposition that, depending on specific circum-

stances, outsourced and in-house R&D operations might prove substitutable or complementary, as

substantiated by the most recent empirical evidence in the biopharmaceutical context (Hagedoorn

and Wang, 2012; Ceccagnoli, Higgins, and Palermo, 2014). In our formal setting, each firm’s internal

equilibrium effort can be decreasing or increasing with the external unit’s activity. The direction of

change is formally ambiguous because it depends on profit functions being characterized by decreas-

ing or increasing returns to R&D. In the latter case which is commonly associated with those process
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or product innovations with most potential, the choice by big pharma firms to contract with an exter-

nal unit should not be interpreted as a form of disinvestment. It corresponds to circumstances where

external R&D complements, rather than substitutes for, internal operations.

We derive formal conditions for the industry profit to be either fully absorbed downstream, or

partly appropriated by the external unit. These conditions, which match remarkably well the em-

pirical evidence, only depend on the sign and magnitude of indirect (through the unit) and direct

(inter-firm) technological externalities. The case of negative externalities points to clinical trial ac-

tivities (development), where diseconomies of scope and limited or nonexistent inter-firm spillovers

were identified in empirical studies of reference (Danzon et al. 2005; Macher and Boerner, 2006). We

also identify situations where for any probability of success the external unit appropriates all of the

profits, in a “buyer’s market” where client firms behave as principals and are no less informed than

the external unit. However, the model shows that there can be circumstances where positive external-

ities soften inter-firm competition in contract offers, so that the external unit can only exactly break

even in equilibrium. It follows that incentives to invest upstream are delinked from the value of the

knowledge generated by the external unit to its downstream sponsors, and the ability of investors to

realize a non-negative net return is highly vulnerable to unfavorable events. The formal conditions

that characterize such circumstances capture cases of economies of scope in biotech projects, and of

significant technological spillovers among pharma firms, such as evidenced in drug discovery (re-

search) activities by several important empirical papers (Henderson and Cockburn, 1996; Cockburn

and Henderson, 2001; Bloom et al., 2013).

But still, longer-term positive incentives to invest can be identified – including in cases of early-

stage research – that relate to the equity market, where several possible industry configurations

emerge in our model, in accordance with the large variety of restructuring activities observed in

the biopharmaceutical context (Danzon and Grabowski, 2012). Depending on the sign of the tech-

nological externalities, the initial decentralized outsourcing scenario might prevail, or firms might

engage in a horizontal agreement for the coordination of technology outsourcing. When the firms

cannot commit not to acquire the external unit, vertical integration occurs and a bidding war leads

the acquirer to overpay its target, although the premium is only weakly positive in the case of nega-

tive externalities that are characteristic of later-stage development tasks. This result gives theoretical

support to the observation that real-world biotech owners, more than CRO founders involved in
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clinical trials, are likely to extract – or reappropriate – more industry value by selling their assets to

big pharma firms than by running R&D projects.

Overall, our formal analysis offers a new rationale for the low average profitability of the science-

based businesses of biotech observed since the emergence of genetic engineering in the 1970s (Pisano,

2006, 2010). In light of our results, and their connection with empirical observations, we believe that

limited financial returns should not be seen as evidence of disappointing technological progress, but

can be interpreted as a confirmation that economies of scope and knowledge spillovers have been

significant in the biotechnology domain. Indeed, in such circumstances, which in our theoretical

framework do not generalize to the market for development services, our propositions suggest that

the decision by competing firms to outsource early-stage research activities to a common external

unit results in most value – possibly very substantial – to be appropriated by the large downstream

sponsors.

The delinkage of upstream investment incentives from total industry value, and the vulnerability

of investors’ net returns to negative shocks, together theorize the abandonment of projects precisely

in those early-stage areas that can generate critical advances toward new treatments or preventives.

An important consequence is that, although the internalization of indirect (through the lab) and di-

rect (inter-firm) positive externalities is a source of efficiency gains, and the long-term perspective

of selling out assets induces incentives to start a biotech unit, research outsourcing may not always

qualify as a relevant pathway to address the declining productivity in innovation issue that has char-

acterized the industry over several decades.

We close by observing that it would be interesting to extend our analysis in a number of ways.

The firms’ contractual offers, which in our model connect each firm’s payment to the external lab’s

R&D operations, could be enriched by additional contracting elements, such as a share of revenues,

or an outcome of the regulatory process (e.g., approval by the FDA). Another possible extension

would be to depart from the symmetric information context by assuming that a firm and the external

unit know better the risk of the specific project in which they are involved than the other firm. We

could also depart from the (realistic) assumption that big pharma companies behave as principals, in

order to compare our results with a theoretical benchmark where the external R&D unit, instead of

responding to its sponsors’ payment schemes, makes contractual offers to the firms. This is left for

further research.
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A Appendix

We first develop the derivatives
dy∗j
dxj

and dy∗i
dxj

, which are needed to prove Propositions 1 to 4 afterwards.

A.1 Derivation of
dy∗j
dxj

and dy∗i
dxj

As the arguments xi and yi enter additively into gi (hence ĝi), we have

∂ĝi

(
xi + y∗i , xj, y∗j

)
∂xi

−
∂ fi (y∗i )

∂yi
= 0, (38)

and similarly
∂ĝj

(
xj + y∗j , xi, y∗i

)
∂xj

−
∂ f j

(
y∗j
)

∂yj
= 0, (39)

where the Nash strategies y∗i
.
= y∗i

(
xi, xj

)
and y∗j

.
= y∗j

(
xi, xj

)
result from the two firms’ non-

cooperative profit-maximization in their respective internal R&D levels, for i, j = 1, 2, j 6= i.

Differentiating (38) and (39) w.r.t. xj, and using again si
.
= xi + yi in ĝi, and sj

.
= xj + yj in ĝj, we

obtain the system of equations ∂2 ĝi
∂xi∂yj

∂2 ĝi
∂x2

i
− ∂2 fi

∂y2
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∂2 ĝj
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where ĝi
.
= ĝi

(
xi + y∗i , xj, y∗j

)
, ĝj

.
= ĝj

(
xj + y∗j , xi, y∗i

)
, fi

.
= fi (y∗i ), and f j

.
= f j(y∗j ), for clarity.

This yields the solution
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∂xi∂yj


 − ∂2 ĝi
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where
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We thus have
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dxj

=
1
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We know that
∂2 fi(y∗i )

∂y2
i
≥ 0 (by assumption) and ∂2 ĝi

∂x2
i
− ∂2 fi

∂y2
i
< 0 (second-order condition), which

holds also for firm j. As ∂2 ĝi
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and ∂2 ĝj
∂xj∂yi

have the same sign (by assumption),
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∥∥∥ (see (7)), we obtain from (41) that ∆ ≥ 0.48

Moreover, we know also from Henriques (1990) that the reaction functions in the internal R&D
space

(
yi, yj

)
cross “correctly”, so that the Nash equilibrium (y∗i , y∗j ) is stable, only if∣∣∣∣∣∂2 [ĝi
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for i, j = 1, 2, j 6= i.

Again, the argument si
.
= xi + yi in ĝi, together with fi being a function of yi only, imply that
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≥ 0 for i, j = 1, 2, j 6= i (partial cross-derivatives, for both firms, have the same sign
by assumption) imply from (41) that ∆ is nonzero at (y∗i , y∗j ), and the derivatives in (42) and (43) are
well defined.

Suppose now that ∂2 ĝi
∂x2

i
is nonzero for i = 1, 2 (the case ∂2 ĝi

∂x2
i
= 0 is considered below in the proof of

Proposition 1). Then, a careful reorganization of terms in the expression of
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in (42) leads to
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48From the expression in (2), the argument si
.
= xi + yi of the gross profit function gi, hence also of the reduced-form ĝi,

implies that inequalities (6 - 7) can be rewritten by substituting the derivatives with respect to xi for the ones with respect
to yi. Thus ∂2 ĝi/∂yi∂xi = ∂2 ĝi/∂x2

i , ∂2 ĝi/∂yi∂xj = ∂2 ĝi/∂xi∂xj, and ∂2 ĝi/∂yi∂yj = ∂2 ĝi/∂xi∂yj, for i, j = 1, 2, i 6= j. We
make use of these substitutions throughout the appendix.
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Similarly, a reorganization of terms in the expression of dy∗i
dxj

in (43) leads to
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Both expressions in (45) and (46) are well defined because the denominators of their respective
first terms are nonzero by assumption (second-order condition for a unique y∗(x)).

A.2 Proof of Proposition 1.

We want to establish that dy∗i
dxi

< 0 ⇔ ∂2 ĝi
∂s2

i
< 0, where si
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= xi + yi, and with ĝi
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= f j(y∗j ), i, j = 1, 2, j 6= i, throughout this section for

clarity. There are three cases:
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∂x2
i

and ∂2 ĝi
∂yi∂xj

= ∂2 ĝi
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∂x2

i

∥∥∥ ≥ ∥∥∥ ∂2 ĝi
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∂x2
j

∂2 ĝj
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so that the expression between brackets is non-negative (45) is positive, and finally we have
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∂x2
j
<

∂2 ĝj
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∂x2
j

(
∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

)−1

> 0 implies

finally that

dy∗j
dxj

=
− ∂2 ĝj

∂x2
j

∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j︸ ︷︷ ︸

>0

1−
∂2 ĝj

∂xj∂yi

− ∂2 ĝj

∂x2
j

Njj

∆


︸ ︷︷ ︸

>0

> 0. (50)

The sign of
dy∗j
dxj

in (47), (48) and (50), establishes Proposition 1. �

A.3 Lemmas

The technical results introduced in this section are needed to prove Propositions 2, 3, and 4. The first
two lemmas establish a connection between properties of ĝi (x, y) .

= gi
(
xi + yi, xj, yj, z∗(x, y)

)
and

g̃i (x)
.
= ĝi (x, y∗(x))− fi (y∗i (x)).

Lemma A.1 Suppose that ∂2 ĝi
∂x2

i
≤ 0, i = 1, 2. Then

d[ĝi(xi+y∗i ,xj,y∗j )− fi(y∗i )]
dxj

, i, j = 1, 2, j 6= i, has the same

sign as
∂ĝi(xi+yi ,xj,yj)

∂xj
and

∂ĝi(xi+yi ,xj,yj)
∂yj

.
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Proof. By the envelope theorem, as y∗i
.
= y∗i

(
xi, xj

)
maximizes ĝi

(
xi + yi, xj, yj

)
− fi (yi), we have

d
[

ĝi

(
xi + y∗i , xj, y∗j

)
− fi (y∗i )

]
dxj

=
∂ĝi

(
xi + y∗i , xj, y∗j

)
∂xj

+
∂ĝi

(
xi + y∗i , xj, y∗j

)
∂yj

dy∗j
dxj

. (51)

Our objective is to determine the sign of the RHS expression in (51). Given the (same) sign of
∂ĝi(xi+y∗i ,xj,y∗j )

∂xj
and

∂ĝi(xi+y∗i ,xj,y∗j )
∂yj

, we need only characterizing
dy∗j
dxj

.

First, if ∂2 ĝi
∂x2

i
= 0 (i = 1, 2), we know from (47) that

dy∗j
dxj

= 0, which is sufficient to conclude.

Next, if ∂2 ĝi
∂x2

i
< 0 (i = 1, 2), we know from (48) that

dy∗j
dxj
≤ 0. Then toward a contradiction we

suppose that
∥∥∥ dy∗j

dxj

∥∥∥ > 1, or equivalently here
dy∗j
dxj

< −1. Developing the expression in (45) then leads
to

∂2 ĝj

∂xj∂yi

(
∂2 ĝi

∂xi∂yj
− ∂2 ĝi

∂xi∂xj

)
> −

∂2 f j

∂y2
j︸︷︷︸

≥0

(
∂2 ĝi

∂x2
i
−

∂2 fi (y∗i )
∂y2

i

)
︸ ︷︷ ︸

<0

. (52)

As ∂2 ĝi
∂xi∂yj

and ∂2 ĝi
∂xi∂xj

have the same sign, and
∥∥∥ ∂2 ĝi

∂xi∂xj

∥∥∥ ≥ ∥∥∥ ∂2 ĝi
∂xi∂yj

∥∥∥ (model specifications in (6-7)), we
know that the expression on the LHS of the strict inequality sign in (57) is non-positive. However,
∂2 f j

∂y2
j
≥ 0 (by assumption) and ∂2 ĝi

∂x2
i
− ∂2 fi(y∗i )

∂y2
i

< 0 (second-order condition) imply that the prod-

uct on the RHS is always non-negative, a contradiction. Hence
∥∥∥ dy∗j

dxj

∥∥∥ ≤ 1. This, together with∥∥∥∥ ∂ĝi(xi+y∗i ,xj,y∗j )
∂xj

∥∥∥∥ ≥ ∥∥∥∥ ∂ĝi(xi+y∗i ,xj,y∗j )
∂yj

∥∥∥∥ (model specifications), is sufficient to conclude that
d[ĝi(xi+y∗i ,xj,y∗j )− fi(y∗i )]

dxj

in (51) has the same sign as
∂ĝi(xi+yi ,xj,yj)

∂xj
and

∂ĝi(xi+yi ,xj,yj)
∂yj

. �

Lemma A.2 Suppose that ∂2 ĝi
∂x2

i
≤ 0, i = 1, 2. If

∂ĝi(xi+yi ,xj,yj)
∂xj

≥ 0 and
∂ĝi(xi+yi ,xj,yj)

∂yj
≥ 0, i, j = 1, 2, j 6= i,

then
d[ĝi(xi+y∗i ,xj,y∗j )− fi(y∗i )]

dxi
≥ 0 also.

Proof. By the envelope theorem, as y∗i
.
= y∗i

(
xi, xj

)
maximizes ĝi

(
xi + yi, xj, yj

)
− fi (yi), we have

d
[

ĝi

(
xi + y∗i , xj, y∗j

)
− fi (y∗i )

]
dxi

=
∂ĝi

(
xi + y∗i , xj, y∗j

)
∂xi

+
∂ĝi

(
xi + y∗i , xj, y∗j

)
∂yj

dy∗j
dxi

, (53)

where
∂ĝi(xi+y∗i ,xj,y∗j )

∂xi
≥ 0 as a model specification, and

∂ĝi(xi+y∗i ,xj,y∗j )
∂yj

≥ 0 as an assumption of the
present lemma. In order to determine the sign of the RHS expression in (53), we thus need only

characterizing
dy∗j
dxi

.

First, if ∂2 ĝi
∂x2

i
= 0 (i = 1, 2), we know from (47) that

dy∗j
dxi

= 0, which is sufficient to conclude.
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Next, if ∂2 ĝi
∂x2

i
< 0 (i = 1, 2), recall from (46) in Section A.1 that

dy∗j
dxi

=
− ∂2 ĝj

∂xj∂xi

∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

1−
∂2 ĝj

∂xj∂yi

− ∂2 ĝj
∂xj∂xi

Nji

∆

 , (54)

where Nji
.
= ∂2 ĝi

∂xi∂yj

∂2 ĝj
∂xj∂xi

−
(

∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

)
∂2 ĝi
∂x2

i
. There are two possible cases that depend on the sign of

∂2 ĝj
∂xj∂xi

.

(i) If ∂2 ĝj
∂xj∂xi

≥ 0 (i, j = 1, 2, j 6= i), as ∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j
< 0 we have − ∂2 ĝj

∂xj∂xi
/
(

∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

)
≥ 0. Then, toward

a contradiction, suppose that the expression between brackets in (54) is negative. This, together with∥∥∥ ∂2 ĝj
∂xj∂yi

/ ∂2 ĝj
∂xj∂xi

∥∥∥ ≤ 1 (model specifications in (6-7)), implies that Nji
∆ < −1, which can be rewritten as

∂2 ĝi

∂xi∂yj

(
∂2 ĝj

∂xj∂xi
−

∂2 ĝj

∂xj∂yi

)
<

∂2 fi

∂y2
i

(
∂2 ĝj

∂x2
j
−

∂2 f j

∂y2
j

)
,

where the expression on the LHS of the inequality sign is non-negative, whereas the expression on

the RHS is non-positive, a contradiction. It follows that
dy∗j
dxi
≥ 0, which is sufficient to conclude

directly that
d[ĝi(xi+y∗i ,xj,y∗j )− fi(y∗i )]

dxi
in (53) is non-negative also.

(ii) If ∂2 ĝj
∂xj∂xi

< 0 (i, j = 1, 2, j 6= i), unlike in the previous case the model specifications do not imply

that
dy∗j
dxi
≥ 0. Then, toward a contradiction, whenever

dy∗j
dxi

< 0 suppose that
∥∥∥ dy∗j

dxi

∥∥∥ > 1, or equivalently

here − dy∗j
dxi

> 1. From (54), by using ∆ > 0 (see (41) and related subsequent comments in Section A.1)
we have

− ∂2 ĝj
∂xj∂yi

∂2 ĝi
∂x2

i
+

∂2 ĝj
∂xj∂xi

(
∂2 ĝi
∂x2

i
− ∂2 fi

∂y2
i

)
(

∂2 ĝi
∂x2

i
− ∂2 fi

∂y2
i

)(
∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

)
− ∂2 ĝi

∂xi∂yj

∂2 ĝj
∂xj∂yi

> 1,

which can be rewritten as

−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i
+

∂2 ĝj

∂xj∂xi

(
∂2 ĝi

∂x2
i
− ∂2 fi

∂y2
i

)
>

(
∂2 ĝi

∂x2
i
− ∂2 fi

∂y2
i

)(
∂2 ĝj

∂x2
j
−

∂2 f j

∂y2
j

)
− ∂2 ĝi

∂xi∂yj

∂2 ĝj

∂xj∂yi
,

with ∂2 ĝi
∂x2

i
and ∂2 ĝi

∂xi∂yj
both negative here. Moreover we know by assumption from (7) that

∥∥∥ ∂2 ĝi
∂x2

i

∥∥∥ ≥∥∥∥ ∂2 ĝi
∂xi∂yj

∥∥∥. Therefore, substituting ∂2 ĝi
∂x2

i
for ∂2 ĝi

∂xi∂yj
in the last term above, by transitivity we obtain

−
∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i
+

∂2 ĝj

∂xj∂xi

(
∂2 ĝi

∂x2
i
− ∂2 fi

∂y2
i

)
>

(
∂2 ĝi

∂x2
i
− ∂2 fi

∂y2
i

)(
∂2 ĝj

∂x2
j
−

∂2 f j

∂y2
j

)
−

∂2 ĝj

∂xj∂yi

∂2 ĝi

∂x2
i

,

51



which simplifies to
∂2 ĝj

∂xj∂xi
<

∂2 ĝj

∂x2
j
−

∂2 f j

∂y2
j
≤

∂2 ĝj

∂x2
j
≤ 0.

As the latter inequalities contradict the initial assumption in (6) that
∥∥∥ ∂2 ĝj

∂xj∂xi

∥∥∥ ≤ ∥∥∥∥ ∂2 ĝj

∂x2
j

∥∥∥∥, it must be

the case that
∥∥∥ dy∗j

dxi

∥∥∥ ≤ 1. This, together with the model specification in (4-5) that
∥∥∥∥ ∂ĝi(xi+y∗i ,xj,y∗j )

∂xi

∥∥∥∥ ≥∥∥∥∥ ∂ĝi(xi+y∗i ,xj,y∗j )
∂yj

∥∥∥∥, is sufficient to conclude that
d[ĝi(xi+y∗i ,xj,y∗j )− fi(y∗i )]

dxi
in (53) is non-negative. �

The next two lemmas were established in Laussel and Le Breton (2001). We restate them in the
notation of this paper for a self-contained appendix:49

Lemma A.3 If v is superadditive, that is Λ ≥ v({1}) + v({2}), then in all TSPNE v∗0 = 0, and all vectors
of equilibrium profits (v∗1 , v∗2) are such that v∗1 + v∗2 = Λ.

Lemma A.4 If v is strictly subadditive, that is Λ < v({1}) + v({2}), then in all TSPNE v∗0 > 0, and there
exists a unique vector of equilibrium profits (v∗1 , v∗2), where v∗i = Λ− v({j}), i, j = 1, 2, j 6= i.

A.4 Proof of Propositions 2, 3, and 4.

Proof of Proposition 2. We first use Lemmas A.1 and A.2, and finally Lemma A.3, in order to
extend a proof by Billette de Villemeur and Versaevel (2003, Proposition 1) to establish the (weak)
superadditivity of v(.). Then we show that the equilibrium payoffs (v∗1 , v∗2) exist that are (weakly)
higher than the respective standalone values (v1, v2).

1) Denote by X∗{i} the set of R&D levels that maximize the joint profit of firm i and the lab, that is

X∗{i} = arg max
x

(
max

yi

[
ĝi
(
xi + yi, xj, yj

)
− fi (yi)

]
− f0 (x)

)
.

Define a .
= (a1, a2) ∈ X∗{1} and b .

= (b1, b2) ∈ X∗{2}.

We know from the initial model specifications that
∂ĝi(xi+yi ,xj,yj)

∂si
≥ 0, where si = xi + yi. More-

over, it is assumed in this proposition that ∂2 ĝi
∂x2

i
≤ 0 (non-increasing returns to R&D), and from

(13) that
∂ĝi(xi+yi ,xj,yj)

∂xj
≥ 0 and

∂ĝi(xi+yi ,xj,yj)
∂yj

≥ 0 (non-negative R&D externalities). It follows that
ĝi(xi + y∗i (x) , xj, y∗j (x)) − fi (y∗i (x)) is non-decreasing in xj from Lemma A.1, and also in xi from

49With two principals, the convexity condition introduced in Laussel and Le Breton (2001, Proposition 3.2, p. 103) coin-
cides with the superadditivity of v in our model, and the strong subadditivity property (Proposition 3.3, p. 104) coincides
here with strict subadditivity.
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Lemma A.2. Therefore, for s .
= (s1, s2), with s1

.
= a1 ∨ b1 and s2

.
= a2 ∨ b2, we have

ĝ1 (a1 + y∗1 (a) , a2,y∗2 (a))− f1 (y∗1 (a)) ≤ ĝ1 (s1 + y∗1 (s) , s2,y∗2 (s))− f1 (y∗1 (s)) , (55a)

ĝ2 (b2 + y∗2 (b) , b1,y∗1 (b))− f2 (y∗2 (b)) ≤ ĝ2 (s2 + y∗2 (s) , s1,y∗1 (s))− f2 (y∗2 (s)) . (55b)

The non-negative cross-derivative in (12) implies the weak submodularity of f0 (Topkis, 1995). This
property, with (55a) and (55b), together lead to

ĝ1 (a1 + y∗1 (a) , a2,y∗2 (a))− f1 (y∗1 (a))− f0 (a)︸ ︷︷ ︸
=v({1})

+ ĝ2 (b2 + y∗2 (b) , b1,y∗1 (b))− f2 (y∗1 (b))− f0 (b)︸ ︷︷ ︸
=v({2})

≤ ĝ1 (s1 + y∗1 (s) , s2,y∗2 (s))− f1 (y∗1 (s)) + ĝ2 (s2 + y∗2 (s) , s1,y∗1 (s))− f2 (y∗2 (s))− f0 (s)︸ ︷︷ ︸
≤v({1,2})

− f0 (a ∧ b)︸ ︷︷ ︸
≥0

,

which in turn establishes that v({1}) + v({2}) ≤ v({1, 2}). Then the conclusion that v∗0 = 0 <

v∗1 + v∗2 = v({1, 2}) follows directly from Lemma A.3.

2) To check that v∗i ≥ vi, recall that firm i’s standalone value vi
.
= g̃j(x∗{j}), where x∗{j} ∈ arg maxx[g̃j (x)−

f0(x)], is the R&D outcomes when firm j is assumed to have exclusive access to the lab (for i, j = 1, 2,
j 6= i). Moreover, by assumption firm i’s exclusive control of the lab dominates the standalone value,
that is v({i}) ≥ vi. Then from the superadditivity of v(.), together with v∗1 + v∗2 = v({1, 2}) as
established above, we have directly

v1 + v2 ≤ v({1}) + v({2}) ≤ v({1, 2}) = v∗1 + v∗2 ,

and the equilibrium set {(v∗1 , v∗2) | v∗1 + v∗2 = Λ, v∗1 ≥ v1, v∗2 ≥ v2} is nonempty. �

Proof of Proposition 3. We first use Lemmas A.1 and A.4 to prove the strict subadditivity of
v(.), before establishing that the equilibrium payoffs (v∗1 , v∗2) are (weakly) higher than the respective
standalone values (v1, v2).

1) Pick any x∗ .
= (x∗1 , x∗2) in X∗{1,2}, the set of R&D levels that maximize industry profits.

It is assumed in this proposition that ∂2 ĝi
∂x2

i
≤ 0 (non-increasing returns to R&D), and from (17)

that that
∂ĝi(xi+yi ,xj,yj)

∂xj
≤ 0 and

∂ĝi(xi+yi ,xj,yj)
∂yj

≤ 0 (weakly negative R&D externalities). It follows from
Lemma A.1 that the net profit expression ĝi(xi + y∗i (x), xj, y∗j (x)) − fi (y∗i (x)) is non-decreasing so
that, for all x∗1 , x∗2 ≥ 0,

ĝ1 (x∗1 + y∗1 (x
∗) , x∗2 , y∗2 (x

∗))− f1 (y∗1 (x
∗)) ≤ ĝ1 (x∗1 + y∗1 (x∗1 , 0) , 0, y∗2 (x∗1 , 0))− f1 (y∗1 (x∗1 , 0)) , (56a)

ĝ2(x∗2 + y∗2 (x
∗) , x∗1 , y∗1 (x

∗))− f2 (y∗2 (x
∗)) ≤ ĝ2 (x∗2 + y∗2 (0, x∗2) , 0, y∗1 (0, x∗2))− f2 (y∗2 (0, x∗2)) . (56b)
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The negative cross-derivative in (16) implies the strict supermodularity of f0 (Topkis, 1995), with
f0 (0, 0) = 0. This property, together with (56a) and (56b), lead to

ĝ1(x∗1 + y∗1 (x
∗) , x∗2 , y∗2 (x

∗))− f1 (y∗1 (x
∗)) + ĝ2(x∗2 + y∗2 (x

∗) , x∗1 , y∗1 (x
∗))− f2 (y∗2 (x

∗))− f0 (x∗1 , x∗2)︸ ︷︷ ︸
=v({1,2})

< ĝ1 (x∗1 + y∗1 (x∗1 , 0) , 0, y∗2 (x∗1 , 0))− f1 (y∗1 (x∗1 , 0))− f0 (x∗1 , 0)︸ ︷︷ ︸
≤v({1})

+ ĝ2 (x∗2 + y∗2 (0, x∗2) , 0, y∗1 (0, x∗2))− f2 (y∗2 (0, x∗2))− f0 (0, x∗2)︸ ︷︷ ︸
≤v({2})

,

which establishes that v ({1, 2}) < v ({1}) + v ({2}). Then the conclusion that v∗0 > 0 and v∗i =

Λ− v({j}), i, j = 1, 2, j 6= i, follows directly from Lemma A.4.

2) For any x∗{1} and x∗{2}, by definition of v(.) we have

g̃1(x∗{1}) + g̃2(x∗{1})− f0(x∗{1}) ≤ v({1, 2}),

g̃1(x∗{2}) + g̃2(x∗{2})− f0(x∗{2}) ≤ v({1, 2}).

Then by reorganizing terms, and recalling that v({i}) .
= g̃i(x∗{i})− f0(x∗{i}) and vi

.
= g̃i(x∗{j}), where

x∗{j} ∈ arg maxx
[
g̃j (x)− f0 (x)

]
, i, j = 1, 2, j 6= i, we obtain

v({1}) + v2 ≤ v({1, 2}),

v({2}) + v1 ≤ v({1, 2}),

which, together with v∗i = Λ− v({j}), i, j = 1, 2, j 6= i, as established above, implies that vi ≤ v∗i . �

Proof of Proposition 4. First, Lemma A.1 extends to the case ∂2 ĝi
∂x2

i
≥ 0 (i = 1, 2). Indeed we have

established in (47) that ∂2 ĝi
∂x2

i
= 0 ⇒ dy∗j

dxj
= 0, and in (50) that ∂2 ĝi

∂x2
i
> 0 ⇒ dy∗j

dxj
> 0. This is sufficient

to conclude directly that
d[ĝi(xi+y∗i (x),xj,y∗j (x))− fi(y∗i (x))]

dxj
in (51) has the same sign as

∂ĝi(xi+yi ,xj,yj)
∂xj

and
∂ĝi(xi+yi ,xj,yj)

∂yj
.

To extend Lemma A.2 as well, note that ∂2 ĝi
∂x2

i
≥ 0 (i = 1, 2) implies Nji

∆ ≥ 0 in (54), because ∆ > 0

(from stability condition) and Nji ≥ 0 from ∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j
< 0 (second-order condition) and ∂2 ĝj

∂x2
j
≥ 0

(assumption in this proposition). Then there are only two possible cases:

(i) If ∂2 ĝj
∂xj∂xi

≥ 0 then ∂2 ĝj
∂xj∂yi

≥ 0 also (model specifications). As Nji
∆ ≥ 0, we obtain that the expression

between brackets in (54) is positive. Moreover, ∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j
< 0 (second-order condition) here implies

54



that− ∂2 ĝj
∂xj∂xi

(
∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

)−1

≥ 0. Therefore, from (54) we have
dy∗j
dxi
≥ 0, which is sufficient to conclude

directly that
d[ĝi(xi+y∗i (x),xj,y∗j (x))− fi(y∗i (x))]

dxi
in (53) is non-negative also.

(ii) If ∂2 ĝj
∂xj∂xi

≤ 0 then ∂2 ĝj
∂xj∂yi

≤ 0 also (model specifications). As Nji
∆ ≥ 0, again the expression between

brackets in (54) is positive. Moreover, ∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j
< 0 (second-order condition) implies here that

− ∂2 ĝj
∂xj∂xi

(
∂2 ĝj

∂x2
j
− ∂2 f j

∂y2
j

)−1

≤ 0. Therefore, from (54) we have that
dy∗j
dxi
≤ 0, implying that

∥∥∥ dy∗j
dxi

∥∥∥ = − dy∗j
dxi

.

So, recalling that
∥∥∥ ∂ĝi

∂xj

∥∥∥ ≥ ∥∥∥ ∂ĝi
∂yj

∥∥∥ (model specifications in (6-7)), a sufficient condition for Lemma A.2

to be robust to the increasing R&D return specification is
dy∗j
dxi

> −1. �

A.5 Proof of industry profit maximization result in Proposition 5.

Recall from the model specifications in Section 3 that, in equilibrium, for any given pair of transfer
payment functions (t̃1, t̃2) we know that x̃ is an element of X(t̃1, t̃2)

.
= arg maxx v0((x(t̃1, t̃2))), the

set of external R&D choices that maximize the lab’s profit. We want to demonstrate that x̃ is also an
element of X∗{1,2}

.
= arg maxx(g̃1(x) + g̃2(x) − f0(x)), the set of external R&D levels that maximize

industry profit. The proof is a simple adaptation, in the notation of our model, of a common agency
efficiency result in Bernheim and Whinston (1986b, Theorem 2, p. 14).

We suppose that x̃ /∈ X∗{1,2}, and look for a contradiction. In equilibrium the strategy t̃i is truthful
relative to x̃, that is t̃i(x) = sup{0, g̃i(x)− [g̃i(x̃)− t̃i(x̃)]}, implying that

g̃i(x)− g̃i(x̃) + t̃i(x̃) ≤ t̃i(x),

for all x. This holds in particular for any given x∗ ∈ X∗{1,2}, so that g̃i(x∗) − g̃i(x̃) + t̃i(x̃) ≤ t̃i(x∗),
i = 1, 2. Summing the latter inequality for the two firms, and subtracting f0(x∗) on each side, leads
to

g̃(x∗)− g̃(x̃) + t̃(x̃)− f0(x∗) ≤ t̃(x∗)− f0(x∗),

where g̃(x) .
= g̃1(x) + g̃2(x), and t̃(x) .

= t̃1(x) + t̃2(x). By introducing f0(x̃) on the left-hand side
only, and reorganizing terms, we obtain

[g̃(x∗)− f0(x∗)]− [g̃(x̃)− f0(x̃)] + t̃(x̃)− f0(x̃) ≤ t̃(x∗)− f0(x∗). (57)

Observe that x∗ ∈ X∗{1,2} and x̃ /∈ X∗{1,2} together imply that g̃(x∗)− f0(x∗) > g̃(x̃)− f0(x̃), which in
turn implies from (57) that t̃(x̃)− f0(x̃) < t̃(x∗)− f0(x∗). The latter comparison says that x̃ /∈ X(t̃1, t̃2),
a contradiction. Therefore, x̃ ∈ X∗{1,2}. �
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A.6 Proof of v{0,1}
0 = v{0,2}

0 ≥ v∗0 = |ε| > 0 in Proposition 6 (for ε < 0).

Consider the negative technological externalities case (ε < 0), with firm i facing two alternatives: if
it is the one that acquires the lab, as an integrated entity it earns Λ− v{0,i}

j ; otherwise, as an outsider

firm it earns v{0,j}
i . The difference of the latter two payoffs is firm i’s willingness to pay for the lab,

which is equal to the one of firm j. Therefore, competition for the acquisition of the lab implies that
in equilibrium v{0,i}

0 = v{0,j}
0 = Λ− v{0,2}

1 − v{0,1}
2 .

Suppose now that firm i is the one that acquires the lab, while firm j remains independent, i, j =
1, 2, j 6= i. In the latter industry structure, the integrated entity {0, i} and firm j bargain over the
value generated by the acquired lab, with respective disagreement payoffs v ({i}) and vj. Firm j’s
payoff is thus

v{0,i}
j = vj + wj

(
Λ− vj − v ({i})

)
, (58)

where from (29) firm j’s bargaining power is

wj =
v{1,2}

j − v∗j
Λ− v∗1 − v∗2

. (59)

Given that v{0,i}
0 = Λ− v{0,2}

1 − v{0,1}
2 , as established above, and using (58-59), we have

v{0,1}
0 = Λ−

(
v1 +

v{1,2}
1 − v∗1

Λ− v∗1 − v∗2
(Λ− v1 − v ({2}))

)
−
(

v2 +
v{1,2}

2 − v∗2
Λ− v∗1 − v∗2

(Λ− v2 − v ({1}))
)

,

which, by reorganizing terms, can be rewritten as

v{0,1}
0 =

(
v ({1})− v1
Λ− v∗1 − v∗2

)(
v{1,2}

2 − v∗2
)
+

(
v ({2})− v2
Λ− v∗1 − v∗2

)(
v{1,2}

1 − v∗1
)

.

Then, recalling that v∗0 = |ε| = v ({1}) + v ({2}) − Λ, and that Λ = v{1,2}
1 + v{1,2}

2 , after a few
steps we obtain that v{0,1}

0 ≥ v∗0 if and only if(
v ({1})− v{1,2}

1
|ε|

)
[v1 + v ({2})−Λ] +

(
v ({2})− v{1,2}

2
|ε|

)
[v2 + v ({1})−Λ] ≤ 0. (60)

As the two added terms in (60) are symmetric, we focus on the first one:

(i) Consider the expression between square brackets. By definition of Λ .
= maxx (g̃1 (x) + g̃2 (x)− f0(x)),

we have Λ ≥ g̃1(x∗{2}) + g̃2(x∗{2}) − f0(x∗{2}), where x∗{2} ∈ arg maxx[g̃2 (x) − f0(x)]. Since v1 =

g̃1(x∗{2}) and v ({2}) = g̃2(x∗{2})− f0(x∗{2}), we have v1 + v ({2})−Λ ≤ 0.

(ii) Consider the numerator in the term between parentheses. From Proposition 3 we know that
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v∗2 = Λ− v ({1}). Moreover, Λ− v∗1 − v∗2 = v∗0 > 0 implies from (28) that v{1,2}
2 > v∗2 for all (ω1, ω2)

in (0, 1)2. It follows that v{1,2}
2 > Λ− v ({1}), and it is sufficient to recall that v{1,2}

2 = Λ− v{1,2}
1 (the

lab makes no profit in the horizontal arrangement) to establish that v ({1})− v{1,2}
1 > 0.

Therefore, (60) is always true, with a strict inequality sign whenever Λ > g̃i(x∗{i}) + g̃j(x∗{i}) −
f0(x∗{i}), for some i = 1, 2, j 6= i. �
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