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Abstract 

In this paper we discuss the most recent developments of temporal disaggregation techniques 
carried out at ISTAT. They concern the extension from static to dynamic autoregressive 
distributed lag ADL regressions and the change to a state-space framework for the statistical 
treatment of temporal disaggregation. Beyond the development of a unified procedure for 
both static and dynamic methods from one side and the treatment of the logarithmic 
transformation from the other, we provide short guidelines for model selection. From the 
empirical side we evaluate the new dynamic methods by implementing a large scale 
temporal disaggregation exercise using ISTAT annual value added data jointly with 
quarterly industrial production by branch of economic activity over the period 1995-2013. 
The main finding of this application is that ADL models either in levels and logarithms can 
reduce the errors due to extrapolating disaggregated data in last quarters before the annual 
benchmarks become available. When the attention moves to the correlations with the high-
frequency indicators the ADL disaggregations are also generally in line with those produced 
by the static Chow-Lin variants, with problematic outcomes limited to few cases. 

 
Keywords: temporal disaggregation; state-space form; Kalman filter; ADL 

models; linear Gaussian approximating model; quarterly national accounts. 

1. Introduction 

Since mid-eighties, when Italian quarterly national accounts releases became 
systematic, temporal disaggregation methods gathered larger attention as a decisive 
tool for their production. At that time ISTAT adopted new information technology 
instruments borrowing most of the work already developed at the Bank of Italy. 
Temporal disaggregation methods like both the Chow and Lin (1971) solution – see 
the development by Barbone et al. (1981) – and the approach by Denton (1971) 
were adopted for estimating quarterly national accounts. A second renovating phase 
dates back to mid-nineties when a critical analysis of temporal disaggregation 
methods by Lupi and Parigi (1996) came out and which inspired the development of 
a sophisticated procedure for diagnostic checking. Such procedure still largely 
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supports the operational phases of the quarterly accounts process since it offers a 
complete diagnostic report of quarterly disaggregations.  

Later on, between 2004 and 2005, an ISTAT study commission was set up with 
the task of formulating new proposals for temporal disaggregation. The final 
remarks in Di Fonzo (2005) provided evidence of the ISTAT commitment to 
modernize both conceptual and technical tools used within quarterly accounts, 
largely implemented in the following years.  

Most recently the literature has proposed further methodological developments 
mainly due to the initiative by Eurostat. See Frale et al. (2010 e 2011), Grassi et al. 
(2014) e Moauro (2014), among others. At the same time ISTAT favoured a 
relatively more pragmatic approach. In particular, the effort was aimed at technically 
implementing temporal disaggregation methods based on autoregressive distributed 
lag ADL models according to Proietti (2005).  

Such extension, on one hand significantly broadened the range of the available 
models to be used for temporal disaggregation, on the other, given it is based on the 
Kalman filter (Kalman, 1960), entailed a number of practical benefits for quarterly 
accounts analysis. Namely, the computation of innovations, the development of 
diagnostics concerning the extrapolations and the resorting to models based on the 
logarithmic transformation of the data to be disaggregated.  

The present work describes the innovative elements of temporal disaggregation 
recently introduced at ISTAT concerning the enlargement of the range of models to 
be selected and the development of statistics for diagnostic checking. These tools are 
largely used in the empirical section of the paper where we present the results of an 
extensive temporal disaggregation experiment. We compare the performances of the 
enlarged class of models, providing some guidelines for model selection and 
highlighting the critical points. Advantages and disadvantages of alternative 
solutions are discussed by taking into account the main features of the exercise. 

This paper is structured as follows: section 2 describes the analytics of the 
reference ADL(1,1) model and its linkage to the static regression setup; the main 
features of the state space representation including the case of logarithmic 
transformation, diagnostic checking and temporal disaggregation evaluation are 
discussed in section 3; section 4 presents the results of the empirical experiment and 
section 5 shortly concludes. In the appendix section, appendix A includes a set of 
tables describing the features of the dataset and the main results of the application; 
appendix B is devoted to the graphs of the dataset. 

2. Dynamic regression methods  

2.1 The ADL(1,1) model  

Temporal disaggregation methods here discussed are based upon dynamic 
regression models. They encompass a linear univariate relationship between the 



dependent variable y�, its lagged values y��� and a series of regressors x� in a given 
time span t = 1, …, T. The problem is that y� is available only as a temporal 
aggregate Y� over s periods, i.e. only annual values are available over the quarterly 
time span. In case the annual aggregate value results as the sum of quarters, Y� is 
defined as Y� = �� + ⋯ + ������ with s=4. Alternatively Y� = (�� + ⋯ + ������)/� 
reflecting the case of averaged stocks. Hence, Y� is only observed in periods t=s, 2s, 
…, [T/s], where [T/s] is the biggest whole number of the ratio T/s. On the other 
hand, the k covariates x� = (x��,… ,x��) are observable at each quarter t=1, …, T.  

A general representation of the relation between the two sets of variables is given 
by the dynamic autoregressive distributed lag models ADL(1,1) that is specified at 
the higher frequency as:  

 

∆�y� = φ∆�y��� + m + gt+ ∆�x′�β� + ∆�x′���β� + ϵ� ,ϵ�~NID(0,σ
�). 

 (1) 
 
In equation (1) ∆ is the difference operator such that ∆y� = y� − y���;  l 

represents the differencing order assuming here either a value of 0, i.e. no 
difference, or 1 for first order difference; φ  is the autoregressive term such that 
−1 < φ < 1; m  and gt are the deterministic components i.e., respectively, a 
constant term and a linear trend; β� and β� are the regression coefficients vectors at 
lag 0 and 1, respectively; ϵ� is the vector of stochastic errors for which a normal 
distribution with zero mean and constant variance equal to σ� is assumed.  

The ADL(1,1) model was made popular by Hendry e Mizon (1978) who pointed 
out that the stability of the model would hold even if the regressors determined a 
spurious relationship in level and were uncorrelated in differences. ADL(1,1) 
models in the case of I=0 represent a simple reparametrization of error correction 
models, made popular by the literature on cointegration. 

Within the domain of temporal disaggregation Proietti (2005) suggested a 
methodology based both on the parametrization of ADL(1,1) models in the state 
space form (SSF) and on the use of the Kalman filter for its statistical treatment. In 
particular the use of the Kalman filter is intended for: log-likelihood computation, 
model parameters estimation, high-frequency (e.g. quarterly) distribution or 
temporal disaggregation of data observed as the sum/average in a lower frequency 
time span (e.g. annually) and the extension to the non-linear temporal disaggregation 
in case of logged data. Concerning maximum likelihood estimation of model 
parameters of equation (1), the most appropriate solution is the generalised least 
squares (GLS) method. Indeed, all model regression coefficients, i.e. m , g, β�, β� , 
the variance term σ� of ε� residuals can be concentrated out of the log-likelihood 
function, thereby originating a profile likelihood depending only from the 
autoregressive parameter φ . Its estimation can be conveniently set up as a grid 
search of φ  over the interval (-1, 1).  



Either regression models with AR(1) residuals - including I(1) models - and 
ARIMA (1,1,0) models are nested in the ADL(1,1) models of equation (1); within 
the temporal disaggregation domain these specific cases correspond, respectively, to 
the Chow-Lin (1971), Fernàndez (1981) and Litterman (1983) methods. 

2.2 From ADL(1,1) to AR(1) Chow-Lin model 

Under suitable hypothesis on initial conditions and under proper linear 
restrictions on regressor parameters, the model ADL(1,1) nests a linear regression 
model whose residuals follow an AR(1) process. For example, model (1) in levels 
without deterministic components can be rewritten in terms of the lag polynomial 
β� + β�L such that L is the lag operator for which Lx� = x���:  

 
y� = φy��� + x��(β� + β�L)+ ϵ�. 

 
Under this form and given the condition β� = −φβ� with |φ|<  1, it becomes 
 

y�(1 − φL)= x��β�(1 − φL)+ ϵ� 
 
and, therefore 
 

y� = x′�β� + α� 

α� =  φα��� + ϵ�,       ϵ�~NID(0,σ
�) 

 
where the residual term α�  follows a first order autoregressive stationary 

process. 

2.3 From ADL(1,1) in differences to the Litterman (1983) and Fernàndez (1981) 
models 

Under suitable initial conditions reflecting the non-stationarity of ADL(1,1) 
model in differences, both Fernàndez (1981) and Litterman (1983) models also can 
be derived from model (1). They will result as linear regression models with residual 
following, for the former, a random walk or I(1) process and, for the latter, an 
ARIMA (1,1,0) process. 

In formulas, when I=1 then:  
 
∆y� = φ∆y��� + ∆x��β� + ∆x����β�

+ ϵ�,      ϵ�~WN (0,σ�)  (2) 

 
That, if φ = 0 and β� = 0 , corresponds to the Fernàndez model, i.e.: 
 

∆y� = ∆x��β� + ϵ�, 



 
that is: 
 

y� = x��β� + u� 
u� = u��� + ϵ�  

 
where u� follows a random walk process. 
Under the condition β� = −φβ�, with φ < 1 model in differences (2), nests 

the Litterman model such that: 
 

∆y� = φ∆y��� + ∆x��β� − ∆x����φβ�
+ ϵ�,       ϵ�~WN (0,σ�) 

y� = x′�β� + u� 

∆u� =  φ∆u��� + ϵ�,       ϵ�~NID(0,σ
�)  

 
Where u� follows an ARIMA(1,1,0) process. 

3 Statistical treatment and diagnostic checking  

3.1. Essentials of the state space representation 

In general, the state space representation within the temporal disaggregation 
domain is defined by two equations: the former defines the time series structure 
(measurement equation), the latter how the latent structural components evolve from 
one state to the following one (transition equation). The SSF representation allows 
to resort to the Kalman filter methodology which in turn allows to compute the 
optimal estimator of the state variables vector at the time t for t=1, …, T, given the 
information available by the same horizon. The Kalman filter is usually associated 
to a smoothing algorithm which allows to optimally estimate the state vector 
conditioned to the whole information set. 

The application of the SSF approach to temporal disaggregation was formerly 
introduced by Harvey and Pierce (1984) and then developed by Harvey (1989), 
Harvey and Chung (2000), Harvey and Koopman (1997) and Moauro and Savio 
(2002), among others. The peculiarities of the SSF representation applied to the 
temporal disaggregation techniques have been subsequently treated by Proietti 
(2005; 2006) whose contributions are the essential basis of this work.  

Advantages of the SSF are the following: i) a suitable treatment of the initial 
conditions in presence of a non-stationary time series; ii) the availability of more 
effective diagnostics oriented to evaluate the quality of maximum likelihood 
estimates like the innovations; iii) the chance to easily obtain extrapolations of the 
series in case of models without covariates. Among disadvantages we find a 
relatively larger complexity due to the Kalman filter which in some environment 
implies slower computations. 



According to Harvey (1989, sec. 6.3) temporal disaggregation traces back to a 
“missing observations” problem which is appropriately treated by augmenting the 
SSF representation of a general model, and therefore the ADL model of equation 
(1), by a cumulator variable ��

�  observable only at time �= �,2�,3�,…  For 
quarterly series of flows � = 4 and ��

�  is such that: 
 

��
� = ��,  ��

� = �� + ��,  ��
� = �� + �� + ��, ��

� = �� + �� + �� + �� 
��
� = ��,  ��

� = �� + ��,  ��
� = �� + �� + ��, ��

� = �� + �� + �� + �� 
… 
 
or in Markovian terms  ��

� = �� ����
� + ��, where �� is such that  

 

�� = �
0,   �= 1,5,… .
1,    ��ℎ������

 

 
As far as the statistical treatment is concerned, the required steps are: the 

cumulator variable ��
� is added to the state vector of the SSF of the model defined at 

the highest frequency of observation; the measurement equation is adjusted so that 
the Kalman filter could take into account the missing observations of ��

� ; then, the 
likelihood function of the given model is computed, its maximization with respect to 
the unknown parameters vector is carried out and both missing observations and 
disaggregated data are estimated through the smoothing algorithm. For full details 
see Proietti (2005). 

 

3.2 The case of log-transformed series  

The logarithmic transformation of data is a common practice in time series 
econometrics, and in particular when the series refer to variables defined as the ratio 
of flow aggregates. (Proietti, 2005). Applying the logarithmic transformation to the 
series implies a number of well-known advantages such as the downsizing of the 
series volatility, or the larger plausibility of the hypothesis underpinning the 
regression model (model linearity, errors homoscedasticity and normality). Within 
the logarithmic context, both the temporal aggregation constraints that must hold for 
the disaggregated (unknown) series and the constraints represented by the cumulator 
variable are defined in non-linear terms. For the sake of clarity, we can consider the 
following relationship holding between the logarithmic transformation of the 
disaggregated series �� and the correspondent aggregated series ��: 

 

�� = ∑ exp������� ,    � = 1,… ,�
�

�
� .���

���    (3) 

 



with the cumulator variable becoming  ��
� = �� ����

� + exp(��).  
Disaggregated data ��� are computed applying an iterative method converging 

towards the constrained posterior mode estimate of the unknown solution which 
satisfies exactly the restrictions of equation (3). Given a trial initial estimate ��� (e.g. 
a series of ones) of ��, iterations start from and the first order Taylor approximation 
of exp(��) around that trial estimate. This allows to expand the SSF defined for the 
linear disaggregation case to a linear Gaussian approximating model (LGAM) for 
log-transformed data. In a second step running the Kalman filter and smoother of the 
LGAM computed at the first step produces a first disaggregated series ���. Then 
��� = ��� is set and a new LGAM is computed producing a second disaggregation ���. 
This process is iterated until convergence, which usually requires not more than 6-7 
rounds.  

3.3 Test statistics and diagnostic checking of temporal disaggregation 

Among the main features of the SSF representation and the Kalman filter there is 
the estimation of forecasting errors or innovations as a by-product of the application 
of the Kalman algorithm. In particular, the main diagnostic statistics implemented 
within the new procedures rely upon standardized innovations ��� which, in temporal 
disaggregation problems, assume real values at time t=s,2s, …,[T/s] but are missing 
otherwise. Innovations �� are such that �� = ��

� − �(��
�|I���) where ���� =

{y���,��} is the information set of the lagged dependent variables y��� and the 
exogenous regressor x�. Therefore standardized innovations are defined as  

 

��� =
��

���
. 

 
where �� are the estimated variances of �� for t = 1, …, T also computed by the 

Kalman filter.  
Two remarks: first, both for static and dynamic models, the whole set of statistics 

resulting by the standardized innovations ��� are consistent to the standard regression 
formulas. For an exhaustive and comprehensive discussion on this topic see Harvey 
(1989, sec.5.4 p. 256 ff.). Second, within temporal disaggregation, the innovations 
measure the one-step-ahead forecast error over the lowest frequency of observation, 
as �� cumulates the errors from the first to the ��� sub-period. In other terms the s 
extrapolations �����/�, …, ����� / ����� for t=s,2s, …,[T/s] are such that  

 
�����/� =  �(����

� |I�) 

����� /��� = �(����
� |I���)= �(����

� |I�)= �����/� 

… 
����� /����� = �(����

� |I�����)= �(����
� |I�)= ����� /� 



 
and therefore, apart the regressors �� that in this context are exogenous, 

conditional to the last available low-frequency aggregate ��. 
A first common statistic is the determination coefficient �� and its corrected 

formula ��
� respectively defined as:  

 
�� = 1 − ���/���,          (4) 

 

��
� =

���

[�/�]��
+

[�/�]��

[�/�]��
��            (5) 

 
where SSR is the sum of squared residuals that within the state-space framework 

reads as  
 

 SSR = [�/�]∙ ��� 
 
with ��� resulting from the biased maximum likelihood estimation of �� of 

equation (1) obtained by the Kalman filter and SST is the sum of squared deviations 
of �� from its mean. In equation (5) k is the number of covariates �� of the 
regression equation (1) possibly including the constant and the linear trend. 

However, Harvey (1989, p.268-9) severely criticizes the R� coefficient as a 
model goodness of fit measure within a time series context, given that y� is often 
non-stationary. This would imply a �� coefficient close to unity. Therefore a 
recommended solution is to compute SST in terms of first differences of �� in order 
to correct the ��statistics to cope with non-stationary data. 

Furthermore, models goodness of fit statistics are given by the standard error of 
regression and maximum log likelihood value, respectively, defined as follows: 

 

SER = ����/([�/�]− �),     (6) 
 

��� = − 0.5 ∙ {���� + [�/�][����� + ln(2�)+ 1]}       (7) 
 
where ���� is the sum of innovations variances taken in logarithms at time t=s, 

2s, …, [�/�]. 
The information criteria AIC and BIC employed to compare alternative model 

specifications can also be recovered as functions of ���, respectively: 
 

AIC= 2k/[�/�]+ ln ���            (8) 
 

BIC= k ∙
��[�/�]

[�/�]
 + ln ���.           (9) 

 



Durbin-Watson (1950, 1951) test statistic used to detect the presence of first- 
order autocorrelation in the residuals is defined with respect the standardized 
innovations ��� as follows:  

d =
∑ (��� − �����)

�[�/�]
�����

∑ ���
�[�/�]

�����

. 

 
The Jarque-Bera test statistic N for the normality of the residuals are derived 

from the formulas in Harvey (1989, p.560 eq.5.4.10 and 5.4.11) respectively for the 
third and the fourth moment of standardized residuals ���. In particular: 

 

��� = ��∗
���(��� − �̅)� /�∗ 

 

�� = ��∗
���(��� − �̅)� /�∗ 

 
where the relation between ��� and ��∗

� (unbiased residual variance) is  
 

��∗
�/��� = �/(� − �) and �∗ = � − �. 

 
Hence, the N statistic of residual normality results as: 
 

N =
�∗

�
∙ �� +

�∗

��
∙ (�� − 3)�,              (10) 

 
that under to the null-hypothesis follows a chi-squared distribution with 2 

degrees of freedom for large samples.  
An option for testing the statistical significance of the first P residual 

autocorrelations is given by the Ljung-Box Q-test statistic computed as: 
 

Q = �∗(�∗ + 2)∑ (�∗ − �)����
�(�)�

���    (11) 
 
where ��(�) are the sample autocovariances of standardized innovations. See 

Harvey (1989) p.259, eq.5.4.7 for detail. Within the context of ADL(1,1) models, we 
compare the related computed statistic to a chi-squared with degrees of freedom 

equal to �[�/�]− 1. 
The last test is the H(h) statistic for checking the heteroscedasticity of residuals 

given by: 
 

�(ℎ)= ∑ ���
��

������� ∑ ���
�.�����

�����⁄       (12) 
 



where h is an integer close to T*/3. In this case the statistic hH(h) is compared to 
a chi-squared with h degrees of freedom. See again Harvey (1989) p.259 eq.5.4.9, 
for a deeper treatment. 

 
3.4 Evaluation of a temporal disaggregation  
 
The diagnostic statistics described so far are important tools for evaluating the 

temporal disaggregation performance but they are not exhaustive to guarantee the 
quality of an exercise. Further criteria are required, especially when the analyst 
copes with incomplete dataset and time constraints.  

A first remark of the above mentioned diagnostics is that they are based on 
residuals computed at low-frequency of observation. Therefore they are not able to 
provide insight about the quality of disaggregations in terms of high-frequency 
comovement with the related indicator. In other words - and this point will become 
clearer in next section - there are situations in which the exercise appears well 
specified according to the residuals-based statistics but yields disaggregated data 
either relatively too smooth or too volatile compared to the indicator. It is thus 
recommended to  complement the usual analysis of residual diagnostics with both 
graphical inspection of disaggregations and a set of statistics of correlation between 
the indicator and the resulting disaggregation.  

A second limit of innovation-based statistics within national accounts concerns 
their reduced power because the length of time series rarely exceeds 20 annual 
observations. 

Therefore the approach ordinarily adopted within national accounts encompasses 
more than a single phase: at first, a preliminary analysis of general good fit of the 
indicator is undertaken, like comparing the pattern between the annualized 
indicators and target data adopting both graphical and synthetic statistics tools; then 
model estimation is carried out, followed by diagnostic checking through residual-
based statistics complemented by statistics of revisions generated by the 
disaggregations and correlations between indicators and disaggregated data. In the 
standard practice these latter statistics are computed in terms of both quarterly and 
annual growth rates. 

 
 
4 The empirical application 

4.1 Design of the exercise 

In this section we present the main results of an exercise of temporal 
disaggregation based on Italian data and providing evidence of a comparative 
analysis of the alternative classes of models presented in section 2. The exercise 
aims at reproducing the current practice of quarterly national accounts both for its 



extension and for the nature of implied time series. It shows a selection of quarterly 
disaggregations based on annual national accounts and short term indicators by 
ISTAT: annual data are relative to the industrial value added split into 17 branches 
of economic activity (sections B-E of NACE Rev.2) according to the compilation 
detail of the Italian practice; quarterly indicators are industrial production indexes at 
same detail of activity. The sample period covers the interval 1995-2013. The table 
1A of appendix A provides a summary description of the data employed in the 
exercise, while figures in appendix B present four graphs for both indicators and 
annual data by branch of activity. In these graphs nominal and volume data are 
presented separately, whereas the two figures 2B and 4B devoted to the indicators 
show together both raw and seasonal adjusted data. 

The exercise has been carried out under a double perspective: the former looks at 
the performance of temporal disaggregations with respect to the type of data 
correction, i.e. taking into account the distinction between seasonal adjusted and 
unadjusted data; the latter at the type of evaluation, i.e. looking at both current price 
and volume data (chain linked values reference year 2010). In total 68 cases have 
been investigated. Each case reviews the full set of methods, from both the static 
regression approaches by Chow and Lin and Fernandez to the ADL class in the two 
specifications ADL(1,0) and ADL(1,1).3 With the exception of the Fernàndez 
approach, the estimations have concerned the unrestricted form of model (1) and the 
restricted variants without trend and with neither constant nor trend. ADL models 
have been estimated in both levels and first differences. Finally, using the 
approaches by both Proietti (2006) and Proietti and Moauro (2006), each form has 
been treated also in the logarithms. In total 2176 temporal disaggregations have been 
carried out.  

Estimation of a so large variety of models and specifications implies the risk that 
some models could be not significant. An example is when the estimation leads to 
values for some regression coefficients either close to zero or to low values for the T 
statistic. Indeed, the aim of the exercise is indeed to mimic the current practice of 
quarterly national accounts when it is rather high the risk of not selecting at best the 
specification, due to lack of either data, or time, or for the presence of organizational 
constraints. 

The exercise allows to appreciate the main advantages of the SSF-based estimate 
with respect to the regression approach, like the possibility to handle both a wider 
range of models, and the logarithmic transformation and the availability of a wider 
set of uniform diagnostic statistics based on standardized innovations.  

4.2 Comparison of temporal disaggregation models  

                                                 
3 A similar exercise concerned also the Litterman model. However, these results, available upon request, were generally 

very problematic for the uncertain estimate of the autoregressive term  occurring in log-likelihood maximization. For 
full details in this respect see Proietti (2005), pp.104-106. 



 
In the comparative analysis of the performances between alternative model solutions 
we have considered two statistics: the former given by the mean absolute forecast 
error (MAE) of annual growth rates over the period 2006-2013 measured as the 
average difference in absolute terms between growth rates of the annual dependent 
variable and the sum of four extrapolated quarters over the annual totals of previous 
year; the latter statistic based on the correlation between quarterly growth rates of 
the indicator and the disaggregated series over the quarters 2005q1-2013q4. MAE 
statistics provide a measure of goodness of fit for extrapolated quarters, whereas 
correlations a synthetic measure on the quality of disaggregations over the last half 
sample with respect to the available indicator. 
Tables 2A-3A of appendix A provide the values of MAEs relative to quarterly 
disaggregations of value added obtained using the seasonal adjusted version of the 
indicators. These statistics are presented by class of model, by branch of economic 
activity and type of evaluation, i.e. both at current prices and in volume. The first 
evidence is that the values of MAE move over a wide range of values, reflecting 
therefore both problematic cases –see for instance MAE of branch 7 equal to 16.3 
for current price estimates- and virtuous situations – like MAE of branch 6 equal to 
1.8.  
Despite this set of tables are not fully informative of all the details of model 
specification and diagnosing checking, they allow to appreciate the performance of 
the ADL class of models. When the comparison concerns the (minimum) MAE 
statistic, ADL models outperform static disaggregations in 13 and 6 cases over a 
total of 17, respectively for nominal and volume data. Hence in 19 times over 34 
occurrences (55,9%) dynamic models are relatively more performant than static 
forms, providing a tool able to reduce revisions of the extrapolations.  
In appendix A, tables 6A-7A complete the analysis of results. Here are provided all 
the details of the best model specifications in terms of MAE relative to each branch: 
in particular, type of specification, possible log transformation and differentiation, 
the maximum log-likelihood value and all parameter estimates are presented. 
From a joint analysis of tables 6A and 7A emerges that ADL models in difference 
are more suited to nominal time series (table 6A) than data in volumes (table 7A). 
This is not in contrast with the evidence that nominal data include the inflative 
component which usually features more evolutive trends or higher order of 
integration, both elements properly treated by models in differences. Concerning the 
logarithmic transformation, its effectiveness emerges in several cases for modelling 
both nominal and volume data. 
In appendix A, tables 4A-5A show the correlations between quarterly growth rates 
of the indicator and the disaggregated series by branch and class of best model. The 
same logic of tables 2A-3A is followed. Concerning data at current prices, it 
emerges that the models where the quality of disaggregations is maximum in terms 
of fit to the indicator are the static ones. In particular the model by Fernàndez 



guarantees maximum correlation in 12 branches over 17 and the model by Chow-
Lin in the remaining 5 cases. Concerning data in volumes, the exercise also shows a 
clear prevalence of the Fernàndez approach over the others, notably in 12 of 17 
cases. However also ADL(1,1) models are satisfactory, prevailing in the remaining 5 
branches.  
Tables 8A-9A provide model specifications of best model by branch according to 
the correlation criterium whose statistics are shown  respectively in tables 4A-5A for 
nominal and volume data. From these tables we learn that the log-transformation is 
more performant in the majority of cases, notably 26 out of 34 occurrences (76,5%). 
Therefore, under this criterium log transformation appears superior than the option 
of no-treatment: , an additional property beside well-known advantages of the log-
transformation applied to time series data. Furthermore, the logarithmic 
transformation ensure that disaggregated data assume only positive values 
differently from the treatment of data in levels. 

4.3 Model selection 

In this section we discuss a specific temporal disaggregation example in order to 
provide standard elements of model selection, identification and diagnosis among 
the enlarged class of models presented so far. In particular we focus on the quarterly 
disaggregation of the Italian annual value added relative to manufacture of 
machinery and equipment n.e.c (NACE Rev.2 A*38 code CK) at current prices, 
which represents 2.1% of total value added. The quarterly indicator is the industrial 
production inflated by output prices relative to the same branch of economic 
activity. The sample period is 1995:q1-2013:q4.  

Figures 1 and 2 show, respectively, the seasonal adjusted and unadjusted 
disaggregated value added of machinery and equipment according to several model 
specifications: Chow and Lin (including the constant term and therefore denoted as 
CLc), Fernàndez (denoted as Fe), ADL(1,0) and ADL(1,1) both in levels and first 
differences (denoted in figure 2 with the suffix Δ to be distinguished by the 
corresponding models in levels). 

Both figures 1 and 2 show how the alternative models produce similar 
disaggregated data: their patterns are so similar that it is very difficult to distinguish 
one disaggregation from the others by graphical inspection. Nevertheless, the pattern 
produced by the ADL(1,0) model in levels (red line) is relatively smoother than 
other disaggregations. In the case of figure 2, devoted to unadjusted data, the 
seasonal component of disaggregated data almost disappears, whereas in the case of 
seasonal adjusted data the pattern of the ADL(1,0) model tend to interpolate the 
alternative disaggregations. 

Both tables 1 and 2 provide a synthetic comparative view of statistics for six 
alternative model specifications. Table 1 is for seasonal adjusted data and table 2 for 
unadjusted data.  



A first evidence is that the models identified by the former set of data are very 
similar to the latter as it results from a comparative view of tables 1 and 2. In fact 
from both tables emerges that all the autoregressive parameters, the estimated 
regression coefficients, the statistics relative to MAE, correlations, information 
criteria AIC and BIC and R squared are almost identical.  

 

Figure 1 - Quarterly disaggregated value added of machinery and equipment and inflated industrial 
production (seasonal adjusted data at current prices) 

 

Figure 2 - Quarterly disaggregated value added of machinery and equipment and inflated industrial 
production (unadjusted data at current prices) 

  

 
A second result which pops up from both tables 1 and 2 is the sub-optimality of 

the model ADL(1,0) in levels as emerged by graphical inspection. Indeed from one 
side the values of MAE of this model are the highest (6.47 and 6.39 for seasonal 
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adjusted and unadjusted data respectively) and from the other correlations between 
disaggregated data and the indicators in terms of quarterly growth rates are the 
lowest. 

Table 1 - Estimated parameters and other statistics on quarterly disaggregations of value added for machinery and 
equipment (seasonal adjusted data at current prices) 

  
ρ c β0 β1 MAE 

Correlations on 
quarterly 
growth rates 

Correlations 
on annual 
growth rates 

Log-lik AIC BIC 
R2 

adj 

CLc 0.996 11.49** 38.47** -- 3.15 0.96 0.93 -155.35 9.8 9.9 0.996 

Fe 0 -- 51.60** -- 3.30 0.93 0.94 -158.86 10.3 10.3 0.993 

ADL(1,0) 0.874 -- 8.48** -- 6.47 0.75 0.89 -167.14 11.5 11.5 0.975 

ADL(1,1) 0.983 -- 37.58** -36.32** 2.95 0.96 0.93 -153.58 9.7 9.8 0.996 

ADL(1,0)Δ 0.224 -- 31.49** -- 2.84 0.80 0.68 -152.52 9.2 9.3 0.998 

ADL(1,1)Δ 0.668 -- 36.24** -22.57** 2.51 0.80 0.67 -151.88 8.2 8.4 0.999 

Table 2 - Estimated parameters and other statistics on quarterly disaggregations of value added for machinery and 
equipment (unadjusted data at current prices) 

 
ρ c β0 β1 MAE 

Correlations on 
quarterly 
growth rates 

Correlations 
on annual 
growth rates 

Log-lik AIC BIC 
R2 

adj 

CLc 0.996 11.22** 37.66** -- 2.98 0.99 0.93 -155.0 9.8 9.9 0.996 

Fe 0 -- 51.48** -- 3.19 0.99 0.91 -159.2 10.3 10.4 0.992 

ADL(1,0) 0.876 -- 8.33** -- 6.39 0.62 0.88 -166.6 11.4 11.5 0.976 

ADL(1,1) 0.982 -- 36.62** -35.44** 2.82 0.99 0.93 -153.11 9.7 9.8 0.996 

ADL(1,0)Δ 0.235 -- 30.43** -- 2.78 0.85 0.76 -152.02 9.2 9.3 0.998 

ADL(1,1)Δ 0.685 -- 35.12** -22.44** 2.45 0.87 0.74 -151.01 8.1 8.2 0.999 

 
Both the AIC and BIC information criteria in tables 1 and 2 are consistent with 

the comparative analysis provided so far since their values are higher for the 
ADL(1,0) than the other models. Same conclusion holds for the R2 statistic whose 
values for the ADL(1,0) form are the lowest.  

Concerning the other ADL models their performance are overall in line with the 
Chow and Lin form. In particular the ADL(1,1) in differences appears the best 
solution in terms of R2 and MAE measuring, respectively, the fit of disaggregated 
values over all the sample period and of extrapolations. Concerning the overall fit, 
all the log-likelihood, the coefficient of determination R2, the AIC and BIC 
information criteria suggest this model as the best solution. Concerning the quality 
of extrapolations, the value of MAE of the model ADL(1,1) in differences (around 
2.5 in both cases of seasonal adjusted and unadjusted data) is clearly lower than the 
other specifications (ranging between the values 2.8-6.5). 

4.4 Quarterly disaggregation of raw data 

Main statistics on the overall fit of temporal disaggregation models as well as 



parameter estimates are usually invariant with respect to the use of adjusted or 
unadjusted data. The results of the experiment of tables 1 and 2 are in line with this 
consideration since all the regression coefficients, the autoregressive parameters and 
the log-likelihood almost coincide in the two cases. Nevertheless, the ADL(1,0) 
model in levels is an example for which the fit over unadjusted data implies an 
imperfect transfer of the seasonal pattern from the indicator to the disaggregations. 

The remarkable smoothness of disaggregated data produced by the ADL(1,0) 
model in levels emerges from the analysis of both figures 3 and 4 relative to the 
disaggregated value added of coke and refined petroleum products, respectively, at 
current prices and chain linked values. Here the pair of disaggregations of the 
ADL(1,0) form, in red lines, are accompanied by those by Chow and Lin (in blue) 
and Fernàndez (in gray), which both reproduce the seasonal pattern of the indicator 
(in dashed red lines).  

To complement the graphical inspection of figures 3-4, table 10A of Appendix A 
shows the correlations between the indicator and disaggregated data in terms of both  
quarterly and annual growth rates by main class of model.4. In table 10A correlations 
of ADL(1,0) models are lower than other forms in the 82% of cases when the 
comparison concerns quarterly growth rates. In this comparison we have considered 
only the models with correlations higher than 0.2. Concerning correlations in terms 
of annual growth rates the distance between ADL(1,0) and other models is 
mitigated, as these statistics provide information more appropriate to measure the 
model goodness of fit. 

 

Figure 3 – Quarterly disaggregated value added of coke and refined petroleum products and inflated 
industrial production (unadjusted data at current prices) 

 
                                                 
4 It is the average of correlations of the 3 options adopted in model specification, i.e. the unrestricted and the 2 restricted 

forms without trend and without both constant and trend. Note that quarterly growth rates of raw data, albeit without 
apparent economic sense, are particularly useful in this context since correlations are more discriminant for the selection 
of the best specification when the criterium is the fit to the pattern of the indicator.  
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Figure 4 – Quarterly disaggregated value added of coke and refined petroleum products and industrial 
production (unadjusted chain linked values) 

 

 

4.5 Diagnosis of disaggregations: selection criteria and admissible results 

There is a trade-off between enlargement to a wider class of temporal 
disaggregation methods and model selection. The solution suggested by the 
literature is adopting a general-to-specific strategy of model selection following 
given rules which allow to move from a general unrestricted form to restricted and 
more parsimonious models. Within dynamic regressions refer to Castle at al. (2011). 

In the context of ADL regressions, the general-to-specific strategy moves in 
several respects: getting rid of the deterministic components from the unrestricted 
form including constant and trend; reducing the order of differentiation to apply to 
the data (from 1 to 0); restricting the lag order of the ADL model. A further 
dimension is the choice between modelling the data in levels or in logarithms.  

The typical criteria adopted in model selection within general-to-specific 
strategies should be slightly adapted in the context of temporal disaggregation. In 
our application we have evaluated the following aspects: i) the statistical 
significance (at least 5%) of estimated model parameters; ii) positive value of the 
estimated autoregressive parameter to avoid volatility of estimated disaggregations 
(higher than -0.2 for ADL in differences); iii) positive and reasonable high 
correlations between the indicator and disaggregated data in both quarterly and 
annual growth rates; iv) general comovement between disaggregated data and the 
indicator by graphical inspection. 

Percentage shares of admissible temporal disaggregation models are shown in 
table 3 where the shares are presented on the total of cases and according to type of 

60

70

80

90

100

110

120

130

0

500

1000

1500

2000

2500

3000

1
9
9
5

1
9
9
5

1
9
9
6

1
9
9
6

1
9
9
7

1
9
9
7

1
9
9
8

1
9
9
8

1
9
9
9

1
9
9
9

2
0
0
0

2
0
0
0

2
0
0
1

2
0
0
1

2
0
0
2

2
0
0
2

2
0
0
3

2
0
0
3

2
0
0
4

2
0
0
4

2
0
0
5

2
0
0
5

2
0
0
6

2
0
0
6

2
0
0
7

2
0
0
7

2
0
0
8

2
0
0
8

2
0
0
9

2
0
0
9

2
0
1
0

2
0
1
0

2
0
1
1

2
0
1
1

2
0
1
2

2
0
1
2

2
0
1
3

2
0
1
3

CL Fe ADL10 indicatore ipi (asse dx)



adjustment applied to the data, type of evaluation and transformation. Taking into 
account the 4 criteria listed above, admissible disaggregations are 49% out of the 
entire 2176 cases. The share slightly increases to 51% for current price data and 
decreases to 48% for chain-linked values.  

From table 3 also emerges that the log-transformation provides a higher share of 
admissible results (51.8%) compared to estimations in levels (only 47%), meaning a 
larger stability of models in logarithms. A similar evidence (not shown in table 3) is 
found also looking separately at raw and seasonal adjusted data.  

Looking at the class of models, the shares of table 3 are 100% for Fernàndez (but 
we do not considered all the variants), 71.6% for Chow-Lin, 61% for the ADL(1,0) 
form in levels, 52.2% for ADL(1,1). Lower shares have been found for the models 
ADL in differences for which we have obtained 32.8% and 11.5% of admissible 
cases respectively for ADL(1,0) and ADL(1,1) forms. Not surprisingly a higher 
complexity of model specification is accompanied by a lower chance of obtaining 
significative coefficients from estimation. 

 

Table 3 – Percentage shares of admissible disaggregations in total and by class of model 

  Seasonal adjustment Type of evaluation Type of transformation 

Total shares 
  Raw data 

Seasonal 
adjusted data 

Current 
prices 

Chain 
linked 
values 

Models in 
Levels 

Models in 
logarithms 

Total 49.2 49.6 50.9 47.9 47.0 51.8 49.4 

CL 71.1 72.1 70.1 73.0 64.2 78.9 71.6 

FE 100 100 100 100 100 100 100 

ADL(1,0) 58.8 63.2 58.8 63.2 61.3 60.8 61.0 

ADL(1,1) 52.0 52.5 56.9 47.5 49.0 55.4 52.2 

ADL(1,0)Δ 33.3 32.4 36.3 29.4 30.4 35.3 32.8 

ADL(1,1)Δ 12.3 10.8 14.7 8.3 10.3 12.7 11.5 

 

5. Conclusions 

The paper has presented the most recent developments carried out at ISTAT 
within temporal disaggregation. The description of the new methodologies have 
been followed by a discussion of the results of a large scale experimental exercise 
based on ISTAT data with the aim of evaluating their performances.  

Main contributions concern: the enlargement of disaggregation methods based on 
regressions from the static to the dynamic class of ADL models; the adoption of the 



state space approach for model estimation, computation of disaggregated data and 
diagnosting checking; the introduction of the non-linear disaggregation for the 
treatment of the log-transformed data; the full integration of the dynamic setup 
within the standard procedures currently used in the quarterly national accounts 
process. 

Concerning the empirical application, the results highlight a general good 
performance of dynamic models especially in terms of their predictive capacity. By 
contrast, traditional static disaggregation methods maintain their superiority with 
respect to the fit of disaggregated results to the indicator overall the sample. Then 
any hierarchy among models emerges from the exercise. Such not clear-cut 
outcomes in terms of models superiority according to the two criteria (MAE and 
quarterly growth rates correlations) reinforce the presumption that a sound 
evaluation requires a twofold analytic dimension. Indeed, checking both model 
robustness and the dynamic properties of the disaggregated series is a 
recommendable practice.  

The non-linear treatment of data in logarithms has been found very effective:very 
often such specifications outperform linear ones. We conclude that temporal 
disaggregation of data in logarithms is an evolution of remarkable significance. 

Among the critical features of dynamic models, we have detected a lack of 
transfer of the indicator seasonal pattern to the disaggregated data for the ADL(1,0) 
model. 

In conclusion the enlargement to both the dynamic class of models and the non-
linear treatment of logged data present undeniable advantages as emerges from the 
application. Nevertheless, the highlighted remarks, though limited to few cases, call 
for a deeper critical inspection of the results by the analyst.  
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Appendix A – Tables 

Table 1A - Time series used in the exercise listed by branch of economic activity, evaluation and 
sample period 

Branch 
ISIC rev.4 
NACE 
rev.2 

NACE 
Divisions 

Evaluation Period 

3 Mining and quarrying B 05 - 09 
Current prices / 
Chain-linked values 1995-2013 

4 
Manufacture of food products, beverages and 
tobacco products CA 10 - 12 

Current prices / 
Chain-linked values 1995-2013 

5 
Manufacture of textiles, apparel, leather and related 
products 

CB 13-15 
Current prices / 
Chain-linked values 

1995-2013 

6 
Manufacture of wood and paper products, and 
printing CC 16-18 

Current prices / 
Chain-linked values 1995-2013 

7 
Manufacture of coke, and refined petroleum 
products CD 19 

Current prices / 
Chain-linked values 1995-2013 

8 
Manufacture of chemicals and chemical 
products  CE 20 

Current prices / 
Chain-linked values 1995-2013 

9 
Manufacture of pharmaceuticals, medicinal 
chemical and botanical products CF 21 

Current prices / 
Chain-linked values 1995-2013 

10 
Manufacture of rubber and plastics products, and 
other non-metallic mineral products CG 22-23 

Current prices / 
Chain-linked values 1995-2013 

11 
Manufacture of basic metals and fabricated metal 
products, except machinery and equipment CH 24-25 

Current prices / 
Chain-linked values 1995-2013 

12 
Manufacture of computer, electronic and optical 
products CI 26 

Current prices / 
Chain-linked values 1995-2013 

13 Manufacture of electrical equipment   CJ 27 
Current prices / 
Chain-linked values 1995-2013 

14 Manufacture of machinery and equipment n.e.c. CK 28 
Current prices / 
Chain-linked values 1995-2013 

15 
Manufacture of motor vehicles, trailers and 
semi-trailers 

CL 
29 

Current prices / 
Chain-linked values 1995-2013 

16 Manufacture of other transport equipment 30 
Current prices / 
Chain-linked values 1995-2013 

17 
Other manufacturing, and repair and 
installation of machinery and equipment CM 31-33 

Current prices / 
Chain-linked values 1995-2013 

18 
Electricity, gas, steam and air-conditioning 
supply D 35 

Current prices / 
Chain-linked values 1995-2013 

19 
Water supply, sewerage, waste management and 
remediation   E 36-39 

Current prices / 
Chain-linked values 1995-2013 



 

Table 2A – Mean absolute errors (MAE) of annualized extrapolations in growth rates (seasonal adjusted data at current prices) (a) (b) (c) 

Model 
branch 

3 
branch 

4 
branch 

5 
branch 

6 
branch 

7 
branch 

8 
branch 

9 
branch 

10 
branch 

11 
branch 

12 
branch 

13 
branch 

14 
branch 

15 
branch 

16 
branch 

17 
branch 

18 
branch 

19 

CL 6.64 2.44 2.98 1.70 14.61 3.72 2.48 2.47 1.89 4.23 2.98 2.15 4.12 2.19 2.17 4.63 11.65 

FE 6.98 3.18 3.27 2.20 20.35 4.46 2.40 4.18 2.71 3.36 2.30 3.30 4.84 2.69 4.13 7.45 6.44 

ADL(1,0) 6.53 1.81 3.02 1.47 15.59 4.02 2.35 2.45 3.25 3.39 2.29 1.49 2.26 2.89 2.24 3.70 2.99 

ADL(1,1) 7.52 1.83 3.09 1.85 14.62 3.53 2.40 2.29 2.28 3.53 2.37 1.59 1.88 2.53 1.91 3.56 3.08 
(a) In bold the minimum MAE by branch. 
(b) For each branch and class of models the value refers to the model specification with minimum MAE. 
(c) Each class of models estimated in both levels and logs. The Chow-Lin, ADL(1,0) and ADL(1,1) classes estimated in the unrestricted form of equation (1) and the restricted forms without trend and 

both constant and trend. The ADL classes include also the models in differences. 

 

Table 3A – Mean absolute errors (MAE) of annualized extrapolations in growth rates (seasonal adjusted data of chain linked values) (a) (b) (c) 

Model 
branch 
3 

branch 
4 

branch 
5 

branch 
6 

branch 
7 

branch 
8 

branch 
9 

branch 
10 

branch 
11 

branch 
12 

branch 
13 

branch 
14 

branch 
15 

branch 
16 

branch 
17 

branch 
18 

branch 
19 

CL 7.58 2.19 3.90 1.85 7.24 5.70 3.20 1.60 2.66 4.18 3.63 2.22 2.90 2.55 3.41 3.31 4.49 

FE 8.36 1.97 4.65 2.22 10.17 7.67 4.27 1.86 2.36 3.46 3.23 2.72 3.12 2.03 3.98 3.61 7.54 

ADL(1,0) 8.67 1.99 4.42 2.00 7.96 5.57 3.09 2.39 2.82 4.15 3.48 1.71 5.39 2.36 3.18 3.54 3.57 

ADL(1,1) 7.65 2.27 3.99 1.87 8.26 5.63 3.27 2.51 3.13 3.45 3.60 1.73 3.13 2.56 3.13 3.56 4.23 
(a) In bold the minimum MAE by branch. 
(b) For each branch and class of models the value refers to the model specification with minimum MAE. 
(c) Each class of models estimated in both levels and logs. The Chow-Lin, ADL(1,0) and ADL(1,1) classes estimated in the unrestricted form of equation (1) and the restricted forms without trend and 

both constant and trend. The ADL classes include also the models in differences. 
 



 

Table 4A – Correlations of quarterly growth rates between indicator and disaggregated data (seasonal adjusted data at current prices) (a) (b) (c) 

Model 
branch 

3 
branch 

4 
branch 

5 
branch 

6 
branch 

7 
branch 

8 
branch 

9 
branch 

10 
branch 

11 
branch 

12 
branch 

13 
branch 

14 
branch 

15 
branch 

16 
branch 

17 
branch 

18 
branch 

19 

CL 0.91 0.85 0.93 0.80 0.91 0.88 0.97 0.82 0.97 0.92 0.92 0.96 0.96 0.94 0.94 0.72 0.63 

FE 0.91 0.85 0.94 0.83 0.92 0.88 0.97 0.84 0.95 0.92 0.91 0.93 0.96 0.94 0.94 0.73 0.63 

ADL(1,0) 0.81 0.45 0.89 0.71 0.81 0.62 0.91 0.76 0.97 0.67 0.92 0.95 0.90 0.91 0.83 0.18 0.10 

ADL(1,1) 0.88 0.26 0.92 0.79 0.91 0.87 0.90 0.75 0.97 0.84 0.92 0.96 0.96 0.92 0.94 0.16 0.31 
(a) In bold the maximum correlation by branch. 

(b) For each branch and class of models the value refers to the model specification with maximum correlation. 

(c) Each class of models estimated in both levels and logs. The Chow-Lin, ADL(1,0) and ADL(1,1) classes estimated in the unrestricted form of equation (1) and the restricted forms without trend and 

both constant and trend. The ADL classes include also the models in differences. 

Table 5A – Correlations of quarterly growth rates between indicator and disaggregated data (seasonal adjusted data of chain linked values) (a) (b) (c) 

Model 
branch 

3 
branch 

4 
branch 

5 
branch 

6 
branch 

7 
branch 

8 
branch 

9 
branch 

10 
branch 

11 
branch 

12 
branch 

13 
branch 

14 
branch 

15 
branch 

16 
branch 

17 
branch 

18 
branch 

19 

CL 0.87 0.90 0.94 0.87 0.90 0.89 0.96 0.91 0.97 0.91 0.95 0.97 0.99 0.94 0.94 0.89 0.64 

FE 0.87 0.90 0.94 0.89 0.85 0.89 0.96 0.92 0.97 0.91 0.94 0.96 0.98 0.94 0.94 0.89 0.65 

ADL(1,0) 0.78 0.49 0.90 0.80 0.71 0.85 0.89 0.89 0.94 0.67 0.95 0.97 0.99 0.90 0.56 0.58 0.22 

ADL(1,1) 0.77 0.77 0.90 0.88 0.91 0.84 0.91 0.90 0.97 0.79 0.95 0.97 0.99 0.93 0.93 0.66 0.26 
(a) In bold the maximum correlation by branch. 
(b) For each branch and class of models the value refers to the model specification with maximum correlation. 

(c) Each class of models estimated in both levels and logs. The Chow-Lin, ADL(1,0) and ADL(1,1) classes estimated in the unrestricted form of equation (1) and the restricted forms without trend and 
both constant and trend. The ADL classes include also the models in differences. 

 



 

 

Table 6A – Model specifications and estimated parameters of estimations for which the minimum 
MAE by branch is obtained (seasonal adjusted data at current prices) (a) 

Branch     Model       Specification Log-lik  c g β0 β1 

         

3 ADL(1,0) Δ -142.73 0.31   
8.90 

(5.52)** 

4 ADL(1,0) -- 
-150.69 0.98 

    
1.70 

(16.07)**  

  
    

5 Chow-Lin -- 
-152.76 0.81 

    
60.15 

(71.77)** 

      

6 ADL(1,0) Δ - log 
-140.88 0.54 

    
0.31 

(5.59)** 

  
    

 

7 Chow-Lin -- 
-150.09 0.98     

9.37 
(4.52)** 

      
 

8 ADL(1,1) -- 
-142.01 0.96 

  
  

16.00 
(4.19)** 

-14.85 
(-3.88)** 

      
 

9 ADL(1,0) Δ 
-131.93 0.51 

    
6.24 

(3.32)** 

      

10 ADL(1,1) log 
-153.43 0.99     

0.38 
(3.43)** 

-0.37 
(-3.26)** 

      

11 Chow-Lin -- 
-156.38 0.99 

53.39 
(15.35)** 

  

12 ADL(1,1)t log 
-132.67 0.93 

0.05 
(0.34) 

0.00 
(4.41)** 

0.57 
(3.56)** 

-0.48 
(-3.04)** 

     

13 ADL(1,0)t Δ-log 
-132.52 0.03 

0.01 
(3.30)** 

0.00 
(-1.61) 

0.39 
(7.51)**  

      

14 ADL(1,0)c Δ 
-147.34 0.20 

0.00 
(4.04)**  

0.44 
(13.30)**  

      

15 ADL(1,1)t -- 
-132.46 0.37 

333.74 
(3.26)** 

3.59 
(6.58)** 

34.35 
(9.85)** 

-22.76 
(-6.83)** 

     

16 Chow-Lin -- 
-136.01 0.75 

16.30 
(51.104)** 

   

17 ADL(1,1) Δ 
-139.15 0.83 

  
24.93 

(10.39)** 
-19.45 

(-7.57)** 

      

18 ADL(1,1)c -- 
-152.74 0.53 

1113.98 
(12.69)**  

-35.90 
(-2.21)** 

54.86 
(3.38)** 

      

19 ADL(1,0)t -- 
-130.59 0.81 

353.58 
(7.30)** 

5.42 
(9.96)** 

-1.26 
(-1.69)*  

      
 
(a) T-statistics in parenthesis: *  p-value ≤  0.001; ** pvalue ≤  0.01; ***pvalue ≤ 0.05. 
 



 

 

Table 7A – Model specifications and estimated parameters of estimations for which the minimum MAE by 
branch is obtained (seasonal adjusted data of chain linked values) (a) 

Branch Model Specification Log-lik  c g β0 β1 

 
  

     
    

3 Chow-Lin  c -- -144.9 0.89 0.54  0.51 

  (3.99)* (1.95)* 

4 Fernàndez -- -156.41 0.00   76.91 
(34.46)** 

5 Chow-Lin -- -158.05 0.80 58.58 
(60.05)** 

6 Chow-Lin c log -137.16 0.87 0.75 0.55 

  
(16.76)** 

 
(7.55)** 

 

7 Chow-Lin t log -144.12 0.70 0.39 -0.01 1.40  

(0.61) (-11.29)** (3.05)**  

8 ADL(1,0) -- 
-145.41 0.25 

  18.68  

    
(82.29)** 

 

9 ADL(1,0)t -- 
-131.18 0.63 

-59.89 3.23 6.53 

  
(-.36) (5.49)** (3.39)** 

10 Chow-Lin -- 
-152.81 0.999 

 
31.67 

   
(6.09)** 

11 Fernàndez -- 
-158.95 0.00 

69.94 

  
(41.13)** 

12 ADL(1,1) -- 
-142.49 0.98 

6.84 -6.60 

  
(1.87)* (-1.81)* 

13 Fernàndez -- 
-144.17 0.00 

14.83 

  
(24.81)** 

14 ADL(1,0)c Δ - log 
-147.63 0.00 

0.00 0.64 

  
(3.09)** 

 
(15.08)** 

15 Chow-Lin t log 
-136.92 0.91 

0.34 0.00 0.85 

  
(13.64)** (4.43)** (15.22)** 

 

16 Fernàndez -- 
-144.02 0.00 

21.70 

  
(25.78)* 

17 ADL(1,1) -- 
-153.12 0.94 

  37.55 -34.42 
    (5.143)** (-4.72)** 

18 Chow-Lin -- 
-159.57 0.92 

66.89 

  
(28.26)** 

19 ADL(1,0) log 
-145.38 0.96 

0.07 

  
(132.33)** 

 
(a)  T-statistics in parenthesis: *  p-value ≤  0.001; ** pvalue ≤  0.01; ***pvalue ≤ 0.05. 
 



 

 

Table 8A – Model specifications and estimated parameters of estimations for which the maximum 
correlation by branch is obtained (seasonal adjusted data at current prices) (a) 

Branch Model Specification Log-lik  c g β0 

        

3 Chow-Lin log 
-149.00 0.94 

  
1.57 

    
(62.78)** 

4 Fernàndez log 
-163.86 0.00 

  
2.00 

  
(169.21)** 

5 Fernàndez log 
-166.48 0.00 1.89 

  
(170.37)** 

6 Fernàndez -- 
-151.28 0.00 39.49 

  
(25.59)** 

7 Fernàndez log 
-152.08 0.00 

  
1.85 

    
(34.35)** 

8 Fernàndez -- 
-145.73 0.00 

  
26.72 

    
(23.68)** 

9 Fernàndez log 
-141.93 0.00 1.63 

  
(148.65)** 

10 Fernàndez -- 

-160.44 0.00 
 

48.21 

   

(20.67)** 

11 Chow-Lin t log 
-150.37 0.81 1.14 0.00 0.64 

  
(29.63)** (6.62)** (14.49)** 

12 Fernàndez log 
-147.42 0.00 1.44 

  
(118.08)** 

13 Chow-Lin t log 
-131.94 0.83 0.93 0.00 0.43 

  
(17.78)** (12.15)** (6.97)** 

14 Chow-Lin t log 
-144.04 0.68 1.92 0.00 0.56 

  
(31.15)** (21.21)** (13.39)** 

15 Fernàndez log 
-163.64 0.00 

  
1.67 

  
 (75.57)** 

16 Fernàndez log 
-143.2 0.00 1.64 

  
 (119.58)** 

17 Chow-Lin c -- 
-144.18 0.97 69.63 28.23 

  
(5.22)**  (6.82)** 

18 Fernàndez log 
-181.61 0.00 2.18 

  
(61.05)** 

19 Fernàndez log 
-160.8 0.00 1.76 

  
 (68.16)** 

(a) T-statistics in parenthesis: *  p-value ≤  0.001; ** pvalue ≤  0.01; ***pvalue ≤ 0.05. 



 

 

Table 9A – Model specifications and estimated parameters of estimations for which the maximum 
correlation by branch is obtained (seasonal adjusted data of chain linked values) (a) 

Branch Model Specification Log-lik  c g β0 β1 

      
 

          

3 Fernàndez log 
-150.59 0.00     1.54 

  
    (83.63)** 

4 Fernàndez log 
-159.15 0.00     1.98 

      (260.92)** 

5 Fernàndez log 
-166.86 0.00 

    
1.83 

  
    (184.2)** 

6 Fernàndez -- 
-145.66 0.00 

   38.46 

  
    (38.71)** 

 

7 ADL(1,1)c log 
-152.33 0.99 

0.12 
  

2.35 -2.36 

  
(0.15)   (2.68)** (-2.49)** 

8 Fernàndez log 
-152.32 0.00 

  1.68 

  
  (134.43)** 

9 Fernàndez log 
-143.71 0.00 

  1.63 

  
  (133.25)** 

10 Fernàndez -- 
-152.31 0.00   42.89 

  
  (35.13)** 

11 ADL(1,1)t log -150.45 0.58 2.29 0.00 0.81 -0.50 

  
(19.97)** (12.73)** (8.61)** (-5.14)** 

12 Fernàndez log -149.26 0.00 1.50 

  
(129.31)** 

13 ADL(1,1) Δ - log 
-140.50 0.57 

0.73 -0.49 

  
(7.86)** (-4.73)** 

14 ADL(1,1)c Δ - log 
-148.08 0.40 

0.00 0.66 -0.28 

  
(2.84)** (10.50)** (-3.77)** 

15 ADL(1,1)t -- 
-136.01 0.89 

124.41 0.86 23.48 -21.88 

  
(2.06)** (2.69)** (14.61)** (-13.38)** 

16 Fernàndez log -146.54 0.00     1.65 

  
    (138.97)** 

17 Fernàndez -- 
-156.22 0.00 

    
54.52 

      (29.45)** 

18 Fernàndez log 
-168.65 0.00 

    1.99 

  
    (153.7)** 

19 Fernàndez log -163.90 0.00     1.68 

  
    (85.60)** 

 
(a) T-statistics in parenthesis: *  p-value ≤  0.001; ** pvalue ≤  0.01; ***pvalue ≤ 0.05. 
 

  



 

 

 

 Table 10A – Correlations between disaggregated series and quarterly indicator in terms of 
quarterly (Δq) and annual (Δy) growth rates  (a) 

Current prices data Chain-linked data 

  
CL Fe ADL10 ADL11 ADL10 Δ ADL11Δ CL Fe ADL10 ADL11 ADL10Δ ADL11Δ 

br 
3 

Δq 0.89 0.91 0.39 0.88 0.51 0.58 0.76 0.91 0.23 0.37 0.76 0.83 

Δy 0.67 0.68 0.58 0.67 0.63 0.38 0.40 0.47 0.27 0.36 0.41 0.37 

br 
4 

Δq 0.94 0.98 0.40 0.21 0.53 -0.82 0.77 0.99 0.25 -0.29 -0.74 -0.82 

Δy 0.45 0.58 0.26 0.22 0.36 -0.21 0.37 0.58 0.22 0.12 0.02 -0.43 

br 
5 

Δq 0.99 0.99 0.80 0.99 0.97 -0.25 0.99 0.99 0.80 0.98 0.98 0.98 

Δy 0.81 0.82 0.70 0.79 0.78 0.41 0.75 0.75 0.66 0.73 0.76 0.77 

br 
6 

Δq 0.98 0.98 0.64 0.97 0.85 -0.28 0.99 0.99 0.69 0.99 0.94 -0.68 

Δy 0.74 0.75 0.71 0.74 0.72 0.70 0.81 0.82 0.78 0.81 0.80 0.61 

br 
7 

Δq 0.76 0.70 0.41 0.76 0.77 0.76 0.48 0.82 -0.01 0.57 0.69 0.67 

Δy 0.72 0.73 0.63 0.73 0.72 0.72 0.36 0.64 0.25 0.36 0.55 0.55 

br 
8 

Δq 0.59 0.97 0.36 0.96 0.57 0.92 0.67 0.96 0.86 0.76 0.96 -0.14 

Δy 0.54 0.72 0.49 0.70 0.56 0.67 0.57 0.70 0.69 0.59 0.72 0.65 

br 
9 

Δq 0.89 0.99 0.70 0.72 0.97 0.97 0.99 0.99 0.64 0.61 0.96 0.95 

Δy 0.68 0.77 0.55 0.46 0.69 0.70 0.55 0.56 0.29 0.31 0.48 0.53 

br 
10 

Δq 0.48 0.98 0.86 0.40 0.84 0.84 0.83 0.99 0.61 0.92 0.97 0.90 

Δy 0.57 0.70 0.68 0.55 0.65 0.65 0.76 0.86 0.65 0.73 0.85 0.84 

br 
11 

Δq 0.99 0.99 0.88 0.99 0.99 0.98 0.99 0.99 0.71 0.99 0.93 0.94 

Δy 0.95 0.94 0.92 0.95 0.94 0.94 0.94 0.94 0.88 0.94 0.92 0.91 

br 
12 

Δq 0.93 0.95 0.20 0.62 0.80 0.31 0.94 0.96 0.21 0.95 0.85 -0.69 

Δy 0.67 0.70 0.56 0.44 0.62 0.55 0.56 0.61 0.46 0.56 0.53 0.23 

br 
13 

Δq 0.97 0.97 0.46 0.97 0.96 0.82 0.98 0.98 0.45 0.98 0.98 0.89 

Δy 0.84 0.84 0.73 0.84 0.84 0.83 0.89 0.89 0.79 0.89 0.89 0.89 

br 
14 

Δq 0.99 0.99 0.75 0.99 0.98 0.91 0.99 0.99 0.29 0.99 0.99 0.99 

Δy 0.93 0.91 0.90 0.93 0.94 0.93 0.95 0.95 0.65 0.95 0.95 0.95 

br 
15 

Δq 0.76 0.99 0.64 0.97 0.03 0.93 0.99 0.99 0.78 0.99 0.98 0.99 

Δy 0.81 0.90 0.64 0.87 0.04 0.85 0.96 0.96 0.88 0.96 0.96 0.96 

br 
16 

Δq 0.99 0.99 0.89 0.99 0.98 0.08 0.99 0.99 0.80 0.99 0.96 -0.03 

Δy 0.79 0.79 0.77 0.79 0.79 0.65 0.78 0.79 0.72 0.78 0.77 0.63 

br 
17 

Δq 0.99 0.99 0.76 0.99 0.94 0.99 0.99 0.99 0.62 0.99 0.89 0.89 

Δy 0.79 0.78 0.68 0.79 0.73 0.77 0.76 0.77 0.65 0.76 0.58 0.55 

br 
18 

Δq 0.90 0.96 0.45 -0.34 0.59 -0.72 0.98 0.99 0.58 0.91 0.97 -0.12 

Δy 0.15 0.24 0.09 0.01 0.08 -0.08 0.56 0.64 0.33 0.45 0.49 0.32 

br 
19 

Δq 0.15 0.96 0.03 -0.13 -0.27 0.83 0.91 0.97 0.41 0.60 0.77 -0.65 

Δy -.06 0.17 -0.06 -0.07 -0.06 0.02 0.25 0.29 0.17 0.18 0.19 0.12 
(a) Average correlations over the alternative specifications (standard, with constant, with constant and trend) by each class of model in 
levels are presented. 
 
 

 
  



 

 

Appendix B – Graphs of annual and quarterly data used in the application 

Figure 1B – Value added by branch: annual chain-linked values reference year 2010 
over the years 1995-2003  

 
 
Figure 2B - Industrial production by branch: seasonal adjusted (in red) and raw data 
(in blue) over the quarters 1995q1-2003q4  

 



 

 

Figure 3B – Value added by branch: annual values at current prices over the years 
1995-2003  

 
 
Figure 4B – Inflated industrial production by branch: seasonal adjusted (in red) and 
raw data (in blue) over the quarters 1995q1-2003q4  

 


