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Abstract–The paper of Charoensook ((2015), [3]) extends
the results of the original model of two-way flow infor-
mation sharing network of Bala and Goyal ((2000),[1]),
given that a condition called Uniform Partner Ranking is
satisfied. In this technical note, we study what happen to
these results when this condition is violated. By providing
some examples, we conclude that a certain degree of agent
homogeneity needs to exist in order that the results of [3]
remains satisfied.

Index Terms–Network Formation, Strict Nash Network,
Two-way Flow Network, Branching Network, Agent Het-
erogeneity, Information Network

I Introduction

A game-theoretic model of network formation assume that
networks are form based upon self-interest agents who choose
to establish costly connections or links with each other in or-
der to exchange some benefits (eg., his private information).
The original two-way flow model of Bala and Goyal (2000,
[1]), BG henceforth, further has in mind a situation in which
each agent pays for all information that he wishes to acquire
by (i) solely bears the cost of link establishment used for com-
munication, and (ii) promises to share his own private pieceof
information with others. Since this model assumes agent ho-
mogeneity, it has inspired many extensions that allow for the
existence of agent heterogeneity. An interesting paper in this
literature is that of Charoensook (2015, [3]) that generalizes the
original results of BG and that of [4] and [2]. Importantly, the
generalization of [3] is achieved through imposing a condition
called Uniform Partner Ranking on the characteristics of the
structure of link establishment cost in order that the shapes of
SNNs can be predicted.
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Naturally, this raises the question of what happen when this
condition - Uniform Parter Ranking - is violated. In this tech-
nical note, we contribute to this literature by proposing some
answers to this question. Specifically, we provide some exam-
ples that show that (i) the results of [3] can still hold even if
the Uniform Partner Ranking condition, UPR henceforth, is vi-
olated, (ii) only partial results still hold, and (iii) evenpartial
results do not hold. Through these examples we conclude that
a certain degree of agent homogeneity needs to exist in order
that the results of [3] remain to hold.

We provide a brief introduction to related literature here.The
literature in game-theoretic model of network formation isin-
vented by two papers - [7] and [1]. These two papers are quite
different in terms of basic assumptions on the nature of benefits
that each agent possesses. On one hand, [7] assumes the ben-
efits that each agent possess may not necessarily be nonrival.
Therefore, a link is formed and the benefits are shared only if
both agents agree. For an elaborate review of the literatureof
network formation, [6] and [5] provide a through introduction.

On the other hand, the original two-flow flow of network for-
mation of BG assumes that each agent owns a unique piece of
private information that is non-rival in the sense that eachdoes
not mind sharing his information with other agents. He can in-
dependently choose to establish a link with any other agent in
the network by bearing a link establishment cost on his own.
In this paper, Nash and Strict Nash equilibrium in pure strate-
gies are adopted to predict the appearance of equilibrium net-
works. which are called Nash networks and Strict Nash net-
works, SNNs henceforth, respectively. An important assump-
tion is that Link establishment cost is assumed to be identical
across all agents. Thus, agent homogeneity is assumed in BG.

Several works in the literature extend this BG model to cases
at which link formation cost is heterogeneous across agents.
How this heterogeneity is imposed, though, varies among exist-
ing literature. A paper that is of our interest is that of Charoen-
sook (2015, [2]) since it establish a result that generalizethe
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models of [1], [4], and [2]. This generalized result assumesthat
link formation cost satisfies a condition called Uniform Partner
Ranking. Simply put, this condition states that agents may pay
different levels of link formation cost. However, each of them
has thesame rankingin terms of partner preference. That is,
if an agenti finds that linking toj is cheaper than linking to
k, all other agents find likewise. This condition results in the
fact that every non-empty component of an SNN has at most
one agent who receives more than one link. Our paper, there-
fore, contributes to the literature by investigating what happen
to SNNs when this Uniform Partner Ranking is violated.

The paper proceeds as follows. In the next two sections,
model specifications and the definition of SNN as an equilib-
rium prediction criterion is introduced. We then proceed to
the main results section by giving examples of Strict Nash net-
works that violate the Uniform Partner Ranking condition. Fi-
nally, in the conclusion section we discuss on the insights from
these examples.

II The Model

II.I Basic Setting

Let N = {1, ..., n} be the set of all agents in the network.
Consider an agenti ∈ N , i establishes a link with an agentj
by paying the link formation costci,j . The incentive ofi is to
acquire the information ofj. Notice thatci,j depends on both
the identity ofi and j. This is where agent heterogeneity is
introduced in our model. Whenever a link toj is established
by i, we say thati is a link sender andj is a link receiver.
Furthermore, we say thati accessesj.

Individual’s strategy and network representation. Let
gi,j = 1 represents the fact thati accessesj and gi,j = 0
represents the fact thati does not accessj. A strategy ofi,
represented bygi, is gi = {gi,1, ..., gi,i−1...gi,n}. A strategy
profile is, therefore,g = (g1, ..., gn). Since all links form the
network, we setg also represents the network. Graphically, we
let an agenti be presented by a nodei. A point from nodei to
nodej then represents the fact thati accessesj

Structure of information flow. Information flow is two-way
in the sense that ifi has an entry to the informationj thenj
also has an entry to the information ofi. i has an entry to
the information ofj whenever a path betweeni andj exists.
Formally, letḡij = max {gij , gji}. A path betweeni andj or
ij−path in a networkg is then defined as a sequencePi,j (g) =
ḡi,j1 , ḡj1j2 , ..., ḡjmj such that each element in this sequence is
1. If an ij− path exists,i is said to observej.

Individual’s payoff. Let Nd (i; ḡ) andN (i; ḡ) be the set of
all agents thati accesses and observes respectively. LetVi,j be
the value of information ofj that i receives. Then, the payoff
of i in g is defined as:

(1a)Πi (g) =
∑

j∈N(i;g)

Vi,j −
∑

j∈Nd(i;g)

ci,j

Graph-theoretic notations. Consider a networkg. A net-
work is connected ifi observesj for for all i, j ∈ N andi 6= j.
A subnetworkg′ is a subset of a networkg, ie., g′ ⊂ g. A
component of a network is a subnetwork that is maximally con-
nected. That is,i observej if and only if i andj belong to the
same component. A network is said to be minimal if every path
betweeni andj is unique. That is, there exists one and only
one path through whichi observesj. An agent who observes
no other agent is said to be isolated. If all agents in the network
are isolated, the network is said to be an empty network.

Bi and branching networks. The definitions of these terms
are borrowed from [2]. A branching network is a minimally
connected such that there is a unique agenti who receives no
link and every other agent receives exactly one link. That is,
a branching network rooted ati is a minimally connected net-
work such that|Ii (g) |= 0 and |Ij (g) |= 1 for all j 6= i and
j ∈ N (I and O should be defined somewhere !!!).

To defineBi network, we first introduce the following no-
tations. LetQN ′ = N ′ ∪ j ∈ N |apathfromitojexist (a
path needs to be defined somewhere!!!). A point contrabasis
of a networkg, B(g), is a minimal set of players such that
QB(g) = N . Intuitively, QB(g) carries the intuition that there
is a set of agents that can be used to observe all other agents
through the existence of the path between an agent in this set
and an agent outside of this set. Ani-point contrabasis,Bi(g),
is a point contrabasis ofg such that all playersj ∈ Bi(g)
accessesi. Finally, A networkg is aBi-network if |Ii(g)|2,
|Ij(g)|< 2 for all j 6= i, andIi(g) = Bi(g).

II.II The Definitions of Nash Network

Consider a networkg. Let g−i be the set of all links ing that
i does not establish. That is,g−i = g\gi. Put differently, a
union ofg−i andgi is exactly the networkg. These notations
are used to define the following terms.
Definition 1 (Best response). A strategygi is a bestresponse
of i to g−i if

Πi (i; gi ⊕ g−i) ≥ Πi

(

i; g′i ⊕ g−i

)

, for all g′i ∈ Gi

Definition 2 (Nash network). A networkg is aNashnetwork if
gi is a best response tog−i for every agenti ∈ N .
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Moreover, if the inequality is strict for alli ∈ N , Nash
network is aStrict Nash Network. We abbreviate the term Strict
Nash Network by SNN .

II.III Cost Structure and the Uniform Parter
Ranking Condition

A cost structureC is defined as a collection of all link formation
costsC = {ci,j : i, j ∈ N, i 6= j}. We use this definition to
define the following two terms, which are borrowed from [3].
Definition 3 (Better Partner). Consider a setX ⊂ N and
agentsj, k ∈ X, j is at least as good a partneras k with
respect to the setX if ci,j ≤ ci,k for any i ∈ X, i 6= j 6= k.
Moreover, if the inequality is strict thenj is said to be abetter
partner thank with respect to the setX.

That is, if j is at least as good a partner ask with respect
to set of agentsX, then every agent in the setX finds that
accessingj is at least as costly as accessingk. Put differently,
all agents inX ‘rank’ j as a preferred partner thank in terms of
costliness of link establishment. The Uniform Partner Ranking
condition below simply adds that the setX is exactlyN and
that all agents can be ranked.

Definition 4 (Uniform Partner Ranking). A cost structureC is
said to satisfyUniform Partner Ranking condition if for any
distinct pair j, k ∈ N it holds true thatj is at least as good
a partner ask or k is at least as a good a partner asj with
respect to the setN .

Intuitively, since all agents can be ranked ifC satisfies the
UPR condition, there exists an agent who is ranked ‘first’ in
the sense that he is at least as good a partner as every other
agent. This leads to the following definition.

Definition 5 (Common Best Partner). An agenti∗ is said to be
Common Best Partner ifi∗ is at least as good a partner asi′

with respect to the setN , wherei′ 6= i∗.

III Main Results

III.I Case 1: UPR is violated but the results of
Charoensook 2015 still hold

1 3

5

2

6

7

8

9

4

10 11

Figure 1: Example 1

agents 1 2 3 4 5 6 7 8 9 10

1 - 0.1 0.2 0.3 0.4 0.5 0.6 20 20 20
2 0.1 - 0.2 0.3 0.4 0.5 0.6 20 20 20
3 0.1 0.2 - 0.3 0.4 0.5 0.6 20 20 20
4 0.1 0.2 0.3 - 0.4 0.5 0.6 20 20 20
5 0.1 0.2 0.3 0.4 - 0.5 0.6 20 20 20
6 0.1 0.2 0.3 0.4 0.5 - 0.6 20 20 20
7 0.1 0.2 0.3 0.4 0.5 0.6 - 20 20 20

8 20 20 20 20 20 20 20 - 0.3 0.4
9 20 20 20 20 20 20 20 0.4 - 0.5

10 20 20 20 20 20 20 20 0.5 0.6 -

Table 1: Cost Structure for Example 1

Example 1. Let Vi,j = 1 for all i, j ∈ N and i 6= j. Let the
cost structure be represented by the above table, where each
row represents an agenti, each column represents an agent
j, and each number in the table represents the costci,j . This
cost structure divides agents into two groups, where agents1
to 7 belong to group I and agents 8 to 10 belongs to group II.
Accordingly, the table is divided into four quadrants at agent 7.
Observe further that link formation costs between agents from
the same group are at most 0.6, while the link formation costs
between agents across groups are set at 20. Hence, accessing
an agent from the other group is never a best response. This
cost structure, therefore, is reminiscent of the insider-outsider
model of [4]. A major difference, though, is that in this example
link formation costci,j is not identical among agents in the
same group.

It is easy to show that this cost structure violates UPR, yet
every non-empty SNNs consists of non-empty components that
are either branching orBi. To show the violation, consider
agent 1 and agent 8. We can see thatc1,2 < c1,7 butc8,2 > c8,7.
Therefore, UPR is violated. Indeed, this is due to the fact that
agents 1 and 8 belong to different groups. Observe further
that Vi,j = 1 and ci,j = 20 for any i, j that do not belong
to the same group. Therefore, agents that do not belong to the
same group will not establish links with each other. On the con-
trary, it is easy to see that links between agents from the same
group are established sinceVi,j = 1 but ci,j =< 1 for any i, j
that belong to the same group. Consequently, it is guaranteed
that every SNN has exactly two non-empty components, each is
composed of agents from the same group.

Finally, it remains to be shown that each non-empty compo-
nent of SNN is either branching orBi. First, observe that UPR
is not violated if we consider only agents from the same group.
Indeed, all agents in Group I (II) have agent 1 (agent 8) as their
common best partner, and each agenti finds thatci,j < ci,j+1

for any i, j, j + 1 that belong to the same group. Therefore,
inside each component, UPR is not violated. As a result, it can
be predicted that each component of SNN is either branching
or Bi. Figure 1 above illustrates an SNN based upon this cost
structure.
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agent 1 2 3 4 5

1 - 0.4 0.3 0.1 0.2
2 0.1 - 0.2 0.3 0.4
3 0.1 0.4 - 0.3 0.2
4 0.1 0.2 0.3 - 0.4
5 0.1 0.4 0.2 0.3 -

Table 2: Cost Structure for Example 2
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2

4

Figure 2: Example 2

Example 2. Let the cost structure be represented by the above
table and letVi,j = 1 for all i, j ∈ N and i 6= j. In this
example, UPR is violated becausec4,2 = 0.2 < c4,3 = 0.3
but c5,2 = 0.4 > c5,3 = 0.2. However, we have an SNN that
is B1. It is easy to see why UPR is violated but SNN remains
a Bi network. First, observe that every agent (except agent
1) agrees that agent 1 is the common best partner. Therefore,
agent 2 and agent 3 access agent 1 in this SNN.

III.II Case 2: UPR is violated and the results of
Charoensook 2015 do not hold

agents 1 2 3 4

1 - 7 8 9
2 0.1 - 5 5
3 0.1 5 - 5
4 5 5 0.1 -

Table 3: Cost Structure for Example 3

13 24

Figure 3: Example 3

Example 3. Let the cost structure be represented by the above
table and letVi,j = 1 for all i, j ∈ N and i 6= j. In this
example, UPR is violated becausec1,2 = 7 < c1,3 = 8 but
c4,2 = 5 < c4,3 = 0.1. Indeed, agent 2 and 3 agree that agent
1 is the best partner. However, agent 4 has agent 3 as his best
partner. This results in the fact that agent 4 accesses agent3
in this SNN, while both agent 2 and agent 3 access agent 1. It

is easy to see that this SNN is neither branching norBi. First,
it is not branching because there is no agent who receives no
link. Second, it is notBi because a point contrabasis of this
network is the set{2, 3, 4} so that agent 2 cannot be a2−point
contrabasis of this network.

III.III Case 3: UPR is violated but the results of
Charoensook 2015 partially hold

1 2 3 4 5 6 7 8 9 10 11

1 - 0.1 0.2 0.3 0.4 0.5 0.6 20 20 20 20
2 0.1 - 0.2 0.3 0.4 0.5 0.6 20 20 20 20
3 0.1 0.2 - 0.3 0.4 0.5 0.6 20 20 20 20
4 0.1 0.2 0.3 - 0.4 0.5 0.6 20 20 20 20
5 0.1 0.2 0.3 0.4 - 0.5 0.6 20 20 20 20
6 0.1 0.2 0.3 0.4 0.5 - 0.6 20 20 20 20
7 0.1 0.2 0.3 0.4 0.5 0.6 - 20 20 20 20

8 20 20 20 20 20 20 20 - 7 8 9
9 20 20 20 20 20 20 20 7 - 8 9
10 20 20 20 20 20 20 20 7 8 - 9
11 20 20 20 20 20 20 20 7 8 9 -

Table 4: Cost Structure for Example 4
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Figure 4: Example 4

Example 4. The cost structure of this example is simply a com-
bination of Example 1 and Example 3. Observe that the link
formation costs of agent 1 to agent 7 is identical to that of ex-
ample 1 and that the link formation costs of agent 8 to agent
11 is identical to that of example 3 (agent 1 to agent 4 in Ex-
ample 3). We therefore divide agents into two groups, where
agent 1 to agent 7 belong to the group I and agent 8 to agent
11 belong to group II. Observe further that link formation cost
ci,j is set to be20 if i andj belong to different groups. Similar
to Example 1, we have an SNN that consists of two non-empty
components, each is composed of agents from the same group.
Moreover, the shape of each component is precisely that of Ex-
ample 1 and Example 3. Consequently, we have an SNN such
that one of its components isBi and the other is neither branch-
ing or Bi. This entails that UPR is violated and the results of
Charoensook 2015 hold only partially.

IV Discussion and Conclusion
This paper shows various effects of the violation of UPR

condition on Strict Nash networks. Let us summarize these
effects as follows:
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1. If it can be predicted that SNN consists of multiple com-
ponents, and that we know which agent belongs to which
component, the shape of each component depends merely
on the cost structure pertaining to agents in this compo-
nent. This insight can be seen from Example 1 and Exam-
ple 4.

2. Following the first effect, whether the cost structure of all
agents violates UPR or not does not matter. Indeed, if
UPR is not violated when considering the cost structure
pertaining to agents in the same component, the results of
Charoensook 2015 still holds. Alternatively, it may par-
tially hold in the sense that the shape of some components
are predicted to be branching orBi due to the fact that
UPR is not violated inside that each of these components.
This insight is illustrated in Example 1 and Example 4.

3. Even if the cost structure pertaining to agents in the same
component does violate UPR, SNN can still beBi. This
insight is seen in Example 2.

4. In contrast to (3), there exists also cases such that a com-
ponent of SNN is neither branching orBi when the cost
structure pertaining to agents in the same component vio-
lates UPR. This insight is seen in Example 3.

At this point, we further provide an important observation
from point (3) and point (4) above. To do so, we first remark
that in both Example 2 and Example 3 UPR is violated, yet
only SNN in Example 3 remainsBi while SNN in Example
is neitherBi nor branching. What explain this difference? In
Example 2, we have that all agents (except agent 1) agree that
agent 1 is their best common partner. However, this form of
agreement between agents does not exist in Example 3, where
agent 4 does not agree with agent 2 and agent 3 that agent 1
is the best partner. Therefore, we remark that some forms of
agreement between all agents inside the component need to ex-
ist in order the results of the results of Charoensook 2015 - a
component of SNN being branching orBi - remains to hold.

Indeed, a similar argument is also applied to point 1 and 2
above, which illustrate that what matters is whether UPR is vi-
olated inside each component rather than the violation of UPR
when considering all agents in the network. Since UPR in a
component requires that all agents in the component agree on
which agent is superior as a partner than which in terms link
formation cost, one can interpret that some forms of agreement
between all agents inside the component need to exist in order
the results of the results of Charoensook 2015 - a component
of SNN being branching orBi - remains to hold.

Finally, we remark that these examples raise a question of
what a necessary and sufficient condition for a component of

SNN to be branching orBi is. We leave this question as a
research to be explored in the future.
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