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SUMMARY

The Bank of England/GfK NOP Inflation Attitudes Survey asks individuals about
their inflation perceptions and expectations in eight ordered categories with known
boundaries except for an indifference limen. With enough categories for identification,
one can fit a mixture distribution to such data, which can be multi-modal. Thus
Bayesian analysis of a normal mixture model for interval data with an indifference
limen is of interest. This paper applies the No-U-Turn Sampler (NUTS) for Bayesian
computation, and estimates the distributions of public inflation perceptions and ex-
pectations in the UK during 2001Q1–2015Q4. The estimated means are useful for
measuring information rigidity.
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1 INTRODUCTION

Inflation (or deflation) and its expectations both play important roles in macro and mon-

etary economics. Prices move differently across regions and commodities. Since people

live in different regions and buy different commodities, they perceive inflation and form

its expectations in different ways, even if they are fully rational. Perhaps people are

boundedly rational in different ways, or may be irrational. Whatever the reason is, survey

data on inflation perceptions and expectations show substantial heterogeneity or disagree-

ment among individuals that varies over time with the actual inflation; see Mankiw et al.

(2004). It is thus of interest to central banks to monitor not only the means or medians

of the actual, perceived, and expected inflation but also their whole distributions among

individuals. Indeed, the mean, median, and mode may be quite different.

Survey questions often ask respondents to choose from more than two categories. The

categories may be ordered or unordered, and if ordered, they may or may not represent

intervals. Thus there are three types of categorical data: unordered, ordered, and interval

data. Interval data have quantitative information.1 To analyze these data (with covari-

ates), we use multinomial response, ordered response, and interval regression models for

unordered, ordered, and interval data respectively.2

Some categorical data are not exactly one of the three types but somewhere in between.

For a question asking about a change of some continuous variable with several intervals

to choose from, there is often a category ‘no change.’ This does not literally mean a 0%

change, whose probability is 0, but corresponds to an indifference limen, which allows for

a very small change. Data on inflation perceptions and expectations are examples. The

problem is that we do not know the boundaries of an indifference limen.

A simple solution is to combine an indifference limen with its neighboring intervals

to apply interval regression. Alternatively, one may assume a common indifference limen

among individuals. Then assuming a parametric distribution for the latent continuous

variable, with enough categories for identification, one can estimate the distribution pa-

1Interval data lose some quantitative information, however. If the first or last interval has an open
end, then one cannot draw a histogram nor compute its mean. Moreover, one cannot find the median if it
lies in the first or last interval with an open end. To solve the problem, one can assume the minimum or
maximum of the population distribution, or fit a parametric distribution to the frequency distribution.

2If intervals represent durations, then we apply survival analysis.
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rameters and the common indifference limen jointly. Given the prior information that

the indifference limen contains 0 and cannot overlap with the other intervals, this may

improve efficiency. Murasawa (2013) applies these ideas to survey data on inflation expec-

tations. This paper complements Murasawa (2013) in three ways: data, distribution, and

methodology.

First, Murasawa (2013) uses monthly aggregate interval data on household inflation

expectations in Japan during 2004M4–2011M3 that have seven intervals lying symmet-

rically around 0. This paper uses quarterly aggregate interval data on public inflation

perceptions and expectations in the UK during 2001Q1–2015Q4 that have eight intervals,

six of which lie above 0. Thus we can compare the distributions of inflation expectations

and their dynamics in Japan and the UK, if desired. Moreover, the UK data allow us to

study the interaction between inflation perceptions and expectations.

Second, Murasawa (2013) considers normal, skew normal, skew exponential power, and

skew t distributions, which are all unimodal and have at most four parameters. Since the

UK data have one more interval, this paper considers a mixture of two normal distribu-

tions, which can be bimodal with five parameters. The frequency distributions of the UK

data may have two modes; see the left panel in Figure 1.3 Hence mixture distributions may

fit better than unimodal skew distributions. Even if not, one cannot exclude multi-modal

distributions a priori.

(Figure 1)

Third, Murasawa (2013) applies the ML method. The likelihood function of a normal

mixture model for numerical data is unbounded, however, when one component has mean

equal to a data point and variance equal to 0; see Kiefer & Wolfowitz (1956, p. 905). The

likelihood function is bounded for interval data, but Biernacki (2007) shows that the global

ML estimate may still have a degenerate component or otherwise the EM algorithm may

converge to a local ML estimate with a degenerate component. To avoid the problem, this

paper applies Bayesian analysis. MCMCmethods are useful for posterior simulation. With

an indifference limen, our model is similar to an ordered response model, for which the

Gibbs sampler and M–H algorithm are often slow to converge for large samples. Instead,
3This may be spurious, though. Without knowing the width of the indifference limen, one cannot draw

a histogram.
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this paper applies a Hamiltonian Monte Carlo (HMC) method, in particular the No-U-

Turn Sampler (NUTS) developed by Hoffman & Gelman (2014).

Because of the label switching problem, MCMC methods may not work for the compo-

nent parameters of a finite mixture model. It works for permutation invariant parameters,

e.g., moments and quantiles, however; see Geweke (2007). We analyze three types of data,

and find the following:

1. With six intervals ignoring the indifference limen, the estimated means are reason-

ably precise. However, the estimates of higher order moments are often imprecise

with wide error bands. This tends to occur when the majority of the respondents

choose the last interval with an open end; see the right panel in Figure 1.

2. With eight intervals including the indifference limen and the prior information that

the indifference limen contains 0, the results change slightly, especially for higher

order moments. However, the estimated distributions are not precise enough to learn

about the dynamics of the distributions of inflation perceptions and expectations.

The estimated indifference limens are time-varying and often strongly asymmetric

around 0. In particular, the estimated lower bounds of the indifference limens are

often far below −1.0%.4

3. Data with 18 intervals are available since 2011Q2, which often have two more local

modes at ‘Up by 7% but less than 8%’ and ‘Down by 1% but less than 2%’ (or ‘Down

by 2% but less than 3%’); see Figure 2. If we fit a mixture of two normal distributions

to these data, then the estimated distributions and indifference limens seem precise.5

With only 19 quarters of samples (2011Q2–2015Q4) covering at most one business

cycle, though, we cannot learn much about the dynamics of the distributions of

inflation perceptions and expectations.

Thus we find that fitting flexible distributions to repeated interval data requires well-

designed categories to provide enough information about the shapes of the underlying

distributions, which may shift drastically over time. The problem exists but is much

4If this makes no sense, then one can impose a subjective prior for the lower bound of the indifference
limen, which will change the results further.

5Fitting a mixture of four normal distributions gives similar results, though computation takes much
longer.
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less evident when fitting normal or unimodal distributions. This consideration seems

important when designing a repeated survey.6

(Figure 2)

This paper contributes to the literature on quantification of qualitative survey data in

three ways. First, we propose a normal mixture model for interval data with an indifference

limen. This seems new, and its flexibility seems useful for analysis of survey data. Second,

we propose Bayesian analysis of the model using the NUTS. This is useful since for this

model, ML estimation may fail, and the Gibbs sampler and M–H algorithm are often slow

to converge for large samples. Third, we apply the method to survey data on inflation

perceptions and expectations in the UK repeatedly, and estimate their distributions during

2001Q1–2015Q4.

To illustrate a possible use of the estimated distributions, we measure the degrees of

information rigidity in public inflation perceptions and expectations in the UK using a

simple framework proposed by Coibion & Gorodnichenko (2015), which requires only the

historical means of the distributions of expectations. We find some evidences of infor-

mation rigidity, but the results depend on what prices we assume individuals forecast,

i.e., the CPI or RPI, and how we estimate the distributions of inflation perceptions and

expectations, i.e., the choice of the number of mixture components and whether to include

or exclude the indifference limen.

The paper proceeds as follows. Section 2 reviews some relevant works. Section 3

specifies a normal mixture model for interval data with an indifference limen. Section 4

specifies our prior, and explains our posterior simulation. Section 5 applies the method to

aggregate interval data on public inflation perceptions and expectations in the UK during

2001Q1–2015Q4. Section 6 measures information rigidity in public inflation perceptions

and expectations in the UK during 2001Q1–2015Q4. Section 7 concludes with discussion.

6One may think that numerical data are easier to analyze than interval data. This is not the case if
one considers the rounding problem seriously, since some respondents round to integers but others round
to multiples of 5 or 10; see Manski & Molinari (2010). To account for such rounding in numerical data on
inflation expectations from the Opinion Survey on the General Public’s Views and Behavior conducted by
the Bank of Japan, Kamada et al. (2015) introduce point masses at multiples of 5. Binder (2015) interprets
heterogeneous rounding as a measure of uncertainty.
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2 LITERATURE

2.1 Quantification of Qualitative Survey Data

This paper contributes to the literature on quantification of qualitative survey data, in

particular the Carlson–Parkin (C–P) method; see Nardo (2003) and Pesaran & Weale

(2006, sec. 3) for surveys. To quantify ordered data, which have no quantitative informa-

tion, the C–P method requires multiple samples and strong assumptions; i.e., normality,

a time-invariant symmetric indifference limen, and long-run unbiased expectations. These

assumptions often fail in practice, however; see Lahiri & Zhao (2015) for a recent evidence.

Such strong assumptions are unnecessary for interval data, to which one can fit various

distributions each sample separately. Using aggregate interval data from the Monthly

Consumer Confidence Survey in Japan, Murasawa (2013) fits various skew distributions

by the ML method, which also gives an estimate of the indifference limen. Using the

same data and approximating the population distribution up to the fourth cumulant by

the Cornish–Fisher expansion, Terai (2010) estimates the distribution parameters by the

method of moment.

2.2 Measuring Inflation Perceptions and Expectations

Empirical works on inflation perceptions and expectations are abundant; see Sinclair

(2010) for a recent collection. Most previous works use either ordered or numerical data,

however, since few surveys collect interval data on inflation perceptions and expectations.

Exceptions are Lombardelli & Saleheen (2003) and Blanchflower & MacCoille (2009), who

use individual interval data from the Bank of England/GfK NOP Inflation Attitudes Sur-

vey and apply interval regression to study the determinants of public inflation expectations

in the UK.

Recent works try to measure subjective pdfs of future inflation. For surveys, see Manski

(2004) on measuring expectations in general and Armantier et al. (2013) on measuring

inflation expectations in particular.

2.3 Bayesian Analysis of a Normal Mixture Model for Interval Data

Alston & Mengersen (2010) consider Bayesian analysis of a normal mixture model for
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interval data with no indifference limen. Estimation of an indifference limen is similar to

estimation of cutpoints in an ordered response model and hence troublesome.

Albert & Chib (1993) develop a Gibbs sampler for Bayesian analysis of an ordered

response model, but it converges slowly, especially with a large sample. To improve con-

vergence, Cowles (1996) applies ‘collapsing,’ i.e., sampling the latent data and cutpoints

jointly, which requires an M–H algorithm. Nandram & Chen (1996) and Chen & Dey

(2000) reparametrize the cutpoints for further improvement.7 For an M–H algorithm,

however, one must choose good proposals carefully, which is a difficult task. Moreover,

the optimal acceptance probability may be far below 1, in which case substantial ineffi-

ciency remains; see Gelman et al. (2014, p. 296).

3 MODEL SPECIFICATION

Let y be a random sample of size n taking values on {1, . . . , J}, which indicate J intervals

on R. Assume an ordered response model for yi such that for i = 1, . . . , n,

yi :=


1 if γ0 < y∗i ≤ γ1

...

J if γJ−1 < y∗i ≤ γJ

(1)

where y∗i is a latent variable underlying yi and −∞ = γ0 < · · · < γl < 0 < γu < · · · <

γJ = ∞. Assume that we know {γj} except for an indifference limen [γl, γu].

Assume a normal K-mixture model for y∗i such that for i = 1, . . . , n,

y∗i ∼
K∑
k=1

πkN
(
µk, σ

2
k

)
(2)

Let π := (π1, . . . , πK)′, µ := (µ1, . . . , µK)′, σ := (σ1, . . . , σK)′, γ := (γl, γu)
′, and θ :=

(π′,µ′,σ′,γ ′)′. Assume for identification that π1 ≥ · · · ≥ πK . Consider estimation of θ

given y.

7A generalized Gibbs sampler by Liu & Sabatti (2000) does not work well in our context.
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4 BAYESIAN ANALYSIS

4.1 Prior

For mixture models, independent improper priors on the component parameters give im-

proper posteriors if some components have no observation. Instead, we use weakly infor-

mative priors in the sense of Gelman et al. (2014, p. 55).

For the mixture weight vector π, we assume a Dirichlet prior such that

π|µ,σ,γ ∼ D(ν0) (3)

Setting ν0 := ıK gives a flat prior on the unit (K−1)-simplex. We impose the identification

restriction π1 ≥ · · · ≥ πK after posterior simulation by relabeling, if necessary.

For the component means µ1, . . . , µK and variances σ2
1, . . . , σ

2
K , we assume independent

normal–gamma priors such that for k = 1, . . . ,K,

µk|µ−k,σ,π,γ ∼ N
(
µ0, σ

2
0

)
(4)

σ2
k|σ−k,µ,π,γ ∼ Inv-Gam(α0, β0) (5)

Setting a large σ0 gives a weakly informative prior on µ1, . . . , µK . The prior on σ2
1, . . . , σ

2
K

implies that for k, l = 1, . . . ,K such that k ̸= l,

σ2
k

σ2
l

|σ−(k,l),µ,π,γ ∼ F(2α0, 2α0) (6)

Thus α0 controls the prior on the variance ratio. To avoid the variance ratio to be too close

to 0, which avoids degenerate components, one often sets α0 ≈ 2; see Frühwirth-Schnatter

(2006, pp. 179–180). It is difficult to set an appropriate β0 directly. Instead, Richardson

& Green (1997) propose a hierarchical prior on β0 such that

β0 ∼ Gam(A0, B0) (7)

Let R be the range of the sample, i.e., y∗ := (y∗1, . . . , y
∗
n) in our context, and m be the

midrange. Richardson & Green (1997, pp. 735, 742, 748) recommend the following default
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settings:

µ0 := m (8)

σ0 :=
R

c
(9)

α0 := 2 (10)

A0 := .2 (11)

B0 :=
A0

α0

100

R2
=

10

R2
(12)

where c > 0 is a small integer.

For the boundaries of the indifference limen [γl, γu], we assume independent uniform

priors such that

γl|γu,π,µ,σ ∼ U(λ0, 0) (13)

γu|γl,π,µ,σ ∼ U(0, υ0) (14)

where

λ0 := max
γj<γl

{γ0, . . . , γJ} (15)

υ0 := min
γj>γu

{γ0, . . . , γJ} (16)

4.2 Posterior Simulation

An MCMC method sets up a Markov chain with invariant distribution p(θ|y) for posterior

simulation. After convergence, one can treat the realized states of the chain as (serially

dependent) draws from p(θ|y). Let q(θ,θ′) be a transition kernel that defines a Markov

chain. A sufficient (not necessary) condition for a Markov chain to converge in distribution

to p(θ|y) is that p(θ|y) and q(θ,θ′) are in detailed balance, i.e., ∀θ,θ′,

p(θ|y)q(θ,θ′) = p(θ′|y)q(θ′,θ) (17)

so that the Markov chain is reversible; see Chib & Greenberg (1995, p. 328). The degree

of serial dependence or speed of convergence depends on the choice of q(θ,θ′), which is
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crucial for successful posterior simulation.

Understanding an HMC method requires some knowledge of physics. The Boltzmann

(Gibbs, canonical) distribution describes the distribution of possible states in a system.

Given an energy function E(.) and the absolute temperature T , the pdf of a Boltzmann

distribution is ∀x,

f(x) ∝ exp

(
−E(x)

kT

)
(18)

where k is the Boltzmann constant. One can think of any pdf f(.) as the pdf of a Boltzmann

distribution with E(x) := − ln f(x) and kT = 1.

The Hamiltonian is an energy function that sums the potential and kinetic energies

of a state. An HMC method treats − ln p(θ|y) as the potential energy at position θ, and

introduces an auxiliary momentum z drawn randomly from N(0,Σ), whose kinetic energy

is − ln p(z) ∝ z′Σ−1z/2 with mass matrix Σ. The resulting Hamiltonian is

H(θ, z) := − ln p(θ|y)− ln p(z)

= − ln p(θ, z|y) (19)

An HMC method draws from p(θ, z|y), which is a Boltzmann distribution with energy

function H(θ, z).

The Hamiltonian is constant over (fictitious) time t by the law of conservation of

mechanical energy, i.e., ∀t ∈ R,

Ḣ(θ(t), z(t)) = 0 (20)

or

θ̇(t)Hθ(θ(t), z(t)) + ż(t)Hz(θ(t), z(t)) = 0 (21)

Thus Hamilton’s equation of motion is ∀t ∈ R,

θ̇(t) = Hz(θ(t), z(t)) (22)

ż(t) = −Hθ(θ(t), z(t)) (23)

The Hamiltonian dynamics says that (θ, z) moves on a contour of H(θ,z), i.e., p(θ,z|y).

Conceptually, given Σ and an initial value for θ, an HMC method proceeds as follows:

10



1. Draw z ∼ N(0,Σ) independently from θ.

2. Start from (θ, z) and apply Hamilton’s equations of motion for a certain length

of (fictitious) time to obtain (θ′,z′), whose joint probability density equals that of

(θ, z).

3. Discard z and z′, and repeat.

This gives a reversible Markov chain on (θ, z), since the Hamiltonian dynamics is re-

versible; see Neal (2011, p. 116). The degree of serial dependence or speed of convergence

depends on the choice of Σ and the length of (fictitious) time in the second step. The

latter can be fixed or random, but cannot be adaptive if it breaks reversibility.

In practice, an HMC method approximates Hamilton’s equations of motion in discrete

steps using the leapfrog method. This requires choosing a step size ϵ and the number

of steps L. Because of approximation, the Hamiltonian is no longer constant during the

leapfrog method, but adding a Metropolis step after the leapfrog method keeps reversibil-

ity. Thus given Σ and an initial value for θ, an HMC method proceeds as follows:

1. Draw z ∼ N(0,Σ) independently from θ.

2. Start from (θ, z) and apply Hamilton’s equations of motion approximately by the

leapfrog method to obtain (θ′, z′).

3. Accept (θ′, z′) with probability min{exp(−H(θ′, z′))/ exp(−H(θ, z)), 1}.8

4. Discard z and z′, and repeat.

The degree of serial dependence or speed of convergence depends on the choice of Σ, ϵ,

and L. Moreover, the computational cost of each iteration depends on the choice of ϵ and

L.

The NUTS developed by Hoffman & Gelman (2014) adaptively chooses L while keeping

reversibility. Though the algorithm of the NUTS is complicated, it is easy to use with

Stan, a modeling language for Bayesian computation with the NUTS (and other methods).

8Since the leapfrog method preserves volume, its Jacobian of transformation is 1; see Neal (2011,
pp. 117–122). To justify the Metropolis step, the proposal should be (θ′,−z′) rather than (θ′, z′), but this
is unnecessary in practice since H(θ′, z′) = H(θ′,−z′) and we discard z′ anyway; see Neal (2011, p. 124).
Since the Hamiltonian is approximately constant during the leapfrog method, the acceptance probability
is close to 1 if ϵ is small.
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Stan tunes Σ and ϵ adaptively during warmup. The user only specifies the data, model,

and prior. One can call Stan from other popular languages and softwares; e.g., R, Matlab,

and Stata. The NUTS often has better convergence properties than other popular MCMC

methods such as the Gibbs sampler and M–H algorithm.

5 INFLATION PERCEPTIONS AND EXPECTATIONS IN

THE UK

5.1 Data

We use aggregate interval data from the Bank of England/GfK NOP Inflation Attitudes

Survey that started in February 2001.9 This is a quarterly survey of public attitudes to

inflation that interviews a quota sample of adults aged 16 or over in 175 randomly selected

areas throughout the UK. The quota is about 4,000 in February surveys and about 2,000

in others. Detailed survey tables are available at the website of the Bank of England.

Moreover, the individual data are now publicly available.

The first two questions of the survey ask respondents about their inflation perceptions

and expectations:

Q.1 Which of the options on this card best describes how prices have changed

over the last twelve months?

Q.2 And how much would you expect prices in the shops generally to change

over the next twelve months?

The respondents choose from the following eight intervals (excluding ‘No idea’):

1. Gone/Go down

2. Not changed/change

3. Up by 1% or less

4. Up by 1% but less than 2%

5. Up by 2% but less than 3%
9There were five trial surveys quarterly from November 1999 to November 2000.
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6. Up by 3% but less than 4%

7. Up by 4% but less than 5%

8. Up by 5% or more

The questionnaire gives the boundaries between the categories except for category 2, which

is an indifference limen.10 We exclude ‘No idea’ from the samples in the following analyses.

Figure 3 plots the sample sizes for the two questions during 2001Q1–2015Q4.

(Figure 3)

Figure 4 plots the relative frequencies of the categories for inflation perceptions and ex-

pectations during 2001Q1–2015Q4. The perceptions and expectations are heterogeneous,

but on average, they rose in 2007, reached a peak in 2008Q3, and then dropped. They

rose again in 2010, remained high for a while, and then slowly decreased toward 2015.

(Figure 4)

The relative frequency of category 3 is often lower than those of categories 2 and

4. Hence the distributions of inflation perceptions and expectations may be bimodal,

depending on the interval widths of categories 2 and 3. To allow for this possibility, we fit

a mixture of two normal distributions and estimate the indifference limen each quarter.

5.2 Model Specification

Our model consists of equations (1)–(2) with J := 6 (with no indifference limen) or 8 (with

an indifference limen) and K := 2. Our priors are those in section 4.1 with m := 2.5,

R := 10, and c := 1. Thus we set ν0 := ı2, µ0 := 2.5, σ0 := 10, α0 := 2, A0 := .2, B0 := .1,

λ0 := −∞, and υ0 := 1. These weakly informative priors do not dominate the posteriors

for our samples.

Reparametrizatoin may improve efficiency of MCMC. Following Betancourt & Girolami

(2015), one may reparametrize our hierarchical model from centered parametrization (CP)

10Since May 2011, the survey asks further questions with more intervals to those who have chosen either
category 1 or 8.
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to noncentered parametrization (NCP); i.e., instead of equation (5), for k = 1, . . . ,K, one

may draw

σ∗2
k|σ−k,µ,π,γ ∼ Inv-Gam(α0, 1) (24)

and set σ2
k := β0σ

∗2
k. CP and NCP are complementary in that when MCMC converges

slowly with one parametrization, it converges much faster with the other parametrization;

see Papaspiliopoulos et al. (2003, 2007). We find that CP is often faster than NCP in our

case; thus we stick to CP.

Using the aggregate interval data on inflation perceptions and expectations respec-

tively, we estimate the model for each quarter separately during 2001Q1–2015Q4 (60

quarters). Thus we estimate the model 120 times.

5.3 Bayesian Computation

We apply the NUTS using RStan 2.14.1 developed by Stan Development Team (2016),

which runs on R 3.3.2 developed by R Core Team (2016). To avoid divergent transitions

during the leapfrog steps as much as possible and improve sampling efficiency further

(at the cost of more leapfrog steps in each iteration), we change the following tuning

parameters from the default values:

1. target Metropolis acceptance rate (from .8 to .999)11

2. maximum tree depth (from 10 to 12)12

We generate four independent Markov chains from random initial values. For each chain,

we discard the initial 1,000 draws as warm-up, and keep the next 1,000 draws. Thus in

total, we use 4,000 draws for our posterior inference.

MCMC for finite mixture models suffers from the label switching problem. Despite

the identification restrictions on π, the component labels may switch during MCMC.

Hence MCMC may not work for the component parameters. It still works, however, for

permutation invariant parameters, e.g., moments and quantiles; see Geweke (2007). Thus

instead of the five parameters of a mixture of two normal distributions, we look at the

following five moments:
11We set an extremely high target rate to eliminate divergent transitions as much as possible in all 120

quarters. In practice, it can be much lower in most quarters.
12This increases the maximum number of leapfrog steps from 211 − 1 = 2043 to 213 − 1 = 8191.
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1. mean µ := E(y∗i )

2. standard deviation σ :=
√

var(y∗i )

3. skewness E
(
[(y∗i − µ)/σ]3

)
4. excess kurtosis E

(
[(y∗i − µ)/σ]4

)
− 3

5. asymmetry in the tails E
(
[(y∗i − µ)/σ]5

)
Given equation (2),

µ =

K∑
k=1

πkµk (25)

The 2nd to 5th central moments of y∗i are

E
(
(y∗i − µ)2

)
=

K∑
k=1

πk
[
(µk − µ)2 + σ2

k

]
(26)

E
(
(y∗i − µ)3

)
=

K∑
k=1

πk
[
(µk − µ)3 + 3(µk − µ)σ2

k

]
(27)

E
(
(y∗i − µ)4

)
=

K∑
k=1

πk
[
(µk − µ)4 + 6(µk − µ)2σ2

k + 3σ4
k

]
(28)

E
(
(y∗i − µ)5

)
=

K∑
k=1

πk
[
(µk − µ)5 + 10(µk − µ)3σ2

k + 15(µk − µ)σ4
k

]
(29)

See Frühwirth-Schnatter (2006, pp. 10–11).

To assess convergence of the Markov chain to its stationary distribution, we use the

potential scale reduction factor R̂ and the effective sample size (ESS). We follow Gelman

et al. (2014, pp. 287–288), and check that R̂ ≤ 1.1 and that the ESS is at least 10 per

chain (in total 40 in our case) for the parameters of interest.

5.4 Estimation Excluding the Indifference Limen

First, we estimate the model excluding the indifference limen. Combining three categories

into one and ignoring prior information about the indifference limen, we may lose some

information. However, we do not need to assume a common indifference limen among

individuals. Moreover, estimation is faster and easier with two less parameters to estimate.
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Figure 5 plots the posterior medians of the five moments of the distributions of inflation

perceptions and expectations, respectively, during 2001Q1–2015Q4. We plot 68% error

bands instead of 95% error bands, since the latter are often too wide to be informative for

higher-order moments.

(Figure 5)

The estimated means of inflation perceptions and expectations seem reasonable and

precise with narrow error bands. The means of inflation expectations are more stable

than those of perceptions, staying around 2–4%, though not perfectly constant (anchored);

hence individuals may expect that inflation fluctuations are temporary, though some per-

sistence remains for one year.

The estimated standard deviations of inflation perceptions and expectations are some-

times imprecise. This is perhaps because our interval data have little information about

the dispersion of the underlying variable, especially when the majority of the respondents

choose the last interval with an open end (“Up by 5% or more”). We still see that the

standard deviations of inflation perceptions are often slightly larger than those of expec-

tations; hence individuals may have private information when they perceive inflation, but

expect its fluctuations to be temporary.

The estimated skewnesses of inflation perceptions and expectations seem reasonably

precise, changing signs over time. The mean and skewness tend to move in the same

direction, especially for inflation perceptions; hence responses to news on inflation are

perhaps not uniform but heterogeneous among individuals.

The estimated kurtoses of inflation perceptions and expectations are often (but not

always) imprecise. This is because our interval data have little information about the tails

of the distribution of the underlying variable. We still see that the excess kurtoses are

mostly positive for both inflation perceptions and expectations.

The estimated asymmetries in the tails of inflation perceptions and expectations are

often (but not always) extremely imprecise. The reason is the same as for the kurtoses.

We still see that the skewness and asymmetry in the tails often move in the same direction.
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5.5 Estimation Including the Indifference Limen

Next, we estimate the model with a common indifference limen among individuals. This

may improve estimation efficiency, since we have two more intervals and use prior in-

formation about the indifference limen (−∞ < γl < 0 < γu < 1). Figure 6 plots the

posterior medians of the five moments and the indifference limens for inflation perceptions

and expectations, respectively, during 2001Q1–2015Q4, together with 68% error bands.

(Figure 6)

We see that the estimated means and standard deviations are almost identical to the

previous results with no indifference limen. Though we use more information in estimation,

especially when many respondents choose categories 1–3, the differences in the 68% error

bands are hardly visible. The estimated skewnesses, excess kurtoses, and asymmetries

in the tails are sometimes slightly larger in magnitude than the previous results with no

indifference limen. This is perhaps because with two more intervals, the data have more

information about the tails of the underlying distribution.

The estimated indifference limens for inflation perceptions and expectations are both

time-varying, and mostly asymmetric around 0. In particular, given our weakly informa-

tive prior about the indifference limen, the lower bounds are often far below −1.0%. The

upper bounds are around .0–.4% until early 2008, and .2–.6% since then. The error bands

are wider for lower bounds than for upper bounds. This is perhaps because category 1

(“Gone/Go down”) has no lower bound and often has fewer observations than category 3

(“Up by 1% or less”).

5.6 Using Data with More Intervals

Finally, we estimate the model using data with 18 intervals including an indifference limen,

which have been available since 2011Q2. With further questions to those who have chosen

either category 1 or 8, the respondents now virtually choose from the following 18 intervals:

1. Down by 5% or more

2. Down by 4% but less than 5%

. . .
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6. Down by 1% or less

7. Not changed/change

8. Up by 1% or less

. . .

17. Up by 9% but less than 10%

18. Up by 10% or more

Since −1 < γl < 0 < γu < 1, our weakly informative prior about the indifference limen

now sets λ0 := −1 and υ0 := 1. With 18 intervals, the NUTS works well without adjusting

the tuning parameters; thus we use the default values for all tuning parameters.

Figure 7 plots the posterior medians of the moments and indifference limens for in-

flation perceptions and expectations, respectively, during 2011Q2–2015Q4. We also plot

95% error bands here instead of 68% error bands, since the former are narrow enough to

be informative even for higher-order moments.

(Figure 7)

The estimated means are similar to the previous results using data with six or eight

intervals during 2011Q2–2015Q4, except that the error bands are often narrower. The

means are higher for inflation perceptions than for expectations when they are both high,

but close to each other when they are 2–3%. Thus individuals may expect the inflation

rate to fluctuate around 2–3% in the long run.

The estimated standard deviations are slightly larger than the previous results using

data with six or eight intervals during 2011Q2–2015Q4, with much narrower error bands.

This is perhaps because with 18 intervals, the data have much more information about the

dispersion of the underlying distribution. The standard deviations for inflation perceptions

and expectations are close to each other. The mean and standard deviation tend to move in

the same direction. Thus individuals may agree with inflation perceptions and expectations

when they are low, but not when they are high.

The estimated skewnesses are often higher than the previous results using data with

six or eight intervals during 2011Q2–2015Q4, again with often narrower error bands. The
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skewnesses are positive for both inflation perceptions and expectations, and slightly higher

for expectations than for perceptions. The mean and skewness tend to move in the opposite

directions.

The estimated kurtoses are also often larger than the previous results using data with

six or eight intervals during 2011Q2–2015Q4. The excess kurtoses are mostly positive for

both inflation perceptions and expectations, and higher for expectations than for percep-

tions. The mean and kurtosis tend to move in the opposite directions.

The estimated asymmetries in the tails are often much larger than the previous results

using data with six or eight intervals during 2011Q2–2015Q4. The asymmetries in the tails

are positive for both inflation perceptions and expectations, and higher for expectations

than for perceptions. The mean and asymmetry tend to move in the opposite directions.

Overall, higher-order moments tend to move in the same directions. This may suggest

existence of consistently positive outliers.

The estimated indifference limens, especially the lower bounds, differ from the previous

results using data with eight intervals during 2011Q2–2015Q4. The upper bounds are

around .3–.7% for perceptions and .4–.6% for expectations. Given the stronger prior

information, the lower bounds stay above −1.0%. They are often below −.7%, however,

and sometimes close to −1.0%. Thus the indifference limens are still often asymmetric

around 0.

In addition to moments, quantiles help us to see the whole shape of a distribution.

Figure 8 plots the posterior medians of the deciles of inflation perceptions and expectations

during 2011Q2–2015Q4.13 These plots seem useful for monitoring the distributions of

inflation perceptions and expectations.

(Figure 8)

6 INFORMATION RIGIDITY IN THE UK

Information rigidity prevents one from forming full-information rational expectations. To

measure and test for the degree of information rigidity, Coibion & Gorodnichenko (2015)

give a simple framework that requires only the historical means of the distributions of

13The nor1mix package for R is useful for calculating quantiles of a mixture normal distribution.

19



expectations. When only aggregate interval data are available, our method helps to obtain

the mean of the possibly multi-modal underlying distribution. To illustrate such a use of

our method, we measure the degrees of information rigidity in public inflation perceptions

and expectations in the UK.

Consider individuals forming h-step ahead forecasts of a time series {yt}. A sticky

information model proposed by Mankiw & Reis (2002) assumes that an individual receives

no information with probability λ ∈ [0, 1] at each date. Let ȳet+h|t be the average forecast

of yt+h at date t among individuals. Then for all t,

ȳet+h|t := (1− λ) Et(yt+h) + λ(1− λ) Et−1(yt+h) + λ2(1− λ) Et−2(yt+h) + · · ·

= (1− λ) Et(yt+h) + λ[(1− λ) Et−1(yt+h) + λ(1− λ) Et−2(yt+h) + · · · ]

= (1− λ) Et(yt+h) + λȳet+h|t−1 (30)

or

Et(yt+h) =
1

1− λ
ȳet+h|t −

λ

1− λ
ȳet+h|t−1

= ȳet+h|t +
λ

1− λ

(
ȳet+h|t − ȳet+h|t−1

)
(31)

This gives a simple regression model with no intercept for the ex post forecast error

yt+h − ȳet+h|t given the ex ante mean forecast revision ȳet+h|t − ȳet+h|t−1 such that for all t,

Et

(
yt+h − ȳet+h|t

)
= β

(
ȳet+h|t − ȳet+h|t−1

)
(32)

where β := λ/(1− λ) ≥ 0, or

yt+h − ȳet+h|t = β
(
ȳet+h|t − ȳet+h|t−1

)
+ ut+h|t (33)

where ut+h|t := yt+h−Et(yt+h).
14 One can estimate β by OLS, from which one can recover

λ = β/(1 + β) ∈ [0, 1).

One may observe only
{
ȳet+h|t

}
instead of

{
ȳet+h|t, ȳ

e
t+h|t−1

}
. In such a case, one can

14A noisy information model gives the same regression model if {yt} is AR(1); see Coibion & Gorod-
nichenko (2015, sec. I.B).
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consider an alternative model such that for all t,

yt+h − ȳet+h|t = β
(
ȳet+h|t − ȳet+h−1|t−1

)
+ vt+h|t (34)

where

vt+h|t := ut+h|t − β
(
ȳet+h|t−1 − ȳet+h−1|t−1

)
(35)

This is not a regression model; hence one must apply the IV method instead of OLS, where

the IV must be a white noise sequence. Coibion & Gorodnichenko (2015, p. 2663) use the

change in the log oil price as the IV when measuring information rigidity in inflation

expectations.

Let {Pt} be the quarterly series of the price level and πt := 100 ln(Pt/Pt−4) be the

annual inflation rate in per cent. Consider information rigidity in h-step ahead forecasts of

{πt}, where h = 0 (nowcasts) for inflation perceptions and h = 4 for inflation expectations.

We use the CPI and RPI for {Pt}, whose data are available at the website of the Office for

National Statistics of the UK. The CPI and RPI inflation rates are somewhat different;

see Figure 9.

(Figure 9)

Let π̄e
t+h|t be the mean of the distribution of inflation perceptions (h = 0) or expec-

tations (h = 4). For h = 0, 4, we apply our method to estimate π̄e
t+h|t repeatedly during

2001Q1–2015Q4, assuming a normal distribution (K = 1) or a mixture of two normal

distributions (K = 2) with or without an indifference limen.15 The resulting
{
π̄e
t+h|t

}
are

somewhat different.

Since it is unclear if individuals forecast the CPI, RPI, or something else, to control

for the possible bias in forecasts, we add an intercept to equation (34). We estimate the

linear model by the IV method (2SLS). For IVs, in addition to a constant, we use the Brent

Crude Oil Price in US dollars and the GBP/USD exchange rate, which are downloadable

from Federal Reserve Economic Data (FRED). To make the IVs white noise sequences, we

take the difference in log, and prewhiten each series by fitting a univariate AR(2) model

15For K = 1, we use the flat prior on (µ, σ) and the default tuning parameters.
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for the full sample period and extracting the residuals.16 We use gretl 2016d for these

analyses.

Table I summarizes the estimation results. We find the following:

1. The intercepts are negative for both the CPI and RPI and for both inflation percep-

tions and expectations, and significant except for expectations relative to the RPI,

suggesting forecast biases. The biases are larger for the CPI and perceptions than

for the RPI and expectations.

2. The slopes are positive for both the CPI and RPI and for both inflation percep-

tions and expectations, though insignificant for the CPI. For the RPI, the size and

significance of the slope depend on how we estimate the means of the distributions

of inflation perceptions and expectations, i.e., the choice of the number of mixture

components and whether we include the indifference limen or not.

3. If we believe that individuals forecast the RPI, assume K = 2, and include the indif-

ference limen when estimating the means of the distributions of inflation perceptions

and expectations, then the slopes are insignificant, perhaps because of the short sam-

ple length (59 for perceptions and 55 for expectations). Though insignificant, the

implied λ is .50 for β = 1.01 and .37 for β = .60; i.e., information rigidity is higher

for perceptions than for expectations.17

(Table I)

To sum up, we find that evidences of information rigidity among UK individuals fore-

casting inflation depend not only on what prices we assume they forecast, but also on

how we model the distributions of their inflation perceptions and expectations. Thus we

recommend fitting a flexible distribution, e.g., a mixture distribution, to aggregate interval

data on inflation perceptions and expectations.

16The full sample periods are 1987Q4–2015Q4 for the change in the log oil price and 1971Q2–2015Q4
for the change in the log exchange rate.

17For US consumers, Coibion & Gorodnichenko (2015, p. 2662) report that β = .705 for inflation expec-
tations relative to the CPI, which implies λ ≈ .413. Thus information rigidities in inflation expectations
among individuals in the UK and US seem close to each other, though the two results may not be directly
comparable.
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7 DISCUSSION

To estimate the distributions of public inflation perceptions and expectations in the UK,

we study Bayesian analysis of a normal mixture model for interval data with an indifference

limen. Since the boundaries of an indifference limen are similar to cutpoints in an ordered

response model, the Gibbs sampler and M–H algorithm are slow to converge for large

samples. We find that the NUTS converges fast even for large samples. Thus the NUTS

is useful especially when one must apply MCMC repeatedly, which is our case.

One can extend and improve our method in several ways. Here we list some directions

for future work:

1. Instead of assuming a common indifference limen among individuals (or simply ig-

noring it), one can model heterogeneous indifference limens, say, assuming beta dis-

tributions for the boundaries. This makes the likelihood function more complicated,

but seems worth trying.

2. One can estimate the number of mixture components instead of fixing it a priori.

Common model selection criteria may be inappropriate for finite mixture models,

however; see Gelman et al. (2014, p. 536). Since HMC does not allow discrete

parameters, MCMC for the number of components requires combining HMC with

another MCMC method. A model with a few components is a special case of a model

with many components; thus one may simply consider the latter with a suitable prior

on the number of components; see Gelman et al. (2014, p. 536).

3. Instead of fitting a distribution each quarter separately, one can use multiple samples

jointly to study the dynamics of the underlying distribution directly. For time series

analysis of repeated interval data, one may need a state-space model with a nonlinear

measurement equation.

Micro data from the Bank of England/GfK NOP Inflation Attitudes Survey are now

publicly available at the website of the Bank of England. This suggests the following

extensions of this paper:

1. One can fit a bivariate mixture normal distribution to bivariate interval data on

inflation perceptions and expectations; i.e., a multivariate extension of this paper.
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2. One can study the determinants of individual inflation perceptions and expecta-

tions, separately or jointly, by interval regression or its extension that allows for an

indifference limen. This is an extension of Blanchflower & MacCoille (2009).

Thus the micro data will greatly help us to study the formation, dynamics, and interaction

of inflation perceptions and expectations.
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Figure 2: Distributions of inflation perceptions in the UK (2011Q2 and 2015Q4)
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Figure 8: Posterior medians of the deciles of the distributions of inflation perceptions and
expectations in the UK during 2011Q2–2015Q4.
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Figure 9: Annual CPI and RPI inflation rates in the UK during 2001Q1–2015Q4
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Table I: 2SLS regressions of the ex post forecast errors on the ex ante mean forecast
revisions

indiff. CPI RPI
K limen intercept slope intercept slope

inflation perceptions (h = 0)
1 no −1.10 1.17 −.45 2.32

(.12) (.71) (.24) (.96)
1 yes −1.09 1.18 −.45 2.33

(.12) (.71) (.24) (.96)
2 no −1.22 .31 −.58 1.04

(.17) (.50) (.29) (.66)
2 yes −1.21 .29 −.57 1.01

(.16) (.54) (.28) (.65)

inflation expectations (h = 4)
1 no −.71 .85 −.04 1.68

(.24) (.85) (.35) (.82)
1 yes −.71 .85 −.04 1.68

(.24) (.85) (.35) (.82)
2 no −.72 .25 −.05 .93

(.26) (.76) (.35) (.78)
2 yes −.69 .07 −.01 .60

(.27) (.69) (.35) (.69)

Notes: Numbers in parentheses are Newey–West HAC standard errors. The estimation
periods are 2001Q2–2015Q4 for inflation perceptions and 2001Q2–2014Q4 for inflation
expectations.
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