
MPRA
Munich Personal RePEc Archive

Cyclical Mackey Glass Model for Oil Bull
Seasonal

Sadek Melhem and Michel terraza and Mohamed chikhi

University of Montpellier I, University of Montpellier I, University of
Ouargla

2012

Online at https://mpra.ub.uni-muenchen.de/76206/
MPRA Paper No. 76206, posted 15 January 2017 11:31 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213991096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/76206/


 

THE JOURNAL OF ENERGY 

AND DEVELOPMENT 

  Sadek Melhem, Michel Terraza,  

and Mohamed Chikhi,  

“Cyclical Mackey-Glass Model for  

Oil Bull Seasonals”  

Volume 36, Number 2 

 

 

Copyright 2012 



CYCLICAL MACKEY-GLASS MODEL FOR
OIL BULL SEASONALS

Sadek Melhem, Michel Terraza, and Mohamed Chikhi*

Forecasting crude oil prices remains one of the greatest challenges encountered
by economists and econometricians. Oil prices are clearly characterized by

unpredictable and volatile price movements. Supply is inelastic in the short run,
and the future position of prices depends on how future demand evolves. Thus, an
additional demand for oil triggers speculation and prices escalate more quickly
than they would have done otherwise.1 Demand for crude oil is influenced by two
major seasonal variations in the year with the summer driving/hurricane season
and the winter heating season. In order to better understand underlying trends in
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the market, there is clearly a need to devote greater attention to these seasonal
effects impacting oil prices and to develop the appropriate models.

During the study period 1973 to 2008, crude oil prices showed some interesting
seasonal features (figure 1). From year to year, the price showed greatest strength
on average in August. This surge can be attributed to a number of factors. One is
anticipation of the hurricane season in the Gulf of Mexico and hence possible
disruptions in supply spawned by meteorological phenomena. Another is the fact
that August is often the heaviest vacation month, driving very strong demand for
gasoline and thus exerting upward pressure on oil prices. Once a rational bull
begins, oil prices rise. As the summer driving season ends and the weather gets
colder, the demand for all petroleum products wanes. This slowdown in demand is
coupled with an increase in supply caused by the sharp curtailing of purchases by
refiners to avoid year-end inventory taxes, which explains the pullback in prices
during the October–November period.2

Then, starting from December through January, the crude oil seasonal uptrend
develops. For a variety of reasons, including high heating fuel demand and the
Christmas travel season, oil prices and oil stocks tend to do well in the winter
months. They are a great winter speculation as demand is tied to temperature,
rising as the temperatures drops. Given that seasonal weather variations remain
largely unpredictable, forecasting demand remains well-nigh impossible. Conse-
quently, additional demand caused by a cold spell triggers speculation and drives
up prices. Thus, a seasonal rational bubble can form.

Once the underlying assumption that there are different types of agents with
heterogeneous expectations active in the market has been acknowledged, such
heterogeneous speculators’ interactions on both the supply and demand sides can
be seen to be responsible for major swings in oil prices over both periods. The
resultant uncertainty and anxieties as to future supply exert pressure to make
crude oil prices increasingly volatile, encouraging even more speculative be-
havior. Then all it takes is additional demand caused by the emergence of a fear
factor or a climate hazard to turn the seasonal speculative situation into a spec-
ulative bull.3

Econometrically, modeling oil seasonal speculation by nonlinear dynamics has
aroused considerable interest. The classical seasonal linear models, based on
Seasonal Autoregressive Integrated Moving Average (SARIMA) models, are not
strongly fitted. Thus, analyzing seasonal behavior in the presence of terms of
nonlinear structures has become a necessity. Many studies have used nonlinear
processes to detect the presence of seasonal behaviors in time series structures.
This class of models was introduced by P. Franses and M. Ooms, who suggested
a periodic autoregressive procedure.4 Their model highlights the importance of
considering seasonal behavior in the presence of a nonlinear stochastic process.
Meanwhile, W. Guiming and L. Getz used the stochastic approach of a Basic
Structural Model (BSM)—a state-space time-series model—exhibiting seasonal
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and multi-annual variations in abundance.5 Then, in order to take into account com-
plex structures, C. Kyrtsou and M. Terraza introduced seasonal chaos-stochastic
processes that allowed seasonal fluctuations in stock prices to be better un-
derstood.6 L. Ferrara and D. Guégan proposed a Seasonal Cyclical Long-Memory
model, which includes generalized long-memory processes and seasonal long-
memory processes.7

Despite the fact that oil-stock bull seasonals form a significant aspect of oil
price time series, the models cited above do not begin to address this kind of
anomaly. The present paper seeks to investigate the role of market speculation in
oil price hikes during the two identified periods (winter and summer). Special
attention is devoted to the hypothesis whereby seasonal speculative activities by
heterogeneous speculators are responsible for prices swings. To this purpose,
a modification of the Mackey-Glass equation is proposed that takes the rhythm of
seasonal frequency into account (referred to hereafter as the Seasonal Cyclical
Mackey-Glass model). Using this kind of modeling to forecast oil prices appears
to be an attractive alternative due to its unique ability to model seasonal effects in
the presence of deterministic behavior.

The structure of the paper is as follows. We provide a description of our
stylized model of the oil market with heterogeneous interacting traders and an
introduction to Seasonal Cyclical Mackey-Glass models. This is followed by
a description of the data used and offers the empirical and estimated results. The
paper ends with concluding remarks as to the possible practical applications of the
method.

A Stylized Model

The model proposed in this paper is inspired by the chartist-fundamentalist
approach, which has proven to be fairly successful in replicating some significant
stylized facts relating to the oil market.8 This model’s underlying assumption is
that there are different types of agents with seasonal heterogeneous expectations
active in both winter-summer seasons in the market.

The group of speculators is divided into fundamentalist and chartist groups.
The fundamentalists’ seasonal demand for oil is based on the difference between
the price at time t and the expected price at time t + 1 for season s, where s
represents the winter and summer seasons.

DF
t;s ¼ aF EF

t;s Ptþ1;s

� �
� Pt;s

h i
ð1Þ

where Pt,s is the price over period t and season s. aF represents a positive reaction
parameter and E the expectation operator. The seasonal demand under the fun-
damentalists’ approach will increase as they expect the future price to be higher
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than the current price during the season (s) and lower outside it. The fundamen-
talist expected seasonal price is given by:

EF
t;s Ptþ1;s

� �
¼ Pt;s þ bF

1 Pt;s � Ft;s

� �þþ bF
2 Pt;s � Ft;s

� �� ð2Þ

where Ft,s is the fundamental price in period t at season s. The equation shows that
the price movement expected by fundamentalists is caused by deviation of the price
from the fundamental value during the season. Fundamentalists’ seasonal reactions
to overvaluation (undervaluation) is expressed by b1

F2[–1,0](b2
F2[–1,0]) and ex-

pected to be negative since, over the season s, fundamentalists will expect the oil
price to decrease (increase) if the current price is above (below) the fundamental
value. Whenever b1

F equals b2
F, there is a symmetric reaction to overvaluation and

undervaluation.
The second group of speculators goes under the name of chartists. These

speculators apply a very simple type of technical analysis to form their expecta-
tions about future prices. The seasonal demand of chartists is linearly conditional
on the expected price changes.

DC
t;s ¼ aC EC

t;s Ptþ1;s

� �
� Pt;s

h i
ð3Þ

where aC denotes a positive reaction parameter. This implies that demand will rise
as chartists expect the future price to be higher than the current price in the same
season s. Chartists’ seasonal expectations are given by:

EC
t;s Ptþ1;s

� �
¼ Pt;s þ bC

1 Pt;s � Pt�1;s

� �þþ bC
2 Pt;s � Pt�1;s

� ��
: ð4Þ

A distinction is made between an upward or downward trend, or past price de-
crease and increase. Since technical traders expect trend movements to continue in
the same direction, we expect both b1

C and b2
C to be positive. Negative parameters

would imply contrarian behavior. If b1
C > b2

C, chartists react more to an increase in
price. On the other hand, if b1

C < b2
C, chartists will be more eager to sell in a

downtrend than to buy in an uptrend.
Total market seasonal demand for oil consists of the real demand plus the

weighted average for seasonal demand from technical traders and fundamentalists:

DM
t;s ¼ DR

t þWt;sD
F
t;s þ 1�Wt;s

� �
DC

t;s and

Wt;s ¼ 1þ exp �g
AF

t;s � AC
t;s

AF
t;s þ AC

t;s

" # !" #
�1 ð5Þ

where Wt,s 2 <0,1> is the share of the fundamentalists in the market, such that
1– Wt,s is the chartist fraction in period t over the same season. Parameter g is the
intensity of choice and represents the extent to which performance of a given
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strategy determines whether it is adopted or not. With g > 0, a strategy that per-
forms better in period t is more broadly applied over time t + 1 during season s, and
therefore the seasonal demand of that group will weigh more heavily on period
t + 1. Conversely, if g = 0, the reverse situation will be obtained.9 Price changes,
finally, are a function of excess seasonal demand plus a noise term.

Ptþ1;s ¼ Pt þ u D M
t;s � St;s

h i
þ et ð6Þ

where S is the supply of oil and assumed to be a linear function of price; u is
a positive price adjustment parameter governing market frictions; and et is taken to
be a random noise term. Therefore, the solution for the oil price can be derived as:

DPtþ1;s ¼ aþ bPt þWt;s a1 Pt;s � Ft;s

� �þþa2 Pt;s � Ft;s

� ��� �
þ

1�Wt;s

� �
b1 Pt;s � Pt�1;s

� �þþb2 Pt;s � Pt�1;s

� ��� �
þ et;s: ð7Þ

From equation (7) it can be seen that, for a given value of a and b, fundamentalist
and chartist traders’ stabilizing seasonal impact on the oil price increases non-
linearly with their confidence in fundamental and technical analysis. We now turn
to the empirical implementation of the model.

The Seasonal Cyclical Mackey-Glass Model

The specific system chosen for the present study was the well-known Mackey-
Glass (MG) nonlinear time delay differential equation. The model is given by the
following:10

dP

dt
¼ a

Pt�t

1þPC
t�t

� dPt�1 where c > 0: ð8Þ

It should be noted that the choice of lags t and c is crucial since they determine the
system dimensionally. a and d are parameter estimates. The MG equation can now
be modified to take into account the rhythm of seasonal frequency. This rhythm
defines the frequency of separate seasons. During each cycle period, prices increase
to some maximal value and then revert to the normal situation. Seasonal frequencies
are defined as v = 2p/s = 2pf where f = 1/s and s is the number of observations per
year (for example, s = 1 for annual data, s = 12 for monthly data, etc.). Hence, for oil
prices the instantaneous ventilation V is a non-negative periodic function. The as-
sumption is made that it can be modeled as V = [1+ sinv(t – t)].

Pt ¼ a
Pt�t

1þP C
t�t

1þ sin v t � tð Þð Þ � dPt�1 þ et ð9Þ
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where et is i.i.d. Many chaos properties remain valid when noise is added to the
system, provided the noise level is not too high. Furthermore, the stochastic part
added in the Mackey-Glass equation can assume two different forms. In the first
instance, white noise is added to the Modified Mackey-Glass equation (homo-
skedastic errors) where et ;N(0,1). In the second, when anomalies are hetero-
skedastic, the stochastic part added onto the Modified Mackey-Glass equation
follows an ARCH(1) process, where et/It ;N(0,ht). ht is the conditional variance.11

The local asymptotic stability for the equilibrium of equation (9) implies global
asymptotic stability, meaning that all solutions converge to zero while t tends towards
infinity. To formulate a criterion of asymptotic stability for equation (9), the stability
of the seasonal point can be studied as suggested by P. Landa and M. Rosenblum.12

As a result, (Pt–t – P* [ 0) is subject to oscillatory instability if V* £ SP* and

t > tcr ¼
arcsin �V �=SP�½ �
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P�2�V �2
p ð10Þ

where P* is the singular point of equilibrium, V* = VjPt–t=P*, S = (dV/dXt – t)jPt–t=P*.
The period of oscillations close to the stability boundary is approximately equal to
6t (approximately one peak every 6 months). It is assumed that the frequency of the
seasonal rhythm f weakly depends on the level of prices at some previous moment in
time, and that the purpose of this control is to maintain linearity of price levels. It
also is assumed that the estimated price level may not necessarily be in an equi-
librium state but may vary in its immediate neighborhood (P*). This suggests that
minor modulations in the frequency of the seasonal rhythm can be considered:

f ¼ f0 þ b Pt�t � P�ð Þ; where 0 £ bj j £ 1 ð11Þ
where b is the parameter of modulation and the frequency of normal seasonality
rhythm f0 is equal to p/3 (referring to a period of 6 months). As shown previously,
this small modulation leads, nevertheless, to a nontrivial effect. For t < tcr and
b varying closely around zero, periodic effects in time and level are obtained. For
t > tcr and b = 0 a quasi-periodic regime with a basic frequency f0 can be ob-
served. For t > tcr and b > 0, irregular seasonal effects in level can be observed.

Empirical Results

The data consists of real monthly spot prices on the New York Mercantile
Exchange (NYMEX) for West Texas intermediate (WTI) light crude oil from
January 1973 to December 2008. However, here the focus is on market returns on
these spot prices. The data were obtained from the U.S. Energy Information
Administration (EIA). In order to proceed with an unbiased and unambiguous
interpretation of long-memory and nonlinearity phenomena, oil prices first have to
be rendered stationary. The augmented Dickey-Fuller (ADF) test applied to oil
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raw series showed the presence of unit root properties in oil spot prices (table 1).
Therefore, first order differencing of raw series is considered as denoted (DLOIL)
and defined by DLOILt = ln(OIL)t – ln(OIL)t-1.

Table 1 presents the descriptive statistics for oil returns. Using ADF to test the
unit root, the stationary nature of oil series at the 5-percent significance level is
firmly accepted. It can be observed that there is excess kurtosis relative to the
standard distribution. The distribution is positively skewed. The combination of
a significant asymmetry and leptokurtosis indicates that oil price series are not
normally distributed (as suggested by the Jarque-Bera statistic). The Engle test
result confirms the presence of heteroskedasticity and residuals are autocorrelated.

The fractional integration parameter d is provided by the GPH estimator.
The null hypothesis of interest relates to whether the return series comes under
integration of order zero (H0: d = 0) versus the alternative of fractional integration
(H1: d 6¼ 0). Estimates for the fractional integration parameter d are provided in table
1, along with t-statistics for the null hypothesis d = 0. The point estimates provided
by the GPH estimator are considered with an estimation window of T 0.8. These
estimates indicate evidence of long memory in oil spot prices, but with dGPH > 0.
Positive values for the fractional differencing parameters indicate predictability in
variance. The point estimates are characterized by persistent processes, suggesting
that the variance in the series is dominated by low frequency (slow cycle) and
spectral density tends towards infinity when the frequency moves towards zero.
The statistical test shows that the movement in oil prices appears as the result of
an exogenous shock affecting the oil market.13

In testing for the presence of seasonal effects in oil prices, autoregressive models
for oil series with control for possible seasonal effects are first estimated, as in:

DLOILt ¼
Xp

i¼1
aiDLOILt�1 þ

X12

j¼1
bjDjt þ et ð12Þ

where Djt represents 12th month-of-the-year dummies. The lag length is selected
based upon the Akaike criterion. Table 2 reports the results from the ordinary least
squares (OLS) regressions. There is evidence of seasonal effects in oil return

Table 1
STATISTICS SUMMARY FOR DLOIL

Augmented Dickey-Fuller

Skew Kurtosis Jarque-Bera Raw D ARCH(12) Q(12) GPH

1.97 26.8 10513
a

0.48 –49.25
a

24.87
a

27.92
a

0.274
a

(0.00) (0.81) (0.00) (0.01) (0.00) (0.02)

aThe null hypothesis rejected at the 5-percent significance level. The Q(12) statistic represents
the Ljung-Box (Q) statistics for autocorrelations in the residuals.
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series. A significantly positive coefficient was found in August while a negative
one was found in January. These results concur with those of A. Hamilton, who
showed that the demand for crude oil in both August and January are the highest in
the year, with prices thus logically being at their highest in both those months.14

Moreover, in the context of descriptive tests, it has to be ascertained whether the
structure of oil prices contains nonlinear and chaos processes. However, the
presence of a linear structure may be responsible for the rejection of chaos. Thus,
there is a need to eliminate low frequency signals from the oil prices structure.

However, the series adopted is filtered using the ARFIMA model. Then, after
controlling for long memory, the nonlinear statistics test is applied to ARFIMA
filtered residuals (RFDLOIL) to investigate the hypothesis of a nonlinear seasonal
process. The statistical results of ARFIMA (p,d,q) processes are summarized in
table 3. The value of the fractional integration parameter is d̂ ¼ 0:39 and is ac-
cepted at a 1-percent significance level (between ±0.5). Applying the ARCH-LM
test to the ARFIMA filtered residuals (RFDLOIL) confirms that the errors are
heteroskedastic but are not autocorrelated and also that the RFDLOIL series is not
normally distributed as suggested by the Jarque-Bera test statistics.

Due to the fact that nonlinearity is a necessary (but not sufficient) condition for
chaos, the BDS test is used to assess the null of whiteness against the alternative of

Table 2
OIL SEASONALITY TEST

a

Oil Jan Feb Mar April May June

Est. –0.035
W

–0.021 0.006 0.020 –0.013 0.047
(0.01)

b
(0.10)

c
(0.64) (0.08)

c
(0.35) (0.01)

b

Oil July Aug Sept Oct Nov Dec

Est. 0.022 0.026
S

–0.003 –0.014 –0.02 –0.033
W

(0.87) (0.04)
b

(0.80) (0.34) (0.03)
b

(0.02)
b

aW is the winter effect; S is the summer effect.
bRepresents the significance at the 5-percent significance level.
cRepresents the significance at the 10-percent significance level.

Table 3
ARFIMA TESTS ON DLOIL

MÂ d̂ ARCH-LM(12) Q(12) Jarque-Bera

0.10 0.39 11.83 17.68 3687
(0.00)

a
(0.00)

a
(0.00)

a
(0.12) (0.00)

a

aResults accepted at a 1-percent significance level.
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non-white linear and non-white nonlinear dependence.15 This is based on an es-
timation of the correlation integral as introduced in the context of dynamic sys-
tems by P. Grassberger and I. Procaccia.16

Practitioners of the BDS test usually consider different embedding dimensions. Our
study used six embedding dimensions for this test. Error was set at e = 0.5s. It is obvious
from table 4 that the null of whiteness is rejected according to all computed statistics,
and hence the remaining dependence is consistent with a nonlinear dynamic explanation.
It can be concluded that there is evidence of nonlinearity of the general form.

To test chaos, the A. Wolf et al. test was applied to compute the Lyapunov
exponents.17 To this purpose, the notion of the Lyapunov exponent was introduced
since it is usually taken as an indication of the underlying dynamic system char-
acteristic. In the presence of noise, as is often the case with real world data sets, the
meaning of ‘‘detecting deterministic chaotic dynamics’’ is ambiguous. Thus, the
algorithm developed by A. Wolf et al., which is used to estimate the growth rate of
the propagation of small perturbations in the initial conditions, appears to be non-
robust.18 Therefore, given that there is considerable exogenous influence perturbing
the endogenous dynamics, it is necessary to define the Lyapunov exponent in
a stochastic context. D. Nychka et al. defined this as Xt+1 = F(Xt) + et+1.19

Since the largest Lyapunov exponent l1 has often been of primary interest in
the literature, our study mainly focused on analysis of the largest Lyapunov ex-
ponent, simply denoting it as l. However, it should be noted that other exponents
l1 for 2 £ i £ d also contain some important information relating to the stability of
the system, including the directions of divergence and contraction of trajectories
and the types of non-chaotic attractors.20 The presence of a positive exponent is
sufficient for diagnosing particular classes of chaos and presents local instability
in a given direction. The results obtained from the log-differenced price series are
reported in table 5. The best Lyapunov exponent is that which minimizes the SIC
criterion. Results show that the minimum SIC value occurs when we use six
hidden units. In this case, the corresponding Lyapunov exponents are l1 = 0.1239
e-05 and l2 = –0.1972. For both cases, l1 is positive and l2 is negative.

Table 4
BDS TEST RESULTS (RFDLOIL)

e/s BDS Statistic (0.5) P-Value

m=2 0.05 0.00
a

m=3 0.11 0.00
a

m=4 0.15 0.00
a

m=5 0.17 0.00
a

m=6 0.18 0.00
a

aThe critical value is 1.96 for the 5-percent significance level.
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Consequently, it can be concluded that there is clear evidence for a mixture of
processes. The fact that l1 is slightly positive could be due to the existence of
high-dimensional chaos, which could be confused with stochastic processes.21

On the other hand, since l is negative, it cannot be concluded that there is
stochastic behavior; behaviors may be periodic.22 In the case where high periodic
effects are obtained, seasonality can produce high variance, similar to that of
stochastic behavior. In other words, the presence of heteroskedasticity in the series
may result from seasonal effects. Therefore, it can be assumed that there is a
complex structural composite of a mixture of processes with slightly irregular
behavior sensitive to small perturbations (chaos) and periodic behavior.

From the preceding applications, it can be concluded that the hypothesis of
nonlinearity in oil spot price movements cannot be rejected and is not an i.i.d. process.
Moreover, it is not clearly determined, according to Lyapunov exponent statistics,
what is exactly the source of nonlinear behavior. The plausible explanation is
that there are both chaotic and periodic behaviors in log-differenced oil price returns.
To this hypothesis, Seasonal Cyclical Mackey-Glass models are applied. Using t = 5
and c = 2 (selection with SIC criterion) with frequency p/3, the SCMG parameters
estimated are significant at a 5-percent level (table 6). Thus, the model detects sig-
nificant evidence of nonlinearity in the seasonal bull in oil returns. Moreover, the
seasonal solution found for t = 5 (t < t cr) and b = 0.0029 (around zero) seems to be
a chaotic solution. Furthermore, it can be said to be quasi-periodic. The difficulty
in distinguishing clearly between both processes may be due to the high noise level.
As a result, the seasonal bull detected in oil prices at frequency p/3 appears to be
persistent over time. Finally, tests on SCMG filtered residuals showed that residuals
are empty of heteroskedasticity and autocorrelation, despite the presence of non-
normality (Jarque-Bera).23 This suggests that the heteroskedasticity in residuals may
be due to periodic behaviors in oil prices.

Table 5
LYAPUNOV EXPONENT ESTIMATES ON ARFIMA FILTERED RESIDUALS

Hidden l1 l2 SIC

1 –0.2934 e-05 –1.9076 –12.98
2 0.2798 e-05 –0.9528 –12.94
3 0.1955 e-05 –0.5671 –13.24
4 0.1788 e-05 –0.4190 –13.38
5 0.1388 e-05 –0.2918 –13.47
6 0.1239 e-05 –0.1972 –13.55
7 –0.1299 e-05 –0.1311 –13.52
8 0.1179 e-05 –0.0576 –13.47
9 0.2100 e-05 –0.0202 –13.49

10 –0.2222 e-05 –0.0418 –13.57
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We will now present the forecasting experience. Four models are applied to the
RFDLOIL series to compute the Root-Mean-Squared Error (RMSE hereafter) of each
model. The models are SARIMA, SCLM, SMG-GARCH, and SCMG. To obtain
a quick summary of the results, the ratios of the RMSE are calculated, dividing the
RMSE from the SCMG model by the one from each other model. Thus, a ratio of
lower than one indicates better forecasting performance of the SCMG model (table 7).

The table reports forecast evaluation statistics for a full sample horizon. The
sample covers a total of 433 forecasts for the horizon considered. The forecasting
models are: SARIMA(3,0,0)(2,1,0)6, where the estimates models are as follows
(I–B6)(I–0.224B–0.279B2–0.132B3)(I–0.542B6–0.188B12)Xt

1 = et, R2 = 0.147. The
second is the Seasonal Cyclical Long-Memory model. The parameter estimate of
the model associated with the cycle of period of six months is p/3. The estimate
model is defined as: (I – 0.321B + 0.244279B2)0.065 (I + 0.119B)d Xt

1 = et, R2 = 0.23.
Finally, the seasonal MG-GARCH is (1,1). The dummy variable from the period
of December 15 to January 30 and from the period of August 1 to September 30
equal to 1 and 0 otherwise was used. Taking t = 1 and c = 2, the model is accepted
at a 5-percent significance level; R2 = 0.192.

Conclusion

In this paper an empirical oil market model was developed to detect dynamic
seasonal cyclical behaviors in oil price series. The main conclusion obtained from this
application is that oil prices have greater potential to show strong seasonality in both

Table 6
PARAMETER RESULTS OF THE SCMG MODEL AT FREQUENCY v = p/3

Coefficient Coefficients P-Value ARCH-LM Q(12) Jarque-Bera

â 0.4016 0.05
a

2.56 12.66 124
a

d̂ 0.1493 0.00
a

(0.24) (0.39) (0.01)
b̂ 0.0029 0.06

b

aâ and d̂ are accepted at the 5-percent significance level.
bRepresents the coefficients that are accepted at the 10-percent significance level.
Equation (5) is applied to SCMG residuals to verify whether the residuals’ structures contain

cyclical effects. Statistical tests showed that residuals are empty of cyclical effects.

Table 7
RATIOS OF THE RMSE FOR THE SCMG MODEL OVER THE RMSE OF EACH MODEL

SCMG/SARIMA SCMG/SCLM SCMG/SMG-GARCH

Ratio of RMSE 0.919 0.992 0.92
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the December–January and August periods of the year. The movements associated
with frequency p/3 appeared to be persistent over time. Moreover, results suggest that
speculative activities are responsible for changes in spot prices in both peaks in the
year, especially when speculative trading strategies are influenced by periodic in-
formation. Thus, the heterogeneous agents’ hypothesis and their nonlinear trading
impact influenced by seasonal effects may explain the pronounced swings in oil
prices, as witnessed in recent years. Clearly, these results are of interest to investors in
this crucial commodity as they contain valuable information to assist in fine-tuning
the timing of entry and points for oil-stocks investors and speculators to maximize
gains in this ongoing oil-stock bull, though it remains essential to consider all other
features of the markets. Finally, SCMG models can be extremely competitive in terms
of forecasting as compared with conventional linear and nonlinear models.
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