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Abstract

It is well known that when players have private information, vis a vis the designer, and their pref-

erences coincide it is hard to implement the socially desirable outcome. We show that with arbitrarily

small �nes and arbitrarily noisy inspections, the social choice correspondence can be fully implemented

(truth telling is the unique Nash equilibrium).

In a model where types are correlated, we know since Crémer and McLean (1985) that a mechanism

designer can get the parties to reveal their types, but that might involve arbitrarily large ex post losses

for the participants. Alternatively, with costly state veri�cation, as in Townsend (1979), one can introduce

potentially large �nes and get players to report their types in equilibrium.

In this note we show that a combination where the mechanism designer can:

� inspect the truthfulness of a player�s report about the state of nature with an arbitrarily small prob-
ability, with an inspection technology that actually �nds something about the state with a very small

probability (i.e. a noisy technology);

� impose arbitrarily small �nes if a report is discovered to be false;

allows for a mechanism that yields truth telling as the unique equilibrium. The arbitrarily small �nes are

never paid in equilibrium, and the expected cost of the mechanism is virtually 0: the inspection is materialized

with an arbitrarily small probability, so the cost of the state veri�cation is almost never paid. In addition

we show that there is no mechanism that can achieve a cost of exactly 0.

The main contribution of our note is to show that a combination of �a little� of noisy (cheap) state

veri�cation, and arbitrarily small �nes can yield uniqueness of truth telling where full costly state veri�cation

or large losses might be needed to obtain truth telling (and not uniqueness).

�A previous version of this paper was circulated as �Getting Polluters to Tell the Truth�. Kim-Sau Chung suggested we
change the setting to that of the Travelers�Dilemma, and we are grateful for this suggestion. Hugo Hopenhayn noted a bug in
a previous version of this paper, and we are grateful for his help. We also thank Atila Abdulkadiroglu, Ezequiel Aguirre, Anil
Arya, Jean-Pierre Benoît, Carlos Chavez, Marcelo Cousillas, Federico Echenique, Je¤ Ely, Néstor Gandelman, Jonathan Glover,
Ana María Ibáñez, Matt Jackson, Larry Kotliko¤, Carlos Lacurcia, Preston McAfee, Stephen Morris and Francesco Squintani.

yCorrespondence address : dubraj@um.edu.uy.
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The main assumptions we make are that all players agree on what constitutes a better state of nature, and

that it is common knowledge that they agree on what state has occurred. We believe that these assumptions

are a good �rst approximation of several situations of interest. Our initial interest in this problem was on

how to get �rms to reveal the true cost of abating pollution; if �rms have access to the same abatement

technologies, our results show that the regulator can achieve the �rst best pollution level as the unique

outcome. Similarly, a regulator setting the price of utilities that share the same production technology could

elicit their true marginal cost and again achieve �rst best production levels. The assumption of common

costs has been used often in di¤erent literatures, the most prominent one being common value auctions where

the common value arises because the product is the same for (say) oil �rms, and they share a production

technology. Another application could be Grameen Banking, where a small group of related potential debtors

knows what is the largest amount of money that all debtors could repay with certainty, and the banker is

trying to �nd out what that number is. Finally, a well known example where those features of our model

are met exactly is the travelers�dilemma of Basu (1994), in which an airline lost the luggage of two travelers

who had purchased the same antique: it is common knowledge that the cost is the same for both travelers,

and the airline is trying to elicit what that number is.

To understand what our assumptions imply in relation to the standard design problem, we note that

usually, in order to get truthful revelation, the designer lets the agents self-select an outcome from a well

de�ned menu. In order to construct such a menu, the mechanism designer must be able to exploit players�

state dependent utilities. In our setup, however, players�preferences are uniform (they are the same, irre-

spective of the state): they all want a larger reimbursement by the airline, a larger estimate of the cost of

production or of abatement. The uniform preferences make the implementation problem hard. Nevertheless,

in our setup the planner knows that the information is common across agents (as is standard in the original

mechanism design literature, where players, with knowledge of the true state, have to report a preference

pro�le specifying every player�s preference). This knowledge enables the planner to incentivize the agents to

agree on the common announcement, and the use of (small) �nes can be used to break ties so that players

are pitched against each other. The knowledgeable reader will notice the connection between this mechanism

and the recent and growing literature about implementation with evidence, or with costs of lying. We discuss

the connection to this literature after presenting our main results; it su¢ ces here to say that results are not

nested, and that our main theorem precedes most of these results (see Ca¤era and Dubra, 2005; to the best

of our knowledge, the only earlier papers include Green and La¤ont (1986), Lipman and Seppi (1995) and

Bull and Watson, 2004).

Although we develop our results in a context where the state is known by all players in order to show

that the result is not a consequence of this assumption, we extend our results to a simple example in which

the state is not known exactly.

More generally our paper, and part of the literature on implementation, can be thought in the context

of Becker and Stigler (1974): what is the cost of implementing the desired social outcome, and what is an

e¢ cient way to enforce the outcome? Becker and Stigler were the �rst to ask how can we pay �an enforcer�

in the most e¤ective way. In our paper the players are the enforcers themselves, as most of the enforcing is

done by the players of the (optimal) mechanism, where they are pitched against each other. By designing

an appropriate mechanism we have made the cost of enforcement negligible. The assumptions of our paper

seem suited to cases where the players have commited a crime jointly, so they share the same information

and preferences.

We now present our model and results, and then their discussion in the context of the relevant literature.
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1 Model and Results

There are m � 2 players, and the state space is S: The mechanism designer will have to choose an action,

and we assume that for each state there is a distinct optimal action, so in order to simplify the analysis, we

assume that the space of actions the mechanism designer can choose is also S (the designer wants to match

each state s 2 S with its optimal action which we identify with s). For example, in terms of the travelers�
dilemma, if the cost of the lost items is $4; the designer wants to pay each traveler $4: As another example,

suppose the designer is a regulator choosing a price p (c) (depending on the marginal cost of abatement) that

polluters must pay per ton of CO2. If the marginal cost of abatement is c = $5; the regulator would like to

choose c = 5 and announce that the price to be paid is p (5) :

As discussed above, we assume that all players agree on what a �better state�or �better action�is; the

assumption is that all players have a common utility function over S: For action s and transfer t to the

designer, the utility or pro�t is u (s) � t; for u : S ! R: The state is drawn according to some probability

measure H on S; and we assume that the support of the random variable u (s) is an interval (if all players

are declaring state s; this assumption allows a player to �slightly�undercut all players�announcements).

In a direct mechanism, the designer can investigate a claim made by a player, with a cost of k: In the

example of the travelers�dilemma it could try to contact the seller abroad, or by having access to the luggage,

they could �nd a receipt; in the case of the regulator trying to abate pollution, it could hire engineers to

check the claims made about the cost of abatement; in the case of a regulator regulating utilities (with the

same cost), it could also hire engineers to check the player�s claim. The inspection technology is such that

for some �xed, exogenous (arbitrarily small) probability "2 > 0 the inspection tells whether the report was

truthful or not (in case the report was not truthful, the inspection does not say what is the true cost of the

object, just that the report was not truthful). In addition, the airline (or the regulator) has the ability to

impose an arbitrarily small �ne if the report was found to be false; this is in line with the penalty imposed

in Basu�s original mechanism, but our �ne can be arbitrarily small.

The cost k of the inspectionmust be interpreted as a small number. Since the probability of the inspection

yields information only with an arbitrarily small probability, the inspection could just mean checking another

time to see whether the luggage (of one of the players) was not in fact lying beside the carrousel. The point

is that the inspection could be the simplest of actions by the regulator; even the slightest e¤ort in trying

to �nd out the state (so long as it has some chance of yielding any information) could be interpreted as an

inspection.1 In this regard, the assumption that the regulator must sometimes carry out an inspection is not

as �harmful�as in the case of Abreu and Matsushima (1992) where the planner must commit to choosing

an outcome which might be far from a socially desirable one.2

The technology for making inspections is given by a cost k, a maximum �ne "1 (arbitrarily small) and a

probability "2 of �nding if the inspected party cheated or not. When an individual is sampled, the inspection

yields the �answer��uncertain, u�with probability 1� "2 for an arbitrarily small "2 > 0: With probability
"2; the inspection tells whether the report was truthful or not (in case the report was not truthful, the

inspection does not say what is the true state).

The regulator must design a mechanism to minimize the sum of:

� the expected value of the distance between the true state and the one chosen by the regulator;
1We make the cost k explicit, but others have introduced forms of inspections where the information comes �for free�to the

mechanism designer (see for example Midjord, 2013; in that paper the designer may learn the true state with some probability;
here the true state is never revealed to the designer).

2The cost k being small also helps in the sense that if the planner did not have the commitment power to implement the
inspection if the cost was high, and players knew this, the mechanism wouldn�t work. We thank the referee for pointing out
the relevance of the size of k:
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� the expected cost of making inspections;

In the equilibrium of the mechanism that minimizes those costs there will be no �nes. Still, we do not

include the �nes in the objective function in order to clarify that the cost of the mechanism is not low because

of the existence of �nes.

A direct mechanism is given by a triplet (l; t; f).

a. l : Sm ! � �
�
x 2 Rm

+ :
P
xi = p

	
for some p 2 (0; 1) speci�es with what probability each player will

be sampled for inspection, as a function of all players�reports; the probability that one player will be

inspected is p:

b. t : Sm ! S speci�es the action to be taken by the designer as a function of players�announcements.

c. f : fg; i; ug ! f0; "1g represents the �nes to be paid by the only individual who is inspected, which
must be lower than "1; depending on the outcome of the inspection: guilty of lying, innocent, or

uncertain. In order to make the mechanism simpler, and to avoid giving the mechanism designer more

degrees of freedom, we �x �nes at either 0 or "1:

Theorem 1. For any " > 0 there is a mechanism that has a total expected cost of less than ": In that

mechanism, the unique equilibrium is truth telling: all players report the true state. The only cost of the

mechanism is the (small) chance that the regulator will inspect the report of one of the players, and in that

case the total cost will be k.

Our mechanism is as follows: the regulator selects a p < "=k then

1. Players simultaneously announce a state;

2. The regulator decides whether to inspect a player, or not; he inspects with probability p: If no inspection

will be carried out, one of the states with the smallest pro�t is chosen at random. If an inspection will

happen, step 3 is carried out.

3. If the pro�ts of all announcements coincide, the regulator chooses one player randomly (uniformly) and

inspects the report. If the pro�ts of the announcements do not all coincide, the regulator: identi�es

the player or players who announced the largest-pro�t state �let n < m be the number of players in

that group; randomly (uniformly) selects one of them and inspects either his report (with probability

� 2
�
1
2 ; 1
�
) or any other player�s with probability 1 � � (this yields a chance of inspection of p 1��m�1

for players who don�t declare the highest pro�t state). The idea is to monitor only one player, and to

monitor more intensely those players who are most likely lying. A player is �ned if and only if: his

report is false and it is inspected and the inspection discovers that the report was false.

4. The designer selects an action corresponding to one of the smallest-pro�t announcements.

A strategy for a player in the game that this mechanism de�nes is a function � : S ! S that announces

a state for each possible real state. We now prove our main result.

Proof of Theorem 1. Truth Telling is an Equilibrium. We �rst show that truth telling is an

equilibrium. Without loss of generality, consider the situation of player 1 when all other players are reporting

the true state (s; s; :::; s). Notice that declaring the true s leads to the implementation of s; consistent with

all the declarations of players 2 through m: If player 1 reports bs1 6= s; two things could happen, depending
on the pro�le of states announced by players 2; :::;m:
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� u (bs1) � u (s) : In this case player 1 does not change the utility of the regulator�s action (if u (bs1) > u (s),
the regulator chooses s; if u (bs1) = u (s) ; he could choose either s or bs1; but the utility is still u (s) as
if player 1 declared s); and player 1 could be �ned (if sampled and the inspection showed a lie).

� bs1 < s: In this case, the player lowers the utility of the action chosen by the regulator, and in addition
he could be �ned.

Then, player 1 is worse o¤ deviating, and hence, declaring the truth is better than declaring anything

else, proving that truth telling is an equilibrium.

There is no other equilibrium. Suppose there is a pro�le � of strategies such that for some player

j; �j (slie) 6= slie for some slie 2 S and suppose that this pro�le of strategies is an equilibrium. That is,
suppose there is an equilibrium without truth telling. Without loss of generality, suppose j = 1: Then, for

state slie all announcement must be lies, since if one individual were telling the truth all other players would

be strictly better o¤ telling the truth, since (relative to lying) they would weakly increase u, and strictly

reduce the chance of being �ned (to 0). Since one player is inspected with probability p; the average chance

of a player being inspected is p=m:

Note �rst that in slie no player j can declare a �j (slie) that yields lower pro�t than slie (he would be

strictly better o¤ declaring slie by reducing the �ne); this implies that in this proposed equilibrium players

can still undercut each other�s announcements.

Take any player that in state slie declares a state with the highest pro�t; suppose it is player 1.

� If he is the only one declaring such a pro�t, he can strictly reduce the chance of inspection by matching
one of the lowest announcements, and he doesn�t change the outcome.

� If any other player (say player 2) is also declaring a state with maximum pro�t, player 1 still has a

probability q of being inspected that is (weakly) larger than p=m: We will show that he is strictly

better o¤ slightly undercutting the announcement of player 2: if he does, player 1 will never be one of

the ones announcing the state with the largest utility (the ones inspected with higher probability) and

therefore will strictly reduce his chance of being �ned, because his chances of being inspected fall. In

particular, if he is not announcing the highest state, his chance of being inspected is

p
1� �
m� 1 <

p

m
� q:

If the amount by which it undercuts the announcement of player 2 is small, this deviation is pro�table.

This shows that the pro�le � is not an equilibrium.

We note that the assumption that the support of u (s) is an interval cannot be dropped, since in the

proof we use that players can �slightly undercut�other players�announcements. If the support had a hole,

that would not be possible: if all players were declaring a false state s for which there was no s0 with u (s0)

close to u (s) it would not pay for any player to undercut s:

The mechanism achieves a cost of virtually 0, and there are no �nes in equilibrium. In particular, there

is a sequence of mechanisms, the costs of which converge to 0; but none achieves the 0 cost. To complement

this analysis, we now show that there is no mechanism that achieves a cost of exactly 0:

Theorem 2. There is no mechanism in which an equilibrium with truth telling yields a cost of exactly 0;

that is, some inspections are necessary for truth telling. Moreover, for any mechanism and any equilibrium
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with truth telling of that mechanism, there must be a positive probability of inspection for every s with

u (s) > u � minSupportu (S) : That is, inspections occur with positive probability for most realizations of s:

Proof of Theorem 2. If for some u (s�) > u there are no inspections, for any s with u (s) < u (s�) it is an
equilibrium for all to report s�, which contradicts that there is truth telling.

As for m � 2; the assumption is also necessary: with only one player, he can always claim the highest-

pro�t state, and the �ne would not force him to tell the truth (since the �ne is small, and the chance of being

discovered is also small). Also regarding the number of players, an additional feature of our mechanism, is

that it is robust to collusion by less than m agents.

2 An example with imperfect correlation.

The fact that all players agree exactly on the state seems like a reasonable assumption in the cases that we

mentioned in the introduction. Moreover, it is a feature of two of the problems that motivated this paper

(the original travelers�dilemma and the minimum cost of abating pollutants). Still, one may wonder whether

our result is a knife edge result that would disappear if players do not observe the same state. In order to

show that it is not, we now provide a simple example in the context of the travelers�s dilemma where the

types of players are imperfectly correlated, and players don�t know each other�s type, and show that there is

also a unique equilibrium with truth telling. The point of the example is not to show that the mechanism

would work with small noise in general, which would be beyond the scope of this note, but rather to show

that uniqueness is not the result of the perfect correlation.

Formally, we now assume that there are m = 2 players, and that for each i; individual i bought an object

with a cost of ci = c + �i for c drawn from [a;A] for some a > 0 according to a distribution H; and �i
distributed, for some h < 1

2 ; as

p (�) =

(
h � = �g

1� 2h � = 0
:

Here g is the size of the error, and it measures the �opposite�of a¢ liation. In order to claim that there is

some �continuity�in our game, we now show that for su¢ ciently low noise (g) the unique equilibrium of the

game in the mechanism described above is still truthful reporting of ci:

The original travelers�dilemma is that the airline lost the objects of two travelers but neither the airline

nor the regulator know the true cost. In the case without noise, it is common knowledge that c is drawn

from a non-degenerate distribution H. The dilemma is that a reasonably looking mechanism yields as the

unique outcome that both players declare the lowest price: if both announcements coincide, the airline pays

the individuals their claim; if one is lower than the other, both get the low price, and the announcer of the

higher price must pay $2 to the other traveler.

Consider the following adaptation of our mechanism above to cope with noise. Given a maximum expected

cost of ", the airline selects a p < "=k then

1. players announce their types, call �i the announcements.

2. The airline inspects the announcement of the highest � with probability 2
3p; and the smallest with

probability 1
3p (and samples each with probability

p
2 in case of a tie). If j�1 � �2j > 2g; both get

min f�1; �2g ; this is also the case if an announcement is false, in which case a �ne is applied to the
player who reported the false claim. If no announcement is false and j�1 � �2j � 2g; the airline pays
each player his announcement:
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This mechanism allows for players to di¤er in their announcements, if they are not too far apart. The

mechanism designer knows the structure of the game, so he knows g: Also, the two travelers have actually

paid ci (not c; and they don�t remember exactly).

Theorem 3. For any "; there exists a g > 0 such that for all g < g the unique equilibrium of the mechanism
described in 1-2 above is truth telling, and the total cost is less than ":

The proof is simple, but tedious and long, so it is included in an online appendix.

3 Discussion

There is a vast literature about how to obtain truth telling as an equilibrium, and at the same time obtain

the �rst best outcome. For instance, Kwerel (1977) obtains truth telling as one of potentially many equilibria

when the regulator sells pollution licenses (which are assumed to be traded in a perfectly competitive market)

and subsidizes �rms which buy them in excess of their needs.3 Also, Dasgupta, Hammond and Maskin (1980)

use the Groves-Clarke mechanism to obtain dominant strategy truth telling with an unbalanced budget.

Spulber (1988) presents a mechanism that, contrary to what happens with ours, does not attain the �rst

best outcomes.

These prior papers are concerned with pollution control, and our paper is also relevant to this problem.

In particular, our mechanism can be applied to situations where the regulator wants to attain the optimal

pollution levels, and �rms have access to the same abatement technologies.4 In this context, we note that

the mechanisms proposed in the literature are seldom used. This may happen because they possess two

undesirable features that are not present in our mechanism.

The �rst is that they are complicated, a complaint often directed to the mechanism design literature. They

are based on taxes, subsidies, or tradeable permits and these types of instruments have several implementation

problems as compared to classic �command and control�instruments. Although they have been used recently,

they have applied only in very speci�c contexts, and their implementation has been slow. For example,

regulators in some countries are not educated in environmental economics and do not see the advantages of

these instruments in terms of cost-e¤ectiveness and e¢ ciency; they see �command-and-control�instruments

as stronger statements of support for environmental protection. Moreover, other regulators may think that

it is immoral to let �rms pollute just because they paid some taxes, or because they purchased pollution

permits. Policymakers may also be reluctant to impose further costs on �rms because of the impact on

employment. Also, incentive-based instruments shift control decisions from regulatory sta¤ to polluting

�rms, possibly a¤ecting the regulator�s job security and prestige.5 The second is that they focus on whether

truth telling is a Nash equilibrium of the revelation game, and not on whether truth telling is the unique

equilibrium. If declaring large abatement costs is an equilibrium that yields higher pro�ts for all �rms, one

will not observe �rms telling the truth, but rather overestimating their costs.

Our mechanism is free from both problems. On the one hand, it is extremely simple, which makes it

�likely� that players will understand their incentives.6 In particular, we do not use some of the standard

3See Montero (2007) who �xes a problem with Kwerel�s mechanism, but still retains the undesirable feature of unbalanced
budget.

4Our mechanism can also be applied to �nding out the optimal �sheries exploitation, when �rms know the amount of �sh
available to all.

5These and other arguments are well documented in the literature. See for example Bohm and Russell (1985)̧ Russell and
Powell (1996), Lewis (1996), Keohane, Revesz and Stavins (1998).

6We thank Matt Jackson for many of the references in this Section, and for his comments regarding the importance of the
simplicity of the mechanism and the proof.
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techniques, like cross reporting, used in the literature on implementation with complete information. In

addition, its unique equilibrium is truth telling.7

Moreover, our mechanism works with an arbitrarily imprecise inspection technology, and for arbitrarily

small �nes. Although inspections and �nes have been used in the past and it is �known�that they help in the

implementation problem, our assumptions are weaker and di¤erent than the ones that have been used before.

For example, the important works of Mookherjee and P�ng (1989) and Ortuño-Ortin and Roemer (1993)

used costly but perfectly informative inspections and sizeable �nes. Our inspections can be as uninformative

as one wants, and the �nes can be arbitrarily small. Arya and Glover (2005) use a public signal that may

be only slightly correlated with the player�s reports to implement truth telling (to the owner of a �rm) by a

manager and his auditor. In their model, however, �nes for lying can be large.

And of course, our results do not follow from any of the existing theorems in the literature. That is,

there is no theorem that ensures that the social choice correspondence of the regulator, or any selection from

it, is fully implementable in Nash equilibrium. The results in Jackson, Palfrey and Srivastava (1994) do

not apply to our setting. Most importantly, their theorems are for implementation in undominated Nash,

and our results are full Nash implementation (we get uniqueness without requiring that the strategies be

undominated). Moreover, their Theorem 1 is for three or more �rms, and their Theorem 3 requires the

existence of a �worse outcome�that is not present in our setup.8

Finally, our results are not subject to the criticisms to full implementation in complete information that

have been raised by Chung and Ely (2003), since our setup is, in their terminology, one of �private values�.

There are three other strands of the literature that are related to our paper. The �rst is the literature

on costly state veri�cation, but none of the papers in that literature implies our results. Some of the closer

papers in that literature are Diamond (1984), Gale and Hellwig (1985), Williamson (1986), Border and Sobel

(1987), and most importantly due to the multilateral nature of our problem, Krasa and Villamil (1994) and

Winton (1995)

Another branch of the literature to which our paper relates, especially the example with noise, is that on

�informational size�. In our basic setup, where all agents have the same valuation, agents have �nonexclusive

information�, as in Postlewaite and Schmeidler (1986). Basically, any information an agent might have is

redundant given the information of other players.

In our example, where information is noisy, we have that agents are informationally small, as in McLean

and Postlewaite (2002). Here, an agent�s impact on posterior is positive but small, given other agents�

types. McLean and Postlewaite (2004) argues that with informationally small agents, it is possible to obtain

e¢ ciency, even in the presence of interdependent valuations, where generic results indicate that this is

impossible with independent types (Jehiel and Moldovanu, 2001). The result is accomplished with a version

of the lotteries introduced in Crémer and McLean (1988), which might involve arbitrarily high payments.9

In our model, by introducing an arbitrary small cost and an arbitrary low probability of inspection, we also

achieve the �rst best, with an arbitrarily low budget. In addition to the standard analysis, we rule out other

undesirable equilibria, where all agents in�ate their reports.

7Dasgupta et al. also criticize Kwerel for the assumption that permits are traded in perfectly competitive markets and
because of the weak �implementation� concept: that truth telling is a Bayesian Nash equilibrium. An additional problem of
Kwerel is that his regulator has an unbalanced budget. In Dasgupta et al., if one requires a balanced budget one only obtains
that truth telling is a Bayes Nash equilibrium (and neither uniqueness, nor dominant strategy implementation).

8A worse outcome in that setting would be to give each player minSupportu (S) and a lottery which yields the �ne with
probabilty ":We do not need to include such an outcome in our space of allocations for our mechanism to work. Our mechanism
inspects only one player.

9A more exact comparison with Crémer and McLean is impossible because their mechanism cannot be adapted exactly to
this setting. The reason is that in their mechanism there is only one good to be allocated among the agents who are competing
for it. In this setting, agents objectives are more or less aligned.
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There is, �nally, a third strand of the literature which is related to our work. Some recent papers (Ben-

Porath and Lipman (2012), Dutta and Sen (2012), Kartik and Tercieux (2012), and Kartik, Tercieux and

Holden (2013) among others) consider a problem which is very similar to ours in that players know the state

and there is a tie breaking rule in favor of honesty. In these interesting papers, players know the state of the

world and can either provide �evidence�or have a lexicographic preference for telling the truth. As noted by

Midjord (2013), whose planner could learn the true state with some (possibly small probability), the way all

these mechanisms work is similar: the planner uses his/her small edge to break ties, and pitch players against

each other. In every case, a player has a slight incentive to deviate from a �lying�equilibrium by providing

di¤erent evidence (which may not change the outcome), or telling the truth (again without changing the

outcome), but still breaking the proposed equilibrium. In our case we break undesired equilibria by letting

players undercut each others�announcements and therefore avoiding the inspection (and potential �ne). Our

mechanism can be modi�ed to avoid inspections if we let players also declare when an announcement is false.

To illustrate, suppose there are two travelers, and the mechanism chooses the lowest cost announcement

and sets a �ne of " if in a tie the other player confesses. Players only like to confess if the announcement is

false, and it doesn�t change the outcome. In equilibrium, announcements can�t be di¤erent (the player with

the lowest announcement would want to increase it slightly), and can�t be equal and false (both would like

to confess, but in that case, each would have an incentive to declare a slightly larger cost).

The point of the previous example is to establish a simple formal connection between the two kinds of

arguments. The results in this paper and in the prior literature are not nested however. In the honesty

literature, players �are born�with a taste for honesty which we don�t have available. But in favor of that

literature, our planner can make inspections, which the planners in that literature cannot. Similar arguments

apply to the availability of �evidence� (it is available in that literature, it is not in our context). In that

sense we view our results as complementary, as di¤erent sets of assumptions may be more convenient in

di¤erent setups. An important �technical�remark is that our model cannot be nested within the evidence

or preference for honesty models. To illustrate, in the evidence models the set of messages that can be sent

is di¤erent in di¤erent states of nature; that is what makes things implementable in that literature. One

way to interpret that is as in Green and La¤ont (1986) who argue that it is as if the designer has some

information and can in�ict �severe punishment� whenever an individual makes a false statement. What

makes our problem harder (in this dimension) is that players can name any state in every state (and we

have small �nes, and not �severe punishment�). A similar comment applies to Lipman and Seppi (1995)

where individuals have access to a technology where claims can be refuted; the requirement of refutability

can be weakened when players preferences are not completely aligned. In our paper we have neither of those

conditions.

We must stress that our results were circulated prior to most results in the literatures on evidence and

honesty (see for example, Ca¤era and Dubra, 2005).

Finally, some of our results extend to situations where preferences over the state do not coincide; if

anything, that makes the implementation problem harder. We have tried to keep the setup simple, and still

applicable to a set of interesting and important problems. That extension is beyond the scope of this work.
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4 Online Appendix, not for publication.

Proof of Theorem 3. The number "1"2 is the expected value of the �ne, if an individual is lying: the
probability that the inspection will be e¤ective times the value of the �ne; for ease of notation let q � p"1"2,
since those always appear multiplied.

Truth telling is an equilibrium. Suppose every player is playing truthtelling. Then, marginal changes
are not worth it (due to the penalty: changing the report to c0 increases the penalty in a discrete fashion,

times a discrete positive probability), and big changes won�t change your payo¤ substantially because others

are playing truthfully, and the payo¤ will be the min of others�reports.

There is no other equilibrium. Suppose there is an equilibrium pro�le of strategies (�1; �2) and a cl such
that for some player j; �j (cl) 6= cl. That is, suppose there is an equilibrium without truth telling. Without

loss of generality, suppose j = 1; and let P denote 1�s beliefs over �2 given cl:

Case 1: P (�2 = �1 (cl)) > 0. In this case player 1 is strictly better o¤ playing �1 (cl) � v for very
small v : it strictly and discreetly decreases the expected �ne by lowering the probability of inspection, while

decreasing only marginally his payment across states. Formally, (omit (cl) in �1 (cl)):

u (�1 (cl)) = P (�2 > �1)
�
�1 �

q

3

�
+ P (�2 = �1)

�
�1 �

q

2

�
+ P (�2 + 2g � �1 > �2)

�
�1 �

2

3
q

�
+P (�1 > �2 + 2g)E

�
�2 �

2

3
q j �1 > �2 + 2g

�
To calculate the payo¤ in a small deviation, let v be su¢ ciently small that �1� v does not fall below any

other �2; or any other �2 + 2g (this last part would be good for 1; but would complicate the comparison of

payofs):

�1 (cl)� v > max ff�2 : P (�2) > 0 and �2 < �1g [ f�2 + 2g : P (�2) > 0 and �2 + 2g < �1gg : (1)

This can be done because the set in (1) is �nite. The payo¤ to �1 (cl)� v for v < v is

u (�1 (cl)� v) = P (�2 > �1)
�
�1 � v �

q

3

�
+ P (�2 = �1)

�
�1 � v �

q

3

�
+ P (�2 + 2g � �1 > �2)

�
�1 � v �

2

3
q

�
+P (�1 > �2 + 2g)E

�
�2 �

2

3
q j �1 > �2 + 2g

�
We obtain

u (�1 (cl)� v)� u (�1 (cl)) = P (�2 > �1) (�v) + P (�2 = �1)
�
�v � q

3
+
q

2

�
+ P (�2 + 2g � �1 > �2) (�v)

= P (�2 = �1)
q

6
� v (1� P (�1 > �2 + 2g))

so for su¢ ciently small v; individual 1 is better o¤ undercutting his equilibrium strategy, which is a contra-

diction.

Case 2: P (�2 � �1 (cl)) = 0: In this case, player 1 is strictly better o¤ increasing his �1 to any value
�1 (cl) < �1 < min f�2 : P (�2) > 0g : The refund from the airline would increase in every case, without

changing the chances of being inspected.

For the following two cases, let �2 � max f�2 : P (�2) > 0 and �2 < �1g :
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Case 3: P (�2 = �1 (cl)) = 0 and �2 + 2g � �1: In this case there is a positive probability �2 close by
from the intended play by player 1: In that case, player 1 is better o¤ undercutting �2. In order to keep the

proof simple, instead of undercutting, player 1 will tie �2: The payo¤ of playing �1 is

u (�1 (cl)) = P (�2 > �1)
�
�1 �

q

3

�
+ P (�2)

�
�1 �

2

3
q

�
+ P (�2 > �2 � �1 � 2g)

�
�1 �

2

3
q

�
+P (�1 > �2 + 2g)E

�
�2 �

2

3
q j �1 > �2 + 2g

�
and that of playing �1 = �2 is

u (�2) � P (�2 > �1)
�
�2 �

q

3

�
+ P (�2)

�
�2 �

1

2
q

�
+ P (�2 > �2 � �1 � 2g)

�
�2 �

2

3
q

�
+P (�1 > �2 + 2g)E

�
�2 �

2

3
q j �1 > �2 + 2g

�
(the weak inequality is because the payo¤ in the last term may be �2 � �1 � 2g instead of �2 < �1 � 2g
when �2 + 2g � �2). Then,

u (�2)� u (�1 (cl)) � P (�2 > �1) (�2 � �1) + P (�2)
�
�2 � �1 �

1

2
q +

2

3
q

�
+ P (�2 > �2 � �1 � 2g) (�2 � �1)

= P (�2)
1

6
q + (1� P (�1 > �2 + 2g)) (�2 � �1) � P (�2)

1

6
q � (1� P (�1 > �2 + 2g)) 2g

so if g < P (�2) 16q the deviation is pro�table. Note that P (�2) is independent of g : for any g; and any cl
there are only 5 possible values of �2; and their probabilities do not depend on the value of g: Moreover,

since H is bounded away from 0; P (�2) is also bounded away from 0 and the same g works for every possible

cl:

Case 4: P (�2 � �1 (cl)) = 0 and �2+2g < �1: In this case, player 1 is better o¤ playing �1 = �2+2g :
the payo¤ strictly improves when �2 = �2 (he was being paid �2; because his claim was far away from �2;

and in the deviation he�ll get paid �2 + 2g) and doesn�t change otherwise. Formally, we have

u (�1 (cl)) = P (�2 > �1)
�
�1 �

q

3

�
+ P (�2)

�
�2 �

2

3
q

�
+ P (�2 > �2)E

�
�2 �

2

3
q j �2 > �2

�
and the payo¤ of playing �2 + 2g is

u (�2 + 2g) = P (�2 > �1)
�
�2 + 2g �

q

3

�
+ P (�2)

�
�2 + 2g �

2

3
q

�
+ P (�2 > �2)E

�
�2 �

2

3
q j �2 > �2

�
:

The di¤erence in payo¤s is then

u (�2 + 2g)� u (�1 (c1)) = P (�2)
�
�2 + 2g �

2

3
q � �2 +

2

3
q

�
= P (�2) 2g > 0

so that the deviation is pro�table.

Case 5: P (�2 = �1 (cl)) = 0 and �2 + 2g < �1 and P (�2 > �1 (cl)) > 0: In this case, player 1 is better
o¤ slightly increasing his claim: for �2 < �2 it changes nothing (since he will be paid �29, and for �2 > �2
(and there are some with positive probability), it strictly increases player 1�s payo¤.

13


