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Abstract

Factor models have been widely used in practice. However, an undesirable feature
of a high dimensional factor model is that the model has too many parameters. An
effective way to address this issue, proposed in a seminar work by Tsai and Tsay (2010),
is to decompose the loadings matrix by a high-dimensional known matrix multiplying
with a low-dimensional unknown matrix, which Tsai and Tsay (2010) name the con-
strained factor models. This paper investigates the estimation and inferential theory
of constrained factor models under large-N and large-T setup, where N denotes the
number of cross sectional units and T' the time periods. We propose using the quasi
maximum likelihood method to estimate the model and investigate the asymptotic
properties of the quasi maximum likelihood estimators, including consistency, rates of
convergence and limiting distributions. A new statistic is proposed for testing the null
hypothesis of constrained factor models against the alternative of standard factor mod-
els. Partially constrained factor models are also investigated. Monte carlo simulations
confirm our theoretical results and show that the quasi maximum likelihood estimators
and the proposed new statistic perform well in finite samples. We also consider the
extension to an approximate constrained factor model where the idiosyncratic errors

are allowed to be weakly dependent processes.
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1 Introduction

With the rapid development of data collection, storing and processing techniques in com-
puter science, econometricians and statisticians now face large dimensional data setups
more often than ever before. A challenge along with the appearances of large data is how
to extract useful information from data, or put differently, how to effectively conduct di-
mension reduction on data. Factor models are proved to be an effective way to perform this
task. Over the last three decades, the literature has witnessed wide applications of factor
models in many economics disciplines. In finance, Conner and Korajczyk (1986, 1988) and
Fan, Liao and Shi (2014) use factor models to measure the risk and performance of large
portfolios. In macroeconomics, Geweke (1977) and Sargent and Sims (1977) use dynamic
factor models to identify the source of primitive shocks. In labor economics, Heckman,
Stixrud and Urzua (2006) use factor models to capture unobservable personal abilities. In
international economics, Kose, Otrok and Whiteman (2003) use multilevel factor models
to separate global business circles, regional business circles and country-specific business
circles. Large dimensional factor models are also used in a variety of ways to deal with
strong correlations, see e.g., Fan, Liao and Mincheva (2011) and Fan, Liao and Mincheva
(2013), among others.

A standard factor model can be written as
ze=Lfi4e, t=1,2,...,T,

where z; = (214, ..., 2n¢) 18 a vector of N variables at time ¢, L is an N X r loadings matrix,
ft is an r-dimensional vector of factors and e; is an N-dimensional vector of idiosyncratic
errors. The traditional (classical) factor analysis assumes that N is fixed and 7T is large.
This assumption runs counter to usual shape of large dimensional data sets, in which NV is
usually comparable to or even greater than 7' (Stock and Watson (2002)). Recent literature
contributes a lot to the asymptotic theory with N comparable to or even greater than
T. Bai and Ng (2002) propose several information criterions to determine the number
of factors in a large-N and large-T" environment. Under a similar setup to Bai and Ng
(2002), Stock and Watson (2002) prove that the principal components (PC) estimates
are consistent in approximate factor models of Chamberlain and Rothschild (1983). Bai
(2003) moves forwards along the work of Stock and Watson (2002) and gives the asymptotic
representations of the PC estimates of loadings, factors and common components. Doz,
Giannone and Reichlin (2012) consider the maximum likelihood (ML) method and prove
the average consistency of the maximum likelihood estimates (MLE). Bai and Li (2012,
2016) use five different identification strategies to eliminate the rotational indeterminacy
from asymptotics and give limiting distributions of the MLE. Fan, Liao and Wang (2014)
propose a new projected principal component method to more accurately estimate the
unobserved latent factors.

A potential problem in high dimensional factor models is that too many parameters are



estimated within the model, which makes it difficult to analyze and interpret the economic
implications of the estimates. However, if the space of the loading matrix is spanned by a
low dimension matrix, this problem can be much ameliorated. In this paper, following Tsai
and Tsay (2010), we address this problem by considering the following constrained factor
model

2zt = MAft + ey,

where M is a known N X k matrix with rank k and A is a k x r unknown loadings matrix
with rank . We assume r < k < C for some generic constant C. In the above specification,
M consists of the bases of the loading matrix. The underlying true loadings are a weighted
average of these bases associated with the weights matrix A, which are the parameters of
interests. The number of loading parameters now is kr instead of Nr. So the number of
parameters is greatly reduced.

Our work is closely related to Tsai and Tsay (2010) who were the first to consider con-
strained factor models. This paper differs from Tsai and Tsay (2010) in several dimensions.
First, although Tsai and Tsay propose using PC and ML methods to estimate constrained
factor models, their asymptotic analysis focuses only on the PC method. They obtain
convergence rates of the PC estimates. As a comparison, we investigate asymptotics of
the ML method and derive the convergence rates and limiting distributions of the MLE.
Given the limiting distributions, one can easily construct (1 — «)-confidence intervals if
prediction is the target of interest, or use t-test or F-test to conduct statistical inferences
on the underlying parameter values if hypothesis testing is the purpose. Second, Tsai and
Tsay consider the setup that k is large (but still smaller than V). In this paper, we instead
assume that k is fixed®. In our viewpoints, assuming a fixed k is of practical and theo-
retical interests. In some typical examples, the parameter k is interpreted as the number
of groups or categories, according to which the variables are classified (see Tsai and Tsay
(2010)). This value is usually not large in real data. Therefore, a fixed-k assumption is
adopted in this paper. Furthermore, in constrained factor models, a large k leads to a larger
number of parameters being estimated. The estimation accuracy is reversely linked with &
for a given sample size. When £k is large, the benefit of constrained factor models against
standard factor models becomes weak, which makes constrained factor less attractive in
practice. Third, an importantly related issue in constrained factor models is on conducting
valid model specification check on the presence of matrix M. Tsai and Tsay consider the
traditional likelihood ratio test to perform this task. But the traditional likelihood ratio
test is designed under fixed-N and large-T setup, which conflicts to large-N and large-T
scenarios. In this paper, we propose new statistics for testing model specifications that are
applicable to the large-N and large-T setups.

The rest of the paper is organized as follows. Section 2 provides more empirical examples

®Qur analysis can be extended to the case of a large k. But for this case, deriving the limiting distribution
of the MLE is very challenging since the matrix A is high-dimensional.



of the constrained factor model. Section 3 introduces the model and lists the assumptions
needed for the subsequent analysis. Section 4 delivers the consistency and limiting distribu-
tion results of the MLE. Section 5 considers testing issues within constrained factor models.
Section 6 considers a partially constrained factor model and presents the asymptotic prop-
erties of the MLE for this model. Section 7 presents the Expectation-Maximization (EM)
algorithm to implement the QML estimation. Section 8 conducts Monte Carlo simulations
to investigate the finite sample performance of the MLE and to study the empirical size
and power of the proposed model specification test. In Section 9, we relax Assumption B
to allow for the idiosyncratic errors to have a more general weakly dependence structure.

Section 10 concludes the paper. All technical contents are delegated to several appendices.

2 Motivating Applications

The well-known equilibrium arbitrary pricing theory (APT) implies that the observed
assets returns can be expressed into a linear factor structure, see Ross (1976), Conner and

Korajczyk (1988) among others. This motivates the use of the following factor model

r
Tit = Z lLij i + e
j=1

to study the performance of portfolios, where 7;; is the excess return of the ith security at
time ¢, fj; denotes the jth risk premium at time ¢ and [;; the beta coefficient of the jth
risk premium for security i. However, as pointed out by Rosenberg (1974), the common
movements among the assets returns may be related with the individual characteristics.
Such characteristics include capitalization and book-to-price ratios as suggested in Fama
and French (1993), momentum as in Carhart (1997), own-volatility as in Goyal and Santa-
Clara (2003). Let x;, denote the observed pth characteristic of the ith security. Rosenberg
(1974) considers the specification

k
lij =Y @pApj +vij, or  L=MA+V,
p=1

where M = (xip)Nxk is the observed characteristics matrix. Rosenberg’s specification is
very close to the one studied in this paper. With a slight modification, the analysis in this
paper can easily be extended to cover the Rosenberg’s model.

A limitation of Rosenberg’s specification is that the factor betas are assumed to be
linear functions of the observed characteristics, which is overly restrictive in practice. To
accommodate this concern, Conner and Linton (2007) and Conner, Hagmann and Linton

(2012) consider the following nonparametric specification
lij = gj(@ij)-

where g;(-) is an unknown smooth function. Conner, Hagmann and Linton (2012) apply

their model to a real dataset and indeed find that the factor betas are nonlinear functions



of the characteristics. However, an undesirable feature in these two papers is that the
estimation of the model involves an iterative procedure between the factors and unknown
functions, which is formidable to many applied researches. To address this issue, we in-
stead consider using a series of polynomial functions to approximate the unknown function
gj (). More specifically, we consider approximating the function g;(-) by all the polynomial

functions with power less than ¢, i.e.,
gj(x) ~ Ao+ AT+ + )\jqxq. (2.1)

Given this, the model now can be written as L = M A with

2 2
1 11 11 e x?l N e Ty 1, e x({T
2 q 2 q
1 x21 :L‘21 o« e e ':E21 Y o« e 1'210 l’2r o o e :L‘2T‘
M = : :
2 q 2 q
1 le le o« o e le o« e o« o o a:‘NT xNT o o e xN,r
and /
Mo Al o Ay 0 oo 0 e e 0 e D
Ao 0 o 0 Ay o Agg e e 0 e 0
A= ) . . . ) ) )
Mo 0 o 00 e D e e A e Mg

The above model can be viewed as a special case of the constrained factor model with
some zero restrictions imposed on A. The model considered here maintains the nonlinear
function feature of Conner and Linton (2007) and Conner, Hagmann and Linton (2012)
but the computational burden has been much reduced. A primary issue related with our
method is whether the approximation (2.1) is good enough. This work can be partially
addressed by the W statistic proposed in Section 5.

Constrained factor models have other applications. Tsai and Tsay (2010) apply con-
strained factor models to analyze stock returns where the stocks can be classified into
different sectors. They specify the constraint matrix M consisting of orthogonal and bi-
nary vectors. In another application, they implement constrained factor models to study
the interest-rate yield curve, where the columns of the matrix M are specified to denote
the level, slope and curvature feature of interest rates. Matteson et al. (2011) use con-
strained factor models to forecast the hourly emergency medical service call arrival rates
by specifying the constraints on the factor loadings based on the prior information of the
pattern of the call arrivals. Similar approach is adopted in Zhou and Matteson (2015) to
model the ambulance demand by incorporating covariate information as constraints on the

factor loadings.



3 Constrained Factor Models

Let N denote the number of variables and T' the sample size in the time dimension. We

consider the following constrained factor model
Zt :MAft—i-et, (31)

where z; = (214, 22t, . . -, 2n¢) is an N-dimensional vector of explanatory variables at time
t; M is a specified N x k (known) matrix with rank k; A is the k x r loading matrix of rank
ry fr = (fits fot,- -, fre)' 18 a vector of r latent common factors; e; is an N-dimensional
vector of idiosyncratic disturbances and is independent of f;. Throughout the paper, we
assume k > r. If £ < r, we can simply consider the linear regression z; = M f; + e; with
i = Af;. The model effectively becomes a factor model with k& (when k < r) factors.
Our analysis is based on similar assumptions used in standard factor models, see Bai
and Li (2012) for the asymptotic analysis of the MLE for standard high dimensional factor
models. The symbol C appearing in the following assumptions denotes a generic constant.

Our assumptions include:

Assumption A: {f;} is a sequence of fixed constants with f = YL, f; = 0. Let
My = %ZtT:l ftfi be the sample variance of f;. There exists an Mff > 0 (positive
definite) such that M s = Tlim Mys.

—00

Assumption B: The idiosyncratic error term e;; is independent across the ¢ index and
the t index with E(e;) = 0, E(ete)) = See = diag(o?,03,--+ ,0%) and E(e},) < C for all i
and ¢, where e; = (eyy, eat,...,ent) is the N-dimensional vector of idiosyncratic errors at

time t.

Assumption C: The underlying values of parameters satisfy that
C.1 ||A]| £ C and |jm;|| < C for all j, where m; is the transpose of the jth row of M.
C2 (C2< ajz- < C? for all j, where 0]2- = E(e?t) is defined in Assumption B.
C.3 Let P = NM'S_'MA/N, R = M'Y_'M/N. We assume that Py, = Jim P and
— 00
Ry = A}im R exist. In addition, A}E}noo 3N o7 (ms @ my) (ml @ mh) = Vi exists.

— 00
Here P,,, R and V,, are some positive definite matrices.

Assumption D: The estimator of 032- for j = 1,..., N takes value in a compact set:
[C~2,C?]. Furthermore, M #f is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [—C, C], where C is a large

positive constant.

Assumption A requires that factors are sequences of fixed constants. The random
factors can be dealt with in a similar way under some suitable moment conditions. As-
sumption B is commonly imposed in classical factor models. It can be relaxed to allow for

cross-sectional and temporal heteroskedasticities and correlations, see Bai and Li (2016) for



a related development in this direction. Assumption C requires that underlying values of
parameters are in a compact set, which is standard in econometric literature. Assumption
D requires that some parameter estimates take values in a compact set. This assumption
is often made when dealing with highly nonlinear objective function, see Jennrich (1969).
Our objective function is highly nonlinear.

Similar to the case of a standard factor model, a constrained factor model has an

identification problem. To see this, for any invertible r x r matrix B, we have
Afy=AB-B7'fy = A ff.

with A* = AB and f; = B~'f,. To sperate (A, f;) from (A*, f), we impose the following

identification condition.

Identification condition (abbreviated by IC hereafter):
IC1 N(FM'S_ M)A = P, where P is a diagonal matrix whose diagonal elements are

distinct and arranged in a descending order.
IC2 Mys = 7350 fefl = L.

Our identification strategy is similar to IC3 in Bai and Li (2012). It is known that this
identification strategy identifies the loadings and factors up to a column sign, see Bai and Li
(2012) for a detailed discussion on this issue. To eliminate such a problem in our theoretical
analysis, we follow Bai and Li (2012) to treat as part of the identification condition that
the estimators and the underlying values of loadings matrix have the same column signs.
In practice, the sign problem causes no troubles in empirical analysis.

We use the following discrepancy function between M. and X, as our objective function

1 1 _
L£(0) = —oy o 13..| — ﬁtr[MzzEzzl], (3.2)

where 0 = (A, Xe), M, = T~1 Zthl zzp and X, = MAANM' + X... This discrepancy
function has the same form as a likelihood function when f; are independently and normally
distributed with mean zero and variance I, see Bai and Li (2012) for details. In the
current paper, the factors are assumed to be fixed constants in Assumption A, the above
discrepancy function is therefore not a likelihood function. Nevertheless, we still call the
maximizer of the above function as a quasi MLE or MLE for simplicity. Specifically, the
MLE 6 = (A, $..) is defined as

0 = argmax L£(60),
0cO

where © is the parameters space such that any interior point of it satisfies Assumption
D and the identification condition IC. The input parameters include A and .. In a
constrained factor model, we only need to estimate kr loadings instead of Nr loadings (the

number of parameters in a standard factor model). Therefore, the number of parameters



is greatly reduced. Taking derivatives with respect to A and Y.., we obtain the following

first order conditions:

NM'SZH M., — )52 M = 0; (3.3)
diag(221) = diag(SZ M.32Y), (3.4)

where A and 3., denote MLE of A and Y., respectively, and 3, = M ANM' + 3. We
note that the above two first order conditions are only used in deriving the asymptotic
properties of the MLE. One does not need to solve the above nonlinear equations to obtain
the MLE. Instead, we can implement the EM algorithm to compute the MLE. Details are

given in Section 7.

4 Asymptotic properties of the MLE

In this section, we investigate the asymptotic properties of the MLE. The following propo-

sition shows that the MLE is consistent.

Proposition 4.1 (Consistency) Let § = (A,3..) be the MLE that mazimizes (3.2).
Then under Assumptions A-D, together with IC, when N, T — oo, we have

. 1 N
A—A25o; N;(@?—a?ﬁ&a

In high dimensional factor analysis, the loadings and variances of idiosyncratic errors
are high-dimensional. The consistencies have to be defined under some chosen norms, see
Stock and Watson (2002), Bai (2003), Doz, Giannone and Reichlin (2012) and Bai and Li
(2012, 2016). In constrained factor models, due to the presence of matrix M, the loading
matrix A is low-dimensional. So its consistency is defined in the elementwise sense. But
for the variances of idiosyncratic errors, they are still high-dimensional. Their consistency
is therefore defined by + SN (62 — 62)?, which can be written as %Hf]ee — Yeell?. So the
chosen norm is the Frobenius norm adjusted with the matrix dimension.

Given the consistency results, we have the following theorem on convergence rates of

the MLE.

Theorem 4.1 (Convergence rates) Under the assumptions of Proposition 4.1, we have

" 1 1 1, o2 1
A—A:Op<NT>+Op<T>, NZ<Ui—ai> zop(T>.
v =1

According to Theorem 4.1, the convergence rate of A is min(vNT,T), which is faster
than the v/T-convergence rate of estimated loadings in standard factor models. This result

is plausible since in a constrained factor model, we use N1 observations to estimate kr



loadings. This is in contrast with a standard factor model, where we use NT observations
to estimate Nr loadings.

To present the asymptotic representation of the MLE, we introduce some notation. Let

2DF 2D+ 01 9
D = r D, = Dx — sr(r+1)xr
! D[(P®Ir)+(IT®P)Kr]]’ : low >] ; l p |

and

B = Ki [([PT'N) @Al + R @ I, — K, (I, @ A)DT Do [(PTIA) @ ],
1 &1
By = Kp, (I, @ AD'D3(A® A)', A= By Zl G—?(mi @ m;)(kia —op),
=

where P = tAM'S_'MA, R = M'S M, k4 = E(e},), m; is the transpose of the
1th row of matrix M, Ky, is the commutation matrix such that for any u x v matrix B,
Kuyvec(B) = vec(B'); and K, is defined to be K,,. D} = (D.D,)"'D! is the Moore-
Penrose inverse matrix of the r-dimensional duplication matrix D,, D is the matrix such
that veck(B) = Dvec(B) for any r x r matrix B, where veck(B) is the operation which
stacks the elements below the diagonal of the matrix B into a vector. Given matrix P, we
can easily calculate the matrix D and its inverse. For example, let P = diag(1,2,3) (r =3

in this case), then

200000000 05 0 0 0 0 0 0O 0 0
010100000 0o 2 0 0 0 0 -1 0 0
0010007100 0 0 15 0 0 0 0 —05 0
000020000 0o -1 0 0 0 0 1 0 0

D=0 0000 10T1O0[,Dj'fo0 0 0 05 0 0 0 0 0
000000GO0O0 2 o 0 0 0 3 0 0 0 -1
010200000 0 0 —05 0 0 0 0 05 0
001000300 o 0 0 0 -2 0 0 0 1
0000020 3 0 0 0 0 0 0 05 0 0 0

Now we state the asymptotic result of A.

Theorem 4.2 (Asymptotic representation) Under assumptions of Theorem 4.1, we

have
1 X1
A7 / 2 2
vec(A —A):Blﬁ;;;?(mﬂ@ft)ezt BzNT;; 7(m; @ my)(ej — o7)
1 1 1
+f +Op(N\/>)+O (\/>T)+O (T3/2) (4.1)

where the symbols B1, By and A are defined above Theorem 4.2.

The first two terms on the right hand side of (4.1) are Op(ﬁ) since their variances
are O(x7) and the third term is O(4). The first three terms dominates the remaining



terms. Theorem 4.2 reaffirms the convergence rates asserted in Theorem 4.1 and sharpens
the results by explicitly giving the concrete expressions of the Op( \/7) and Op(7) terms.

Given Theorem 4.2, invoking a Central Limit Theorem, we have the following theorem.

Theorem 4.3 (Limiting distribution) Under assumptions of Theorem 4.1, as N,T —
o0, N/T? — 0, we have

VT [vee(A' - A') - %A] 4 N (0,9),

where Q = lim Qpy with
N—o0

N
Qn =B (R® I,)B] +B2[1 Z'M m;)®(mimg)}ma’2.

i=1
Theorem 4.3 shows that the MLE A has a non-negligible bias. This is in contrast to a
result of Bai and Li (2012) who show that, in a high-dimensional standard factor model,
the MLE is asymptotically centered around zero. Another interesting result is that the
limiting variance of the MLE A depends on the kurtosis of ej¢. Given Theorem 4.3, when
eir is normally distributed, we have x;4 = 30¢, the asymptotic variance can be simplified

as the next corollary shows.
Corollary 4.1 Under assumptions of Theorem 4.3, with normality of e;,we have

N
VNT [vec(A’ A’)-%BQZ 12(ml®ml)]$N(0,Bl,m(Rm®1) oo+ 2Bo, 0 ViacBh o )

7,

where Ry and Vi are defined in Assumption C.3, B and B o are almost the same as
By and By except that P and R are replaced by Ps and Ro. Furthermore, if N/T — 0,

we have
VNTveo(N = N) % N (0, Br00(Roo @ [)B] o + 2Bo o0 VacBh o ).

Remark 4.1 To estimate the bias and the limiting variance, we use some plug-in methods.

Specifically, the bias is estimated by

where

By = Ki[(PT'A)Y@ Al + R @ I, — Kp, (I, @ ADT'Do[(P7'A) @ 1],



Bg Kkr( r® [A\)@flﬂ)g(]\ &® A)/

Here A and 62 are the MLE; R = %M’f]e_elM and P = %A’M’ie_eleX; D is almost the
same as [D; except that P is replaced by ]5; Ria = %Zthl é?t with é; = 2z — 'm;f\ ft and
fr= (NM'SIMA) A M'S 2,

Remark 4.2 Theorem 4.3 is derived under a full identification of loading matrix A. An
alternative approach to investigate the asymptotics, as adopted in Bai (2003), is that one
only imposes the condition My = I,.. Since in this case the original identification conditions
(IC) are not met, the loading matrix A is not fully identified. But one can still deliver the
asymptotic theory based on AN —RN , where R is a rotational matrix. According to (A.18)
in Appendix A, together with Lemma B.3 (e), (f) and Lemma B.5 (a), we have

1 1

R 1 & 1
I I Iy—1 —1
A RA RT ;:1 ftetzee MRN +Op(\/NT) +OP(N\/T)+OP(T3/2);

where R is the rotational matrix defined by
1 X
R =Py NM'SIMA + PUAM'S =S ey f)

ee
Tt 1

with Py = A/M'S; P MA.
Given the above result, we have that under N, T — oo, N/T? — 0,
VNTvec(A — RA') % N(0,RZ! @ RR)),

where R = plim R.
N, T—o0

Theorem 4.4 Under Assumptions A-D, as N, T — oo, we have

V(62 — \} ; )+ op(1).

N

Given this result, we have

%

VT(62 = 02) % N(0, kg — o),

where k; 4 = E(e}) is the kurtosis of ey.

We emphasize that the limiting result for 61-2 is independent with the identification
conditions. In addition, the above limiting result is the same as that in a standard high-
dimensional factor model (see, e.g., Theorem 5.4 of Bai and Li (2012)).

We finally consider the estimation of factors. Following Bai and Li (2012), we estimate
the factors by the generalized least squares (GLS) method. More specifically, the GLS
estimator of f; is

fr= (NM'SIMA) A M'S 2,
where A and 266 are the respective MLEs of A and ... The asymptotic representation

and limiting distribution of f; are provided in the following theorem.

10



Theorem 4.5 Under assumptions of Theorem 4.1, we have

A 1 1 1
_ o p-1 Ayl L .
fi—fi=P NA MY e+ Op ( %NT> +0, <T) ,

where P = £ AN'M'S_MA. Then as N,T — oo and N/T? — 0, we have
P d —
VN(fi — fr) % N(0, Pgl),
where Py = lim P is defined in Assumption C.3.
N—o0

The above theorem indicates that the asymptotic properties of the GLS estimator for
factors in the current model are the same as that in standard high-dimensional factor
models®. However, the derivation of the above theorem is actually easier due to the faster

convergence rate of estimated loadings.

5 Testing

The limiting distribution of the MLE in Theorem 4.3 allows one to test whether the loading

matrix A is equal to some known matrix. Consider the following hypothesis:
Hpyop: A =A°, Hyq:A#A°

A Wald statistic for this hypothesis testing is
. 1 v/ . 1 -
_ [ XA -1 I A0l &
Wy = NT|vec(A’ - A”) TA} Q! [vec(A' — A”) TA},

where the symbols A and Q are given in Remark 4.1. The following theorem, which is a

direct result of Theorem 4.3, gives the limiting distribution of Wj.

Theorem 5.1 Under Assumptions A-D, together with IC, as N, T — oo and N/T? — 0,
under Hy o, we have
d
WA — X%ra

where X%r denotes a chi-square distribution with degrees of freedom equal to kr.

An important issue related with the constrained factor model is that whether specifi-
cation (3.1) is appropriate in a general factor model. Therefore, in practice one is likely to
be interested in testing the correctness of the decomposition of loadings matrix L = MA.

For a given M, the corresponding null and alternative hypotheses are

Hy : L=MA for some A,
Hy: L#MA for all A.

®For the asymptotic results of the GLS estimator in standard high dimensional factor models, see
Theorem 6.1 of Bai and Li (2012).

11



In traditional (low-dimensional) factor analysis, testing restrictions on loadings can be
conducted by using the likelihood ratio (LR) principle. Because the number of parameters
is finite, the number of imposed restrictions is finite too. By standard arguments, onee can
show that, under the null hypothesis, the LR statistic has an asymptotic x? distribution
with the degrees of freedom equal to the number of restrictions. In the high-dimensional
setting, the number of parameters increases with the sample size. The number of restric-
tions possibly increases with the sample size as well. This is the case in our specification
test in constrained factor models. As can be seen that under Hyp, the number of restrictions
for L = MA is (N — k)r, which proportionally increases with the number of cross sectional
units. As a result, the limiting distribution of the traditional LR test would have divergent
degrees of freedom, an undesirable feature which can make the test unstable. This motives
us to design a new test independent of N.

To gain an insight of our test, notice that the estimator M A® under IC and Hy should
be very close to ﬁ, the MLE of L from a standard factor model (z; = Lf; 4+ e;) under the
identification condition that My = I, and %L’ Y.l L is diagonal. However, under Hi, the
two estimates will not be close to each other. Based on the above analysis, we construct

the following test statistic

W = VNT?tr %(Mf\ —LyS;MMA-L) - %Ir :

where Y. is an estimator of .. under the alternative hypothesis.

Theorem 5.2 Under the same assumptions of Proposition 4.1 and N/T? — 0, under Hy,
we have
W % N(0,2r).

Remark 5.1 As pointed out in Section 2, the identification condition has a sign problem.
This problem should be carefully treated in the two statistics (W, and W) in implementa-
tions, otherwise it may lead to an erroneous rejection of the null hypothesis. To eliminate
this problem, when calculating W, we first compute the inter product of each column of A
and the counterpart of A°. If the value is negative, we multiple —1 on this column of A. As
regard to W, both L and MA have the sign problem, but we can use a similar procedure to
deal with it. That is, for each column of ﬁ, we calculate the inner product of this column
and its counterpart of M A. Tf the inner product is negative, we multiple —1 on this column
of L. After this treatment, the sign problem concomitant with the identification condition

is removed.

Remark 5.2 Although we use the symbol W to denote the proposed statistic in the pa-

per, our W statistic differs from the conventional Wald test. There are some key features

®An alternative estimator is M AT, where A is the bias-corrected estimator for A. It can be shown
that the difference of the two statistics (which are based on AT and A) is asymptotically negligible under
N/T? - 0.
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that are different between our W test and the Wald test. First, the Wald test only in-
volves estimators from an unconstrained model. In contrast, we use estimators from both
constrained and unconstrained models to construct the W statistic. Second, the Wald
test has an asymptotic x? distribution with the value of degrees of freedom equal to the
number of restrictions. But our W statistic has an asymptotic normal distribution, which
is free of degree of freedom. For the same reasons, our W statistic is also different from a

conventional Lagrange multiplier test.

6 Partially Constrained Factor Models

In this section, we consider the following partially constrained factor model
Zt :MAft+th+€t éq)ht‘l—et, (61)

where ® = [MA,T], hy = (f{,g;)" is an r-dimensional vector, f; is an rj-dimensional vector
and ¢g; an ro-dimensional vector with r; + ro = r. Again we study the ML estimation on
model (6.1).

To analyze the MLE, we make the following assumptions.

Assumption A’. The factors {h;} satisfy the conditions in Assumption A.

Assumption C'. There exists a positive constant C' such that ||¢;|| < C for all 4, where
¢; is the transpose of the ith row of ®. Let H = %@’Eefel(b, we assume H = ]\}iinooH > 0.

Identification condition, IC’. The identification conditions considered here are sim-
ilar to those in the pure constrained factor model. More specifically, we require that
My, = % S, hehh = I and H is a diagonal matrix with all its diagonal elements distinct
and arranged in a descending order.

Let ¥, = ®®' + X and 0 = (A, T, 3¢.). The MLE is defined as

0 = argmax L(6),
0cO

where

Here O is the parameter space specified by Assumption D and the identification condition
IC'. In the supplementary appendix D (available upon request), we show that the first

order condition for A can be written as

A A

NM'SZH M., — )8 M = 0. (6.2)

ee

The first order condition for I" can be written as

A

'S M (M. - 32) =0. (6.3)
The first order condition for ¥.. can be written as

diag (M. — 3..) = MAGIAM'S N (M. —3.) — (M, — $2)S2  MAGIA'M'| = 0. (6.4)

13



Before we present the asymptotic results for the MLE, we first introduce some notation

=R @I, + Kip, [(PT'N) ® A] — Ky, (B} @ U)D7 ' Do[(HE1A) @ E4,
BS = Kpp [P @ Y] — Ky (B} @ U)D Dy [(H 1 E)) ® B,

(
BY = — K, (B} @ U)D] 'Do[(H ' E2) ® Ey),
— K, (B} @ U)D7 Do [(H 1E2) ® Fs, B = — Ky, (B @ U)D] D3,
1 N
A* = K, (B} @ U)D] ' Dy [N Z 73 (i @ ¢i)(Kig — 0f) + vec(rH — FoEY)|,

where Ey = [Ir,,0rxrs)’s o = [Orgxrys Iry)s 0 = (M'S M) IM'SIT, W = [A, 4] and H
is defined in Assumption C’. The symbols k; 4, Ky, P, R, D1, Dy and D3 are defined the
same as in Section 4.

Let v; be the transpose of the ith row of I'. The following theorem states the asymptotic
representations for the MLE. The consistency and convergence rates are implied by the

theorem.

Theorem 6.1 Under Assumptions A’, B, C' and D, when N,T — oo, we have, for all i,

1, 1
:f;(eit_ai)+0p 7))

In addition, if IC' is imposed, we have, for all i,

Ly .+O<1>
Yi — Vi = T = gt€it p\ T
and
(A —A) *1§:XT:1( ® ft) +BIZXT:1A ® gt)
vec 1% 7\ t)€it 2N ﬁ mi & gt )e€it
NT =50 Tz:ltzl i
Lyy Ly L
+ Bgi 72('77, &® ft et + B4 -3 72 ® gt)ezt
NT =30 NT =30
+i- LSS Lgieaned—od) + Lo
— — (¢ (e o
PNT &= &b 7 T T
1 1 1
+0, (57) 0 (7vr) + 00 (73):
NVT P\VNT PAT3/2
where BY, ... ,Bf and A* are defined above this theorem.

Given the above theorem, we have the following distribution results for the MLE.

Corollary 6.1 Under Assumptions A', B, C' and D, when N,T — oo, we have, for all 1,

VT (52 = 02) & N(0, ki — ob).
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In addition, if IC' is imposed, we have, for all i,
A d
\/T(’Yi - ’Yi) - N(070i2]T2)'
If N/T? — 0 is further imposed, we have
A 1
VNT[vec(A' — &) TA*} 4 N(0, %),
where Q* = lim Q% with
N—oo
N =BI(R® I, )BY + B3(P ® I,,)By + B3(Q ® I,,)B5 +B}(Q ® I,,)BY
* */ * Q! */ * 1 a 1 / ! 4 */
+ B (S ® I,)B3 + B5(S" ® I, )BY + B3 [N Z ﬁ((bi@) ® (i) (ki — 0} )]B5 )
i=1 "1
where Q ="YX T /N and S = M'S_'T/N.

The approach to estimate the factors in partially constrained factor models is similar
as before. Given the MLE A, [ and f]ee, the GLS estimator of h; is

A~ 2 -1

ht = (‘i/igel(i))ilélzee 2ty

where ¢ = (M A, f) Using the similar arguments as in the proof of Theorem 4.5, we have

the following asymptotic representation and limiting distribution results on iLt.

Theorem 6.2 Under Assumptions A’, B, C' and D, together with IC', we have, for all t,

A 1 _ 1 1
ht - ht =H 1N@/2€616t + Op (\/ﬁ> + Op (T) R

where H = @S '®. Then as N,T — oo and N/T? — 0, we have
VN (e — b)) & N©O,HY),

where H = A}im H is defined in Assumption C'.
—00

7 EM algorithm

The ML estimation can be easily implemented via the EM algorithm. The iterating for-
mulas for a purely constrained factor model and a partially constrained one are different.

We present them separately.

7.1 EM algorithm for the pure constrained factor model

Let 6% = (A(K), ng;)) denote the estimate at the kth iteration. The EM algorithm updates
and calculates (-+1) = (A(k+1), EEIZH)) by
T -1

1 & 1
AR = ('S T MISE T S T B (a2, e“f))] [T D_E(ffi|Z.6M)|
t=1 t=1
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T
diag(X (k+1)) = diag{Mzz — % Z E(th“Z’ 0(k))A(k+1)/M/

AR ZE fifl12,0% )A““*”’M’},
t 1

where ©%) — MA®A®E N 4 2E a0

—ZE Fifl1 2,00y = AR A (NN (SENY M AR 1 — AR A (SEN) 1A AR),

T
Z (211 Z,00)) = M_ (SN~ M AR,

The above iteration continues until |§+1) — §(¥)|| is smaller than a preset tolerance.
For the initial values, the PC estimates proposed in Tsai and Tsay (2010) are recommended.
When iterations are terminated, the estimates, denoted by (Af, Ele), need to be further
normalized to satisfy the identification conditions in Section 3. The normalization can be
conducted as follows. Let VT be the orthogonal matrix consisting of the eigenvectors of the
matrix %AT’ M'(31,)"'MAT with the corresponding eigenvalues arranged in a descending
order. Let A = ATVT and $.. = £f.. Then 6 = (A, 3,,) is the MLE that satisfies IC.

Bai and Li (2012) show that the iterating formulas of the EM algorithm approach to
the first order conditions of the likelihood function as the iteration tends to infinity. Using
their arguments, one can show similar results in constrained factor models. Since the proof

is almost the same as in Bai and Li (2012), we omit it for sake of space.

7.2 EM algorithm for the partially constrained factor model

Let (%) = (A(k),F(k),Zg;)) denote the estimate at the kth iteration. The EM algorithm
updates and calculates §*+1) = (A(k+1), [k+1), ZQEH)) by

-1

T
AR+ — (M'Z() lM) [ME ZE ztft|Z ok ][;ZE ftft]Z ok ]
1
T 1 I -1
s s [ E tasinon)]
t=1 t=1
T
rk+D) — [TZ ZtQHZ»e(k 1[ ZE 9t9t|Z o )1
=1 t=1

T T -1
1
MA®HY *Z (figtZ,0") || =" E(gigi1 2,00 |
T t=1 Tt:l

T T
diag(D*+)) = diag{Mzz — %Z (21 Z, 0PN AV gt — %Z E(zg)| Z, 0% k1)
t=1 t=1

T
Z gtgt\ZH F(k+1)/

T
+ MAGHD Z (fefl12,0")AFHV A" 4 DD

'ﬂ\
'ﬂ\
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1 T
+2MASVT S B(figlZ, 0<’“>>F<’““>’},

t=1

where £% = MAG®AGY A + TWTE 4 5 and

E(fuf12,6%)) = AB A/ (SEN AL (SEN A A®) 1 — AR A () "I AR)

)
I

N
M=

E(fi9,12,60) = AW M'(S) 7 M (20) 7T — AW (50) 7T W),

o~
Il
—

N~
M=

E(g1112,6W) = T (50) "M (28) 7 'T® 4 1, - 1) 0 ®),

N =
M=

~
Il
-

E(zf11Z,0%)) = M (=1 AR),

el
M=

#
I
—_

E(z9;2,0%) = M (s2)7'T®.

N~
M=

-
Il
—

Likewise, we use the PC estimates as the starting values, and iterate the above formulas
until [|0%*+Y — ()| is smaller than a preset tolerance. Let §° = (A°,T° %) be the
estimates of the last iteration. Again we need rotate 6° to satisfy the IC”. Let V° be
the orthogonal matrix consisting of the eigenvectors of the matrix 3 ®(22,)"1®° with
the corresponding eigenvalues arranged in a descending order, where ®° = (MA®,T'°). Let
d°V* and split P2 into P2 = (<I>1A, <I>2A), where (I>1A is made up with the left 1 columns
and ¢2A the remaining ro columns. Then calculate A= (M'M)=t M’ <I>1A, and simply let
['= @5 and 5. = ¥°.. Then § = (A, T, 3,.) is the MLE that satisfies IC".

Again, we can show that the limit of the iterated EM solutions satisfy the first order
conditions (6.2), (6.3) and (6.4). The proof is similar to the pure constrained factor model

case and therefore skipped here.

8 Simulation results

In this section, we run simulations to investigate the finite sample performance of the MLE,

as well as the empirical size and power of the W test.

8.1 Finite sample performance of the MLE

We first conduct simulations to investigate the finite sample properties of the MLE and
compare it with the PC estimates proposed by Tsai and Tsay (2010).

In the literature on high dimensional factor models, researchers usually use a generalized
R? or a trace ratio to measure the goodness-of-fit, e.g., Stock and Watson (2002), Doz,
Giannone and Reichlin (2012) and Bai and Li (2012). These measures are invariant to the

rotational indeterminacy and therefore effective to perform the measure task. However,
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in constrained factor models, such measures are not suitable since the estimates have
faster convergence rates, which often leads to a high value of the generalized R? or the
trace ratio. For this reason, we instead consider an alternative measure by rotating the
underlying values to satisfy the identification condition and investigating the precision of
A — A for rotated values. We calculate the mean absolute deviation (MAD) and the root
mean square error (RMSE) based on the rotated underlying values. We also calculate the
root asymptotic variance (RAvar) to check the convergence rate of A presented in Theorem

4.1. The calculation formulas based on S simulations are as follows

MAD—SZ(MZZ\A )

p=1i=1

T

RMSE:J;SZZ(;TZ% A3)?),

plzl

s=1 p=1i=1

RAvar = VNT x J;i(krzz AP — A5)2),

where f\; and /AXZ?S are the MLE and biased-corrected MLE in the sth simulation, respec-
tively.

Data are generated according to z; = MAf; + e;, where all elements of M are drawn
independently from UJ0, 1] and all elements of A and F' independently from N(0,1). The
idiosyncratic errors e;; are generated according to e;; = o€, with a? being the ith diago-
nal element of (MAA' M) [0,1]. The

component ¢;; is generated from the three distributions: the normal distribution, student’s

distribution with 5 degrees of freedom and chi-squared distribution with 2 degrees of free-
dom. For the latter two distributions, we normalize the random variable to have zero mean
and init variance. For the values of k and r, we consider two cases: (k,r) = (3,1) and
(k,r) = (8,3).

Throughout this section, we assume that the number of common factors is known.
There are a number of methods at hand to determine the number of factors, for exam-
ple, the information criterion method by Bai and Ng (2002), the largest eigenvalue-ratios
method by Ahn and Horenstein (2013) and the eigenvalue empirical distribution method
by Onatski (2010). If the number of factors is unknown, one can choose any of the method
mentioned above to estimate it. Tables 1 and 2 present the performance of the MLE
and the PC estimate for normal errors under the sample sizes of N = 30, 50, 100, 150 and
T = 30,50,100. The results under student-t errors and chi-square errors are almost the
same as those for normal errors and are given in Table E1-E4 in the supplementary ap-
pendix E (available upon request) to save space. All these results are obtained based on
1000 repetitions.

From Tables 1 and 2, we can see that both MAD and RMSE of the MLE are much
smaller than those of PC estimates for all (N,7T) combinations, implying that the MLE
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performs better than the PC estimate. Regarding the RAvar®, we see that the MLE
has almost constant RAvars when the time dimension T or the cross section dimension
N increases, implying that the convergence rate of the MLE is v/ NT. This simulation
result is consistent with our theoretical results in Section 4. In addition, it seems that the
PC estimate also has v/ NT convergence rate from simulations. Finally, we note that the
RMSEs of the MLE are smaller than those of the PC estimates, indicating that the MLE

is more efficient than the PC estimates.
Table 1: k=3, r =1, and ¢; ~ N(0,1).

Asx1 MLE PC
N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar
30 | 30| 0.0440 | 0.0716 | 2.2301 | 0.0943 | 0.1386 N/A
50 | 30 | 0.0349 | 0.0540 | 1.9887 | 0.0654 | 0.0934 N/A
100 | 30 | 0.0262 | 0.0417 | 2.0504 | 0.0474 | 0.0677 N/A
150 | 30 | 0.0216 | 0.0340 | 2.1741 | 0.0410 | 0.0582 N/A
30 | 50| 0.0333 | 0.05633 | 2.1936 | 0.0787 | 0.1145 N/A
50 | 50 | 0.0237 | 0.0368 | 1.9426 | 0.0546 | 0.0800 N/A
100 | 50 | 0.0190 | 0.0306 | 1.9194 | 0.0375 | 0.0541 N/A
150 | 50 | 0.0159 | 0.0255 | 2.0863 | 0.0293 | 0.0417 N/A
30 | 100 | 0.0232 | 0.0374 | 2.1425 | 0.0674 | 0.0964 N/A
50 | 100 | 0.0172 | 0.0263 | 1.8314 | 0.0443 | 0.0611 N/A
100 | 100 | 0.0105 | 0.0168 | 1.7473 | 0.0253 | 0.0358 N/A
150 | 100 | 0.0102 | 0.0165 | 1.8668 | 0.0200 | 0.0288 N/A

Table 2: k=8, r =3, and ¢ ~ N(0,1).

Agxs MLE PC
N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar
30 | 30| 0.3498 | 0.5006 | 15.2632 | 0.5655 | 0.8071 N/A
50 | 30| 0.2307 | 0.3310 | 13.6988 | 0.3744 | 0.5363 N/A
100 | 30 | 0.1537 | 0.2307 | 12.5998 | 0.2224 | 0.3131 N/A
150 | 30 | 0.1245 | 0.1881 | 11.7159 | 0.1735 | 0.2452 N/A
30 | 50 | 0.2637 | 0.3744 | 14.4701 | 0.5130 | 0.7521 N/A
50 | 50 | 0.1794 | 0.2689 | 13.1269 | 0.3184 | 0.4679 N/A
100 | 50 | 0.1082 | 0.1578 | 12.1691 | 0.1763 | 0.2545 N/A
150 | 50 | 0.0860 | 0.1291 | 12.3152 | 0.1382 | 0.2091 N/A
30 | 100 | 0.1846 | 0.2698 | 15.5540 | 0.4570 | 0.6882 N/A
50 | 100 | 0.1213 | 0.1937 | 13.3273 | 0.2622 | 0.4064 N/A
100 | 100 | 0.0774 | 0.1258 | 11.9418 | 0.1440 | 0.2157 N/A
150 | 100 | 0.0620 | 0.1021 | 12.9696 | 0.1033 | 0.1633 N/A

8.2 Empirical size of the W test

In this subsection, we use simulations to study the empirical size of the W statistic. The

data generating process is the same as in previous subsection, but with more combinations

®Since we do not know whether the PC estimate is biased, and if biased, what is the bias formula. Hence,
we cannot calculate RAvar for the PC estimate.
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of (N,T). We investigate the performance of W under three nominal levels 1%, 5% and
10%. The empirical sizes of W for the case (k,r) = (3,1) are given in Table 3, which is
obtained from 1000 repetitions.

Table 3: The empirical size of the test statistic W for (k,r) = (3,1)

Empirical size of W
€it ~ N(0,1) ts 2 (2)
N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30|3.6% 74% 135% |3.8% 85% 12.9% | 2.7% 8.0% 13.3%
50 30 | 4.4% 11.5% 16.6% | 3.9%  9.5% 16.3% | 5.4% 10.5% 16.1%
100 30| 6.7% 14.2% 20.5% | 6.5% 13.9% 20.1% | 5.5% 12.9% 21.1%
150 30| 92% 18.4% 24.8% | 8.1% 18.6% 27.1% | 8.2% 20.3% 29.0%
30 50| 1.7% 59% 11.3% | 1.3% 58% 12.7% | 1.7%  6.6% 11.6%
50 50 |31% 6.8% 13.0% | 2.6% 6.1% 11.0% | 2.0% 7.0% 12.1%
100 50| 3.3% 8.0% 152% |2.3% 83% 14.2% | 3.5% 9.7% 15.7%
150 50 | 4.6% 11.4% 18.1% | 3.4% 11.1% 17.3% | 2.8%  9.3% 15.8%
30 100 | 0.6% 4.5% 104% | 1.4% 4.0% 10.6% | 1.0% 4.8% 10.9%
50 100 | 1.5% 4.2% 10.9% | 1.5% 6.1% 9.9% | 1.2% 58% 11.7%
100 100 | 1.4% 6.5% 11.6% | 0.9% 58% 12.6% | 1.5% 6.5% 12.4%
150 100 | 1.6% 5.6% 10.9% | 2.0% 7.5% 12.7% | 1.9% 5.8% 11.3%
30 150 | 0.6% 5.0% 10.5% | 1.0% 5.0% 9.9% | 1.2% 5.8% 10.2%
50 150 | 1.5%  5.9% 104% | 1.5% 4.8% 10.2% | 1.5% 5.1% 9.6%
100 150 | 0.7% 6.2% 10.7% | 1.2%  54% 10.2% | 1.5% 5.8% 11.6%
150 150 | 1.9% 5.9% 9.6% | 1.6% 5.0% 11.5% | 1.7% 5.2% 10.8%
100 100 | 1.4% 6.5% 11.6% | 0.9% 58% 12.6% | 1.5% 6.5% 12.4%
200 100 | 1.3%  6.1% 11.2% | 1.4% 6.7% 13.5% | 2.2% 72% 12.6%
300 100 | 2.3% 6.5% 12.8% | 21% 6.8% 12.7% | 1.8% 7.9% 12.9%
100 200 | 1.3% 4.0% 9.4% | 13% 53% 10.8% | 1.1% 5.1% 11.3%
200 200 | 1.4% 5.6% 10.5% | 0.9% 4.9% 9.6% | 1.4% 6.1% 11.6%
300 200 |13% 6.1% 8.6% | 1.5% 54% 11.6% | 1.5% 59% 11.7%
100 300 | 0.4% 4.5% 9.5% | 1.2% 51% 11.8% | 1.2%  51%  9.2%
200 300 |09% 6.1% 105% | 1.3% 4.9% 9.1% | 0.8% 6.2% 11.6%
300 300 | 1.3% 52% 10.9% | 0.7% 3.9% 85% | 1.2% 4.4% 9.0%
100 500 | 0.8% 5.3% 9.8% | 0.8% 4.6% 10.9% | 1.1% 52%  9.7%
200 500 | 0.9% 54% 9.8% | 0.5% 5.1% 9.8% | 1.0% 5.2% 10.3%
300 500 | 0.6% 5.3% 10.5% | 1.5% 5.9% 9.2% | 0.9% 5.0% 9.4%

From the results in Table 3, we emphasize the following findings. First, the performance
of the W test is considerably good overall. Except for the sample size when T is small,
almost all the empirical sizes of the W statistic fall in the interval [5%, 10%] under the
5% mnominal level. Second, the distribution type of errors has no significant impact on
the performance of W. The W statistic performs very similarly under three different
error distributions. This is consistent with the theoretical result in Section 5. Third, the
performance of W is closely linked with time period number 7', loosely with the number of
units N. For example, when T' = 30, the W statistic suffers a mildly severe size distortion.
But when T grows to 50, the size distortion considerably decreases. As regard to N, we

see that the W statistic performs well even when N = 30. We conjecture the reason is
2

that when 7' is small, the variance o} are estimated inaccurately, which leads to a poor

performance of W.
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Tsai and Tsay (2010) propose using a traditional likelihood ratio (LR) statistic to
perform model specification testing. In the factor model literature, LR tests are usually
considered under the fixed-N, large-T' setup, see Lawley and Maxwell (1971). As men-
tioned in the introduction, when N and T are both large the traditional LR test may
not be suitable. For example, the adjusted likelihood ratio test, which is often used with
consideration of finite sample performance, may be negative for too large N. According to
the simulation results in Table 7 in Tsai and Tsay (2010), the LR test suffers size distortion
issue even when N is not large. As a primary competitor to our W statistic, we compare
the performance of the W statistic and the LR one under the current data generating
setup. We find that the performance of the W statistic dominates that of the LR test.
Details are given in Appendix F in the supplementary material of this paper.

8.3 Empirical power of the I test

We next study the empirical power of the W test. Data are generated by z; = Lf; + e;
with
L=MA+d- v,

where M, A, f; and e; are generated in the same way as in Section 8.1. The symbol v is an
N x r noise matrix with its elements drawn from N(0,1) and d is a prespecified constant,
which is related with NV and T and is used to control the magnitude of deviation from the
null hypothesis. In this section, we set it as

(67

- VNVT

with @ = 0.2,0.5,2 and 5. In classical models, if an estimator is v/T-consistent, the local
power is studied under 8 = g* + %a, where * denotes the true value. However, this
general result cannot be applied to the present context since we renormalize the distance
between estimators from the constrained and unconstrained models to accommodate the
large number of restrictions imposed in the null hypothesis. Directly deriving the local
power of W is challenging. We conjecture that the W statistic can detect local alternatives
that approach the null model at a rate of N~Y4T~1/2_ Simulation results below seem to
support our conjecture since the local power converges to some value as N and T grow
larger in all choices of a.

Table 4 presents the empirical power of the W test for the case (k,r) = (3,1) under
normal errors. It is seen that the W statistic has higher power when « is larger and lower
power when « is smaller. This is an expected result. As a becomes larger, the distance
between the null hypothesis and the alternative hypothesis is larger and then we have more
chances to differentiate the two hypotheses. Given that the W statistic has considerable

1/2 away from the null model, we

power even against the local alternatives that are N ~1/47~
conclude that the W has good performance in terms of empirical power. We also compare
empirical powers of the W statistic and the LR test. We find that the performance of the
W test is better than that of the LR test. Details are given in the supplementary Appendix

F.
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Table 4: The empirical power of the W test for (k,r) = (3,1)

Empirical power of W

o 0.2 0.5 2 5

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

30 30| 229% 31.4% 37.4% |52.0% 57.5% 61.7% | 91.2% 93.1% 93.7% | 99.7% 100.0% 100.0%
50 30 | 31.8% 39.4% 44.9% | 58.2% 64.1% 67.5% | 94.1% 95.7% 96.4% | 100.0% 100.0% 100.0%
100 30 | 51.4% 59.4% 63.7% | 71.4% 77.3% 81.1% | 96.2% 98.0% 98.7% | 100.0% 100.0% 100.0%
150 30 | 55.5% 63.9% 68.0% | 74.4% 78.9% 81.6% | 97.9% 98.9% 99.2% | 100.0% 100.0% 100.0%

30 50| 229% 30.3% 35.2% |51.1% 57.4% 60.7% | 89.3% 91.9% 93.6% | 99.6%  99.8%  99.8%
50 50| 29.2% 36.3% 42.2% | 58.2% 63.8% 67.4% | 93.7% 95.8% 96.7% | 99.8%  99.9% = 99.9%
100 50 | 45.5% 51.7% 56.3% | 69.2% 72.7% 76.1% | 96.5% 97.7% 98.1% | 100.0% 100.0% 100.0%
150 50 | 51.3% 58.3% 63.4% | 70.9% 76.0% 79.2% | 97.3% 98.2% 98.5% | 100.0% 100.0% 100.0%

30 100 | 20.5% 25.7% 31.5% | 53.6% 60.7% 62.9% | 90.0% 92.2% 93.8% | 99.5%  99.6%  99.6%
50 100 | 29.8% 35.6% 41.1% | 59.3% 64.2% 67.2% | 93.1% 94.7% 95.7% | 100.0% 100.0% 100.0%
100 100 | 37.7% 43.3% 47.5% | 65.6% 70.1% 72.3% | 94.1% 96.2% 97.3% | 99.9% 100.0% 100.0%
150 100 | 49.8% 55.4% 59.0% | 70.1% 74.2% 77.6% | 95.5% 96.6% 97.2% | 100.0% 100.0% 100.0%

30 150 | 19.9% 25.4% 29.8% | 55.8% 62.1% 64.5% | 88.2% 91.2% 92.0% | 99.6%  99.8%  99.9%
50 150 | 28.4% 34.9% 40.8% | 58.1% 62.2% 65.3% | 90.8% 93.4% 93.8% | 99.8%  99.9% = 99.9%
100 150 | 37.7% 44.8% 49.8% | 66.5% 69.9% 72.8% | 93.1% 95.1% 96.4% | 100.0% 100.0% 100.0%
150 150 | 46.2% 51.1% 55.3% | 67.1% 71.0% 74.3% | 95.9% 97.0% 97.5% | 100.0% 100.0% 100.0%

100 100 | 40.0% 46.1% 51.5% | 65.4% 70.2% 73.3% | 93.8% 96.3% 96.9% | 100.0% 100.0% 100.0%
200 100 | 52.5% 57.3% 61.4% | 71.6% 74.8% 77.0% | 96.6% 97.3% 97.7% | 100.0% 100.0% 100.0%
300 100 | 59.5% 63.7% 68.2% | 75.0% 77.7% 80.0% | 95.9% 97.1% 97.4% | 100.0% 100.0% 100.0%

100 200 | 39.9% 46.9% 51.9% | 66.2% 70.9% 73.2% | 93.4% 94.8% 95.6% | 99.8%  99.9%  99.9%
200 200 | 48.5% 54.8% 58.2% | 68.4% 72.9% 76.2% | 95.9% 97.0% 97.3% | 100.0% 100.0% 100.0%
300 200 | 56.0% 59.9% 63.0% | 69.3% 72.8% 75.9% | 96.4% 97.4% 98.3% | 100.0% 100.0% 100.0%

100 300 | 41.0% 47.4% 50.2% | 67.4% 71.9% 73.4% | 93.3% 94.9% 95.4% | 100.0% 100.0% 100.0%
200 300 | 50.6% 55.6% 58.9% | 68.7% 72.3% 74.4% | 94.7% 95.8% 96.4% | 100.0% 100.0% 100.0%
300 300 | 54.9% 59.0% 63.1% | 72.3% 74.9% 77.3% | 94.8% 96.8% 97.6% | 100.0% 100.0% 100.0%

100 500 | 39.5% 45.0% 49.0% | 65.1% 68.9% 71.2% | 94.0% 95.6% 96.6% | 99.9%  99.9%  99.9%
200 500 | 50.4% 54.4% 58.4% | 69.4% 72.6% 75.6% | 95.4% 97.2% 97.6% | 100.0% 100.0% 100.0%
300 500 | 53.4% 58.3% 61.8% | 71.2% 73.2% 75.2% | 96.1% 97.4% 97.9% | 100.0% 100.0% 100.0%

9 Extension

In this section, we relax Assumption B to allow for general weakly dependence idiosyncratic

errors. Following Chamberlain and Rothschild (1983) we call a factor model with weak

dependence idiosyncratic errors the approximate factor model. Approximate factor models
are the primary research interests in a number of studies, e.g., Bai and Ng (2002), Bai

(2003) and Bai and Li (2016), among others. To relax Assumption B, we introduce the

following assumption to control the heteroskedasticity and weak correlations over cross

section and time.
Assumption B”: (weak dependence on errors)

B”.1 E(e;) =0, and E(e$) < C.

B”.2 Let Oy = E(ete}), 0 = £ 37, O, and W = diag(0), which is the diagonal matrix
that sets the off-diagonal elements of O to zero. Specifically, let w? be the ith diagonal
element of W, then W = diag(w?, w3, ..., w%).

B”.3 For all i, C72 < w? < C%

B”.4 Let 7;5; = E(eitejr), assume there exists some positive 7;; such that |7, < 735 for
all t and "N, 7;; < C for all j.

B”.5 Let pits = Eleiteis), assume there exists some positive pys such that |p; 45| < pis for
all i and 7 32/ Y41 pus < C.
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4
B”.6 Assume E U‘}T ST leaej — E(eitejt)]‘ ] < C for all 7 and all j.

To be consistent with the changes in Assumption B”, we modify Assumptions C and
D as follows.

Assumption C”:
C".1 ||A]] £ C and [|m;|| < C for all j, where m; is the transpose of the jth row of M.
C"2 Let P = ANM'W-IMA/N, R = M'W-1M/N. We assume that Py, = A}i_l}n()@P and

Ry = A}im R exist. Here Py, and R, are some positive definite matrices.
—00

Assumption D”: The estimator of wjz for 7 = 1,..., N takes value in a compact set:
[C~2,C?]. Furthermore, M #f is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [-C, C].

For theoretical analysis, we further assume the following two assumptions.

Assumption E”: We assume
E”.1 Let 0;j:s = E(ejtejs), and we assume NT Z M Z T Zt 1 Z _1]6ijes] < C.

E".2 Let m = 57 20, j S T ijts 5 (m; @ fi)(m; @ fg), and assume
.7

’LU

lim 71 = T > 0; in other words, the limit of 71 exits and is positive definite.

N, T—oc0
E".3 Let mp = NT Z =1 Z =1 Zt 1 Zs 1 uéj”fus] 7(mi ® mz)(m;- ® m;) with
0ijts = E[(eit — w?)(eZ, — w?)|. We assume 1}1300 T3 = oo > 0.
E'4 Let m = xp SR S0y Xy Y w”ts (mi ® fi)(mfj ©m}) with
Dijts = E[eit(e?S - wj)}. We assume 1\771T111>1OO T3 = M300 > 0.

E”.5 For each i, as T — oo, ﬁzle(ei — w?) 4 N(0,w2,), with @w?_ = lim w@? and
1T T 2 2\ (2 2 o
@} = 7 Y= em1 B[ (€ — w)(ef, — wi)].

Assumption F”: We assume

F”.1 For all j, E Mﬁzz IZt 1 D [elte]t — E(eiteji)] H ] C.
F”.2 We assume E[HF SN M AL (e, — w?) ‘2 <C.

F”.3 Forallt, E HF SN ST w2 [s|eieis — E(eieis)] H2 <C.
F”.4 For all t, E % SN || d5 S o leaess — Eleness) H2 <C.

F.5 For all t, £ H\/JI\TT DARD DR N (AL l<c

F”.6 We assume E [H\/%T SN SE ST, wi?fteit(e%s —w2)m : <C.
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Assumption E” is used in deriving the limiting distributions. Assumption F” provides
some moment conditions which are needed in inferential analysis.

To remove the rotational indeterminacy, the identification conditions considered here,
which are denoted by IC”, are the same with those in Section 3 except that the matrix Ye.
is replaced with W.

Even that the model allows for general weak dependence among idiosyncratic errors, we
still use (3.2) as the objective function to estimate the loadings and idiosyncratic variances,
with Y., replaced by W. Now the parameter is § = (A, W). As shown in Bai and Li (2016),
although the objective function is misspecified, the consistency of the estimated loadings
can be maintained if some regularity conditions are satisfied.

Let 6 = (A,W) be the maximizer of the objective function. Then we can derive the
first order conditions for A and W, which are similar to (3.3) and (3.4), except that 3.,
should be replaced by W. Based on these first order conditions, together with the similar
arguments, we develop inferential theories under the weak dependence idiosyncratic errors.
The following theorem presents the convergence rates of the MLE. The consistency is
implied by the theorem.

Theorem 9.1 (Convergence rates) Under Assumptions A,B", C", D" and F", together
with IC", when N,T — oo, we have

N
~ 1 1 1 1 1
AA=0p) | — |+0, | = |+0, | = — - =0, O,
(z) o (7)o () NZ::“’ w ()0 (52)-
In contrast with the results in Theorem 4 1, we see that there is an extra term O ( ) in
(A — A) and another extra term O o(3z) in & lel(wf —w?)? under the weak dependence
data structure.

Before we state the asymptotic result of fX, below we first introduce some symbols.
2D;F
D(P®I,)+ (I, @ P)K,]

Bl = Ki,, [PT'A) @ Al + R @ I, — Kpp (I, @ A) (D 'Do[(PA) @ I,
B} = Ky (I @ A) (D)) 'Ds(A® AY,  BY = Ki (I @ A)(D]) ' Ds(A® A,

D =

B} = (R ® (P'A)) — 5K (1. @ A)(D)) " Da(P o P (A ® A),

i=1t=1

LN N 0. 1 N
HT:IBBZN Z wQZ)Q(mJ(@mZ NZT m; @ m;).

I R =1 Wi

where DY, D, K, Ki,, Do and D3 are defined the same as in Theorem 4.2; P and R are de-
fined in Assumption C”; Qj; is the (4, j)th entry of matrix O; ¢; = %mgAP_lA’M’W_l(@—
W)W LMAPIA'm; — 2mAGNAN MW= (O — W); where Gy = NG with G = (I, +
NM'W=LMA)™ and (O — W); is the ith column of (0 —W); w? = £ S1, ST E[(e2 -
w?)(e2, —w?)] is defined in Assumption E”.5; both ¢; and w? are scalars. Then we provide
the asymptotic representation of A in the following theorem.
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Theorem 9.2 (Asymptotic representation for A) Under assumptions of Theorem 9.1,

. 1 & 1
vec(A' — B];NTZZ (mi ® fi)ei — BQNT227 (mi @ my)(ef, — wi)
= 1t 1 i=1t=1 Wy
1 1 1 1
At 1t - -
F Al +Op<N\/T>+Op<\/NT>+O <T3/2) O (m)

(9.1)
where the symbols IB%LIB%;, A" and TIT are defined in the preceding paragraph.
Given the above theorem, we have the following corollary.

Corollary 9.1 (Limiting distribution for A) Under assumptions of Theorem 9.1 and
Assumption E", as N,T — oo, N/T? — 0 and T/N® — 0, we have

N 1 1 d =
VNT {vec(A’ —N) - TAT - NHT} — N(0,2),

where Z2 = lim Zn7, and
N—o0
Enr = B{mBl + BimBl — BirsBl — BixiB!

where IB%} and ]B%; are defined the same as in Theorem 9.2; the symbols w1, m and 73 are
defined in Assumption E'. Furthermore, by Assumption E'.2, E'.3 and E".}, we have

= = B{mooB] + BimaocBY — BlmsooBY — Birl Bl
where the symbols T1o0, Taee and T3, are defined in Assumption E.
2

we also have the following theorem for w;.

Theorem 9.3 (Asymptotic properties for ©?) Under assumptions of Theorem 9.1,

= r o () vo (1) +on ()

As N, T — oo and T/N? — 0, we have

’ﬂ \

VT2 —w?) — S
T(wz wz) Z(ezt wz) + Op(l)‘

t=1

3

Furthermore, by Assumption E'.5, we have
VT (02 — w?) % N (0, =2,),
where w2, is defined in Assumption E'.5

This limiting result is the same as that in the unconstrained approximate factor model,
see Bai and Li (2016).
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10 Conclusion

This paper considers the ML estimation of large dimensional constrained factor models
in which both cross sectional units (V) and time periods (T') are large but the num-
ber of loadings is fixed. We investigate the asymptotic properties of the MLE including
consistency, convergence rates, asymptotic representations and limiting distributions. We
show that the MLE for the loadings in a constrained factor model converges much faster
than that in a standard factor model. In addition, we also find that the MLE has a
non-negligible bias asymptotically and some bias corrections are needed when conducting
inference. A W statistic is proposed to conduct model specification check in a constrained
factor model versus a standard factor model. The test is valid for a large N and a large
T setup. We also analyze partially constrained factor models where only partial factor
loadings are constrained. We run simulations to investigate the finite sample performance
of the MLE and the proposed W test. The simulation results are encouraging and show
that the MLE outperform the PC estimates and the proposed W test has good empirical
sizes and powers. Monte carlo simulations show that our proposed MLE has better finite
sample performances than that of PC estimates. In addition, we consider the extension of
a general weak dependence structure on idiosyncratic errors and we study MLE asymptotic
properties of the resulting approximate factor models.

Appendices: Proofs of the main theoretical results

We will prove the main theoretical results reported in Section 4 in appendices A and B.
The supplementary appendices C to G contain proofs of additional results reported in the
paper and also report some additional simulation results.

Appendix A: Proof for Proposition 4.1 (consistency)

The following notation will be used in this appendix.

A

~ 1 4 ~ ~ ~ 1 ~ A ~ ~
P= NA’M’E;;MA; R= NM’Zg;M; G= (I, + NM'SMA)
Py=N-P=NMZSMA; Ry=N-R=M3S'M, Gy=N-G.

A

From (A+ B)™' = A= = A"'B(A + B)™!, we have Py! = G(I - G)~'. From ¥, =
MANM' + X.., we have

Y=t - S MA(L + N MY MA) TN ME (A1)
It follows that
NM'SZH= NM'S —NM'S MALANMEIMA) A M'S = GANM'SZ) . (A.2)

We use symbols with superscript “*” to denote the true parameters. Variables without
superscript “*” denote the arguments of the likelihood function.
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Let § = (A,0%,--- ,0%) and let © be the parameter set such that A take values in a
compact set and C~2 < ¢? < C? for all i = 1,..., N. We assume 0* = (A*, 072, ,03?) is
an interior point of ©. For simplicity, we write 6 = (A, X¢) and 0* = (A*, 2%,).

The following lemmas are useful for our analysis

Lemma A.1 Under assumptions of A-D, we have

1 T
(a) ztelg NT tr [A*'M’E;Zl Z etft*'} 20
T
1] 2, .
(b) Slelg NT {; etet ee zz } = 0;

where 6% = (A*,X%,) denotes the true parameters and ¥, = MAN M’ + ..

Proor orF LEMMA A.1. First, we consider (a). Let m;, be the (i,p)th element of M for
i=1,...,N,p=1,....,kand A = [A\1, \,..., \x]. By equation (A.1), we have

1 N T k
A/*Mz 1Zet = v ( A;mzp) zeul;’ (A.3)
t=1 i=1t=1 p=1
1 T k
—AYMISMA(L + NMSMA) TS ( Apmw) e,,tf .
NT =3 p=1

By the Cauchy-Schwartz inequality, the first term on the right side of (A.3) is bounded in
norm by
1

N k N T

1 . /211 1 . 1/2

(5 2 el S Amil®) [ Dol 32 el
i=1 "% p=1 i=1 t=1

The first factor (4 N, (%4 I 25:1 )\;mpi||2)1/2 is bounded by the boundedness of =2 and

LN sk Asmypg||? by Assumptions C and D. The second factor does not depend
on any unknown parameters, and it is O,(T~/2) because E(% N B ST freal?) =
O(T~'). Therefore, the first part on the right hand side of (A.3) is 0,(1) uniformly on 6.
For the second part, we rewrite it in terms of Py as

N
« ~1/2 1 ~1/2
A M MAPS (Pt + 1) NT ; 1:; 1:P (§ jApmw) eztf . (A.4)

The term AYM'S MAPYY? = SN L(5k ) Aomi,) (2, Nomy,) Py '/? is bounded in
norm by "

N k
(2] X X
i=1 p=1
Notice that
N 4 _1/o k 2 Mo,k » k
Z 7‘2HPN Z ApMip || = Z —3 ( Z Apmip Py Z )\qmiq)
1% p=1 i=1 % " p=1 g=1

= tr[ Py A MIS MA] = [Pyt Py] = 7.

2)1/2(i %H il)\;,mipPNl/QHZ)l/z =ay, say.
i=1 %1 p=

(A.5)
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We have a1 = O,(N'/2). As regard to the term 5 >0 S/, P 1/2( 15:1 )\pmip)%eitft*’,
it is bounded in norm by '

2\ 1/2
) / _ Op(N_l/QT_l/z)

2n12,1 &1 &

¥ 2l 2 e
) (N i=1 HTt_l
by (A.5). In addition, the term (Py' 4 I,)~! = O,(1) uniformly on ©. So the expression

n (A.4) is O,(T~/?) uniformly on #. Then result (a) follows.
Next, we consider (b). By equation (A.1), we have

“l

O (3 3
JN 2 ‘7@'2 N P pTMip

5
M=

3 52
M=

(eae} = T2) 2

~

(ereh = B2 (B2 = S MA(L + N M'SZMA) A MIS ]|

I
o+
=

[ —

t=1

(eteg - 226)2_1]

ee

M=

tr[

t
L
NT

M=

—tr| (N MIS ! (ereh = Bi)Seld MAY (L + A MSMA)

t=1

The first term tr[ 7 Yi— (eref — S5) S0 = 57 2y Yy (e — 07?) is bounded by

N 1/2 s a2y 1/2
(%Z%) (%Z(fzeit_ai )) )

i=1 "1 i=1 t=1

which is O,(T~'/2) uniformly on 6. The second term can be written as

T
1/2 47 / 1 1/2
[—NTP ANM'Y ;:1: eich — Ti)| Tl MAPY P (PR + 1) 7Y
The above term is equal to

w57

Since the expression

N N 1

T
U a 1/2 Z ApMip Z X mq] N Z[eitejt - E(eitejt)D (Pﬁl + Ir)_l}'
i=1j=1 p=1 t=1

1 NN 1 1/2 T
NT o707 Z Apmip Z Nomgs Py Y lewese — Elewest)]
i=1j=1 p=1 t=1
is bounded in norm by
N 1 NN T 91/2
[Z 2 HP 12 Z Apm 1p|| } [ﬁ Z Z ( e’Lte]t - eztejt)]) :|
i=1 i=1j=1 t=1

which is O,(T~"/2) uniformly on 6 by (A.5). Given (Py' + I,)~! = O(1) uniformly on 6,
the second term is op,(1) uniformly on . This proves (b). O
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Lemma A.2 Under Assumptions A-D, we have

ol 0t -]}
11— 1y 1< 12)2 2

0 e - s - o[ S5 - 7).

Given the above results, if N~ SN (67 — 072)? = 0,(1), we have

HNA*/M/( — 1 )MA*

. . 1 -
() By =0p(N), R= Ry =0,(1)
(d) [RV2] = 0,(1).
where R and Ry are defined above appendiz A.

PrROOF OF LEMMA A.2. We first consider (a). The left hand side of (a) can be written as

Then result (a) follows because || Zlgzl Armip|* is bounded by Assumption C.

A2 %2
Next, we consider (b). The left hand side of (b) can be written as 3 SN mam, Uggcjjg

)

where m; is the transpose of the ith row of M. This term is bounded in norm by

N

(y Z i) (% Y62 - 2y?)

=1

Then result (b) follows because - SN lmgl|* is bounded by Assumption C.

We now consider (c). From result (b) and result N~ SN (67 — 072)? = 0,(1), we have
R- %M 'So M = 0,(1) which implies R R >0, where R is defined in Assumption C.
So R = 0,(1) and Ry = NR = O,(N). Result (c) follows.

Result (d) is a direct result of ||[R~Y2|? = tr(R~") = O,(1) by R & R > 0 from result
(c).

This completes the proof of Lemma A.2. [J

Lemma A.3 Under Assumptions A-D, we have

1 ~ 4 R 1 T A = A
(a) WP_IA/M/E‘;li Z(ete:ﬁ - Eee)E;EIMAP_l = ||P_1/2||2 . Op(T_1/2);
(b) i]f’*lA/Mli l T tft HP 1/2H ( 71/2)'
N T t=1
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1 A A A
(c) WP INM'E N (Bee — See) S MAP™ = || PG - Op(1);

(d) NTthet IMR_ Op(T_1/2)§

1 14 11 1 1 1/2 T—1/2y.
() zP 'A'M EeeTZ[ete;—zee}z MR = ||P712) - 0p(T~2);

1 1A S—1 »—1 p—1/2 1 ol ) 9 2%
(1) P NMEL e = Be)SLMET = [PV -0y ([ 067 - o))

Proor oF LEMMA A.3. We first consider (a). The left hand side can be rewritten as

L N N ko L 1T
NQP_UQ[ZZP_W(ZAPWP) Z esesi—Elencs) (Zmﬂq)‘/) 1/2]]3—1/2
=1 T=

i=1j=1

which is bounded in norm by

2| H—1/212 Ni A—1/2kA 1P
CPIPIR| 3T 5| B 3 A
=1 "1 p:l

which is ||[P~1/2|2 - O,(T~/?) by (A.5). Thus, (a) follows.
Next, we consider (b). The left hand side can be rewritten as
12 1 i 1 &
~1/2 -
P / ZP 61)221 pmz‘pf;%tft/,

which is bounded in norm by

2\1/2
)

Cl|p-1/2 al P1/2 5 1/21N1T'/
H ||(Z_ | Z | ) (F X7 X eaf
which is ||[P~Y2| - O,(T~'/?) by (A.5). This proves result (b).

To prove result (c¢), notice that 2;61(266—266) is bounded by 2C*Iy by C~2 < 62 < C?
and C~2 < 02 < C?. Hence, the left hand side is bounded in norm by

Hp 1A'M'(2C4IN) IMAPY! H =204 Py

Result (c) then follows.
We now consider (d). The left hand side is equal to

1
N

N T 4
ZZﬁfteztmR

'ﬂ

which is bounded in norm by

N N
- [ ] [ 3 |3 e ]
=1 =1 t=1

211/2
]
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which is O,(T~'/?) by Lemma A.2(c) and Assumption C. Hence, result (d) follows.
For result (e), the left hand side is equal to

N N k T
PSS (3 A ) sy S Bl
N3/2 —~y. N P ) 5252 ey (A J )
i=1j=1 p=1 t] t=1
which is bounded in norm by
N _ 12,1 N 1/2
CHP R [ 3 I/QZApmw 1 [ 3 llmsl?]
= 7=1

‘2} 1/2,

[Nz Z Z ‘T leirejr — E(eiejit)]

i=1j=1 " t=1

which is ||[P~1/2| - O,(T~'/?) by (A.5) and Lemma A.2(c). Thus, result (d) follows.
Finally, we consider (f). The left hand side can be written as

k ~2
L a1 —-1/2 3 0i =0\ _1pH-1
P S B (o i
which is bounded in norm by
N N 2
1 >—1/2 —1 1/2 1201 [[mal]” 21211/2
< IR ||[; Py ;Apmlpn} [N; EalCRL N

By the boundedness of ||m;|| and 62 by Assumptions C and D, we have

Z Hmz AR S
B N i=1 '

This result, together with (A.5) and Lemma A.2(c), gives result (f). O

||2

PROOF OF PROPOSITION 4.1. Throughout the proof, we use the following centered objec-
tive function

L(9) = L(0) + R(9),
where

1 1 v e 1
(6) = — 5 n[S=] - Htr(SL82) + 14 Sl oL

i

and
R(0) = —%tr{(]\/[zz ~xnyez],

where 3., = MANM' + %, and 3%, = MA*AYM' + 3%,. The above objective function
differs from the objective function of the main text only by a constant and is convenient
for the subsequent analysis. By the definition of M., we have

R(0) = —QLtr {MA* if*e’ﬁl} tr[i (ere] 1}
NT t €12z 2 €4 — :

t=1
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By Lemma A.1, we have supy |R(6)| = 0,(1). Since f maximizes L(6), it follows L(f) +
R(0)) > L(#*) + R(6*). This implies that L(A) > L(6*) + R(#*) — R(O) > L(6*) —
2supgeg |R(0)| = —|op(1)|, where L(6*) is normalized to be zero.

Now consider L(f) which is equivalent to

~ 1 ~
L(0) = _f1n|zzz| tr(DESZN 414 — ln|E*| (A.6)

By X = MANM' + S, we have |Y..| = |See| - |1 + AM'SPMA|. Similarly, |XF | =
25| - |1, + A M/S ' MA*|. Then equation (A.6) can be written as

Th L. e 1 A ~o1 .
L) = — 3 [Xee| = 7 Inflr + A’M’Z’lMA| — Ntr[MA*A*’M’Z;]
1 - 1
- GBS+ S B+ L n (L, + A MISE UMY + 1

1 1o 1
— {-y el + s - yulEESs 4 1)

1 . 1 A R
+ {—Ntr[MA*A*’M’E;;]} + {—N In |l + A’M’Ee_elMA|}

1
+ {N In|l, + A*’M’z;ﬁglMA*} .
Notice that

1 ooy
Ntr[zeezzz ]

by

* x—1 1 * 1 * x—1
[Eeezee ] - Ntr[zee eelMAGA/M E ] Ntr[zeezee ] + Op(l)

N

1 A 1 .- A PR r
—tr[SE S MAGA M'S ] < C=te[AM'S P MAG) < C—
0< Ntr[ e G ] CNtr[ e G] < CN,

where we use the fact that there exists a constant C' such that 3 32! < C'- Iy due to the
boundedness of 62 and o2,

Given the above result, together with + In |1, + A¥M'S! 7! MA*| = O(In N/N), we can
further write L(f) as

) 1. . (TS I
L(6) = - { 5 I Beel - 3 In[E5] + =L 2 - 1
1 ~ 1 " N "
— {Ntr[MA*A*’M’Ezzl]} - {N In|l, + A’M’EeelMA\} + op(1).

The above three expressions in the big curly bracket are all non-negative. Together with
L() > —2|0,(1)|, we have that each expression is 0,(1), that is,

1 S 1 * * v—1

0 el — 5 n [ + S - 150, (A7)
1 -
S UIMATATMISZT 5 0, (A.8)

Equation (A.7) is equivalent to

*2
S 1o

i

1 N
N z:(hn(}i2 —Inof? +
i=1
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g

L —anjQ —1. Given that 0 < C72 < UZ-Q <(C? <0
for C > 1, for any z € [C~2,C?], we can find a constant d (for example, let d = ﬁ) such
that g(x) > d(z — 0}?)2. Tt follows

*2
A

Consider the function g(z) =lnx +

1 XN o*2 TR
op(1) = N Z(ln 62 + ﬁ —1—-1Ino}?) > dﬁ Z(&ZZ — o)

=1 ? i=1

The above argument implies
N
1
i=1

This proves the first result of Proposition 4.1.
Next, we consider (A.8), which is equivalent to

1 A 1 A A A AAN A
FIMATAM'E) = St (A0S = S MAGR MIS ) MA®|.

By (I, + N M'SIMA) ™ = (NM'S;2MA) ™ — (AMM/SEMA) (1, + N M/SEMA)

the preceding expression can be alternatively written as
%tr(MA*A’*M'fJ;)
:%tr A MISIMAT — A MUSMANM/S I MA) A MY M A
+ %tr A M MAR MY MA) (L + MM/ MA) A MS MA
Both terms on the right hand side are non-negative. By (A.8), it follows that
%tr (A MSIMAY = A MY MANMS MA) A MSIMAT| B0, (A10)

i AYMSIMANMSMA) (L + A MSMA) A MSIMAT] B 0. (A1)

By (A.9) and Lemma A.2(a), we know %tr(A*’M’ie_elMA*) converges to a positive con-
stant. Then (A.10) implies that %tr(A*’M'f}gelMA(IA\’M’ZA]e’ele\)’l/A\’M’f};elMA*) con-
verges to the same positive constant. Together with (A.11), we have (I,+AM'S; MA) ! =
op(1), i.e. G = 0,(1). Furthermore, from f’ﬁl = G(I — G)™', we have ]5];1 = 0p(1). We
obtain the following results

G = 0p(1); Pt =0,(1). (A.12)

Consider (A.10) again. The matrix on the left-hand side is finite dimensional (r x r) and
is semi-positive definite, so its trace is 0,(1) if and only if every entry is o,(1). Thus, we
have

1 * S — * * S — NI S — Ayv—14 S — *
N[A IMSZIMAT = A MSIMAR M MA) T MS MAT | B0 (A13)

Let A= (A — A*)’M’f]e_ele\fA’ﬁl. Then I, — A = A*’M’f]e_elM/AXﬁjgl. So equation (A.13)
simplifies to

1 A L Ars-A
NAMISLIMA" = (I = A) N MEIMA(L = A) % 0.
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By Lemma A.2(a) and (A.9), we know NA*’M’ A MA* = LAYM'SESIMA® + oy(1).
Thus,

1 1. - “

NA*’M’zzglMA* — (I, — A)NA’M’E;}MA(IT -4 5. (A.14)
By Assumption C.3, the expression & A*M'S; 1M A* is positive definite in the limit, so
the second term is of full rank in the limit which implies that (I, — A) is of full rank in the
limit.

Alternatively, equation (A.13) can be rewritten as
1 - - A 1. A A
SR =AY MEIMA - A7) - A(NA’M’E;;MA) A Lo (A.15)

We now make use of the first-order conditions to proceed the proof. The first-order condi-
tion (3.3) post-multiplied by A implies

NM'SZH M., —S.)SZ MA = 0.
y (A.2), the above equation can be simplified as

“IMA =0

NM'SH M, —3.)3, :
which is equivalent to

NM'SIMANM'S I MA = N M'S; N (See — 25)S I MA

M MATAMIS ) MA + MM AT L Z S MA
t 1
T
+A' M z:eel T Z SN MISTIMA 4+ A MY z:eel 7 > (eve) — B5) S MA.
t=1
With notations of P and A, we have
1 &
I = (I, — A)Y(I, — A) + jp—lA’M’z;;f > (evel — Sk )8 MAP!
t=1
/ 1 d * _Ixi—1 A p-—1 1 D—1Ax/ /A—ll d */
(I = A) 5 S eSS I MAPT + PTAME > e (I — A) (A.16)
t=1 t=1

1T oainr o . .
_WP_IA/M/Ze_el(Eee — SE S MAPT =iy iy + - + 5, say

Term iy is || P~1/2||2-O,(T~"/?) by Lemma A.3(a). Term 43 is |I — A|- || P~/2||-O,(T~1/?)
by Lemma A.3(b). Term iy is the transpose of i3 and therefore has the same convergence
rate as i3. The last term is 0p(1) by Lemma A.3(c) and (A.12). Given these results, we
have

I = (I=A) (L= A) + | P72 PO,(TV2) + [T = A - [P Op(TY2) +0,(1). (A.17)

Moreover, by the definition of P, equation (A.14) yields

—1 —1
(JbA’M’ie‘elMA) — (I, — AY (;fA*’M’ZZjMA*) (I — A) + o, (I, — A?).
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This implies that
N N 1 -1
|P2)? = tr(PY) = tr [(IT — A (GATMEIMAT) (1= A) 4 o (1 1 — AP .

The right hand side is at most O,[(A%) V1], implying that ||P~/2|| = O,(AV1), where a Vb
denotes the maximum of a and b. So together with (A.17), we obtain A = O,(1). To see
this, notice that the left hand side of equation (A.17) is bounded. Hence, if A # O, (1), then
A is stochastically unbounded, the right hand side of (A.17) is dominated by A’A in view
of |P~/2|| = O,(A), but A’A diverges. Then a contradiction arises. Thus, A = O,(1),
which in turn implies that |[P~1/2| = O,(1), or equivalently ||[P~1|| = O,(1).

Now we sharpen the result to A = 0,(1). From equation (A.17), |[P~'/2|| = O,(1) and
A = O,(1), we have

(I, — A (I, — A) — I, & 0.

And from (A.14),
1 1 N A, A
NA*’M’E;‘;lMA* — (I, — A)NA’M’EE—;MA(IT — A) = 0,(1).

By the identification condition, +A*M'S? 1 MA* and %JAX'M’EIC’JM/AX are both diagonal
with distinct diagonal elements. Applying Lemma A.1 of the supplement of Bai and Li
(2012) to the preceding two equations, we have that I, — A converges in probability to a
diagonal matrix with diagonal elements either 1 or -1. By correctly choosing the column
signs, the case —1 is precluded. Therefore, we have I, — A 2 I, or equivalently A = op(1).

Next, we consider the first-order condition on A (equation (3.3)). By (A.2), we can
simplify equation (3.3) as

NM'SH M. — 3.8 M = 0.
Using the expression of M,,, we can write the preceding equation as

T

A !
N — A=A\ + Z freSe MR + Pyt A MS ) 72 el A (A18)
t=1

1 A N A 4 A A ~ ~ A
+PVINMIS T Z[eteg — SRS MRY - PPN MY (Bee — 1) S MR

By A = 0,(1) and Lemma A.3 (d), we have that the first two terms are o,(1). By ||P~!| =
O,(1) and Lemma A.3 (b), the third term is 0,(1). By ||[P~!|| = O,(1) and Lemma A.3
(e), the fourth term is o,(1). By ||P~'| = O,(1) and Lemma A.3 (f), the last term is
0p(1). Given the above result, we have A’ — A* = 0,(1), which implies that A 2 A*. This
completes the proof of Proposition 4.1. [

Corollary A.1 Under Assumptions A-D,
14 Sv— A * *— *
(a) NA’M’EEQMA — NA 'M'SECEMA = 0,(1);
() Pv = 0,(N), P= 0,1 G = 0(N"1), Gy = 0,(1);
(c) N(A A M'SIMA = 0,(1).
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PROOF oF COROLLARY A.l. Result (a) follows from equation (A.14) and A = (A —
A M'SIMAPYY = 0,(1).

For part (b), by Assumption C.3, N~!AYM'S* ' MA* — P, > 0. This result, together
with result (a) of this corollary, implies P = O,(1) and therefore Py = O,(N). From
G = (I + Py)~', we have G = O,(N~!) and hence Gy = O,(1).

Result (c) follows from P = O,(N) and A = 0,(1). O

Appendix B: Proofs of Theorems 4.1, 4.2 and 4.5

Hereafter, for notational simplicity, we drop “*” from the symbols of underlying true values.
The following lemmas are used in the proofs of Theorems 4.1 and 4.2.

Lemma B.1 Under Assumptions A-D,

o 1 & . <
(a) PjglA’M’E;;T > (eve) — Bee) S MAPG! = O,(T7/?);
t=1
A1t 1
(b) PNlA/M/EeelT Zetft 1/2);
1 1 Y :
D17 =15 S—larhip—1 4 L A2 2\2
(¢) PR'AM'S} (S — See) S MAP! = mop([N;@ o27]*);
T
(d) TthetzeelMRNl =0 (T_l/Q)a
t=1
o 1 &
() PyNM'SL! Y leve; — Seel 5o MBY! = 0,(T1?);
t=1
1 1 Y !
B—1117 =1/ S—19 7 H—1 A2 232
(f) P'AM'S (See — See) S MRy ﬁ0p<[N Zl(az o27?]")

ProOOF OF LEMMA B.1. First, we consider (a). The left hand side is equal to

R 1 N N ko 11 k ) )
P_lﬁ [Z Z ( Z )‘Pmip> 5252 T Z[eitejt - E(eitejt)] ( Z qu)\f]ﬂ P_l,
i=1j=1 p=1 (I = | q=1

which is bounded in norm by

N N N T
P Y 5 N S| Dlewest — Bleueinl| ]

i=1 p=1 i=1j5=1 t=1

1

N k
1 1 « 2 . 1 )
NZ 612‘;%% = S AMEMA] B | SN MS MA] = u(P). (B.D)

T 2
T Z[eitejt — E(eitejt)]‘ } = O(Tﬁl)7

i=1j=1 " t=1
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together with Corollary A.1(b) and (B.1), we obtain (a).
Next, we consider (b). The left hand side can be written as

1

k
A 1 “
P N;&Q(Z)\pmlp)fgeltft/,
which is bounded in norm by

N 1
-1
CIPMI 5 )

-
Il
—

which is O,(T~'/2) by (B.1). Thus, (b) follows.
For part (c), the left hand side can be written as

N k ~2 2 k R R R
p];1/2 [ p};l/Q ( 3 Xpmip) ok 401 (Z miqA;) PJQW} P];m’
= %

which is bounded in norm by

N k
A—1/2 1 1s-1/2 3 2
C? By 1P 30 5| PP (D A )| (87 = o). (B-2)
1= 1 p=1
Since
1 a1y £ 2
Z? ‘PN Z)‘me =r
=1 "t p=1
by (A.5), this gives
k
Lia-1/2 x4
P L lepmip < VT
p:

Hence, expression in (B.2) is bounded by

%

G IS ;Hp];lﬂ(i Spmap )| (67 = o),
=11 p=1

which is further bounded by

N

. N oq 2,1/2 1/2
VI IR [ Y = | [oer a2
=1 "1 1

k
’P1;1/2 Z ApMip
p=1
Then result (c) follows by noticing that Py = O,(N).

The proofs of the remaining three parts are similar to those of the first three. The
details are therefore omitted. [J

Lemma B.2 Under Assumptions A-D,

) NP A 1
A= (A= N MSIMAPE = 0,(T7%) + Oy (1A =A%) + 0, ([

=
7
=)
STho
|
Sqw
N
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PrOOF OF LEMMA B.2. Consider equation (A.16) in the proof of Proposition 4.1, we had
shown A = 0,(1). So term AA’ is of a smaller order and hence negligible. With Lemma

B.2 (a), (b) and (c), equation (A.16) can be simplified as

i)
/
=
¢
>
=0
\
Q
S~—
[\
—_
[ I
N—
—
os)
w
SN—

A4+ A =0,(T7Y?) +

By the identification condition, we know both A’'(%M'S_ M)A and A’(%M’f}gelM)f\ are
diagonal matrices, which implies

ng{A’( M'SZIM)A — A’(NM’ig;M)]\} =0,

where Ndg denotes the operator which sets the diagonal elements of its input to zeros. By
adding and subtracting terms,
A 1 ~ “ A

ng{(A ~ AY (S MDA + R

1 A A 1
SMEL MR~ A) + [NM’
By Lemma A.2 (b), %M’i;elM = +M'S; M +0,(1) = R+0,(1), where the last equation
is due to Assumption C.3. So term (A — A)’(%M’f]e_elM)(A —A) = Op(||A — Al?). Given
this result, together with Lemma A.2(a), we have

—(A =)

ee

ng{([\ CAY(EMSIM)A + A

- Loars-tan i - A)} (B.5)

N
N
> (0t o).

Notice that (A — A)’(%M’ie_elM)/AX = (A— A)’(%M’ie—elM)[\ﬁ—lﬁ = AP, where the last
inequality is due to the definition of A. By P = P + op(1) from Corollary A.1 (a), we have

Op([IA =A%)

Z\H

(A — A)’(%M’igelM)fx = AP + 0,(A).

According to the preceding result, we can rewrite (B.5) as

N

NAg{AP + PA'} = Oy(|& ~ A?) + 0y(1: 367~ 21, (B)
=1

where oy,(A) is discarded since it has an smaller order than other terms.

Now equation (B.3) has r(r -+ 1) restrictions and equation (B.6) has ir(r — 1) restric-
tions, the r X r matrix A can be uniquely determined. Solving this linear equation system,
we have

A= 0T )+ Op(IIA = AI?) + 0, ([ Yo (67 = 07

This completes the proof. [J
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ProOF oF THEOREM 4.1. We first consider the first order condition (3.4), which can be

written as
diag { (M. = 3.) = (M — $2)S MAGN M’ = MAGNM'SZH(M.. - 51.) | =0,
where “diag” denotes the diagonal operator and G = (I, + A’ M'SZ'MA)~L. By

1 & 1 & 1
M., = MANM' + %, + MAT > fre; + 7 > efiNM + 7 > (ere} — See),
t=1 t=1

with some algebra manipulations, we can further write the preceding equation as

T
67;2 —U? = l2:( 2 0 +2miA = thezt —2m; AGA’MZ MAlthe,-t
Tt 1 T T
a1 &
—2m A Z ftet 1MAGA’ml - QmQAGA’M’ e_elf ;[6136“ — E(eteit)] (B?)
+mi(A — A)(A — A)'m; — 2ml(A — A)N'm; + 2m(A — A)NM'S P MAGA m;
2 2

% ! AGA/mZ

+omA(A — AY M'S P MAGK m; + 22

’L

By GPy = PyG = Iy — G, we have G = (Iy — G)Py' = Py'(Iy — G). Then, the third
term on right hand side (ignoring the factor 2) is equal to

miA(Iy — Q)P A M'S, MAL Z freiw = miA(Iy — G)(I — A) Z fieir  (B.8)

t 1

and the sum of the seventh and eighth terms is equal to —2m/(A — A)GA’m;. Define
T

_ A A~ 41 N R
Z fie/ S MAPSY, § = PNIA’M’EEJTZ(Q@; ) N
t=1

Now consider the sum of the fourth and ninth terms. By G = (I N — G) together with

the definitions of 1), this term is equal to

—2miA Z Fies ST MAGA m; + 2miA(A — A M'SZ  MAGA'm

= —2miAz/1(IN — O)N'm; + 2m/AA(Iy — Q)N m;
= 2miAPGAN m; — 2mAAGN m; — 2miAG(A — AY'my + 2miAA(A — A)'my;

+miA(A+ A = — o )N'm.
Also, by (A.16), we have

At A=AA+¢+ (I — AP+ (I, — A) — PRIAM'SH (Bee — See) B2

or equivalently
AfA—ip =) = AA+¢— A — P A— PP NME (S — Tee) S MAPYE.
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Thus, it follows that

—2miA Z fiey ST MAGA m; + 2miA(A — A M'SZ  MAGA'm (B.9)

= 2miAPGN m; — QmiAAGA mi — 2miAG(A — AY'm; + 2miAA(A — A)'m; — miAA’ AN m;
—miAGA m; + 2miAA PN my + mIAPYIN M/ (See — See)Sot MAPY A m.

Using (B.8) and (B.9), we can rewrite (B.7) as
T
Z — 2mj( Z fuew + 2miAG = Z freit (B.10)

+2m ’AA’ Z freir — 2m; AGA’ Z frei + 2m; AwGA’mZ
t 1 t 1
— 2miAAGA m; — 2miAD(A — A)'my; + 2miAAA — A)'m;
2 2

+miANA" AN m; — 2m), AA'@Z)A’mZ —2m) (A A)G’A'ml + 92 Lm; AGA’mZ

Uz

+ m;AéBA’mi — m;Apﬁlf\’M'f]e_el(f)ee — Eee)f]e_ele\PﬁlA’mi
T
U | . .
— QmQAGA’M’EeE}T Z[eteit — E(eteir)] + mi(A — A)(A — A)'m;
t=1
=a;1+ a2+ -+ a7, say.

By the Cauchy-Schwartz inequality, we have

N

Z > <17 > (a4 -+ lair ).

=1

The first term N~ SN Jlayi||> = O,(T~1) by

The second term is bounded in norm by

4C?|A AQlN Ly (T
1A - ||N;\\T;fteu = 0p(T7)
by A — A = 0,(1) and
1 X1 g 2 .
E{N;HT;fteit } :O(T )-

Similarly, one can show that the 3rd, 4th, 5th, 6th, 8th, 11th and 14th terms are all
0,(T~1). The 7th term is bounded in norm by

. . 1 XN
(AAP - AP - 1G)? - ||A|!2)NZ [,
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which is O(N 2T + 0,(N2)- O,(1& = Al) + 0,(N ) 0,3 S0 = ) by G =
Op(N71Y), A= A+o0,(1) and Lemma B.2. This result can be simplified to +- SN airl? =
0p(T71) + op(||f\ Al%) since Op(N72) - Opl+ SN (62 — 0?)] is of smaller order than
+ SN (67 — 02)2. Similar to the 7th term, the 9th and 10th terms are both of the order
op(T~1 )+0p(HA A||?). The 12th term is op(HA Al[?) by G = O,(N~1). The 13th term
is of smaller order term than ]{, SN (62 — 02) and therefore negligible. The 15th term
is op( YL, (62 — 02)) by Lemma B.1 (f). The 16th term is O,(T~!). The last term is
Op(HA — AJ|*). Given the above results, we have

1 - .
NZ(U?—U?V:%(T Y+ op(|A = AlP). (B.11)
=1

Next, we derive bounds for [|[A — A||2. By equation (A.18), together with Lemma B.1(b),
(d), (e) and (f) and Lemma B.2, we have

N
A—A=0,T7?) +0,( Z )21/2). (B.12)

Substituting equation (B.12) into (B.11), we have %Zi]\;(&? —02)%2 = 0,(T~Y). This
proves the second result of Theorem 4.1. [

To prove the first result of Theorem 4.1, we need the following lemmas.

Lemma B.3 Under Assumptions A-D, we have

— Op(N—lT—l/Q) + OP(N_1/2T_1) + Op(T_3/2);
T
(b) PyA’M'S} ! S ef] = Op(NV2T7Y2) L 0, (T7Y);
(C) P*lA/M/i]—l(iee o Eee)i;glMApﬁl — Op(N—lT—l/Q);

L n, eiarn g _
(d) 7 fiefSe MRY = Op(N 127172y 4 0, (T7Y);

() P]glf\’ (M/i_li Z[eteé - Eee]ie_elM> }?;[l
= p(N—lT—1/2) + Op(N_l/ZT_l) + Op(T_g/g);
(f) PRAM'S7 (Bee — See) St MRY = O,(NTIT7Y/2),
PROOF OF LEMMA B.3. We first consider (a). We rewrite it as

I i 1N A AL
1A’( M'E = Z(ete; — See) S M)AP,
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Since we already know that ||[P~1|| = O,(1) and N Op(1), we only need to consider
the term in the big parenthesis, which is

1 I
/ . . —_ . .
NZT Zzljzl mim; 6Z2 AJ2 ;[ezteﬁ E(elte]t)]
1 1y/1 1\
NZT ;]Zlmz (5'722 ;3) (AJQ O_JQ) ; eztejt eztejt)]
LSS )y (= L) S eness - Beues)
N T = 1] 1 ;20 9573
1 1,1 1
N2T ;; mzm];? (&—3 0—3) ;[eitejt — E(eitejt)]
1T
!
N2T ;jzl mim; g UJQ. ;[eitejt — E(eiejt)).

By the Cauchy-Schwarz inequality, one can show the first term is bounded in norm by

Cs(% i(ﬁf - 01'2)2> (% g: % H% zT:[eitejt - E(ez'tejt)]H2>1/2,
; i=1j=1 " t=1

which is Op(T*3/ 2) by the second part of Theorem 4.1. The second term equals to

1%%771‘”1/,1( )ietet_ E(eie;t)]
(3 (] (2
N?T = Toi 6} = ’
1 1 1y 1 &1
= N Z m; (? - ?) (W Z Z gmi{eitejt - E(eitejt)]),
Jj=1 J J i=1t=1 "1t
which is bounded in norm by
1 201 L1 L& 1 291/2
4 22 2\2 Teorerr — e
C {N jz_:l("j ~a})’] [sz_:l (NT;; ;szz[ezteyt Beaes)]) |,

which is O,(N~1/27~1). Similarly, the third term is also O,(N~Y2T~1). The last term is
O,(N~'T~1/2). Hence result (a) follows.
Next, we consider (b). The left hand side of (b) is equivalent to

1 A 11 d 1 al
NMzeeTZetft ZAzml Zeztft
t=1 =1
1 K-l 1,1 1y1d
:WZZ?TR@ éezt‘i’NZ:(ﬁ—ﬁ)TZmzf{en
i=1t=1 "1 i=1 7 3 —1



The first term is O,(N~1/2T~1/2). The second term is bounded in norm by

. N e 1/2 1/2
LSS ER S PO s

=1

)

which is O,(T~!) by the second part of Theorem 4.1. Hence. result (b) follows.
For part (c), the left hand side of (c) is equivalent to

A 1A 1 ~ ~ ~
P‘lA’(ﬁM’Ee_j(Eee — Do) S M)AP,

It suffices to consider the expression in the parenthesis:

1 & 62 — o2 1 &, (62— a2)2\1/2
2 %< (3 Zumzu) (N;Hmiu T

which is O,(N~'T~1/2) by the second part of Theorem 4.1. This proves result (c). The
proofs of results (d), (e) and (f) are similar to those of (a), (b) and (c). The details are
therefore omitted. [

Lemma B.4 Under Assumptions A-D,

1
VvVNT

Proor or LEMMA B.4. Consider equation (A.16). Using the results in Lemma B.3 and
the fact that A’A has an order smaller than that of A and is therefore negligible, we have

A+ A =0, <\/]1/7T> + 0, @) . (B.13)

Now consider the term +A’M'(3.! — ¥')M A, which can be written as

. . - 1
A= (A - AN MY MAPY! :0,,( >+O ( )+O (JIA = AJ?).

Lt - s A’[—l §Nj /00 - U’Z]A (B.14)
— = — m;m, :
N e e N &= G207
N ~2 2 N ~2 232
1 67 — o; 1 (67 —of)
— NS mam LA N [ i %) 1A
[N 2 s le } + [N 2 m;m,; A?Jf‘ }

by the boundedness of m;, 52, 0% by Assumptions C and D. Substituting (B.10) into the
first expression on the right hand side of (B.14) and using the same arguments as we did
at before (B.11), one can show that the first expression is O,( ) + 0p(7). Hence, we

have

5= E‘H

1 ~ 1
—NM' (S —S2HMA =0 ( ) + 0, ) B.15
N ( ee ee ) p \/W ( )
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Now consider (B.4). Using the same arguments as in the derivation of (B.6) except that the
result for %A’M’(f};} — ¥ )MA is given by (B.15) instead of o,([+ N (62 — a2)H/?),
we have

1 1
Ndg{AP + PA'} = O ( )—i—O ( )—i—O A—A B.16
e{ b=\ 57 (1A = AJP). (B.16)
Solving the equation system (B.13) and (B.16), we have

4=0, (=) +0, () + O1A - A1),

as asserted in this lemma. This proves Lemma B.4. [J

PROOF OF THEOREM 4.1 (CONTINUED). Using the results in Lemma B.3 and Lemma B.4
and noticing that ||A — A||2 is of smaller order than A — A and therefore negligible, we have

from (A.18) X .
e e}

as asserted by the first result of Theorem 4.1. This completes the proof of Theorem 4.1.

Corollary B.1 Under Assumptions A-D,

A= (A - AM'ESIMAPS =0, (\/]1\77) + O, (;) :

Corollary B.1 is a direct result of Lemma B.4 and Theorem 4.1.

Lemma B.5 Under Assumptions A-D,

thet MR = thet JMRY + Oy(N —12p=1 4 0, (1732,

T T

1 1 _ _ _
() By RMST LS eofl = Py NMSL LS efl + 0N VAT 1 0,(17H2);
t=1 t=1
1 o1 _ 2 1 X Kig— 0}
(c) NM,(E“ — Z}e ;; 4mz °) + NTZmimgﬁ

+ O (NTIT712) 1+ O (N~V2T1) 4 0,(T 7).

PrROOF OF LEMMA B.5. Equation (B.10) can be written as

. 1 &
01-2 — 01-2 =7 ;(e?t — 01-2) + R, (B.17)
where
ian o 1 &
Ri = _2m;AGA/M/Ze_61T Z[eteit — E<€t€it)] + Sz
t=1
with
Sz = —2771 Z fte,t + 2m AG Z ftelt + 2m AA/ Z fte,t 2m AGA/ Z ftelt
t 1 t 1 t 1



+ 2mAGGN m; — 2mAAGA m; — 2miAP(A — A)'m; + 2miAA(A — A)'m;
52 _ 52
+miANA" AN m; — 2m), AA'Q/)A’mZ —2m!; (A A)GA/mZ +2 gi —0;

m; AGA’mZ

Uz

+ miAGA My — M APTIN M'S 7} (S — See) S MAPG A my + mi(A — A)(A — A)'m,.

Given that ¢ = O,(N~'/2T=1/2)4-0,(T~") by Lemma B.3 (b), A—A= O,(N~Y27=1/2) 4
Op(T~1) by Theorem 4.1, A = Op(Nfl/szl/Q) + Op(T~1) by Corollary B.1, by the same
arguments in the derivation of (B.10), we have

1 N
N Y 8 =O0p(NT'T72) + Op(N?T71) + Op(T 7). (B.18)
=1

We now consider
2

)

N T

1 A R

N g ‘m;AGA'M'Z 11 E ereir — E(eeir)]
i=1 t=1

which is bounded in norm by

. . T 2
C*ANI* - IGw? Z]NM’ze;Tzetew— (evein)]]

Since A = A + 0p(1) and G = O,(1), it suffices to consider the term
'2

9

L Z Larst LS e - Blerea)

t 1

which, by the Cauchy-Schwarz inequality, is bounded by

1 &1 l 2

% Sl g -
1,1 MNe2—o2 T 2
+2N Zl ’NT ]; ]AJQO,JQJ my ;[ejtezt E(ejtelt)]’ .

The first expression is O,(N~1T7!). The second expression is bounded by

[+ (62 — o [ Ty \T cuesi — Bleuen)| | = 0,T72)

7j=1 i=17=1

Given the above result, we have

1 S PR AR are—1 L L 2 1 1
N;’mZAGAME getezt_ eteit)]’ :Op (M)+Op (1—12>

This result, together with (B.18), gives
1 1
2
15520, () <0 (1) 19
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Notice that

1 zT:fte'E_lM = Lizifte'tm
t~ee - ) ? 7
NT t=1 NT i=1t=1 %i
1 X1 1 L ZLs2—g2
= =2 D sheami— 2> Y Lot frewm
NT == oi "ONT o dio
The second term can be written as
N T T 1 NT oy
Tg ZZ Z %0 thezt o2ym) + NT ZZ 7&202Rifteitm;
i=1t=1s=1 i=1t=1 "1t 1
The second term of the above equation is bounded in norm by
1 120y N 1 T 911/2
ol el B £l el
IR g g e ]

which is Op(N~2T~1) 4 0,(T~3/2) by (B.19). The first term can be written as

N T 1 . ;] N7 62 — g2 ) ,
/
2ZZngtelt imi — NT2 ZZZ 3 i ~ frei(eis — o7 )my.
i=1t=1s=1 "1 i=1t=1 s=1 0;0;
The first term of the above expression is O,(N~/27~1). The second term is bounded in
norm by
N 1/2 N T T 1/2
1 1 1 2 1 2
S FDICELAH RN TS o P oF 220 ) T o S W
N N HTt:l HT ="
which is O,(T~3/2). Given the above results, we have
iZTffte’i‘lM = iiﬂe’z—lMﬁLo (1) +0 (1> (B.20)
t~ee - t~ee p D . .
T NT ~ VNT T3/2

Given (B.20), together with R = R+ 0, (T_l/z) we immediately obtain (a). Given (B.20),
together with P = P + O,(T""/2) and A = A + O,(—~=) + O (%), we also have (b).

o( T
We now consider (c). The left hand side of (c) is equal to
N »2 2 N »2 2 N (52 2)2
1 9; — 9y / 1 9; — 0 r L (67 —7) /
——Zimwp:—— Mimy; + — Y ey,
52 2 M 1 i =2 4 i
N & &io; ! N ; o; ! N; 207 !

We use 71 and io to denote the two expressions on the right hand side of the above equation.
We first consider ;. Substituting (B.17) into this term, we obtain

N ~2 2
. 1 Ui — o’ 1 1
b= = LSS L oty
Ni=Z o i=11t=1 %
L~ 13 d 1Y
+25: Y —tr[AGK Z evei — Elevea)lmy|mam| — Z = Simim
=1 t=1 i—1 %i
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Consider the second expression. The (v, u) element of this expression (v,u=1,...,k) is

N T
1 A . 1
tr[ﬁ D AGNM'S, 11 Z ereit — eteit)]gmémivmiu}

= i

which can be proved to be O,(N~'T~Y/2) 4+ O,(N~'/2T~1)4-0,(T~3/?) similarly as Lemma
B.3(a). The third term is bounded by

1 N 1/2 B B B B B
c’ [NZSE} = Op(NTIT7Y2) 4 O,(N~Y2T71) + 0,(T~3/?)
=1

by (B.18). Hence, we have

we can write 29 as

1 & 2 _g2 2 1ol Yo1 o1 2 R2m
= Z [ (e5—0; )} mimi—l—Qﬁ Z Py {f Z(ezt )}R mim,+-— Z 52 4 m;m
NiZe =1 i=1 %% "1 4 im1

We analyze the three terms at right-hand-side of the above equation one by one. The
second term is bounded in norm by

2CSLN1T2 221/2iN’R21/2
[N;]thfeﬁ—ai)} [Nz i} ,

i=1

which is O,(N~1/27~1) by (B.19). The third term is bounded in norm by

C81N 2_o, (L) 1o, (2
N R=0  (w7) + 00 (72)

by (B.19). Finally, the first term can be written as

Len 11l s 22./1N3¢2—UZ‘21T2 2
N;JZ@{T;(eit—Ui)} mzmi—ﬁg 6?0? [T;(ezt—al)} mim;

The first term of the above expression is equal to

1 & Kig — 0} ! 4 O (N~-Y2—1
i=1

(2

The second term is bounded in norm by

- S5t - ol v E Sy

=1 =1 t=1

411/2
o2 } — 0,(T%2).
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Hence, we have

. Nﬁi74—0;1 L0 1 0 1
2= R 2 e i+ O vr) T\ )

Summarizing the results on i; and iz, we have (c). O

PRrROOF OF THEOREM 4.2. We first derive the asymptotic behavior of A. Consider equation
(A.16), using Lemma B.3 (a) and (f), Lemma B.5 (b) and Lemma B.4, we have

A+ A =n+1 +Oy(NTIT7V2) 4 O,(NTY2T71) + 0,(T~3/?),
where

-1 1
n= NT thet MAP~

Let vech(B) be the operation which stacks the elements on and below the diagonal of
matrix B into a vector, for any square matrix B. Taking vech operation on both sides, we
get

vech(A + A') = vech(n + 1) + Op(N"'TY/2) + Op(N"V/2T 1) 4+ Op(T /7).

Let D, be the r-dimensional duplication matrix and D;" be its Moore-Penrose inverse. By
the basic fact that vech(B + B’) = 2D, vec(B), for any r x r matrix B, we have

2D vec(A) = 2D vec(n) + Op(NTIT7Y2) 4+ O,(N7V2T~Y) 1 0,(T73/%).  (B.21)
Furthermore, define
C:A,{liimlm;(e202):|/\ :A/|: 1 iHZA_U ,:|A
N ;1 it 7 ) H NT m; .

=1

’ﬂ

Proceed to consider equation (B.4). By Lemma B.5(c) and A — A = O,(N~1/27-1/2) 4
O,(T~1) by Theorem 4.1, we have

/ 1 1
Ndg{A (NM STIMYA — A) + (A — A (NM S M)A}
= Ndg{¢ — u} + Op(NT'T712) + Op (NPT + 0p(T7/2).
Using the same arguments in the derivation of (B.16), we have
Ndg(AP + PA') = Ndg(¢ — p) + Op(N"'T72) 4 Op(NTH2T71) + 0, (T7%/2).

Let veck(B) be the operation which stacks the elements below the diagonal of matrix B
into a vector, for any square matrix B. Let D be the matrix such that veck(B) = Dvec(B)
for any r X r matrix B. By the preceding equation,

VeCk(AP + PA,) = Veck(( _ /’L) + Op(N—lT—l/Q) + Op(N_1/2T_1) + Op(T_3/2),
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or equivalently
Dvec(AP + PA') = Dvec(¢ — ) + Op(N~1T7V2) + O, (NPT + O,(T7/2).
Using vec(ABC) = (C" ® A)vec(B), we can rewrite the preceding equation as

D(P& 1)+ (1@ P) K, Jvec(4) = Dvec(C— )+ 0y (N T Y2) 10, (N"Y2T~1) 40,(T%2),

(B.22)
where K, is the r-dimensional communication matrix such that K,vec(B’) = vec(B) for
any r X r matrix B. By (B.21) and (B.22), we have

2D;f _|2D;fvec(n) 0 0
[D[(P ® 1)+ (Ir ® P)KT]] vec(A) = [ 0 1 + [Dvec(o] B [Dvec(,u) (B.23)
1 1 1
Ol T O )+ Ol

2D+ 2D+ 01 )
Dy = " Dy = r Dy = | 2rHxr* )
! [D[(P ®1)+ I, ® P)Kr]] r2 lolr(r_l)wgl 8 l D

2

The above result can be rewritten as

Dyvec(A) = D2vec(n)+D3vec(§)—ngec(/ﬁ)—i-Op(N}/T)—i-Op(\/%T)—E—Op( ;/2) (B.24)
Also, notice that
1 L& 1 L&
vec(n) = VeC[NT ;; U—?fteztm AP } (P7IN ®1,) ﬁ ;; U—ZQ (mi ® fr)ei,

VeC(C):VeC[A,MZZ ;1 (ezt—UZ)A] A®A IWZZ? mz®m2)(€t—0'i)

i=1t=1 i i=1t=179
and
;1 ks -0t ;1 &1 4
vec(u) = vec|A NT ; -0 mim; Al = (A®A) NT Z:ZI O_—?(mi ®@m;)(kia — 0;).
Given the above three results, we can rewrite (B.24) as
N T 4
vec(A) = DDy (PN @ 1) ZZP m; @ fi)ei (B.25)
z:l t=1 "1
1 L& 1
Dy 'D3(A®A) — — 5 — o7
+ 3(A® NT;;af (mi @ my)(ej, — o)
-D;'D A®A’L im®m (kig — o)
3 NT P O_ZG % z %, I3
1 1 1
+0 +0,
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Consider equation (A.18). Using the results of Lemma B.5 (a) and (b) and Lemma B.3
(e) and (f), we have

. 1 & 1 L
N—N=—-AN+— Z FeiS MR 4+ PTIN — M5 S e flA
NT t= “ NT “ t=1

e X C )

Notice that

VeC|:]VlTth6t S MR~ ] :Vec[NTiV:zT:

and

1 T AR AR |
vec P_IA,W etft :| — VGC[P_IA/ZZQ eltftA/:|

t=1 i=11t=1

where K, is the commutation matrix such that K,,,vec(B) = vec(B') for any m x n
matrix B.
Taking vectorization operation on the both sides of (B.26), we have

. 1 X2
-1 -1
vec(A' — A') = [Kkr[(P N)oAl+R e IT] T YN = (mi ® fir)e

i=1t=1

0, <m> +0, <T§/2> . (B.27)

ﬁ,\,\ —

_|_

— Kir(I; ® A)vec(A) + O, <N1JT>

1 XL 1 XL
vec(A A’)zBl—sz(mz@)ﬁ)ezt By —— ZZ*(mz(@mz)(@zt_UzQ)
NT = & o? NT = = o}
+iat0 1)+o (1>+0 (1 ) (B.28)
T PA\NVT PA\VNT PA\T3/2)"

where

By = K, [(P'A) @ Al + R @ I — Ky (I, @ D7Dy [(PTIA) @ 1],
By = Kjr (I, ® A)D;lﬂ)g(A @A),

A= BQ—ZZ (m; @ my;)( /@74—0;1).

11t1
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Given the above results and by a Central Limit Theorem, we obtain as N,T — oo and
N/T? =0,
A 1
sqrtNT {vec(A/ —A) - fA] 4 N(0,Q),

where ) = lim Qp with
N—oo

N
P
Oy =B1(R® I, IB%1+]B%2[ Z 2,4 o} m;)®(mim§)] 5.
=1

~.

This completes the proof of Theorem 4.2. [J

PROOF OF THEOREM 4.5. By the definition of f; = (NM'S; MA)"'A/M'S; 1z and A,
we have
fi—fi=-Af+ P—ILJ\’M’E;@.
then the first term of the above
)(b), we know P = P + 0,(1) and
P = 0,(1), and from Assumption C.3, we know Py, = hm P where Py, is positive definite

N—oo

From Corollary B.1, we know A = O (\/7) + Op(%),
equation is O (\/—) + Op(%). From Corollary A.1 (

matrix. Consider the part LAM'S ~ler, which can be rewritten as

LD SR 2 1% PO
— Ame ——AM —— Nmgey + — Y'mge;
AQ 1Cat ty A2 2 1Cat AQ Gty
i=1 7 N = oio
where m; is the transpose of the ith row of M. Use a1, a9, a3 to denote the three terms on
the right hand side of the above equation. Term ay can be shown to be O (\/7) +0 (TS/Q)
by the equation (B.10). Term a3 can be shown to be O (\/7) +0,(7) by equation (A.18).
Then we have

1 . 1 1
—ANM'ST e, A’M > () () .
N ee catOp( 5z )+ O (7
Therefore,
. 1 1
ft ft t \/ﬁ p T

Based on the above result, by a Central Limit Theorem, we obtain as N,T — oo and
N/T? -0,
2 d _
VN(fi — f1) S N(0, PZY).

This completes the proof of Theorem 4.5. [J
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SUPPLEMENTARY MATERIALS (not for publication)

This supplement includes Appendices C to G, where we provide detailed proofs for the

theorems in Sections 5, 6 and 9, and more simulation results in addition to Section 8.

These supplementary appendices are for referees’ convenience, not for publication and
they will become online available material.

Appendix C: Proof of Theorem 5.2

We only derive the asymptotic result under Hy : L = M A. The consistency of the test can
be easily verified. In addition, we note that since AT —A = O o ( \/—) +0p(7), the proof for
the statistic calculated by At is almost the same as the statistic calculated by A. Hence,
we will only consider the statistic calculated by A in the proofs below. We first consider

the term
%(Mf\ RSN MA - 1) = % [M(]\ ~ N = (- L) S [MAE - 8) — (£ - D)
~(A- A)’[%M@;}M} (A—A)— (A—AY [NM ML - 1)
- [%(z — LYSM|(A - A)+ %@ - L)’igg(i —L)=I,—I,—I.+1; say
Consider the first term I,. Notice that
%M’i;jM - %M’E;M = 0,(1) (C.1)

by Lemma A.4 in the supplement of Bai and Li (2012). This result, together with A—A=
Op(ﬁ) + Op(7) by Theorem 4.1, gives I, = Op(57) + Op(72).
For the second term I, the term inside the squared parenthesis is

ql‘,_n

1 1Y
e /~—1
Mz Z
z:l
According to (A.14) in the supplement of Bai and Li (2012), we know that
i —l;=(L—LYS LA — HE'S; N — L)(L — LYSZ LI,

T T
CAES (Y el S~ HES (1Y eff) LS LA

=1 =1
NN T R R 1. X
—H(Z Z ~5-9 1l;f Z[eitejt — E(eitejt)DHli + HZ jlll;((}? — O'?)le
i=1=1%9 =1 =1 0
et L d 1701
+HI'S (TE i)+ HU'S L(Tgftezt) (C.3)
X1 1 & 1
+H< Z T2ZJT Z[ejtezt — E(@ﬁezt)]) — HllTQ(a'E — O'ZQ)
j=1"J t=1 o;
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Substituting (C.3) into the right hand side of (C.2),

i=1 "1 t=1 =1 t=1
1 X1 1 & 1 X1
(=S Sml ) HLS ' L(= NSULH+ (— S = 'S 'LH
(N ; 5’12 m; z) ee <T ; ftet) ee + (NT ; 5_12 mleltft) ee
1N NN T
_ (N 3 ?mzl;)H( Do somplili Y leacsr E(eqe;)])
i=1 "1 i=1j5=1 "%"J t=1
1 NN .1 L R 1 M g2 g2 N
- ] e — FEleqeH — — v Yl H
+N ;; 52 ~92' Mty ;[ezteﬁ (eieje)] N ; 51 mit;
Similar to (C.1), we have
1Y 1Y
i=1 Yi i=1 "1

N }2 m;l; = Op(1). Now we analyze the terms on the right hand

side of (C.4) one by one. The first term is Op(ﬁ) +0,(7) due to (C.5) and HLS ML -
L)y=0 (\/%)—I—O (%) by (C.10) in the supplement of Bai and Li (2012). The second term
is Op( 57 )+O0p(72) by the same argument. The third term is O, ( \F) by (C.5) and Lemma
C.1 (f) of Bai and Li (2012). The fourth, fifth and sixth terms are all O (\/7) + Op(%)
because L'S'LH = O,(1) by Lemma C.1 (a) and HL'S, (3 S ef)) = p(ﬁ) +
O, (%) by Lemma C.1 (e) of Bai and Li (2012) The seventh term is also Op(ﬁ) +Op(7)
since I'S'LH = 0,(1) and oSN pd Lmenf! = Op(ﬁ) + Op(%), where the proof of
the second result is implicitly contained in the one of Lemma C.1 (e) of Bai and Li (2012).
The eighth and ninth terms are both O (Nf) + Op(%) by Lemma C.1 (c) of Bai and Li

(2012). The last term is Op(rﬁ) by the same arguments as the third term. Summarizing

which implies that %

all the above results, we have

AMENE 1) = op<\/]%>+0p<;).

This result, together with Theorem 4.1, shows that

1 1

Term I, is also Op(57) + Op(7=) since it is the transpose of I,.
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We now consider the last term I;. We first rewrite equation (C.3) as

T
A 1
li—1; = T > frei+ T, (C.6)
t=1
where
Ti=(L—-L)YS LA — ALS ML — LY(L — LYS LA
NP 1 & A pe 1 & —ian
—HL’Z;QL(T > fuel) S LHL — HL'S! (T S e ) IS LA
t=1 t=1
NN T A CNoq A
_H<Z Z 5.2~2M; Z[eztejt - E(eztegt)})le +H Z ?lzl;(&f — o7 )HI;
i=1j=1"1"] t=1 i=1 Yi
PGS . 1 &
FALS (2 e )= AUSZHE - L) (53 fren)
t=1 t=1
N 4 4T 1
+H( Z l T Z[eﬁe,t E(e]tezt)]) Hli~—2(02 - O'ZQ)
j=1 t=1 7i
Now term I; can be written as
N T
1 1 . A 1 171 1 /
Iq= N Z ?(li — 1)l =)' = N Z 52 [T theit + 7;] [T Z freir + 7;}
i=1 "1t =1 "1 t=1
N T T N
1 171 1 ro1 1
= NZ?{Tthezt} [Tthezt} + = Z;[ thezt] T
i=1 "1 T =1 t=1 N =
+121T[12T:f }I+1§:17’ o+ I, + He + II
AT ~9 p— €; e sy =
Ni:1 6’12 7 Tt:1 tCit lel 6’3 ily b d-
First consider II,, which can be written as
1Y 1 & B RN 1< /
I, = N Z { thezt] {T Z fteit] N Z 5252 { Z ftezt} [T Z fteit} . (C.7)
i=1 7 t=1 i=1 9% t=1
The first expression of (C.7) is equal to
1 NI T 1
YN S fiflleaeis — Eleqeis)] + =1
NI mE S T
The second expression of (C.7) can be written as
N ~92 2 T T N /~2 T
1 g; —o;r1 1 o1 (62 — o? 1 !
Y 1 *theit *the’it - ~2 4 thezt *theit .
NiZ o {T t=1 } {T t=1 } N = [ ] [T t=1 }

(C.8)
Equation (B.9) in the supplement of Bai and Li (2012) implies that

T
1
ot = (ko) 4,
t=1
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with

2 _
Z 87 = Oy 3) + Oplig).
Consider the first term of (C.8), Wthh can be written as
1 ad 612 — Uz 1 N 5’22 012
AT Z 4 Z Z ftf €it€is — (eztezs)] Z 5 I,. (C9)
N o T2t 15=1 NT = o;

The first term of the preceding equation can be further written as

Z Z ftfs €it€is — (eiteis)]

t=1s=1

N T T 1 1 N T T T 1
NT3ZZZZT;ftf [Ezuts_E(Ei,utS)]"‘WZZZijth Ei,uts)s

u imlu=1t=15=17
where €; 15 = (€5, — 02)[eireis — E(eireis)]. The first term of the above equation is bounded

in norm by

911/2

“frns] [r gl sl ]

which is O (\/7) +0 (%) The second term is O (\/W) The third term is O(+).
Given the above analysis, we have that the first expression of (C.9) is Op( \/ﬁ) + Op(%).

~

Consider the second term of (C.9). Ignoring I, this term is equal to

1 XS
TQZZ +NT27

i=1t=1
The first term is O, ( ]\lsz) The second term is bounded in norm by C?% (4 N o SH2
which is Op( \/ﬁ) + Op(Ti). Summarizing all the results, we have shown that the first

term of (C.8) is Op(—==) + Op(7z).

\/7
The second term of (C.8) is bounded by

co— = Z { thezt] [l ifteit]/
N T4 ’

=1

which is further bounded in norm by

R AT sl & 1 ,
2¢ N Z {f > (e — o )} [T > ftez‘t} {T > fteit}
i=1 " =1 t=1 t=1
1T 5112l — 1 & '
6
+2C N Z_: {T ZSZ:| [f Z: fteit} [T Z: fteit} :
i=1 t=1 t=1 t=1
The first term is Op(%) and the second term is Op(%) + Op(ﬁ). Given these results,
we have
LYYy b B( >]+11+O< . )+0(1)
= 5 Jt]s|CitCis — €itCis —dr p\ —YT/—— o\ 7 | -
NT? H =0 T VNT3 17
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The derivations of II, and II. are similar. So we only consider II.. Substituting the
expression of 7; into II., we have

ee ee NT Pl 5'22 3
I TES STTAL T I o SR ENTS
‘ t=1 ) e NTi:lt:16i21tZt
ALS (LS ) rsiin L 3oy L
ee (th;et t) ee ﬁ;;&z ftezt
NN 1 I 1 Ny
./‘7 . o . . - . / .
N H(;Jz::l 5—1,2 N]Z l’lj T ;[eltejt E(eztejt)])HNT ; ; 5’1-2 lzftezt
N ) g 1 N T 4
V[~
+H; ;?lzll((fz —0; )Hﬁ;;; ftelt
st (s ) LSy Ly
+ ee (T;etft)]w;; 572 thelt
Ao -y Al RS /
ee( - )N;&?{th;ftezt}[T;ften}
gl 1l e oLy /
+ N;; ?‘5@2 JT;[eJtezt— (ejtelt)]{T;fte,t}
1N 1 1 & '
_Hﬁgli%(gf _Uz){th;ftezt}

Notice that

1 1
= uzl b= (m) *OP(T)’
which is shown in Lemma C.1 (e) of Bai and Li (2012). Given the above result, together
with (L — LYSZMLH = O (\/—) + Op(% ) by (C.10) in the supplement of Bai and Li
(2012), we have that the first term is Op(5) + Op(7=). By similar arguments, one can
show that the second term is O,( \/W) +0 ( 3 ), the third and the fourth terms are both

Op(57) + Op(7). The fifth term is O (W) + Op(7%). The sixth term is Op(
The seventh term is Op(57) + Op(7). The eighth term is bounded in norm by

larsi-of 33 HT - e

N3T2 )

9

which is Op(

N | NT Ty
HZ =2 J{]VTQ ZZ Z Tftezt[ejsezs - E(ejseis)]} (ClO)
J ; 7



TS
lj 5 Z Z fieitlejseis — Elejseis)).

1 . N T T 1
NTQHZ Z Z Z o2 le ftelt[ejsezs - E(ejseis)]
j=li=1t=1s=1 "t "]
N 52_ 42 | NI T
—H Z ]~2 QJ lj{ P Z Z Z ﬁftezt[ejsezs - E(ejseis)]}

— ok NT? & &~ —~ g

J=1 777 i=1t=1s=1 "¢

R N 1 . 1 N T 1
—HY (i~ lj){ N7 2o 2 > —atiealejseis - E(ejsez’s)]}-

L 52 bet Lot Lt (5

J=1"7J i=1t=1s=1 "¢

The first term is O,(w7) since its variance is O(xz7z). The second term is bounded in

norm by
A 1 1/2 N o4 N TT 911/2
C - ||NHH . {NZ U —O’ } [ ZH TQZZZ thezt ejsezs_E(ejseis)]H ] ,
Jj=1 7j=1 1=1t=1 s=1
which is Op( ]\1[T3) by Theorem 5.1 of Bai and Li (2012). The third term is bounded in
norm by
. 1 1N T T 911/2
CINE [ Y 5 MJH[ ZmﬁzzzgmMMsmem,
j=1 j=1 i=1t=1s=1

which is also O,( ]\1[T3) by Theorem 5.1 of Bai and Li (2012). The second term of (C.10)

can be written as

1 5 a (&z _07,2)(~j2
_NHZZ 5‘-2~2-U-20'2- jT2 Zz.ftezt €jsCis — (ejseis)]
i=1j=1 195909 t=1s=1
1 . N N 5_2_0_2 . 1 T T )
+NHZZ s (=) D0 D fieilejseis — Eejseis)]
i=1j=1 999 t=1s=1
1 . X62-02 1 L1, &
tH D ot g D ol 2L D Heilejseis — Elejseis))-
N i3 ojoy NT®:imoi 5o

The first term is bounded in norm by

N
C- HNﬁH . {% Z(&j — a } {NQ ZZ Hftelt ejseis — E(ejseis)]

j=1 i=1j=1

H2} 1/2

)

which is Op(7z) by Theorem 5.1 of Bai and Li (2012). The second term is bounded in

norm by
N

¢ N[5 Zo—aﬁﬂ;§~m—wT”

: ]:1
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[ 353 evtson — Bepen]”
i=1j=1

which is also Op(7z) by Theorem 5.1 of Bai and Li (2012). The third term is bounded in
norm by

N
C- HN‘E[H[% Z(&?_U } { ZHNTQ Z 2 JZthezt €jsCis — (ejseis)]

1= 71.7 t=1s=1

7"

which is O (\/7) by Theorem 5.1 of Bai and Li (2012). Summarizing all the results, we

have that that the ninth term is OP(W) +0 (T ). The last term is bounded in norm
by
C”HH[N > (67 —07) } {N;"T;fteit } ,

=1

which is Op(s). Given the above analysis, we have

1 1
1.0 (57) + O (72):

Term 11, is bounded in norm by C% S>%, || 7;||2. Using the argument to prove II., we can
show that it is bounded in norm by Op(\/%) + Op(7=).
Given the above analysis, we have

N T T
1 1 1
itCis — itCis *Ir @) e ) 7o |-
= NTQ;;; s Bleae N+ ght p(\/NT3>+ p(TQ)
Summarizing the results on I, ..., I, we have
1 A~
—(MA — MA - L
(MR- BYS I (MA - £)
1 LZ 1 1 1
:NT2 ;;Z thf e’LteZS_E(eiteiS>]+TIT+Op W + 0O, T2 )"

Now consider the term \/ﬁ Zf\il Zle Zstl U—lzftfé[eiteis — E(eje;5)], which we use
w to denote. Then the variance of tr(w) is

11 181 ,FF'
var(tr(w)) = N Z 4var{ Z Z ftfsenew} =~ Z —4var[ ez}
i=1 t=1s=1 =1 9
where e; = (e;1, €2, ..., €;7). By the well-known result that
T
var(V/BV) = (uf - 30%) > b, + o [tr(BB') + tx(B?)]
t=1
where V' = (vy,v2,...,vr)" with each v; is iid over ¢ with mean zero and variance o2,

py = E(v}), and B is a T x T matrix with its tth diagonal element denoted as by, together
with the fact that e; is iid over ¢t with mean zero and variance a , then we have

FE 1 g fifeN? | ap (FFFF FF' FF'
var|ef =] = (u 30);( ) +otlu(Z )+ (7))
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where uy = E(e},). By the identification condition that F'F/T = I,., the above equation

can be rewritten as

var {e;Fj{wei} by — 30 tZT; (ftft) 427“.

e\ 2
Notice that 311, (%) = LA (fif)? is Op(#), since & 327 (f1£:)? is Op(1) from
Assumption A. Meanwhile from Assumption B, we know both ¢? and p4 are bounded.
Therefore as T' — oo, the first term on the right hand side of the above equation goes to

zero, hence

FF’
T
which implies that var(tr(w)) = 2r. Hence as N,T — oo and N/T? — 0,

/
var {ei ei] = 0‘?27“,

1 - o1

w2 NT2(N(MA Lysg (MA - L) - —1)]
Losyy d

= 2fsft €it€is — E(eiteis)] + Op(l) — N(O, 27‘)
NT? =5 = 0

This completes the whole proof of Theorem 5.2. [

Appendix D: Partially constrained factor models

We first give detailed derivations of equations (6.2)-(6.4). The first order condition for A
is

NM'SZH M., — )52 M = 0. (D.1)

The first order condition for I' is

SN M. —S2)8Z =0, (D.2)
The first order condition for ¥.. is
diag[SZ (M., — $.)821 =0 (D.3)

By (D.1) and (D.2), together with the definition of ®, we have
U N (M. —22)5210 =0, (D.4)
where & = [MA,T]. Let G = (I, + &’$1®)1. By the Woodbury formula
LI D Yt Y 1611 110 Sul (D.5)
we have 321 = G&'S- 1. Given this result, together with (D.4), we have
GOSN M., —3.)81 86 =0,

or equivalently



Now equation (D.1) can be written as

INAVARR R . o R .
0= [I,,,0] [Alf\,q S UM, -2 )8 M = [1,,,019'S (M., — 2 )8 M
= [I,,,0]GP'S N M. — )82 M = [1,,, 006 H (M. — 3.)(S7) — S210G S M.
Using (D.6), we have
[I,,,01Gd' S (M., — $.)S M = 0. (D.7)

By identification condition IC’, we see that Gisa diagonal matrix, which we partition into

5 |G 0
g_[() QAJ

So we can rewrite (D.7) as

or equivalently
NM'SH M. —3.)8 M =o0. (D.8)

Proceed to consider (D.2). Post-multiplying .. on both side of (D.2) gives,

which implies that
'S M. —3.) = 0. (D.9)

ee

For ease of exposition, we introduce a matrix A in a partial constrained factor model, which
is defined as
AL ()Y 1O(P'S10) = (& - @) LOHL,

where Hy = &/ f]e_elti). We partition matrix A as

An A
A= .
[Am Aso
By definition, we have
An = (A=A M'S MAPSY, Az = (A =AY M'STQY,
Ay = (D —T)YS I MAPYY, Agy = (I =TS TQY,

where Py = AM'S'MA and Qn = IVS2'T. With some algebra manipulations, together
with A’M’S2'T' = 0 by the identification condition, we can rewrite the first order condition
(D.8) as

N =N = A N — ApT'STIMRY — PN MS N (Se — Bee) S MR
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T T
1 1
+(I— Ay thet MR — ’mfzgte; IMRY + PytA'M'S, Tzetng’
= t=1
e . . . 1 & . .
+PJ;1A’M’2;61T Z ergi TS MR + P]glA’M’E;;T D (ereh — See) S MRY.
t=1 t=1

The above result can be alternatively written as

. . . 1 & . .
N — N =—ApN - AL TSI MR + 7 > feS ) MRy (D.10)
t=1

T
TP MIS - Z erfiN + PytA M) . T Z erg, S MR + T,
t=1

where
A A . . 1 L . .
Tr = =Py N M'S N (Bee — See) X0 MR — lllf Z et S MR
T A
thet IMRY + PRIA MY Z ey — Vo) So MR

By similar arguments as above, the first order condition (D.9) can be written as

. 1
Vi Vi = TZQt@t‘i‘%I, (D.11)
t=1
where
/ It 1 11 52 —o?
Ll]i’r - _A22% - A12A mi — A22 thelt + QN F Eee T Z etgt% QN Vi % 6‘ !
T 5
1
12T Z Jreir + QNIF EeelT Z e fiN'm; + QNIT ZeelT Z[eteit — E(ete)].

Similarly, we can rewrite the first order condition (D.3) as
diag (M= — $2) = MAG A M'S (M = 32) = (M= — S2)S MAG A M) =

Given the above result, with some algebra computation, we have
1 T
A2 2 2
ool =50 (e —0l)+ Tio2, (D.12)

where

T2 = —=2%Tir — (i — %)’ (v~—%)—2m (A= A)A'm

A~ A~

—ml(A — A)(A — A)'m; — 2mi(A — A)= Z freit + 2m Agr Z frea
T

e 1
+2miAGIN M'S I M(A — A)— ; freir — 2miAGL A M'SS, lT ; erfiN'm;

63



+2mlAG A MM (A — A)N'm; + 2miAGIA M'S MA(A — A)'m;
+2mAGIA M'S M (A — A)(A — A)Y'm; + 2mAGIA M'SZHE — Ty,
L2miAG N M'S T Jir + 2miAG N MSHT = T) (B — i)

52 — o2 R N 1 T
+2m; AglAlmZ % 5 %i _ 2m;Ag1A’M'Z;}T Z etgyyi
[ t=1

>

T
—2m2AQ’1A'M'E_ Z Eteit — eteit)].
—1
Equation (D.6) is equal to

'S 0P + B — 0P — S + O thet+ Zeth’@’—i— Zetet zeeﬂi—l@_o.
t 1

The above equation can be written as

A+ A =AA+(T-A) thet LR +HN1<I>21 Zeth’f A)  (D.13)
tl

The expression on the left hand side of the preceding equation is equal to

A A~ 1 aras A 1 S
Ndg { N(c1> P)YL 1D + N@’E;j(@ —P)— —(P-d)/T D - D)+ Ncb’(z;; - 2—1)<1>} .

Given the above result, by the definition of A, we have

Ndg(AH + HA') (D.14)

1. P N i i
:ng{N@_@)’z;;(q)—@)—NZ‘Z’Z(b;( 2+ = Zd) -2},

where H = 'S ’H /N. Now we use the above results to prove Theorem 6.1. First we can
show that

11 5 p
NZ;W& oill” =0 (D.15)
and
1 N
=Y (67025 o0. (D.16)
N =1

Notice that the present model is a mixture of a standard factor model and a constrained
factor model. In Proposition 4.1, we have shown the consistency of the MLE for a con-
strained factor model. In Proposition 5.1 of Bai and Li (2012), the consistency of the
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MLE for a standard factor model is shown. By combining the arguments in the proofs
of Proposition 4.1 and Proposition 5.1 of Bai and Li (2012), one can prove the above two
results.

Along with the argument of consistency, using (D.9), (D.10), one can further show that

A—A:Op<\/]1viT>+Op<;>7

1 1 5 1
72 :;H% ill” = Op (T) ) (D.17)
1 al ~2 2\2 __ 1

Equation (D.13) corresponds to equation (A.16) in the pure constrained factor model.
Using the arguments as in the derivation of (B.13), one can obtain a similar result

ara=0, () +0,(2) 19

By the consistency results (D.15) and (D.16), one can show that H = H + o0,(1). So
A(H—H) is of smaller order term than A and therefore negligible. Similar to the derivation
of (B.16), one can show that

Ndg(AH +HA") = O, (\/;TT> + 0, @) : (D.19)

The equation system (D.18) and (D.19) gives

a=0,( ) o, (L), o2

Using the above result, it can be shown that

1 1
5= 00 (77) + 0 (7)

The above result, together with (D.9), gives

T
Z ) +op(1).

t=1

VT (6?7 —

E\H

Similarly, using the results in Lemma B.3 and (D.20), we have
< 1 ( )
, +0
VNT

Jir =

This result, together with (D.10), gives



Let ¢ = (M'S.M)"*M'S_!T. Tt can be shown that Lemmas B.3 and B.5 continue to
hold for a constrained factor model. Given this, we can rewrite (D.10) as

« 1
N —N=—A N — Ay + = thet Yo MRy +P1AM’2661TZeftA’ (D.21)

1 - 1 1
+ Py A’MzeeTZ%gt“O (3vz) +or () + 0 ()

We note that

N T
1 1
vec( thet MRN)_VeC(NZZO_QteltmR >
=1 t=1 K3
1 XX
=(R'®I,)— —
( & rl)Nlezlgo_?(m'L@ft)ezta
T
Vec< 1AMZ€61TZ et fiA )zvec( 1A,NTZZ 2mzft€ZtA)
i=1t=1
—K;mvec< ZZ 2ftm eaANP~ )
i=1t= 1
K, (P71 ! Zi Loy ® fi)e
= k'r'l ep— 72 (A t ity
NTz:u:le
N T 4
vec( 1A’]WEee1 Zegtw):vec(PlA’ 227 zgtezt¢>
T NT “ i
N T 4
:K;mvec( ZZﬁgtm eu\NP~ )
: t=1 Z
1 X1
= Kir, [([PTIN) @ 0] =D 0>~ —(ms ® ge)ear.
' NT =50

In addition

/ / A/
_A/ A/ _ / / — _ Ifr ,Or , 11 21 — —E,A,\I],,
11 21"7ZJ [ 1 1X 2] |‘A/12 A/22 w/ 1

where U = [A,¢], By = [0 Ir, ] and Fy = [O”X”]. Given the above result, we have

72 XT1 I’r’g
vec (A’HA' + A’Qlw') = vec(E1A'V') = Ky, vec(VAE,) = Ky, (E] @ U)vec(A).
Taking the vectorization operation on both sides of (D.21), we get

1

T
1
— \my; ®ft Cit (D22)
T 22 pame® fe

1t=1 9

™M=

veo(A' = N) = [(R™' @ I,) + Ky, [(P7A) @ A]|

i

1 4 L
+ Kip, [(PTIA) ® 9] NT Z Z ? m; @ gi)ei — Kiry (B @ ¥)vec(A)
i=1t=1 "1
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<0 (seur) + 0 (z) + 0 ()

Now consider (D.13) and (D.14). Again, using similar arguments as in the derivation of
(B.21), one can show by (D.13) that

2D, vec(A) = 2D} vec(n*) + O, <Niﬁ> + O, (\/%T) + 0, <T5’1>/2) : (D.23)

where n* = + LS hel S OH Y with Hy = &S '®. To proceed the analysis, we first
consider the expression J; ,2. The sum of the 3rd term and the 10th term is equal to

~

—2mh(A — A)A'm; + 2miAGIA M'S P MA(A — A)'m
=2m)(A — A)(A — A)'my — 2miAGH (A — A)'my — 2miAGIA MM (A — A)(A — A)'m;.

By A’M'SS;'T = 0, we can rewrite the 13th term as —2m/AG A M'SH (I =) J; r. Further
consider the sum of the 1st, 8th, 9th, 12th and 16th terms, which is equal to

— 29 Tir — 2miAG N M3 1 ZetftA'mZ+2mAglAMZ IM(A — A)A'm
t 1

o1&
+ 2/ AGIA MM — D)y — Qm;AglA’M’E;;T > ewgii
t=1

= 27; Ayi + 27; A N'm; + 27, A 27 Z grei — 27QN' TS — T Z ergyi + 27 A 1277 Z feeit
=1

T 2 2
1 — o*
— 29QN'T'E 1 Z e fiNmi — 29[QN' TS =3 leven — E(esen)] + 20iQ% %%

eeT 66Tt1

2,

A

1
—2ml(A — NG A M'S! ZetftAml—l—Qm AG PN M'S 11 ZeftA’m,

ee T ee T
T
—2mIAPSIA M) ;Ze FINm; + 2ml(A — NGIAM'S M(A — A)A'm
t=1

— 2miAGL AL N my 4+ 2miA AL N'm; + 2m), (A NGANM'SZHT — Ty, zm’.Ag}Agm

+ 2miA AL v — 2mi(A — A)GA'M'S 1 Zetgt% +2miAG, P 1A M'S 1 Zetgt%
t 1 t 1

o1 &
— QTn;Ai’t’NlA'M'Eee1 T Z etghi

:¢;{A+Al 1(1)2 11 Zeth’ thet @HN}@—FZ% 22Tthezt

ee T
17 11 d 67 — o}
+ 277, 12T Z ftelt - 271QN F Eee T Z[eteit - E(etelt)] + Q’YZQN Yi % 5’2 !
7
1 NPTV
—2mi(A — A)GIANM'S) T Z ecfiNm; + 2m;AglP]§1A'M'Ee_61T Z ecfiN'm;
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Given the above result, we can rewrite 62 — o2 as
T
Z =) (i = %) + Tilg,

where

Tiyo = mj(A — A)(A = A)'m; — 2mj(A — A) = Z frei + 2m, Agl— Z freir
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1 41
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Given the expression of J* ,, one can show that
b}

o) o ) w0 ()

JREAR 1 XL g 1 1 1 1
SN %2 o2y o i (€2 —0?)— o HAO <>+0 ()+0 ()
N; of VT NT;; R PANVT P\VNT P\ 7372
Let F2 = [0y xry Iry]. We introduce the following notation for ease of exposition:
C* L o ¢Z¢;(€2 B 2)
NT pr O-;'l it i/
1 1 XL g w1

Using similar arguments as in the derivation of (B.22), one can show that

D(Hn®I)+(I,@K,)K,|vec(A) = Dvec(*—p*)+0, (le/T) (\/»T)—I—O (T;ﬂ)

Let D1, Dy and D3 be defined the same as in the main text. Similar to (B.24), we have

Dy vec(A) = Dovec(n™) +Davec(¢*) —Davec(p*) + O, <N\1/>> +0, (\/>T) 0O, <T;/2) .

Also notice that

N T
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=[(H T EN) E]ﬁ;;ag(mz@?ft)ezt
X / 1 NIy
+ [(H EiA ) ® EQ]W ;; ;g(mz ®gt)ezt
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Given the above result, we have
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Now we define

(D.24)

=R '® I, + K, [(P7'AN) @ A] — Kiyy (B @ O)D]'Do[(Hy E1A) ® E4,

B = Kiy [P ® 4] — Kpr, (B} © 0)D7'Da[(Hy' Er) ® B,
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3 ’L
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Substituting (D.24) into (D.22), we can rewrite (D.22) in terms of B} as

~ 1 N T 1 1 N T 1
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Given the above result, by a Central Limit Theorem, we have
A 1
VNT [Ve(;(A' —A) - TA*} 4 N(0,0%),
where Q* = lim Q3 with
N—oo
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+BYS® 1, )BY +BY(S' ® L )BY + B} £ Y 5 (016 @ (916 kit — o) B3
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Appendix E: More simulation results

In this appendix, we provide additional simulation results when errors have t-distribution
and y2-distribution. The results are given in Tables E1-E4.

Table E1: k=3, r =1, and ¢; ~ t5.

Asx1 MLE PC

N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar
30| 30| 0.0451 | 0.0717 | 2.2151 | 0.1016 | 0.1499 N/A
o0 | 30 | 0.0328 | 0.0523 | 2.1456 | 0.0682 | 0.0997 N/A
100 | 30 | 0.0229 | 0.0346 | 1.8912 | 0.0465 | 0.0676 N/A
150 | 30 | 0.0198 | 0.0293 | 2.0935 | 0.0384 | 0.0547 N/A
30 | 50 | 0.0319 | 0.0495 | 1.9587 | 0.0781 | 0.1114 N/A
50 | 50 | 0.0227 | 0.0365 | 2.0295 | 0.0558 | 0.0804 N/A
100 | 50 | 0.0166 | 0.0262 | 1.8357 | 0.0367 | 0.0522 N/A
150 | 50 | 0.0142 | 0.0220 | 1.9402 | 0.0302 | 0.0426 N/A
30 | 100 | 0.0227 | 0.0371 | 1.8139 | 0.0679 | 0.0965 N/A
50 | 100 | 0.0154 | 0.0251 | 1.9126 | 0.0448 | 0.0642 N/A
100 | 100 | 0.0111 | 0.0179 | 1.7941 | 0.0280 | 0.0394 N/A
150 | 100 | 0.0094 | 0.0151 | 1.7799 | 0.0221 | 0.0313 N/A

Table E2: k=8, r = 3, and ¢;; ~ t5.
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Az MLE PC
N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar
30 | 30| 0.3478 | 0.4961 | 15.1723 | 0.5800 | 0.8257 N/A
50 | 30 | 0.2379 | 0.3498 | 13.1208 | 0.3959 | 0.5677 N/A
100 30 | 0.1461 | 0.2217 | 12.3297 | 0.2236 | 0.3244 N/A
150 | 30| 0.1156 | 0.1751 | 11.8396 | 0.1661 | 0.2415 N/A
30 | 50 | 0.2584 | 0.3742 | 14.6463 | 0.5165 | 0.7541 N/A
50 | 50 | 0.1727 | 0.2530 | 13.2355 | 0.3226 | 0.4753 N/A
100 | 50 | 0.1154 | 0.1826 | 13.1610 | 0.1816 | 0.2686 N/A
150 | 50 | 0.0930 | 0.1429 | 11.5573 | 0.1402 | 0.2069 N/A
30 | 100 | 0.1880 | 0.2761 | 15.5842 | 0.4626 | 0.7075 N/A
50 | 100 | 0.1249 | 0.1928 | 12.8791 | 0.2734 | 0.4208 N/A
100 | 100 | 0.0812 | 0.1321 | 12.3295 | 0.1410 | 0.2144 N/A
150 | 100 | 0.0639 | 0.1025 | 14.4627 | 0.1065 | 0.1592 | N/A

Table E3: k=3, r =1, and €; ~ x%(2).

Azx1 MLE PC
N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar
30 | 30| 0.0409 | 0.0649 | 2.0501 | 0.0941 | 0.1394 N/A
50 | 30 | 0.0319 | 0.0497 | 1.9461 | 0.0707 | 0.1011 N/A
100 | 30 | 0.0225 | 0.0351 | 1.9543 | 0.0459 | 0.0654 N/A
150 | 30 | 0.0207 | 0.0320 | 2.1578 | 0.0388 | 0.0553 | N/A
30 | 50| 0.0335 | 0.0541 | 1.8213 | 0.0841 | 0.1216 N/A
50 | 50 | 0.0229 | 0.0362 | 1.8956 | 0.0569 | 0.0826 N/A
100 | 50 | 0.0172 | 0.0281 | 1.9791 | 0.0371 | 0.0526 | N/A
150 | 50 | 0.0135 | 0.0208 | 1.9470 | 0.0285 | 0.0401 N/A
30 | 100 | 0.0220 | 0.0362 | 1.9443 | 0.0673 | 0.0959 N/A
50 | 100 | 0.0165 | 0.0274 | 1.8368 | 0.0456 | 0.0647 | N/A
100 | 100 | 0.0109 | 0.0175 | 1.7312 | 0.0281 | 0.0397 N/A
150 | 100 | 0.0088 | 0.0141 | 1.7539 | 0.0219 | 0.0311 N/A

Table E4: k=8, 7 =3, and €; ~ x?(2).

Asx1 MLE PC
N T | MAD | RMSE | RAvar | MAD | RMSE | RAvar
30 | 30 | 0.3446 | 0.4909 | 15.2244 | 0.5657 | 0.8061 N/A
50 | 30 | 0.2353 | 0.3481 | 13.6764 | 0.3746 | 0.5424 | N/A
100 | 30 | 0.1547 | 0.2475 | 12.9084 | 0.2242 | 0.3258 N/A
150 | 30 | 0.1203 | 0.1893 | 13.3989 | 0.1752 | 0.2559 N/A
30 | 50 | 0.2632 | 0.3831 | 15.0428 | 0.5189 | 0.7618 | N/A
50 | 50 | 0.1795 | 0.2697 | 13.7256 | 0.3214 | 0.4769 N/A
100 | 50 | 0.1160 | 0.1803 | 12.4406 | 0.1813 | 0.2632 N/A
150 | 50 | 0.0959 | 0.1656 | 13.1984 | 0.1417 | 0.2096 N/A
30 | 100 | 0.1839 | 0.2687 | 14.8799 | 0.4666 | 0.7114 N/A
50 | 100 | 0.1271 | 0.1945 | 15.0769 | 0.2718 | 0.4124 N/A
100 | 100 | 0.0854 | 0.1452 | 13.9679 | 0.1439 | 0.2214 N/A
150 | 100 | 0.0676 | 0.1151 | 14.4559 | 0.1045 | 0.1617 N/A
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Appendix F: More comparison of W and LR

In this appendix, we make a comparison on the proposed W test and the traditional LR
test. The LR test is advocated in Tsai and Tsay (2010). Following Bartlett (1950) and
Anderson (2003), Tsai and Tsay consider a modified version of the LR statistic to improve
the finite sample performance. The modified LR statistic is defined as

2N +11  2r - R
LR = (T AT 3) (ln|Ec| - ln|2u|>,
where f]c = MANM + f]ee is the estimated variance for the constrained model and f]u =
LI + 3., the estimated variance for the unconstrained one. Here A and f]ee are the MLEs
for the constrained model and L and flee the MLEs for the unconstrained one. We run
simulations based on the same data generating processes as in Section 8.2. The empirical

sizes and powers of the modified LR statistic are given in Tables F1 and F2 below.

Table F1: The empirical size of the LR test with (k,r) = (3,1) under normal errors

Empirical size of LR
€5t ~ N(0,1) ts 2(2)
N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 0.3% 10.5%  27.4% 1.3%  11.0%  28.6% 0.9% 10.0%  26.7%
50 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
150 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 50| 23.7% 724%  90.6% | 25.0% 70.3%  88.4% | 25.0% 72.4%  90.0%
50 50 50% 27.8%  55.1% 4.3%  29.3%  55.8% 45%  30.8%  56.7%
100 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1%
150 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 100 | 64.4% 95.3%  99.6% | 67.7%  96.1%  99.8% | 69.2% 96.7%  99.6%
50 100 | 77.3%  98.4%  99.7% | 787%  98.5%  99.9% | 80.4% 98.2%  99.6%
100 100 | 29.4% 74.4% 911% | 276% 77.9%  92.7% | 28.5%  75.0%  91.0%
150 100 0.1% 0.1% 0.3% 0.0% 0.0% 0.3% 0.1% 0.1% 0.1%
30 150 | 79.3%  98.2%  99.9% | 79.3%  98.7%  99.8% | 785%  98.5% 100.0%
50 150 | 95.7%  99.9% 100.0% | 95.0%  99.7% 100.0% | 93.8%  99.6% 100.0%
100 150 | 96.3% 100.0% 100.0% | 95.8% 100.0% 100.0% | 96.5% 100.0% 100.0%
150 150 | 65.1%  95.2%  98.5% | 65.2%  93.6%  98.3% | 65.2%  95.0%  98.9%
100 100 | 29.4% 74.4% 911% | 276% T7.9%  92.7% | 285% 75.0%  91.0%
200 100 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2%
300 100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 200 | 100.0% 100.0% 100.0% | 99.6%  99.9%  99.9% | 99.8% 100.0% 100.0%
200 200 | 81.5% 93.4% 93.5% | 82.7% 94.2% 94.8% | 83.2% 943% 94.7%
300 200 0.3% 0.3% 0.4% 0.1% 0.2% 0.5% 0.3% 0.3% 0.4%
100 300 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 300 | 94.7%  94.7%  94.7% | 94.3%  94.3%  94.3% | 95.0% 95.0%  95.0%
300 300 | 74.0% 74.8% 748% | 76.6% 76.8%  76.9% | T4.0% 74.3%  74.4%
100 500 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 500 | 93.4% 93.4% 934% | 94.7%  94.7%  94.7% | 93.8% 93.8%  93.8%
300 500 | 77.4% 774A%  T74% | 75.0%  75.0%  75.0% | T7.0% 17.0% 77.0%

Table F1 presents the empirical sizes in all combinations of N and T'. We are surprised
to find that the modified LR statistic has severe size distortions in all the sample sizes. In

73



some cases, the LR test over-accepts the null hypothesis with empirical sizes deceasing to
zero. In other cases, the LR test over-rejects the null hypothesis with empirical sizes larger
than 50%. As far as we see, the poor performance of the LR test is not related with the
adjusted factor T'— (2N + 11)/6 — 2r/3 since we also consider the unmodified LR statistic
and the results are not good either.

Table F2 presents the empirical powers of the modified LR test. We see that the LR
test does not have stable powers. If N is comparable to or smaller than 7', the LR test
would have good powers. However, if N > T, say N = 150,T = 30, the power decreases
to zero. This is in contrast with the proposed W test, which has stable powers in all
combinations of N and T

From Tables F1 and F2, we conclude that the proposed W test dominates the LR test
in terms of empirical size and power.

Table F2: The empirical power of the LR test with (k,r) = (3,1) under normal errors

Empirical power of LR

o 0.2 0.5 2 5

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30| 16.9% 354% 54.0% | 44.4% 60.8% 73.5% | 89.0%  93.6%  96.6% | 99.6% 100.0% 100.0%
50 30 6.0% 9.5% 11.2% | 25.3% 31.4% 34.9% | 71.9% 76.2% 78.6% | 97.5%  98.5%  98.7%
100 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
150 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 50| 54.8% 84.8% 95.9% | 72.6% 91.3% 97.3% | 96.2%  99.5%  99.9% | 99.9% 100.0% 100.0%
50 50| 333% 60.0% 77.7% | 61.5% 782%  87.5% | 95.6%  98.4%  99.4% | 99.9% 100.0% 100.0%
100 50 6.4% 7.4% 83% | 26.3% 31.6% 33.9% | 682% 70.5% 72.7% | 94.3% 95.3%  96.1%
150 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 100 | 79.3% 97.4%  99.6% | 90.9%  99.4%  99.7% | 99.2% 100.0% 100.0% | 100.0% 100.0% 100.0%
50 100 | 91.0% 992%  99.9% | 95.6%  99.8% 100.0% | 99.9% 100.0% 100.0% | 100.0% 100.0% 100.0%
100 100 | 66.4% 922% 98.1% | 83.0% 95.8%  99.1% | 99.0%  99.9% = 99.9% | 100.0% 100.0% 100.0%
150 100 | 28.9% 36.1% 41.1% | 57.1% 61.4% 63.5% | 85.6% 89.1%  92.4% | 99.8%  99.9% 100.0%
30 150 | 88.4%  99.5% 100.0% | 94.9%  99.8% 100.0% | 99.7% 100.0% 100.0% | 100.0% 100.0% 100.0%
50 150 | 97.7%  99.8% 100.0% | 99.2% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
100 150 | 99.0% 100.0% 100.0% | 99.3%  99.9%  99.9% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
150 150 | 85.7%  97.9%  99.0% | 92.1% 98.3%  98.8% | 99.1%  99.3%  99.3% | 100.0% 100.0% 100.0%
100 100 | 69.3%  90.4%  97.6% | 84.2%  96.0%  98.9% | 982%  99.9% 100.0% | 100.0% 100.0% 100.0%
200 100 82% 10.6% 11.4% | 34.6% 38.0% 40.1% | 70.9% 72.8%  73.5% | 93.9%  95.0%  95.2%
300 100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 200 | 99.9% 100.0% 100.0% | 99.9% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 200 | 90.2%  93.9% 94.1% | 92.9% 94.3% 94.3% | 95.8% 95.9% 95.9% | 98.2%  98.2%  98.2%
300 200 | 195% 23.8% 26.6% | 37.0% 39.9% 425% | 66.7% 70.6% 72.4% | 82.0% 822% 82.2%
100 300 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 300 | 93.6% 93.6% 93.6% | 93.8% 93.8% 93.8% | 95.1% 95.1% 95.1% | 97.4% 97.4%  97.4%
300 300 | 75.7% 75.8% 75.8% | 76.0% 76.1% 76.1% | 77.3% 77.3% 77.3% | 85.3% 85.3% 85.3%
100 500 | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
200 500 | 93.1%  93.1%  93.1% | 94.9%  94.9%  94.9% | 94.8%  94.8%  94.8% | 96.8%  96.8%  96.8%
300 500 | 79.7% 79.7%  79.7% | 75.6%  75.6% 75.6% | 80.9% 80.9% 80.9% | 79.9% 79.9%  79.9%

Appendix G: Proofs of the theoretical results in Section 9

In this appendix, we define the following notation:
. A ~ ~ ~ 1 ~ ~ ~ ~ ~
P = %A’M’W”MA; R= MW M; G = (I, + NM'W-TMA)~Y;
Py=N-P=AMWIMA; Ry=N-R=MW'M, Gy=N-G.
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Then we have Py! = G(I — G)~! and

Sl =W - WA MAL + NMW I MA) A MW, (G.1)
and
NM'SZH= NM'W™ — AM'W I MA(IL + A MW MA) A MW= = GA/ MW,
(G.2)

The following lemma is a direct result of Assumptions A and B”, which will be used
throughout the whole proof.

Lemma G.1 From assumptions of A and B", we have

1 I
E(“ﬁ tz::l Jtei

2
) <, foralli;

Appendix G1: Proof of the consistency of the MLE in Section 9

Similar to Appendix A, we use symbols with superscript “*” to denote the true parameters
and variables without superscript “*” denote the arguments of the likelihood function in this

section. Let 6 = (A, w?,--- ,w%/) and let © be a parameter set such that A take values in
a compact set and C~2 < w? < C? for all i = 1,..., N. We assume 0* = (A*, w2, .-+ wi?)

is an interior point of ©. For simplicity, we write § = (A, W) and 0* = (A*, W*).
The following lemmas are useful to prove the following Proposition G.1, and Proposition
G.1 will be used in the proofs in the following Appendix G2.

Lemma G.2 Under assumptions of A, B”, C" and D", we have

(a) ztelg % tr [A*'M’E;Zl XT: etft*'} 20
T
©) beo NT NT {; ete; = 1} = 0;
1 x wyy—1]| P
(c) ggg N {(@ - WHXZ ] = 0;
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where 0% = (A*, W*) denotes the true parameters and ¥, = MANM' +W.

Results (a) and (b) in Lemma G.2 can be proved in the same way as in Lemma A.1,
and proof of G.2(c) is similar to that of Lemma S.3(b) in Bai and Li (2016). Details are
therefore omitted.

Lemma G.3 Under assumptions of A, B, C" and D', we have

(LS
OPQNZ(UJ w;y )]

=1

0 [ - war] = o[ Sz - 7)),

1=

N

H NA*’M’(W— — W MA

)

Given the above results, if N~ SN, (07 — wi?)? = 0,(1), we have

~ ~ 1 A
(c) Ry = OP(N)7 R=—-Ry= Op(1>§

N
(d) RTY2| = Op(1).
where R and Ry are defined in the beginning of Appendiz G.
The proof of this lemma is similar to that of Lemma A.2 and hence omitted here.

Lemma G.4 Under assumptions of A, B”, C" and D", we have

1 ~ - . 1 T
(a) mpflA/M’W*1TZ(eteg_@)W 1MA]P> 1 ”IP 1/2”2 ( 71/2);
t=1

Lo g4 Sy _
(0) PIAMW Zetft [B=Y2]] - O0p(T71/2);
1 D=1 A’ riGy—1 —1asram—1 p—1
() P AM'W LW — W)W MAP™! = P - 0,(1);

)

(d) %@*%’M’W*%@-W)w IMABY = [BV2|2 - 0,(NY/2);

1 & N _
(e) ﬁthd:W 'MR 1:Op(T 1/2)%

. 1 & . . .
(1) P RAW LY e, — QW MR = B2 0,(T ),
N thl
1 ~ 14 ~ - 1 N 1
(9) 7B "MMWTH W — W)W MR = B2 0, (| 5 Do (@F —wd)?]?);
i=1
1

PN MWL O - W)W MR = [P7V2)- 0,(N7Y).

PrOOF OF LEMMA G.4. Proofs for (a)-(c) and (e)-(g) are similar to those for Lemma A.3,
so we only include the proofs for (d) and (h) which are different from Lemma A.3.
Consider (d). The left hand side can be rewritten as

k k

1/2[2219,—1/21;2 pmw[ } 1 Z I By 1/2} p-1/2

i=1j=1 p=1 i =1
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where 1(i = j) is the indicator function, equals 1 if ¢ = j and 0 otherwise. The above
expression is bounded in norm by

Va3 )

i=1 j=1,j7#1

‘IF’ 1/2 Z ApMip

1 1/2
OB (: i

N ~ N 2
which is [P~1/2||2 - O,(N~Y/2) by the fact that (2N, H[P3"* £h_ Aymsy| ) = r and

(% SN Zé\[:u#i(@ij) ) is Op(1) from Assumption B”. So result (d) follows.

Next consider (h). Similarly, the left hand side can be rewritten as

1 1 «
N3/2 P12 [Z ZP V2 Z pTip |:®z] 106 = j)wf] QmQ} Rfl,
J

i=1j=1 i p—1 w
which is bounded in norm by

N
1/2 1
IR ||(Zl e

_ 1/2
1/2 Z )\pmzp

VPl 2 o)™

=1 j=1,j#i

which is [|P=/2]| - O,(N~1) by R=! = 0,(1) from Lemma G.3(c) and H SN @Z-jij =
O,(1) from Assumption B”. Hence we have result (h). O

Proposition G.1 (Consistency) Let § = (A, W) be the MLE that mazimizes (3.2).
Then under Assumptions A,B", C" and D", together with IC", when N,T — oo, we have

. 1 N
A-ADo; NZ(@?—wZ?)?&o.

PrROOF OF PROPOSITION G.1. Similar to the proof of Proposition 4.1, we consider the
following centered objective function

i) =I'0) + rR1(0),

where 1 1 1
I'(9) = — 7 In[S=] - Ntr(z* n2) 1+ &Iz

and ]
T - R L -1
Rf(6) = Ntr[(Mzz w15z,

where ¥, = MAANM'+W and X%, = MA*AY M’ + W*. By the definition of M., we have

Ri(0) = —Q—tr [MA* th* =2t - Nthr[ET:(ete; -0MzZ! - %tr{(@* -wsz!].
t=1

By Lemma G.2, we have supy |R'(f)| = 0,(1). Then using the same approach as in the
proof of Proposition 4.1, we get ZT(é) > —2|op(1)|, which implies

]. S ]- * 1 *Afl_ p
7 I (W] = < In [W*| + W W' -1 % 0, (G.3)
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%tr[MA*A*’M’f);zl] 20. (CG.4)

The above arguments further imply
1
N - Z w? — w2 0. (G.5)

which is the second result of Proposition G.1, and other results as following:

G=op(1); Py =o0p(1); (G.6)
;[A*’M WL MA* — (I, A)%A’M’W”MA(IT - A o, (G.7)
%(A A*YM'WM(A — A%) — A(%A’M’W*M/A\)A’ 2 0. (G.8)

where A = (A — A*Y M’W”M/A\I@’;[l. R R
We now consider the first-order condition for A. Post multiplying (3.3) by A implies
NM'SZHM,, —S)S2 MA = 0.
By (G.2), we can simplify the above equation as
NMW M., — S )W IMA =0,

which can be further rewritten as

AMWIMAN MW MA = —A'M'W-{(W — WH W MA

. . . P . 1 & . .
ANMWTMA A MW MA + N MW MA* =S fre W MA

Tt:I
1< . R
INUVG Sk Z SN MWTIMA + A MW 1TZ(eteQ—@*)W’1MA
t 1 t=1

+A'M'WH O — W)W MA.

By the definitions of P and A, we have

1 oo o1& B
I = (I, — A (I, — A) + b N MWt § : ere; — O YW MAP?
1 & 1
/ / 1 1=
+ (I, — A) W;:l: e W MAP! + NIP’ MW~ § :et I, (G.9)

I 5 14 7—1 1% *\TRT— - — - * * - AD—
- 7P A MW (W — W)W MAP~! +WIP’ A MW (0* — W)W MAP!
=11 +i2+ - +1ig, say

Compared to (A.16), there exists an extra term i in the above equation, due to the weak
dependence structure of the error. Based on (G.9) and (G.8), together with Lemma G.4,
we can show that A = O,(1) and ||P~!|| = O,(1). Furthermore, applying Lemma A.1 of
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the supplement of Bai and Li (2012) and using the identification condition IC2”, we can
prove that A = 0,(1).
Again, we consider the first-order condition (3.3), which can be simplified as (by (G.2))

NMW-YM,, — S WM =o0.

By the definition of M,,, the above equation can be rewritten as

) 1 & A . NP g
AN — A = AN+ (T - A)’T e W MR + IPJ—VlA’M’W—lf > ef/AY (G.10)
t=1 t=1
1 & . . P . .
+P A MW 7 > lee; — O W MR — Py A MW (W — W)W T MR
t=1
+P A MWL O — W)W MR

We need to show all the six terms on the right hand side of the above equation are 0,(1).
From the preceding results that A = 0,(1) and Lemma G.4(e), we know the first two terms
are 0,(1). From ||[P~!|| = O,(1) and the results in Lemma G.4, we see that the remaining
four terms are also op(1). Therefore we have N — A" = op(1), which implies that A A~
This completes the proof of Proposition G.1. [J

Corollary G.1 Under Assumptions A, B”, C" and D",

(a) %]\'M’W*Mf\ - %A*’M’W**MA* = 0,(1);
(0) I@)N = Op(N), P = O,(1), G= Op(N_1)7 @’N = Op(1);

(©) %([x ~AYM'WMA = o0y(1),.

PrOOF OF COROLLARY A.1l. Proof for the above corollary is similar to Corollary A.1, and
therefore omitted here.

Appendix G2: Proofs of Theorem 9.1, 9.2 and 9.1

Wk

In this appendix, we drop from the symbols of underlying true values for notational

simplicity. The following lemmas will be useful in the proofs of Theorems 9.1 and 9.2.

Lemma G.5 Under Assumptions A, B”, C" and D", we have

Ton o, a1 & . .
(a) W}P’*lA’M’W*T > (ere; — Q)W MAP™ = 0,(T7/2);
t=1
Lt R (- v arib = o, ([L S @2 — w2},
(©) (W — W) = 50|y 2@F - wd?]);

| P A Al _
(d) P IA'M'WHO - W)W I MAP = 0,(N~1/?);
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1 & . .
() N7 S A WIMR™ = 0,(T71/?);
t=1

!

L

1 ~ 4~ ~
7P_1A/M, -1

> lere; — QW MR™! = O, (T~ 1/%);
t=1

1A—IA/ I —1 vy sr—1 »—1 __ 1 lN ~2 22%,
(9) 7B "N MWTH (W — W)W MR _ﬁop([ﬁz:(wi—wi)} );
Lo iy e NPT _
(h) 3P WMWHO - W)W IMR™ = 0,(N 7).

The above lemma is strengthened from Lemma G.4, with its proof similar to Lemma B.1
and hence omitted here.

Based on (G.9) and IC2”, together with Lemma G.5, we have the following Lemma
G.6, which corresponds to Lemma B.2 with modification.

Lemma G.6 Under Assumptions A, B”, C" and D", we have

) NN 1 1 A 1 3
A= A=) MW MARY = 0y =)+ 0, () +OpIA-AI)+0y (| 7 2o (@ -],
=1

Proof of Lemma G.6 is similar to Lemma B.2 and hence omitted here.

PROOF OF THEOREM 4.1. We can rewrite the first order condition of W as
diag {(Mzz — ) = (Mo — S)W I MAGA M — MAGA' MW (M. — 2%)} 0.

With

1 & 1 & 1 &
M., = MANM' +W + MAT t:zl fre) + 7 ;etft’A’M’ + 7 ;(ete; —-0)+ (0 -W),

we can further rewrite the above first order condition as

1< S 1<
~2 2 _ 2 2 —1
WP —w; = — ;(eit —w;) + QmQAT ; freir — 2miAGA M'W MAT ;fteit

1< . S O e
—QmQAT Z fres W IMAGA m; — ZmQAGA'M’WAT Z[eteit — E(eseir)] (G.11)

t=1 t=1

+mi(A — A)(A = A)'m; — 2mi(A — A)AN'm; 4 2ml(A — A)N MW MAGA'm;
. R o 02— w? A e

+2miA(R — AY MW MAGA m; + 250 mAG N m; — 2miAGA' M'W—1(0 — W),.

w;

where (O — W); denotes the ith column of the N x N matrix (O — W). Define
1 & - A A Aga 1 & A P
V1= > fe W MAPL o1 = IPjle’M’W_lf > (ee; — Q)W MAPG

t=1 t=1

@2 = PRIA MWL (W — W)W MAPR!;
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03 = P A M'WH(O — W)WM AP,

Using the argument deriving (B.10), we can rewrite (G.11) as

T
Z — 2m Z fteug + 2m AG Z ftezt (G12)
+ 2m ’AA’ Z freir — 2m; AGA' Z freir + 2m AleA ™m;
T T3
— 2mAAGA m; — 2mi Ay (A — A)'my + 2mAA(A — A)'m;
22— w? . A
+ il AA AN m; — 2miAA Y N — 2ml(A — N)GAm; + 22 YL AGA m,
w;
s . 1 &
+ mi A1 A'm; — miApaN'm; — 2m§AGA'M’W*1T Z[eteit — E(eset))
t=1

+mi(A — A)(A — A)'m; + miApsA'm; — 2miAGA MW= (O — W);
=ai1+ a2+ -+ a9, say.
Using the Cauchy-Schwartz inequality, we have

N

1
fz <1953 (llasal® + -+ llaiol*)-

=1

Analyzing term by term of the first 17 terms on the left hand side of the above inequality
(similar to the derivation of (B.11)), and notice that the last two terms are O,(N~2), we
have

N
}V;(w% —w?) = 0T ) + Op(N2) + 0, (& — A1), (@.13)

Next, we consider the term [|A — A|l. Using Lemma G.5(b), (e)-(h) and Lemma G.6,
together with equation (G.10), we have

A=A 0, 40,V 4 O[L Y@ -, (G

=1

Substituting equation (G.14) into (G.13), we get + S, (0?2 —w?)? = Op(T 1) +O,(N72),
which is the second result of Theorem 9.1. The proof for the first result of Theorem 9.1 is
provided after Lemma G.8. [J

The following two lemmas will be useful in proving the first result of Theorem 9.1.

Lemma G.7 Under Assumptions A, B”, C", D' and F’, we have
1 & . .
(a) WIP LA MW TZ(ete;—@)W—lMA]P—l
t=1

= Oy(N"IT712) 4 O(N V2T 1) 4+ 0, (T~9%)
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Lo vn o 1 &
4) BTNMWIL S e f) = Op(N VATV + O, (T,
t=1

(c) mIED—lA’M’W—l(W — W)W IMAP™! = O,(N"'T7/2) + 0,(N72);

(PSP LA _
(d) =P WMWHO - W)W IMAP™! = O,(N7Y);

1 & . .
() 7 ST REWTIMR™ = O,(N7V217Y2) 4 0, (T7Y);
t=1

1. ,a 1 RO
(f) WIP’ A MW 7 g[ete; — QW MR
= O,(NTIT) £ 0, (VAT 4 0T
(9) NLP—IA'M/W—l(W _W)WIMR = 0,(N"1TY2) 4 0,(N72);

(h) W}P’ A M'WHO - W)W MR = 0,(N7Y).

The proof of the above lemma is similar to that of Lemma B.3 and the details are
therefore omitted.
Lemma G.8 Under Assumptions A, B”, C", D" and F’, we have

1
VNT

Proof of the above lemma is similar to that of Lemma B.4 with a slight modification
to account for the weak dependence in errors. The results (a)-(d) in Lemma G.7 and the
second part of Theorem 9.1 are used to control the magnitude. Details are omitted.

A= (A=A MWITMAPY = 0,(——) + O, ( )+ O, ( )+ O, (|A = AJ?).

PROOF OF THEOREM 4.1 (CONTINUED). Now we prove the first result of Theorem 9.1.
Notice that the term ||[A — A||? is of smaller order than A — A and hence negligible. Then
from (G.10), together with Lemma G.7 and Lemma G.8, we have

A—A:()p(\/]%>+op(;)+op(;).

This completes the proof of Theorem 9.1. [J
From Lemma G.8 and Theorem 9.1, we have the following corollary directly.

Corollary G.2 Under Assumptions A, B”, C", D' and F’, we have

AE(A—A)’M’W‘lMﬁlﬁ’&lep(J]l\[iT)+O (1)+o (]17)

The following lemma will be useful in proving Theorem 9.2.

Lemma G.9 Under Assumptions A, B”, C", D' and F', we have
L 1
1 rov—1 -1
;l:ftetw MRy = ;Zl:ftetW MRy + 0, (rT)+O (NI)JFO (T3/2>
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o . 1 &
(b) P&lA’M’W’ITZetft’
t=1

1 1
—1 — .
— Py A MW Zetft +00(37) * 0 () +0 (75m):
(c) Py AM'WHO - W)W MR
1 1
=PIN MW HO - W)W MR + O () +0 () :
N ( ) N p N\/T p
(d) PPAM'WH0 - W)W MAR,!
1 1
=PAA MW HO - WYW I MAPY + O () +0 () :
N ( ) N y4 Nﬁ p

N2

N 2

1 P _ 1 1 9 1 w:

() =M'(W-!_w! g E w4ml wl)—kﬁg mzm;w—i

i=1t=1 i=1 i

;/\IED;VlA’Jw’W—1 (O — W)W MAP A'm;

1N
N?

+ N Z mT OmiAGA MW=L (0 — W),
=1

w;

o) -0 (st +0(e) o)

where w? = 7 3500, Yooy Bl(ef, — wi)(ef, — wi)].
PROOF OF LEMMA G.9. First we reconsider the equation (G.12), which can be written

as
1 & AP . -
W7 — w? == > (eg; — wi) + miAP A M'WHO — W)W MAPG A'm; (G.15)
t=1
— QmQA@[A\/M/W_l(@ — W)Z + ﬁ,i,
where T
- IR . 1 -
Ri = —QmQAGA’M'W_lf ;[eteit — E(eteit)] + Sl

with Using the argument deriving (B.10), we can rewrite (G.11) as

Si = —2ml( Z freit + 2m; AG Z Jreit (G.16)

+ 2m§f\A’T Z freq — Qm;]\GA’f Z freir + 2mi A GA'm;
t=1 t=1

— 2mi AAGA m; — 2mi Ay (A — A)'m; + 2miAA(A — A)'m;
~2 2
+ AN AN m; — 2miAA Y N my — 2ml(A — NG m; + 221

=2
w;

JA AR
m; AGA'm;

+ miAe1 N'm; — miApaA'm; + mi(A — A)(A — A)'m;.
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By the same arguments in the derivation of (B.18) and (B.19), we have

1 X
L8 =0, (NT1772) 4+ 0, (N72771) + 0,(179). (G.17)
=1
and further
1 1 1
=1

T X | N )
Z:: tetW M= ﬁ;;@ftenm
N T N T .9 5
= ]\;;;%fteztm ]\;;;Wﬁeztm = j1 + j2, say.
The term jo can be written as
1] NI Ty L NT /
J2 = 3 ;;; 2 freie(els—wl)m _W;;wfwf [2mAGA MW (©-W);| frewm
Ly 1 LA/ 1 1
+ﬁ;;w3w3 (AP A MW (O - W)W MARL Amy] freim
1 NT Oy
+ﬁ ; ; wgwl ——Ri fteztm = jo1 + Jo2 + J23 + joa, say.

The term jo4 is bounded in norm by

1 1/2p¢ N 1 T 911/2
5 IR |5 X7 e |
N =1 N =1 H T t=1
which is O,(N~2T~1) 4 0,(T~3/?) by (G.18). Similarly by
1 X A A n ~ 2
= H2m;AGA’M’W—1(@ — W[ = 0,(N ), (G.19)
=1
and
N A . . R 2
% 3 ngA]P’J_VlA’M’W’l(@) — W)W MAP Amy||” = 0,(N72), (G.20)
=1

we can show that jog = Op(N~1T7Y2) and jaz = O,(N~'T~1/2). Then consider the term
Jj21, which can be rewritten as




The first term of the above expression is O,(N~Y2T~1) due to Assumption F”.6 in Section

2} 1/2

9. The second term is bounded in norm by

51NA2 221/21NlT
C[N;(wi_wi)} {N;HT;J[M“

SR

which is Op(T*?’/ 2). By the preceding results, we have

TtZT;ftd:W "M = 7th€tw 1M+O <\/%T) +0p (N\l/T) + Op (Ti/2> :
(G.21)

Combining the above result and R = R + O,(T~'/?), we have (a). Combining the above
result and P = P+ 0,(T~1/?) and A=A+0 (\/7)—}—0 (F) + Op(+), we have (b).
Next we consider (c). Notice the expression of the left hand side is O,(N~!) from
Lemma G.7 (h). Then by R = R + O,(T~/2), P =P + 0,(T/?), A=A+ Op(ﬁ) +
Op(#) + Op(F) and w2 — w? = O, (T~Y/?) + Oy(N 1)+ O,(N~Y27-1/2) from (G.15), we
have result (c). Result (d) can be proved similarly.
Finally we consider (e). The left hand side of (e) equals

1Y 2 w? , 1 X :
5L s 7 = ) T

/
mym; + — ————mym,; = l; +la, say.
=1 ’L 1 ]

=1 wf
ol 1 XA /A—llT / 1N l s
125 3 e [AGA MW Y feveir — Eleren)lm; fmimf — <2 37— 8imqm|
=1 7 t=1 =1

First consider l12. Using the argument to prove (c), we have

1 & mym!, 1 1
ljg = —— AP A MW O W)W MAPG A m; +O () o) ()
12 N; w! Y ) N Ami+0p NVT +0p N2

Similarly, by the fact that [m;AGA’M'W=1Q — W),;] = O,(N~1), we have

1 al mlm; / I rivou—1 1 1

=1 7
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Then consider 14, whose (v, u) element (v,u =1,...,k) equals
1NAAA/ /A—llT 1 /
tr {N Z AGA MW T Z[eteit - E(eteit)]jmimwmw]
i=1 t=1 w;

which can be proved to be O,(N~'T~1/2) 4+ O, (N /2T~ 4-0,(T~3/?) similarly as Lemma
G.7(a). The last term /5 is bounded by (using (G.17))

1 N B 1/2 B B ~ B ~
|y X & =0T 0, (T 4 0y(1 ),
=1

Hence, we have

+— Zml Ll AGA M'W-L(O — W),

=1 {

1
+0)(5r7) + Ol ) + Oyl ) + Oul

Then consider lo, which can be rewritten as (by (G.15))

i=1 t=1 i=1 t=1
N N N T
1 1 - 1 1 9 , 1 1 1 9
N Lt R+ 5 3 (a4 203 7 > (e - )] dim
=1 v 1 =1 "t 1 =1 "t 71 t=1
1 X1
+2N zz; U?%de R imimy, = lop + -+ + log,  say.

where d; = m{APR A M/'W=1(0 — W)W MAP A'm; — 2m,AGA' M'W—1(Q — W);. We
analyze the six terms on the right hand side of the above equation one by one. The term
92 is bounded in norm by

N T 1/2

o [1 3 ’l S (e — w?) 2} v {1 ﬁ: 7@2}
N =1 T t=1 " ' N i=1 ' ,

which is O,(N~1/2T~1) by (G.18). The term la3 is bounded in norm by

CglNﬁ_ 1 0, 1
N; =0 \n7) PO\ 72
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Similarly, by (G.19) and (G.20), we can show lay = O,(N~2), los = Op(N~'T~1/2) and
lag = Op(N=32T=1/2) + O,(N~'T~1). Finally, the term lo; can be written as

Col L) g E R

t=1

A

1§:1[1§:(62 wz)rm,m{_li
N = wllT S B

2
t=1 i=1 wz wz

The first term of the above expression is equal to

1 w? 0, N-L/2p-1

where @? is defined in Lemma G.9. The second term is bounded in norm by

o[ kst —up] [ A3 h Y ek -
N N &7 &

i=1 i=1

4] 1/2 _ Op (T—3/2) |

log = —= Y —emimj + Op(NV2T71) + 0, (T7%/7).
NTl 1w
Hence we have
1 iv: 12 < 1 )+O ( ; )
NTZ « wf VNT T3/2

Combining the preceding results on [y and Iy, we have result (e). O

PROOF OF THEOREM 9.2. To derive the asymptotic representation of f\, we first study
the asymptotic behavior of A. By equation (G.9), together with Lemma G.7(a), (¢) and
(d), Lemma G.8 as well as Lemma G.9(d),

b m w640, () 0, (L) w0, () <0, ()

where

PN MW HO - W)W MAP,

m = Z fries W IMAP™Y, & =

NT N2

Taking vech operation on both sides,

vech(A+A") = vech(m +n))+vech(&)+0, <N\1/T> (\FT>+O (T;/2>+O (;2>

implying

2D vec(A) = 2D:,rvec(771)+D7'fvec(§1)+Op(lef) <\/>T>+O (Tiﬂ) +0, (;2> ;
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where D' is defined the same as in Theorem 4.2. By the identification condition, we know
both A’(+ MW~ M)A and A’(%M’W‘lM)/A\ are diagonal matrices, which implies

ng{A’(NMW M)A — A’(NMW 1M)A} =0,

where Ndg(+) denote the non-diagonal elements of its argument. By adding and subtracting
terms,

ng{([x - A)/(%M’W*M)A + A’(%M’W”M)(f\ —A) (G.23)

—(A—A) (NM WIM)(A—A) + A’[ M (W1 W*)M}A} =0.
Using Lemma G.9(e) and A — A = O (\/7) +Op(#) + Op(3) from Theorem 9.1, we have
Ndg{A'(

%M'W*MW\ — A)+ (R =AY (- MW ADA)

= Ndg{¢i — 1 + &} + 0, (N\l/f) + 0, (\/%T) + 0y (7—;/2) +Op (1\;)’

where

T 1 L 9 9
CIZ Nizz 4Z(eit—wi)}A,

DS w
- N 2
1 w,
= |57 3 Zman
| NT = w

1 &L, _ _ _ _
£y =N Nz u M AP A MW= O — W)W MAPR A'my
=1

2 Xy
Z i ;AGA’M’W—I(@ —W); |A
w’b
1 Y zm’

where ¢; is a scalar defined in the paragraph before Theorem 9.2 and w? = %ZtT 1 ZT
B[(e2 —w?)(e2, —w?)]. With the same definition of D given in Theorem 4.2, together with
the definition of P, the preceding equation can be rewritten as

veck(AP+PA") = veck((1—p1+£2)+ 0, (Ni/?) +0, <\/%T> +0, (T§/2> +0, (]\172)

or equivalently

Dvec(AP+PA’) = Dvec((1—pu1+&2)+0, (N}/T) (\ﬁT) +0, (T§/2> +0p (1\%2)

Furthermore, we can rewrite the above equation as

DI(P&1,)+(1,9P) K, Jvec(A) = Dveo(Ci—pu+€2)+0, (Ni/f)wp (WLVT)w (77) %0 (32)
(G.24)
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where K. is defined the same as in Theorem 4.2. The above equation has

r(r—1)
Then combining (G.22) and (G.24), we have

5 restrictions.

2D} _ |2D; vee(m) 0 B 0
Dl®e L)+ (I ®P>KTJ] veeld) = [ 0 1 ! l@vec(@)} leecml) (G.25)
Difvec(&) 0
+ [ 0 1 1 + leec(@)]
1
+0, <W)
Let

() 70 () w0 ()

of 2D}
L7 D((Pe )+ (I, e P)K,] |’

together with the same definitions of Dy and D3 given in Theorem 4.2, the above equation
can be rewritten as

1

DJ{VGC(A) = Dyvec(n1) + Dgvec((1) — Dyvec(uy) + §D2VGC(§1) + Dgvec(&2)

(G.26)
1 1 1 1
+00 (v7) + 0 (737) + O () + 00 (2)
Noticing that
) = vee 33 et = (2w 1) 1505 Lmis s
vec(m _VeC_NT e 5 Jt€itTy; NT 22 wiz m t)€it,
R S L. ;1 e 1 2 92
— Ai K — . A = A A — 1 0 7 - )
vee(Ge) = vee Ay 3237 U e~ wA] = (4 @AY 7 33 s ma) (e — )
., 1 N 2 ;1 w?
— vec|N— S 2 A L
vec (1) vec| NTZI ; ZmA} (A®A) NT;w?(m,@)mz),
_ 1 —1 A7 —1an) L a al @ij
vee(2) = - (B7'N) @ (B7'A)) 5 3 0

N
vee(@) = (A8 ) [ 3

m; ® mz)(mz X mz)']
i—1 Wi

X {(AIP"lA’) ® (AP—lA')]vec{NMW (

1 X1
NA®A [sz

oW

~.

(m;m; )] vec [AG N MW 0 - W)}
SA @AY Zi

1 (m; @ my).
— w;
z:l t

Now we can rewrite the asymptotic expression of A as

N T
vec(A) = (DJ{)_IDQ(P_IA/ ® 1 )% Z Z %(ml ® fi)ei

(G.27)



i—1t=1 Wi
T 1 ’ 1 N w2
1 1 JRREAREL S o P
2mihy-1m. - —1 A/ —1A) ~ ij
50D Dy (BT @ (BTIA)) 530 N 5Ty (my @ my)
i=1j=1,j#1 ¢ J
: 1 1 X
-1 / 7
+ (D7) [D):%N(A@A) N ; @(mi ® m;)

1 1 1
o) o ) o) 0 ().
Next consider equation (G.10), which is derived from the first order condition of A. By
Lemma G.7 (f)(g) and Lemma G.9 (a)(b)(c), we have

N —N = A’A’+ﬁ2ftetw MR 4+ P~ 1A’ MW 1ZetftA’ (G.28)
t=1

~6+0 (577) + 0 (x) + 00 () + 0 ().

& =Py AN M'WHO - W)W MR

where

Taking vec operation on both sides of the above equation (G.28) and noticing that

1 & 1
vec [NT Z fte;W_lMR_l} = vec [NT Z Z 2 fteitng_l}
t=1 i=1t=1 i
1 XL

=R 'eI) WZZT (m; @ fi)eit,

-1 1 —1
vec[ A/ MW Ze ftA/} = Vec{ A,NT ZZ leeztftA/}

i=11t=1

= K}, vec {A Z Z theztm AP }

zltl

2‘;-&
~
M= &

= K, [(PTTA) @ A]
=1 Wi

)

Z i2(mz ® fi)eit,

e 1 1 &8 & oy
vee(§) = (R @ @A) LY > —a(m; @ m),
=1j=1,j#i

i=1j Wi Wy

where Ky, is defined the same as in Theorem 4.2, we have
A 1 NIy
vee(A' — A) = {Km[(]P’—lA/) @A +R 1 Ir} NT SN E(mZ ® fr)eir + vec(£3)
i=lt=1 i

(G.29)
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1 1 1 1
Plug (G.27) into (G.29), then we have

T
vec(A — lNT 22—2 (m; ® fr)eir — IB;NT;Z

L) o) ) (). o

where IB%L ]B%;, Al and TI' are defined in the paragraph before Theorem 9.2. This completes
the proof of Theorem 9.2. [

Proor or THEOREM 9.1. Given the results in Theorem 9.2, letting N,T — oo and
N/T? — 0 and T/N?3 — 0, by the Central Limit Theorem, we have the following limiting

distribution ) )
VNT [vee(R’ — A) — AT NU*} 4 N(0, =),

where = = A}im =n7 with Zn7 defined in Theorem 9.1. This completes the proof. [
— 00

PROOF OF THEOREM 9.3. From equation (G.15) and the analysis in the proof of Lemma
G.9(e), we know both the second and third terms on the right hand side of (G.15) are
O,(N~1), and the last term R; is Op(N~Y/2T~/2) 4 O,(T~"), which directly implies the
asymptotic representation of ? as in Theorem 9.3. Hence we prove Theorem 9.3. [J
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