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Abstract

Factor models have been widely used in practice. However, an undesirable feature
of a high dimensional factor model is that the model has too many parameters. An
effective way to address this issue, proposed in a seminar work by Tsai and Tsay (2010),
is to decompose the loadings matrix by a high-dimensional known matrix multiplying
with a low-dimensional unknown matrix, which Tsai and Tsay (2010) name the con-
strained factor models. This paper investigates the estimation and inferential theory
of constrained factor models under large-N and large-T setup, where N denotes the
number of cross sectional units and T the time periods. We propose using the quasi
maximum likelihood method to estimate the model and investigate the asymptotic
properties of the quasi maximum likelihood estimators, including consistency, rates of
convergence and limiting distributions. A new statistic is proposed for testing the null
hypothesis of constrained factor models against the alternative of standard factor mod-
els. Partially constrained factor models are also investigated. Monte carlo simulations
confirm our theoretical results and show that the quasi maximum likelihood estimators
and the proposed new statistic perform well in finite samples. We also consider the
extension to an approximate constrained factor model where the idiosyncratic errors
are allowed to be weakly dependent processes.
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1 Introduction

With the rapid development of data collection, storing and processing techniques in com-
puter science, econometricians and statisticians now face large dimensional data setups
more often than ever before. A challenge along with the appearances of large data is how
to extract useful information from data, or put differently, how to effectively conduct di-
mension reduction on data. Factor models are proved to be an effective way to perform this
task. Over the last three decades, the literature has witnessed wide applications of factor
models in many economics disciplines. In finance, Conner and Korajczyk (1986, 1988) and
Fan, Liao and Shi (2014) use factor models to measure the risk and performance of large
portfolios. In macroeconomics, Geweke (1977) and Sargent and Sims (1977) use dynamic
factor models to identify the source of primitive shocks. In labor economics, Heckman,
Stixrud and Urzua (2006) use factor models to capture unobservable personal abilities. In
international economics, Kose, Otrok and Whiteman (2003) use multilevel factor models
to separate global business circles, regional business circles and country-specific business
circles. Large dimensional factor models are also used in a variety of ways to deal with
strong correlations, see e.g., Fan, Liao and Mincheva (2011) and Fan, Liao and Mincheva
(2013), among others.

A standard factor model can be written as

zt = Lft + et, t = 1, 2, . . . , T,

where zt = (z1t, . . . , zNt)′ is a vector of N variables at time t, L is an N×r loadings matrix,
ft is an r-dimensional vector of factors and et is an N -dimensional vector of idiosyncratic
errors. The traditional (classical) factor analysis assumes that N is fixed and T is large.
This assumption runs counter to usual shape of large dimensional data sets, in which N is
usually comparable to or even greater than T (Stock and Watson (2002)). Recent literature
contributes a lot to the asymptotic theory with N comparable to or even greater than
T . Bai and Ng (2002) propose several information criterions to determine the number
of factors in a large-N and large-T environment. Under a similar setup to Bai and Ng
(2002), Stock and Watson (2002) prove that the principal components (PC) estimates
are consistent in approximate factor models of Chamberlain and Rothschild (1983). Bai
(2003) moves forwards along the work of Stock and Watson (2002) and gives the asymptotic
representations of the PC estimates of loadings, factors and common components. Doz,
Giannone and Reichlin (2012) consider the maximum likelihood (ML) method and prove
the average consistency of the maximum likelihood estimates (MLE). Bai and Li (2012,
2016) use five different identification strategies to eliminate the rotational indeterminacy
from asymptotics and give limiting distributions of the MLE. Fan, Liao and Wang (2014)
propose a new projected principal component method to more accurately estimate the
unobserved latent factors.

A potential problem in high dimensional factor models is that too many parameters are
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estimated within the model, which makes it difficult to analyze and interpret the economic
implications of the estimates. However, if the space of the loading matrix is spanned by a
low dimension matrix, this problem can be much ameliorated. In this paper, following Tsai
and Tsay (2010), we address this problem by considering the following constrained factor
model

zt = MΛft + et,

where M is a known N × k matrix with rank k and Λ is a k × r unknown loadings matrix
with rank r. We assume r < k ≤ C for some generic constant C. In the above specification,
M consists of the bases of the loading matrix. The underlying true loadings are a weighted
average of these bases associated with the weights matrix Λ, which are the parameters of
interests. The number of loading parameters now is kr instead of Nr. So the number of
parameters is greatly reduced.

Our work is closely related to Tsai and Tsay (2010) who were the first to consider con-
strained factor models. This paper differs from Tsai and Tsay (2010) in several dimensions.
First, although Tsai and Tsay propose using PC and ML methods to estimate constrained
factor models, their asymptotic analysis focuses only on the PC method. They obtain
convergence rates of the PC estimates. As a comparison, we investigate asymptotics of
the ML method and derive the convergence rates and limiting distributions of the MLE.
Given the limiting distributions, one can easily construct (1 − α)-confidence intervals if
prediction is the target of interest, or use t-test or F -test to conduct statistical inferences
on the underlying parameter values if hypothesis testing is the purpose. Second, Tsai and
Tsay consider the setup that k is large (but still smaller than N). In this paper, we instead
assume that k is fixed¬. In our viewpoints, assuming a fixed k is of practical and theo-
retical interests. In some typical examples, the parameter k is interpreted as the number
of groups or categories, according to which the variables are classified (see Tsai and Tsay
(2010)). This value is usually not large in real data. Therefore, a fixed-k assumption is
adopted in this paper. Furthermore, in constrained factor models, a large k leads to a larger
number of parameters being estimated. The estimation accuracy is reversely linked with k
for a given sample size. When k is large, the benefit of constrained factor models against
standard factor models becomes weak, which makes constrained factor less attractive in
practice. Third, an importantly related issue in constrained factor models is on conducting
valid model specification check on the presence of matrix M . Tsai and Tsay consider the
traditional likelihood ratio test to perform this task. But the traditional likelihood ratio
test is designed under fixed-N and large-T setup, which conflicts to large-N and large-T
scenarios. In this paper, we propose new statistics for testing model specifications that are
applicable to the large-N and large-T setups.

The rest of the paper is organized as follows. Section 2 provides more empirical examples
¬Our analysis can be extended to the case of a large k. But for this case, deriving the limiting distribution

of the MLE is very challenging since the matrix Λ is high-dimensional.
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of the constrained factor model. Section 3 introduces the model and lists the assumptions
needed for the subsequent analysis. Section 4 delivers the consistency and limiting distribu-
tion results of the MLE. Section 5 considers testing issues within constrained factor models.
Section 6 considers a partially constrained factor model and presents the asymptotic prop-
erties of the MLE for this model. Section 7 presents the Expectation-Maximization (EM)
algorithm to implement the QML estimation. Section 8 conducts Monte Carlo simulations
to investigate the finite sample performance of the MLE and to study the empirical size
and power of the proposed model specification test. In Section 9, we relax Assumption B
to allow for the idiosyncratic errors to have a more general weakly dependence structure.
Section 10 concludes the paper. All technical contents are delegated to several appendices.

2 Motivating Applications

The well-known equilibrium arbitrary pricing theory (APT) implies that the observed
assets returns can be expressed into a linear factor structure, see Ross (1976), Conner and
Korajczyk (1988) among others. This motivates the use of the following factor model

rit =
r∑

j=1
lijfjt + eit

to study the performance of portfolios, where rit is the excess return of the ith security at
time t, fjt denotes the jth risk premium at time t and lij the beta coefficient of the jth
risk premium for security i. However, as pointed out by Rosenberg (1974), the common
movements among the assets returns may be related with the individual characteristics.
Such characteristics include capitalization and book-to-price ratios as suggested in Fama
and French (1993), momentum as in Carhart (1997), own-volatility as in Goyal and Santa-
Clara (2003). Let xip denote the observed pth characteristic of the ith security. Rosenberg
(1974) considers the specification

lij =
k∑

p=1
xipλpj + vij , or L = MΛ + V,

where M = (xip)N×k is the observed characteristics matrix. Rosenberg’s specification is
very close to the one studied in this paper. With a slight modification, the analysis in this
paper can easily be extended to cover the Rosenberg’s model.

A limitation of Rosenberg’s specification is that the factor betas are assumed to be
linear functions of the observed characteristics, which is overly restrictive in practice. To
accommodate this concern, Conner and Linton (2007) and Conner, Hagmann and Linton
(2012) consider the following nonparametric specification

lij = gj(xij).

where gj(·) is an unknown smooth function. Conner, Hagmann and Linton (2012) apply
their model to a real dataset and indeed find that the factor betas are nonlinear functions
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of the characteristics. However, an undesirable feature in these two papers is that the
estimation of the model involves an iterative procedure between the factors and unknown
functions, which is formidable to many applied researches. To address this issue, we in-
stead consider using a series of polynomial functions to approximate the unknown function
gj(·). More specifically, we consider approximating the function gj(·) by all the polynomial
functions with power less than q, i.e.,

gj(x) ≈ λj0 + λj1x+ · · · + λjqx
q. (2.1)

Given this, the model now can be written as L = MΛ with

M =


1 x11 x2

11 · · · xq
11 · · · · · · x1r x2

1r · · · xq
1r

1 x21 x2
21 · · · xq

21 · · · · · · x2r x2
2r · · · xq

2r
...

...
... . . . ... . . . . . . ...

... . . . ...
1 xN1 x2

N1 · · · xq
N1 · · · · · · xNr x2

Nr · · · xq
Nr


and

Λ =


λ10 λ11 · · · λ1q 0 · · · 0 · · · · · · 0 · · · 0
λ20 0 · · · 0 λ21 · · · λ2q · · · · · · 0 · · · 0

...
... . . . ...

... . . . ... . . . . . . ... . . . ...
λr0 0 · · · 0 0 · · · 0 · · · · · · λr1 · · · λrq


′

.

The above model can be viewed as a special case of the constrained factor model with
some zero restrictions imposed on Λ. The model considered here maintains the nonlinear
function feature of Conner and Linton (2007) and Conner, Hagmann and Linton (2012)
but the computational burden has been much reduced. A primary issue related with our
method is whether the approximation (2.1) is good enough. This work can be partially
addressed by the W statistic proposed in Section 5.

Constrained factor models have other applications. Tsai and Tsay (2010) apply con-
strained factor models to analyze stock returns where the stocks can be classified into
different sectors. They specify the constraint matrix M consisting of orthogonal and bi-
nary vectors. In another application, they implement constrained factor models to study
the interest-rate yield curve, where the columns of the matrix M are specified to denote
the level, slope and curvature feature of interest rates. Matteson et al. (2011) use con-
strained factor models to forecast the hourly emergency medical service call arrival rates
by specifying the constraints on the factor loadings based on the prior information of the
pattern of the call arrivals. Similar approach is adopted in Zhou and Matteson (2015) to
model the ambulance demand by incorporating covariate information as constraints on the
factor loadings.
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3 Constrained Factor Models

Let N denote the number of variables and T the sample size in the time dimension. We
consider the following constrained factor model

zt = MΛft + et, (3.1)

where zt = (z1t, z2t, . . . , zNt)′ is an N -dimensional vector of explanatory variables at time
t; M is a specified N ×k (known) matrix with rank k; Λ is the k×r loading matrix of rank
r; ft = (f1t, f2t, . . . , frt)′ is a vector of r latent common factors; et is an N -dimensional
vector of idiosyncratic disturbances and is independent of ft. Throughout the paper, we
assume k ≥ r. If k < r, we can simply consider the linear regression zt = Mf∗

t + et with
f∗

t = Λft. The model effectively becomes a factor model with k (when k < r) factors.
Our analysis is based on similar assumptions used in standard factor models, see Bai

and Li (2012) for the asymptotic analysis of the MLE for standard high dimensional factor
models. The symbol C appearing in the following assumptions denotes a generic constant.
Our assumptions include:

Assumption A: {ft} is a sequence of fixed constants with f̄ =
∑T

t=1 ft = 0. Let
Mff = 1

T

∑T
t=1 ftf

′
t be the sample variance of ft. There exists an Mff > 0 (positive

definite) such that Mff = lim
T →∞

Mff .

Assumption B: The idiosyncratic error term eit is independent across the i index and
the t index with E(et) = 0, E(ete

′
t) = Σee = diag(σ2

1, σ
2
2, · · · , σ2

N ) and E(e8
it) ≤ C for all i

and t, where et = (e1t, e2t, . . . , eNt)′ is the N -dimensional vector of idiosyncratic errors at
time t.

Assumption C: The underlying values of parameters satisfy that
C.1 ∥Λ∥ ≤ C and ∥mj∥ ≤ C for all j, where mj is the transpose of the jth row of M .
C.2 C−2 ≤ σ2

j ≤ C2 for all j, where σ2
j = E(e2

jt) is defined in Assumption B.
C.3 Let P = Λ′M ′Σ−1

ee MΛ/N , R = M ′Σ−1
ee M/N . We assume that P∞ = lim

N→∞
P and

R∞ = lim
N→∞

R exist. In addition, lim
N→∞

1
N

∑N
i=1 σ

−4
i (mi ⊗mi)(m′

i ⊗m′
i) = V∞ exists.

Here P∞, R∞ and V∞ are some positive definite matrices.

Assumption D: The estimator of σ2
j for j = 1, ..., N takes value in a compact set:

[C−2, C2]. Furthermore, Mff is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [−C,C], where C is a large
positive constant.

Assumption A requires that factors are sequences of fixed constants. The random
factors can be dealt with in a similar way under some suitable moment conditions. As-
sumption B is commonly imposed in classical factor models. It can be relaxed to allow for
cross-sectional and temporal heteroskedasticities and correlations, see Bai and Li (2016) for
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a related development in this direction. Assumption C requires that underlying values of
parameters are in a compact set, which is standard in econometric literature. Assumption
D requires that some parameter estimates take values in a compact set. This assumption
is often made when dealing with highly nonlinear objective function, see Jennrich (1969).
Our objective function is highly nonlinear.

Similar to the case of a standard factor model, a constrained factor model has an
identification problem. To see this, for any invertible r × r matrix B, we have

Λft = ΛB ·B−1ft = Λ∗f∗
t .

with Λ∗ = ΛB and f∗
t = B−1ft. To sperate (Λ, ft) from (Λ∗, f∗

t ), we impose the following
identification condition.

Identification condition (abbreviated by IC hereafter):
IC1 Λ′( 1

NM
′Σ−1

ee M
)
Λ = P , where P is a diagonal matrix whose diagonal elements are

distinct and arranged in a descending order.
IC2 Mff = 1

T

∑T
t=1 ftf

′
t = Ir.

Our identification strategy is similar to IC3 in Bai and Li (2012). It is known that this
identification strategy identifies the loadings and factors up to a column sign, see Bai and Li
(2012) for a detailed discussion on this issue. To eliminate such a problem in our theoretical
analysis, we follow Bai and Li (2012) to treat as part of the identification condition that
the estimators and the underlying values of loadings matrix have the same column signs.
In practice, the sign problem causes no troubles in empirical analysis.

We use the following discrepancy function betweenMzz and Σzz as our objective function

L(θ) = − 1
2N

ln |Σzz| − 1
2N

tr[MzzΣ−1
zz ], (3.2)

where θ = (Λ,Σee), Mzz = T−1∑T
t=1 ztz

′
t and Σzz = MΛΛ′M ′ + Σee. This discrepancy

function has the same form as a likelihood function when ft are independently and normally
distributed with mean zero and variance Ir, see Bai and Li (2012) for details. In the
current paper, the factors are assumed to be fixed constants in Assumption A, the above
discrepancy function is therefore not a likelihood function. Nevertheless, we still call the
maximizer of the above function as a quasi MLE or MLE for simplicity. Specifically, the
MLE θ̂ = (Λ̂, Σ̂ee) is defined as

θ̂ = argmax
θ∈Θ

L(θ),

where Θ is the parameters space such that any interior point of it satisfies Assumption
D and the identification condition IC. The input parameters include Λ and Σee. In a
constrained factor model, we only need to estimate kr loadings instead of Nr loadings (the
number of parameters in a standard factor model). Therefore, the number of parameters
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is greatly reduced. Taking derivatives with respect to Λ and Σee, we obtain the following
first order conditions:

Λ̂′M ′Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz M = 0; (3.3)

diag(Σ̂−1
zz ) = diag(Σ̂−1

zz MzzΣ̂−1
zz ), (3.4)

where Λ̂ and Σ̂ee denote MLE of Λ and Σee, respectively, and Σ̂zz = M Λ̂Λ̂′M ′ + Σ̂ee. We
note that the above two first order conditions are only used in deriving the asymptotic
properties of the MLE. One does not need to solve the above nonlinear equations to obtain
the MLE. Instead, we can implement the EM algorithm to compute the MLE. Details are
given in Section 7.

4 Asymptotic properties of the MLE

In this section, we investigate the asymptotic properties of the MLE. The following propo-
sition shows that the MLE is consistent.

Proposition 4.1 (Consistency) Let θ̂ = (Λ̂, Σ̂ee) be the MLE that maximizes (3.2).
Then under Assumptions A-D, together with IC, when N,T → ∞, we have

Λ̂ − Λ p−→ 0; 1
N

N∑
i=1

(σ̂2
i − σ2

i )2 p−→ 0.

In high dimensional factor analysis, the loadings and variances of idiosyncratic errors
are high-dimensional. The consistencies have to be defined under some chosen norms, see
Stock and Watson (2002), Bai (2003), Doz, Giannone and Reichlin (2012) and Bai and Li
(2012, 2016). In constrained factor models, due to the presence of matrix M , the loading
matrix Λ is low-dimensional. So its consistency is defined in the elementwise sense. But
for the variances of idiosyncratic errors, they are still high-dimensional. Their consistency
is therefore defined by 1

N

∑N
i=1(σ̂2

i − σ2
i )2, which can be written as 1

N ∥Σ̂ee − Σee∥2. So the
chosen norm is the Frobenius norm adjusted with the matrix dimension.

Given the consistency results, we have the following theorem on convergence rates of
the MLE.

Theorem 4.1 (Convergence rates) Under the assumptions of Proposition 4.1, we have

Λ̂ − Λ = Op

( 1√
NT

)
+Op

( 1
T

)
,

1
N

N∑
i=1

(
σ̂2

i − σ2
i

)2
= Op

( 1
T

)
.

According to Theorem 4.1, the convergence rate of Λ̂ is min(
√
NT, T ), which is faster

than the
√
T -convergence rate of estimated loadings in standard factor models. This result

is plausible since in a constrained factor model, we use NT observations to estimate kr
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loadings. This is in contrast with a standard factor model, where we use NT observations
to estimate Nr loadings.

To present the asymptotic representation of the MLE, we introduce some notation. Let

D1 =
[

2D+
r

D[(P ⊗ Ir) + (Ir ⊗ P )Kr]

]
, D2 =

[
2D+

r

0 1
2 r(r−1)×r2

]
, D3 =

[
0 1

2 r(r+1)×r2

D

]
,

and

B1 = Kkr[(P−1Λ′) ⊗ Λ] +R−1 ⊗ Ir −Kkr(Ir ⊗ Λ)D−1
1 D2[(P−1Λ′) ⊗ Ir],

B2 = Kkr(Ir ⊗ Λ)D−1D3(Λ ⊗ Λ)′, ∆ = B2
1
N

N∑
i=1

1
σ6

i

(mi ⊗mi)(κi,4 − σ4
i ),

where P = 1
N Λ′M ′Σ−1

ee MΛ, R = 1
NM

′Σ−1
ee M , κi,4 = E(e4

it), mi is the transpose of the
ith row of matrix M , Kuv is the commutation matrix such that for any u × v matrix B,
Kuvvec(B) = vec(B′); and Kr is defined to be Krr. D+

r = (D′
rDr)−1D′

r is the Moore-
Penrose inverse matrix of the r-dimensional duplication matrix Dr, D is the matrix such
that veck(B) = Dvec(B) for any r × r matrix B, where veck(B) is the operation which
stacks the elements below the diagonal of the matrix B into a vector. Given matrix P , we
can easily calculate the matrix D1 and its inverse. For example, let P = diag(1, 2, 3) (r = 3
in this case), then

D1 =



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2
0 1 0 2 0 0 0 0 0
0 0 1 0 0 0 3 0 0
0 0 0 0 0 2 0 3 0


, D−1

1 =



0.5 0 0 0 0 0 0 0 0
0 2 0 0 0 0 −1 0 0
0 0 1.5 0 0 0 0 −0.5 0
0 −1 0 0 0 0 1 0 0
0 0 0 0.5 0 0 0 0 0
0 0 0 0 3 0 0 0 −1
0 0 −0.5 0 0 0 0 0.5 0
0 0 0 0 −2 0 0 0 1
0 0 0 0 0 0.5 0 0 0


.

Now we state the asymptotic result of Λ̂.

Theorem 4.2 (Asymptotic representation) Under assumptions of Theorem 4.1, we
have

vec(Λ̂′ − Λ′) = B1
1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit − B2
1
NT

N∑
i=1

T∑
t=1

1
σ4

i

(mi ⊗mi)(e2
it − σ2

i )

+ 1
T

∆ +Op( 1
N

√
T

) +Op( 1√
NT

) +Op( 1
T 3/2 ), (4.1)

where the symbols B1, B2 and ∆ are defined above Theorem 4.2.

The first two terms on the right hand side of (4.1) are Op( 1√
NT

) since their variances
are O( 1

NT ) and the third term is O( 1
T ). The first three terms dominates the remaining
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terms. Theorem 4.2 reaffirms the convergence rates asserted in Theorem 4.1 and sharpens
the results by explicitly giving the concrete expressions of the Op( 1√

NT
) and Op( 1

T ) terms.
Given Theorem 4.2, invoking a Central Limit Theorem, we have the following theorem.

Theorem 4.3 (Limiting distribution) Under assumptions of Theorem 4.1, as N,T →
∞, N/T 2 → 0, we have

√
NT

[
vec(Λ̂′ − Λ′) − 1

T
∆
]

d−→ N(0,Ω),

where Ω = lim
N→∞

ΩN with

ΩN = B1(R⊗ Ir)B′
1 + B2

[ 1
N

N∑
i=1

κi,4 − σ4
i

σ8
i

(mim
′
i) ⊗ (mim

′
i)
]
B′

2.

Theorem 4.3 shows that the MLE Λ̂ has a non-negligible bias. This is in contrast to a
result of Bai and Li (2012) who show that, in a high-dimensional standard factor model,
the MLE is asymptotically centered around zero. Another interesting result is that the
limiting variance of the MLE Λ̂ depends on the kurtosis of ejt. Given Theorem 4.3, when
eit is normally distributed, we have κi,4 = 3σ4

i , the asymptotic variance can be simplified
as the next corollary shows.

Corollary 4.1 Under assumptions of Theorem 4.3, with normality of eit,we have

√
NT

[
vec(Λ̂′−Λ′)− 1

NT
B2

N∑
i=1

1
σ2

i

(mi⊗mi)
]

d−→ N
(
0,B1,∞(R∞⊗Ir)B′

1,∞+2B2,∞V∞B′
2,∞

)
,

where R∞ and V∞ are defined in Assumption C.3, B1,∞ and B2,∞ are almost the same as
B1 and B2 except that P and R are replaced by P∞ and R∞. Furthermore, if N/T → 0,
we have

√
NTvec(Λ̂′ − Λ′) d−→ N

(
0,B1,∞(R∞ ⊗ Ir)B′

1,∞ + 2B2,∞V∞B′
2,∞

)
.

Remark 4.1 To estimate the bias and the limiting variance, we use some plug-in methods.
Specifically, the bias is estimated by

∆̂ = B̂2
1
N

N∑
i=1

1
σ̂6

i

(κ̂i,4 − σ̂4
i )(mi ⊗mi),

and the limiting variance is estimated by

Ω̂ = B̂1(R̂⊗ Ir)B̂′
1 + B̂2

[ 1
N

N∑
i=1

κ̂i,4 − σ̂4
i

σ̂8
i

(mim
′
i) ⊗ (mim

′
i)
]
B̂′

2,

where

B̂1 = Kkr[(P̂−1Λ̂′) ⊗ Λ̂] + R̂−1 ⊗ Ir −Kkr(Ir ⊗ Λ̂)D̂−1
1 D2[(P̂−1Λ̂′) ⊗ Ir],
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B̂2 = Kkr(Ir ⊗ Λ̂)D̂−1D3(Λ̂ ⊗ Λ̂)′.

Here Λ̂ and σ̂2
i are the MLE; R̂ = 1

NM
′Σ̂−1

ee M and P̂ = 1
N Λ̂′M ′Σ̂−1

ee M Λ̂; D̂1 is almost the
same as D1 except that P is replaced by P̂ ; κ̂i,4 = 1

T

∑T
t=1 ê

4
it with êit = zit − m′

iΛ̂f̂t and
f̂t = (Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee zt.

Remark 4.2 Theorem 4.3 is derived under a full identification of loading matrix Λ. An
alternative approach to investigate the asymptotics, as adopted in Bai (2003), is that one
only imposes the conditionMff = Ir. Since in this case the original identification conditions
(IC) are not met, the loading matrix Λ is not fully identified. But one can still deliver the
asymptotic theory based on Λ̂′ −RΛ′, where R is a rotational matrix. According to (A.18)
in Appendix A, together with Lemma B.3 (e), (f) and Lemma B.5 (a), we have

Λ̂′ − RΛ′ = R 1
T

T∑
t=1

fte
′
tΣ−1

ee MR−1
N +Op( 1√

NT
) +Op( 1

N
√
T

) +Op( 1
T 3/2 ),

where R is the rotational matrix defined by

R = P̂−1
N Λ̂′M ′Σ̂−1

ee MΛ + P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t

with P̂N = Λ̂′M ′Σ̂−1
ee M Λ̂.

Given the above result, we have that under N,T → ∞, N/T 2 → 0,
√
NTvec(Λ̂′ − RΛ′) d−→ N(0, R−1

∞ ⊗ RR′),

where R = plim
N,T →∞

R.

Theorem 4.4 Under Assumptions A-D, as N,T → ∞, we have

√
T (σ̂2

i − σ2
i ) = 1√

T

T∑
t=1

(e2
it − σ2

i ) + op(1).

Given this result, we have
√
T (σ̂2

i − σ2
i ) d−→ N(0, κi,4 − σ4

i ),

where κi,4 = E(e4
it) is the kurtosis of eit.

We emphasize that the limiting result for σ̂2
i is independent with the identification

conditions. In addition, the above limiting result is the same as that in a standard high-
dimensional factor model (see, e.g., Theorem 5.4 of Bai and Li (2012)).

We finally consider the estimation of factors. Following Bai and Li (2012), we estimate
the factors by the generalized least squares (GLS) method. More specifically, the GLS
estimator of ft is

f̂t = (Λ̂′M ′Σ̂−1
ee M Λ̂)−1Λ̂′M ′Σ̂−1

ee zt,

where Λ̂ and Σ̂ee are the respective MLEs of Λ and Σee. The asymptotic representation
and limiting distribution of f̂t are provided in the following theorem.
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Theorem 4.5 Under assumptions of Theorem 4.1, we have

f̂t − ft = P−1 1
N

Λ′M ′Σ−1
ee et +Op

( 1√
NT

)
+Op

( 1
T

)
,

where P = 1
N Λ′M ′Σ−1

ee MΛ. Then as N,T → ∞ and N/T 2 → 0, we have
√
N(f̂t − ft)

d−→ N(0, P−1
∞ ),

where P∞ = lim
N→∞

P is defined in Assumption C.3.

The above theorem indicates that the asymptotic properties of the GLS estimator for
factors in the current model are the same as that in standard high-dimensional factor
models­. However, the derivation of the above theorem is actually easier due to the faster
convergence rate of estimated loadings.

5 Testing

The limiting distribution of the MLE in Theorem 4.3 allows one to test whether the loading
matrix Λ is equal to some known matrix. Consider the following hypothesis:

HΛ,0 : Λ = Λo, HΛ,1 : Λ ̸= Λo.

A Wald statistic for this hypothesis testing is

WΛ = NT
[
vec(Λ̂′ − Λo′) − 1

T
∆̂
]′

Ω̂−1
[
vec(Λ̂′ − Λo′) − 1

T
∆̂
]
,

where the symbols ∆̂ and Ω̂ are given in Remark 4.1. The following theorem, which is a
direct result of Theorem 4.3, gives the limiting distribution of WΛ.

Theorem 5.1 Under Assumptions A-D, together with IC, as N,T → ∞ and N/T 2 → 0,
under HΛ,0, we have

WΛ
d−→ χ2

kr,

where χ2
kr denotes a chi-square distribution with degrees of freedom equal to kr.

An important issue related with the constrained factor model is that whether specifi-
cation (3.1) is appropriate in a general factor model. Therefore, in practice one is likely to
be interested in testing the correctness of the decomposition of loadings matrix L = MΛ.
For a given M , the corresponding null and alternative hypotheses are

H0 : L = MΛ for some Λ,

H1 : L ̸= MΛ for all Λ.
­For the asymptotic results of the GLS estimator in standard high dimensional factor models, see

Theorem 6.1 of Bai and Li (2012).
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In traditional (low-dimensional) factor analysis, testing restrictions on loadings can be
conducted by using the likelihood ratio (LR) principle. Because the number of parameters
is finite, the number of imposed restrictions is finite too. By standard arguments, onee can
show that, under the null hypothesis, the LR statistic has an asymptotic χ2 distribution
with the degrees of freedom equal to the number of restrictions. In the high-dimensional
setting, the number of parameters increases with the sample size. The number of restric-
tions possibly increases with the sample size as well. This is the case in our specification
test in constrained factor models. As can be seen that under H0, the number of restrictions
for L = MΛ is (N −k)r, which proportionally increases with the number of cross sectional
units. As a result, the limiting distribution of the traditional LR test would have divergent
degrees of freedom, an undesirable feature which can make the test unstable. This motives
us to design a new test independent of N .

To gain an insight of our test, notice that the estimator M Λ̂® under IC and H0 should
be very close to L̂, the MLE of L from a standard factor model (zt = Lft + et) under the
identification condition that Mff = Ir and 1

NL
′Σ−1

ee L is diagonal. However, under H1, the
two estimates will not be close to each other. Based on the above analysis, we construct
the following test statistic

W =
√
NT 2tr

[ 1
N

(M Λ̂ − L̂)′Σ̃−1
ee (M Λ̂ − L̂) − 1

T
Ir

]
,

where Σ̃ee is an estimator of Σee under the alternative hypothesis.

Theorem 5.2 Under the same assumptions of Proposition 4.1 and N/T 2 → 0, under H0,
we have

W
d−→ N(0, 2r).

Remark 5.1 As pointed out in Section 2, the identification condition has a sign problem.
This problem should be carefully treated in the two statistics (WΛ and W ) in implementa-
tions, otherwise it may lead to an erroneous rejection of the null hypothesis. To eliminate
this problem, when calculating WΛ, we first compute the inter product of each column of Λ̂
and the counterpart of Λo. If the value is negative, we multiple −1 on this column of Λ̂. As
regard to W , both L̂ and M Λ̂ have the sign problem, but we can use a similar procedure to
deal with it. That is, for each column of L̂, we calculate the inner product of this column
and its counterpart of M Λ̂. If the inner product is negative, we multiple −1 on this column
of L̂. After this treatment, the sign problem concomitant with the identification condition
is removed.

Remark 5.2 Although we use the symbol W to denote the proposed statistic in the pa-
per, our W statistic differs from the conventional Wald test. There are some key features

®An alternative estimator is M Λ̂†, where Λ̂† is the bias-corrected estimator for Λ. It can be shown
that the difference of the two statistics (which are based on Λ̂† and Λ̂) is asymptotically negligible under
N/T 2 → 0.
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that are different between our W test and the Wald test. First, the Wald test only in-
volves estimators from an unconstrained model. In contrast, we use estimators from both
constrained and unconstrained models to construct the W statistic. Second, the Wald
test has an asymptotic χ2 distribution with the value of degrees of freedom equal to the
number of restrictions. But our W statistic has an asymptotic normal distribution, which
is free of degree of freedom. For the same reasons, our W statistic is also different from a
conventional Lagrange multiplier test.

6 Partially Constrained Factor Models

In this section, we consider the following partially constrained factor model

zt = MΛft + Γgt + et , Φht + et, (6.1)

where Φ = [MΛ,Γ], ht = (f ′
t, g

′
t)′ is an r-dimensional vector, ft is an r1-dimensional vector

and gt an r2-dimensional vector with r1 + r2 = r. Again we study the ML estimation on
model (6.1).

To analyze the MLE, we make the following assumptions.
Assumption A′. The factors {ht} satisfy the conditions in Assumption A.
Assumption C′. There exists a positive constant C such that ∥ϕi∥ < C for all i, where

ϕi is the transpose of the ith row of Φ. Let H = 1
N Φ′Σ−1

ee Φ, we assume H = lim
N→∞

H > 0.
Identification condition, IC′. The identification conditions considered here are sim-

ilar to those in the pure constrained factor model. More specifically, we require that
Mhh = 1

T

∑T
t=1 hth

′
t = Ir and H is a diagonal matrix with all its diagonal elements distinct

and arranged in a descending order.
Let Σzz = ΦΦ′ + Σee and θ = (Λ,Γ,Σee). The MLE is defined as

θ̂ = argmax
θ∈Θ

L(θ),

where
L(θ) = − 1

2N
ln |Σzz| − 1

2N
tr[MzzΣ−1

zz ].

Here Θ is the parameter space specified by Assumption D and the identification condition
IC′. In the supplementary appendix D (available upon request), we show that the first
order condition for Λ can be written as

Λ̂′M ′Σ̂−1
ee (Mzz − Σ̂zz)Σ̂−1

ee M = 0. (6.2)

The first order condition for Γ can be written as

Γ̂′Σ̂−1
ee (Mzz − Σ̂zz) = 0. (6.3)

The first order condition for Σee can be written as

diag
[
(Mzz − Σ̂zz) −M Λ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Mzz − Σ̂zz) − (Mzz − Σ̂zz)Σ̂−1
ee M Λ̂Ĝ1Λ̂′M ′

]
= 0. (6.4)
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Before we present the asymptotic results for the MLE, we first introduce some notation

B⋆
1 = R−1 ⊗ Ir1 +Kkr1 [(P−1Λ′) ⊗ Λ] −Kkr1(E′

1 ⊗ Ψ)D−1
1 D2[(H−1E1Λ′) ⊗ E1],

B⋆
2 = Kkr1 [P−1 ⊗ ψ] −Kkr1(E′

1 ⊗ Ψ)D−1
1 D2[(H−1E1) ⊗ E2],

B⋆
3 = −Kkr1(E′

1 ⊗ Ψ)D−1
1 D2[(H−1E2) ⊗ E1],

B⋆
4 = −Kkr1(E′

1 ⊗ Ψ)D−1
1 D2[(H−1E2) ⊗ E2], B⋆

5 = −Kkr1(E′
1 ⊗ Ψ)D−1

1 D3,

∆⋆ = Kkr1(E′
1 ⊗ Ψ)D−1

1 D3

[ 1
N

N∑
i=1

1
σ6

i

(ϕi ⊗ ϕi)(κi,4 − σ4
i ) + vec(r1H − E2E

′
2)
]
,

where E1 = [Ir1 , 0r1×r2 ]′, E2 = [0r2×r1 , Ir2 ]′, ψ = (M ′Σ−1
ee M)−1M ′Σ−1

ee Γ, Ψ = [Λ, ψ] and H
is defined in Assumption C′. The symbols κi,4, Kmn, P , R, D1, D2 and D3 are defined the
same as in Section 4.

Let γi be the transpose of the ith row of Γ. The following theorem states the asymptotic
representations for the MLE. The consistency and convergence rates are implied by the
theorem.

Theorem 6.1 Under Assumptions A′, B, C′ and D, when N,T → ∞, we have, for all i,

σ̂2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) +Op

( 1
T

)
.

In addition, if IC′ is imposed, we have, for all i,

γ̂i − γi = 1
T

T∑
t=1

gteit +Op

( 1
T

)

and

vec(Λ̂′ − Λ′) = B⋆
1

1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit + B⋆
2

1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(Λ′mi ⊗ gt)eit

+ B⋆
3

1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(γi ⊗ ft)eit + B⋆
4

1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(γi ⊗ gt)eit

+ B⋆
5

1
NT

N∑
i=1

T∑
t=1

1
σ4

i

(ϕi ⊗ ϕi)(e2
it − σ2

i ) + 1
T

∆⋆

+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
,

where B⋆
1, . . . ,B⋆

5 and ∆⋆ are defined above this theorem.

Given the above theorem, we have the following distribution results for the MLE.

Corollary 6.1 Under Assumptions A′, B, C′ and D, when N,T → ∞, we have, for all i,
√
T (σ̂2

i − σ2
i ) d−→ N(0, κi,4 − σ4

i ).
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In addition, if IC′ is imposed, we have, for all i,
√
T (γ̂i − γi)

d−→ N(0, σ2
i Ir2).

If N/T 2 → 0 is further imposed, we have
√
NT

[
vec(Λ̂′ − Λ′) − 1

T
∆⋆
]

d−→ N(0,Ω⋆),

where Ω⋆ = lim
N→∞

Ω⋆
N with

Ω⋆
N = B⋆

1(R⊗ Ir1)B⋆′
1 + B⋆

2(P ⊗ Ir1)B⋆′
2 + B⋆

3(Q⊗ Ir1)B⋆′
3 + B⋆

4(Q⊗ Ir2)B⋆′
4

+ B⋆
1(S ⊗ Ir1)B⋆′

3 + B⋆
3(S′ ⊗ Ir1)B⋆′

1 + B⋆
5

[ 1
N

N∑
i=1

1
σ8

i

(ϕiϕ
′
i) ⊗ (ϕiϕ

′
i)(κi,4 − σ4

i )
]
B⋆′

5 ,

where Q = Γ′Σ−1
ee Γ/N and S = M ′Σ−1

ee Γ/N .

The approach to estimate the factors in partially constrained factor models is similar
as before. Given the MLE Λ̂, Γ̂ and Σ̂ee, the GLS estimator of ht is

ĥt = (Φ̂′Σ̂−1
ee Φ̂)−1Φ̂′Σ̂−1

ee zt,

where Φ̂ = (M Λ̂, Γ̂). Using the similar arguments as in the proof of Theorem 4.5, we have
the following asymptotic representation and limiting distribution results on ĥt.

Theorem 6.2 Under Assumptions A′, B, C′ and D, together with IC′, we have, for all t,

ĥt − ht = H−1 1
N

Φ′Σ−1
ee et +Op

( 1√
NT

)
+Op

( 1
T

)
,

where H = 1
N Φ′Σ−1

ee Φ. Then as N,T → ∞ and N/T 2 → 0, we have
√
N(ĥt − ht)

d−→ N(0, H̄−1),

where H̄ = lim
N→∞

H is defined in Assumption C′.

7 EM algorithm

The ML estimation can be easily implemented via the EM algorithm. The iterating for-
mulas for a purely constrained factor model and a partially constrained one are different.
We present them separately.

7.1 EM algorithm for the pure constrained factor model

Let θ(k) = (Λ(k),Σ(k)
ee ) denote the estimate at the kth iteration. The EM algorithm updates

and calculates θ(k+1) = (Λ(k+1),Σ(k+1)
ee ) by

Λ(k+1) = (M ′Σ(k)−1
ee M)−1

[
M ′Σ(k)−1

ee

1
T

T∑
t=1

E(ztf
′
t |Z, θ(k))

][
1
T

T∑
t=1

E(ftf
′
t |Z, θ(k))

]−1

,
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diag(Σ(k+1)
ee ) = diag

{
Mzz − 2

T

T∑
t=1

E(ztf
′
t |Z, θ(k))Λ(k+1)′M ′

+MΛ(k+1) 1
T

T∑
t=1

E(ftf
′
t |Z, θ(k))Λ(k+1)′M ′

}
,

where Σ(k)
zz = MΛ(k)Λ(k)′M ′ + Σ(k)

ee and

1
T

T∑
t=1

E(ftf
′
t |Z, θ(k)) = Λ(k)′M ′(Σ(k)

zz )−1Mzz(Σ(k)
zz )−1MΛ(k) + Ir − Λ(k)′M ′(Σ(k)

zz )−1MΛ(k),

1
T

T∑
t=1

E(ztf
′
t |Z, θ(k)) = Mzz(Σ(k)

zz )−1MΛ(k).

The above iteration continues until ∥θ(k+1) − θ(k)∥ is smaller than a preset tolerance.
For the initial values, the PC estimates proposed in Tsai and Tsay (2010) are recommended.
When iterations are terminated, the estimates, denoted by (Λ†,Σ†

ee), need to be further
normalized to satisfy the identification conditions in Section 3. The normalization can be
conducted as follows. Let V † be the orthogonal matrix consisting of the eigenvectors of the
matrix 1

N Λ†′M ′(Σ†
ee)−1MΛ† with the corresponding eigenvalues arranged in a descending

order. Let Λ̂ = Λ†V † and Σ̂ee = Σ†
ee. Then θ̂ = (Λ̂, Σ̂ee) is the MLE that satisfies IC.

Bai and Li (2012) show that the iterating formulas of the EM algorithm approach to
the first order conditions of the likelihood function as the iteration tends to infinity. Using
their arguments, one can show similar results in constrained factor models. Since the proof
is almost the same as in Bai and Li (2012), we omit it for sake of space.

7.2 EM algorithm for the partially constrained factor model

Let θ(k) = (Λ(k),Γ(k),Σ(k)
ee ) denote the estimate at the kth iteration. The EM algorithm

updates and calculates θ(k+1) = (Λ(k+1),Γ(k+1),Σ(k+1)
ee ) by

Λ(k+1) = (M ′Σ(k)−1
ee M)−1

[
M ′Σ(k)−1

ee

1
T

T∑
t=1

E(ztf
′
t |Z, θ(k))

][
1
T

T∑
t=1

E(ftf
′
t |Z, θ(k))

]−1

− (M ′Σ(k)−1
ee M)−1

[
M ′Σ(k)−1

ee Γ(k) 1
T

T∑
t=1

E(gtf
′
t |Z, θ(k))

][
1
T

T∑
t=1

E(ftf
′
t|Z, θ(k))

]−1

,

Γ(k+1) =
[

1
T

T∑
t=1

E(ztg
′
t|Z, θ(k))

][
1
T

T∑
t=1

E(gtg
′
t|Z, θ(k))

]−1

−
[
MΛ(k+1) 1

T

T∑
t=1

E(ftg
′
t|Z, θ(k))

][
1
T

T∑
t=1

E(gtg
′
t|Z, θ(k))

]−1

,

diag(Σ(k+1)
ee ) = diag

{
Mzz − 2

T

T∑
t=1

E(ztf
′
t |Z, θ(k))Λ(k+1)′M ′ − 2

T

T∑
t=1

E(ztg
′
t|Z, θ(k))Γ(k+1)′

+MΛ(k+1) 1
T

T∑
t=1

E(ftf
′
t |Z, θ(k))Λ(k+1)′M ′ + Γ(k+1) 1

T

T∑
t=1

E(gtg
′
t|Z, θ(k))Γ(k+1)′
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+ 2MΛ(k+1) 1
T

T∑
t=1

E(ftg
′
t|Z, θ(k))Γ(k+1)′

}
,

where Σ(k)
zz = MΛ(k)Λ(k)′M ′ + Γ(k)Γ(k)′ + Σ(k)

ee and

1
T

T∑
t=1

E(ftf
′
t |Z, θ(k)) = Λ(k)′M ′(Σ(k)

zz )−1Mzz(Σ(k)
zz )−1MΛ(k) + Ir1 − Λ(k)′M ′(Σ(k)

zz )−1MΛ(k),

1
T

T∑
t=1

E(ftg
′
t|Z, θ(k)) = Λ(k)′M ′(Σ(k)

zz )−1Mzz(Σ(k)
zz )−1Γ(k) − Λ(k)′M ′(Σ(k)

zz )−1Γ(k),

1
T

T∑
t=1

E(gtg
′
t|Z, θ(k)) = Γ(k)′(Σ(k)

zz )−1Mzz(Σ(k)
zz )−1Γ(k) + Ir2 − Γ(k)′(Σ(k)

zz )−1Γ(k),

1
T

T∑
t=1

E(ztf
′
t |Z, θ(k)) = Mzz(Σ(k)

zz )−1MΛ(k),

1
T

T∑
t=1

E(ztg
′
t|Z, θ(k)) = Mzz(Σ(k)

zz )−1Γ(k).

Likewise, we use the PC estimates as the starting values, and iterate the above formulas
until ∥θ(k+1) − θ(k)∥ is smaller than a preset tolerance. Let θ⋄ = (Λ⋄,Γ⋄,Σ⋄

ee) be the
estimates of the last iteration. Again we need rotate θ⋄ to satisfy the IC′′. Let V ⋄ be
the orthogonal matrix consisting of the eigenvectors of the matrix 1

N Φ⋄′(Σ⋄
ee)−1Φ⋄ with

the corresponding eigenvalues arranged in a descending order, where Φ⋄ = (MΛ⋄,Γ⋄). Let
Φ⋄V ⋄ and split Φ△ into Φ△ = (Φ△

1 ,Φ
△
2 ), where Φ△

1 is made up with the left r1 columns
and Φ△

2 the remaining r2 columns. Then calculate Λ̂ = (M ′M)−1M ′Φ△
1 , and simply let

Γ̂ = Φ△
2 and Σ̂ee = Σ⋄

ee. Then θ̂ = (Λ̂, Γ̂, Σ̂ee) is the MLE that satisfies IC′′.
Again, we can show that the limit of the iterated EM solutions satisfy the first order

conditions (6.2), (6.3) and (6.4). The proof is similar to the pure constrained factor model
case and therefore skipped here.

8 Simulation results

In this section, we run simulations to investigate the finite sample performance of the MLE,
as well as the empirical size and power of the W test.

8.1 Finite sample performance of the MLE

We first conduct simulations to investigate the finite sample properties of the MLE and
compare it with the PC estimates proposed by Tsai and Tsay (2010).

In the literature on high dimensional factor models, researchers usually use a generalized
R2 or a trace ratio to measure the goodness-of-fit, e.g., Stock and Watson (2002), Doz,
Giannone and Reichlin (2012) and Bai and Li (2012). These measures are invariant to the
rotational indeterminacy and therefore effective to perform the measure task. However,
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in constrained factor models, such measures are not suitable since the estimates have
faster convergence rates, which often leads to a high value of the generalized R2 or the
trace ratio. For this reason, we instead consider an alternative measure by rotating the
underlying values to satisfy the identification condition and investigating the precision of
Λ̂ − Λ for rotated values. We calculate the mean absolute deviation (MAD) and the root
mean square error (RMSE) based on the rotated underlying values. We also calculate the
root asymptotic variance (RAvar) to check the convergence rate of Λ̂ presented in Theorem
4.1. The calculation formulas based on S simulations are as follows

MAD = 1
S

S∑
s=1

( 1
kr

k∑
p=1

r∑
i=1

|Λ̂s
pi − Λs

pi|
)
,

RMSE =

√√√√ 1
S

S∑
s=1

( 1
kr

k∑
p=1

r∑
i=1

(Λ̂s
pi − Λs

pi)2
)
,

RAvar =
√
NT ×

√√√√ 1
S

S∑
s=1

( 1
kr

k∑
p=1

r∑
i=1

(Λ̂bc,s
pi − Λs

pi)2
)
,

where Λ̂s
pi and Λ̂bc,s

pi are the MLE and biased-corrected MLE in the sth simulation, respec-
tively.

Data are generated according to zt = MΛft + et, where all elements of M are drawn
independently from U [0, 1] and all elements of Λ and F independently from N(0, 1). The
idiosyncratic errors eit are generated according to eit = σiϵit with σ2

i being the ith diago-
nal element of (MΛΛ′M ′) multiplying bi

1−bi
, where bi = 0.2 + 0.6Ui and Ui ∼ U [0, 1]. The

component ϵit is generated from the three distributions: the normal distribution, student’s
distribution with 5 degrees of freedom and chi-squared distribution with 2 degrees of free-
dom. For the latter two distributions, we normalize the random variable to have zero mean
and init variance. For the values of k and r, we consider two cases: (k, r) = (3, 1) and
(k, r) = (8, 3).

Throughout this section, we assume that the number of common factors is known.
There are a number of methods at hand to determine the number of factors, for exam-
ple, the information criterion method by Bai and Ng (2002), the largest eigenvalue-ratios
method by Ahn and Horenstein (2013) and the eigenvalue empirical distribution method
by Onatski (2010). If the number of factors is unknown, one can choose any of the method
mentioned above to estimate it. Tables 1 and 2 present the performance of the MLE
and the PC estimate for normal errors under the sample sizes of N = 30, 50, 100, 150 and
T = 30, 50, 100. The results under student-t errors and chi-square errors are almost the
same as those for normal errors and are given in Table E1-E4 in the supplementary ap-
pendix E (available upon request) to save space. All these results are obtained based on
1000 repetitions.

From Tables 1 and 2, we can see that both MAD and RMSE of the MLE are much
smaller than those of PC estimates for all (N,T ) combinations, implying that the MLE
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performs better than the PC estimate. Regarding the RAvar¯, we see that the MLE
has almost constant RAvars when the time dimension T or the cross section dimension
N increases, implying that the convergence rate of the MLE is

√
NT . This simulation

result is consistent with our theoretical results in Section 4. In addition, it seems that the
PC estimate also has

√
NT convergence rate from simulations. Finally, we note that the

RMSEs of the MLE are smaller than those of the PC estimates, indicating that the MLE
is more efficient than the PC estimates.

Table 1: k = 3, r = 1, and ϵit ∼ N(0, 1).

Λ3×1 MLE PC
N T MAD RMSE RAvar MAD RMSE RAvar
30 30 0.0440 0.0716 2.2301 0.0943 0.1386 N/A
50 30 0.0349 0.0540 1.9887 0.0654 0.0934 N/A

100 30 0.0262 0.0417 2.0504 0.0474 0.0677 N/A
150 30 0.0216 0.0340 2.1741 0.0410 0.0582 N/A
30 50 0.0333 0.0533 2.1936 0.0787 0.1145 N/A
50 50 0.0237 0.0368 1.9426 0.0546 0.0800 N/A

100 50 0.0190 0.0306 1.9194 0.0375 0.0541 N/A
150 50 0.0159 0.0255 2.0863 0.0293 0.0417 N/A
30 100 0.0232 0.0374 2.1425 0.0674 0.0964 N/A
50 100 0.0172 0.0263 1.8314 0.0443 0.0611 N/A

100 100 0.0105 0.0168 1.7473 0.0253 0.0358 N/A
150 100 0.0102 0.0165 1.8668 0.0200 0.0288 N/A

Table 2: k = 8, r = 3, and ϵit ∼ N(0, 1).

Λ8×3 MLE PC
N T MAD RMSE RAvar MAD RMSE RAvar
30 30 0.3498 0.5006 15.2632 0.5655 0.8071 N/A
50 30 0.2307 0.3310 13.6988 0.3744 0.5363 N/A

100 30 0.1537 0.2307 12.5998 0.2224 0.3131 N/A
150 30 0.1245 0.1881 11.7159 0.1735 0.2452 N/A
30 50 0.2637 0.3744 14.4701 0.5130 0.7521 N/A
50 50 0.1794 0.2689 13.1269 0.3184 0.4679 N/A

100 50 0.1082 0.1578 12.1691 0.1763 0.2545 N/A
150 50 0.0860 0.1291 12.3152 0.1382 0.2091 N/A
30 100 0.1846 0.2698 15.5540 0.4570 0.6882 N/A
50 100 0.1213 0.1937 13.3273 0.2622 0.4064 N/A

100 100 0.0774 0.1258 11.9418 0.1440 0.2157 N/A
150 100 0.0620 0.1021 12.9696 0.1033 0.1633 N/A

8.2 Empirical size of the W test

In this subsection, we use simulations to study the empirical size of the W statistic. The
data generating process is the same as in previous subsection, but with more combinations

¯Since we do not know whether the PC estimate is biased, and if biased, what is the bias formula. Hence,
we cannot calculate RAvar for the PC estimate.
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of (N,T ). We investigate the performance of W under three nominal levels 1%, 5% and
10%. The empirical sizes of W for the case (k, r) = (3, 1) are given in Table 3, which is
obtained from 1000 repetitions.

Table 3: The empirical size of the test statistic W for (k, r) = (3, 1)

Empirical size of W
ϵit ∼ N(0, 1) t5 χ2(2)
N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 3.6% 7.4% 13.5% 3.8% 8.5% 12.9% 2.7% 8.0% 13.3%
50 30 4.4% 11.5% 16.6% 3.9% 9.5% 16.3% 5.4% 10.5% 16.1%

100 30 6.7% 14.2% 20.5% 6.5% 13.9% 20.1% 5.5% 12.9% 21.1%
150 30 9.2% 18.4% 24.8% 8.1% 18.6% 27.1% 8.2% 20.3% 29.0%
30 50 1.7% 5.9% 11.3% 1.3% 5.8% 12.7% 1.7% 6.6% 11.6%
50 50 3.1% 6.8% 13.0% 2.6% 6.1% 11.0% 2.0% 7.0% 12.1%

100 50 3.3% 8.0% 15.2% 2.3% 8.3% 14.2% 3.5% 9.7% 15.7%
150 50 4.6% 11.4% 18.1% 3.4% 11.1% 17.3% 2.8% 9.3% 15.8%
30 100 0.6% 4.5% 10.4% 1.4% 4.0% 10.6% 1.0% 4.8% 10.9%
50 100 1.5% 4.2% 10.9% 1.5% 6.1% 9.9% 1.2% 5.8% 11.7%

100 100 1.4% 6.5% 11.6% 0.9% 5.8% 12.6% 1.5% 6.5% 12.4%
150 100 1.6% 5.6% 10.9% 2.0% 7.5% 12.7% 1.9% 5.8% 11.3%
30 150 0.6% 5.0% 10.5% 1.0% 5.0% 9.9% 1.2% 5.8% 10.2%
50 150 1.5% 5.9% 10.4% 1.5% 4.8% 10.2% 1.5% 5.1% 9.6%

100 150 0.7% 6.2% 10.7% 1.2% 5.4% 10.2% 1.5% 5.8% 11.6%
150 150 1.9% 5.9% 9.6% 1.6% 5.0% 11.5% 1.7% 5.2% 10.8%
100 100 1.4% 6.5% 11.6% 0.9% 5.8% 12.6% 1.5% 6.5% 12.4%
200 100 1.3% 6.1% 11.2% 1.4% 6.7% 13.5% 2.2% 7.2% 12.6%
300 100 2.3% 6.5% 12.8% 2.1% 6.8% 12.7% 1.8% 7.9% 12.9%
100 200 1.3% 4.0% 9.4% 1.3% 5.3% 10.8% 1.1% 5.1% 11.3%
200 200 1.4% 5.6% 10.5% 0.9% 4.9% 9.6% 1.4% 6.1% 11.6%
300 200 1.3% 6.1% 8.6% 1.5% 5.4% 11.6% 1.5% 5.9% 11.7%
100 300 0.4% 4.5% 9.5% 1.2% 5.1% 11.8% 1.2% 5.1% 9.2%
200 300 0.9% 6.1% 10.5% 1.3% 4.9% 9.1% 0.8% 6.2% 11.6%
300 300 1.3% 5.2% 10.9% 0.7% 3.9% 8.5% 1.2% 4.4% 9.0%
100 500 0.8% 5.3% 9.8% 0.8% 4.6% 10.9% 1.1% 5.2% 9.7%
200 500 0.9% 5.4% 9.8% 0.5% 5.1% 9.8% 1.0% 5.2% 10.3%
300 500 0.6% 5.3% 10.5% 1.5% 5.9% 9.2% 0.9% 5.0% 9.4%

From the results in Table 3, we emphasize the following findings. First, the performance
of the W test is considerably good overall. Except for the sample size when T is small,
almost all the empirical sizes of the W statistic fall in the interval [5%, 10%] under the
5% nominal level. Second, the distribution type of errors has no significant impact on
the performance of W . The W statistic performs very similarly under three different
error distributions. This is consistent with the theoretical result in Section 5. Third, the
performance of W is closely linked with time period number T , loosely with the number of
units N . For example, when T = 30, the W statistic suffers a mildly severe size distortion.
But when T grows to 50, the size distortion considerably decreases. As regard to N , we
see that the W statistic performs well even when N = 30. We conjecture the reason is
that when T is small, the variance σ2

i are estimated inaccurately, which leads to a poor
performance of W .
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Tsai and Tsay (2010) propose using a traditional likelihood ratio (LR) statistic to
perform model specification testing. In the factor model literature, LR tests are usually
considered under the fixed-N , large-T setup, see Lawley and Maxwell (1971). As men-
tioned in the introduction, when N and T are both large the traditional LR test may
not be suitable. For example, the adjusted likelihood ratio test, which is often used with
consideration of finite sample performance, may be negative for too large N . According to
the simulation results in Table 7 in Tsai and Tsay (2010), the LR test suffers size distortion
issue even when N is not large. As a primary competitor to our W statistic, we compare
the performance of the W statistic and the LR one under the current data generating
setup. We find that the performance of the W statistic dominates that of the LR test.
Details are given in Appendix F in the supplementary material of this paper.

8.3 Empirical power of the W test

We next study the empirical power of the W test. Data are generated by zt = Lft + et

with
L = MΛ + d · ν,

where M,Λ, ft and et are generated in the same way as in Section 8.1. The symbol ν is an
N × r noise matrix with its elements drawn from N(0, 1) and d is a prespecified constant,
which is related with N and T and is used to control the magnitude of deviation from the
null hypothesis. In this section, we set it as

d = α
4√N

√
T

with α = 0.2, 0.5, 2 and 5. In classical models, if an estimator is
√
T -consistent, the local

power is studied under β = β∗ + 1√
T
α, where β∗ denotes the true value. However, this

general result cannot be applied to the present context since we renormalize the distance
between estimators from the constrained and unconstrained models to accommodate the
large number of restrictions imposed in the null hypothesis. Directly deriving the local
power of W is challenging. We conjecture that the W statistic can detect local alternatives
that approach the null model at a rate of N−1/4T−1/2. Simulation results below seem to
support our conjecture since the local power converges to some value as N and T grow
larger in all choices of α.

Table 4 presents the empirical power of the W test for the case (k, r) = (3, 1) under
normal errors. It is seen that the W statistic has higher power when α is larger and lower
power when α is smaller. This is an expected result. As α becomes larger, the distance
between the null hypothesis and the alternative hypothesis is larger and then we have more
chances to differentiate the two hypotheses. Given that the W statistic has considerable
power even against the local alternatives that are N−1/4T−1/2 away from the null model, we
conclude that the W has good performance in terms of empirical power. We also compare
empirical powers of the W statistic and the LR test. We find that the performance of the
W test is better than that of the LR test. Details are given in the supplementary Appendix
F.
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Table 4: The empirical power of the W test for (k, r) = (3, 1)
Empirical power of W

α 0.2 0.5 2 5
N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 22.9% 31.4% 37.4% 52.0% 57.5% 61.7% 91.2% 93.1% 93.7% 99.7% 100.0% 100.0%
50 30 31.8% 39.4% 44.9% 58.2% 64.1% 67.5% 94.1% 95.7% 96.4% 100.0% 100.0% 100.0%

100 30 51.4% 59.4% 63.7% 71.4% 77.3% 81.1% 96.2% 98.0% 98.7% 100.0% 100.0% 100.0%
150 30 55.5% 63.9% 68.0% 74.4% 78.9% 81.6% 97.9% 98.9% 99.2% 100.0% 100.0% 100.0%
30 50 22.9% 30.3% 35.2% 51.1% 57.4% 60.7% 89.3% 91.9% 93.6% 99.6% 99.8% 99.8%
50 50 29.2% 36.3% 42.2% 58.2% 63.8% 67.4% 93.7% 95.8% 96.7% 99.8% 99.9% 99.9%

100 50 45.5% 51.7% 56.3% 69.2% 72.7% 76.1% 96.5% 97.7% 98.1% 100.0% 100.0% 100.0%
150 50 51.3% 58.3% 63.4% 70.9% 76.0% 79.2% 97.3% 98.2% 98.5% 100.0% 100.0% 100.0%
30 100 20.5% 25.7% 31.5% 53.6% 60.7% 62.9% 90.0% 92.2% 93.8% 99.5% 99.6% 99.6%
50 100 29.8% 35.6% 41.1% 59.3% 64.2% 67.2% 93.1% 94.7% 95.7% 100.0% 100.0% 100.0%

100 100 37.7% 43.3% 47.5% 65.6% 70.1% 72.3% 94.1% 96.2% 97.3% 99.9% 100.0% 100.0%
150 100 49.8% 55.4% 59.0% 70.1% 74.2% 77.6% 95.5% 96.6% 97.2% 100.0% 100.0% 100.0%
30 150 19.9% 25.4% 29.8% 55.8% 62.1% 64.5% 88.2% 91.2% 92.0% 99.6% 99.8% 99.9%
50 150 28.4% 34.9% 40.8% 58.1% 62.2% 65.3% 90.8% 93.4% 93.8% 99.8% 99.9% 99.9%

100 150 37.7% 44.8% 49.8% 66.5% 69.9% 72.8% 93.1% 95.1% 96.4% 100.0% 100.0% 100.0%
150 150 46.2% 51.1% 55.3% 67.1% 71.0% 74.3% 95.9% 97.0% 97.5% 100.0% 100.0% 100.0%
100 100 40.0% 46.1% 51.5% 65.4% 70.2% 73.3% 93.8% 96.3% 96.9% 100.0% 100.0% 100.0%
200 100 52.5% 57.3% 61.4% 71.6% 74.8% 77.0% 96.6% 97.3% 97.7% 100.0% 100.0% 100.0%
300 100 59.5% 63.7% 68.2% 75.0% 77.7% 80.0% 95.9% 97.1% 97.4% 100.0% 100.0% 100.0%
100 200 39.9% 46.9% 51.9% 66.2% 70.9% 73.2% 93.4% 94.8% 95.6% 99.8% 99.9% 99.9%
200 200 48.5% 54.8% 58.2% 68.4% 72.9% 76.2% 95.9% 97.0% 97.3% 100.0% 100.0% 100.0%
300 200 56.0% 59.9% 63.0% 69.3% 72.8% 75.9% 96.4% 97.4% 98.3% 100.0% 100.0% 100.0%
100 300 41.0% 47.4% 50.2% 67.4% 71.9% 73.4% 93.3% 94.9% 95.4% 100.0% 100.0% 100.0%
200 300 50.6% 55.6% 58.9% 68.7% 72.3% 74.4% 94.7% 95.8% 96.4% 100.0% 100.0% 100.0%
300 300 54.9% 59.0% 63.1% 72.3% 74.9% 77.3% 94.8% 96.8% 97.6% 100.0% 100.0% 100.0%
100 500 39.5% 45.0% 49.0% 65.1% 68.9% 71.2% 94.0% 95.6% 96.6% 99.9% 99.9% 99.9%
200 500 50.4% 54.4% 58.4% 69.4% 72.6% 75.6% 95.4% 97.2% 97.6% 100.0% 100.0% 100.0%
300 500 53.4% 58.3% 61.8% 71.2% 73.2% 75.2% 96.1% 97.4% 97.9% 100.0% 100.0% 100.0%

9 Extension

In this section, we relax Assumption B to allow for general weakly dependence idiosyncratic
errors. Following Chamberlain and Rothschild (1983) we call a factor model with weak
dependence idiosyncratic errors the approximate factor model. Approximate factor models
are the primary research interests in a number of studies, e.g., Bai and Ng (2002), Bai
(2003) and Bai and Li (2016), among others. To relax Assumption B, we introduce the
following assumption to control the heteroskedasticity and weak correlations over cross
section and time.

Assumption B′′: (weak dependence on errors)
B′′.1 E(eit) = 0, and E(e8

it) ≤ C.
B′′.2 Let Ot = E(ete

′
t), O = 1

T

∑T
t=1 Ot, and W = diag(O), which is the diagonal matrix

that sets the off-diagonal elements of O to zero. Specifically, let w2
i be the ith diagonal

element of W, then W = diag(w2
1, w

2
2, . . . , w

2
N ).

B′′.3 For all i, C−2 ≤ w2
i ≤ C2;

B′′.4 Let τij,t ≡ E(eitejt), assume there exists some positive τij such that |τij,t| ≤ τij for
all t and

∑N
i=1 τij ≤ C for all j.

B′′.5 Let ρi,ts ≡ E(eiteis), assume there exists some positive ρts such that |ρi,ts| ≤ ρts for
all i and 1

T

∑T
t=1

∑t
s=1 ρts ≤ C.
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B′′.6 Assume E
[∣∣∣ 1√

T

∑T
t=1

[
eitejt − E(eitejt)

]∣∣∣4] ≤ C for all i and all j.

To be consistent with the changes in Assumption B′′, we modify Assumptions C and
D as follows.

Assumption C′′:
C′′.1 ∥Λ∥ ≤ C and ∥mj∥ ≤ C for all j, where mj is the transpose of the jth row of M .
C′′.2 Let P = Λ′M ′W−1MΛ/N , R = M ′W−1M/N . We assume that P∞ = lim

N→∞
P and

R∞ = lim
N→∞

R exist. Here P∞ and R∞ are some positive definite matrices.

Assumption D′′: The estimator of w2
j for j = 1, ..., N takes value in a compact set:

[C−2, C2]. Furthermore, Mff is restricted to be in a set consisting of all semi-positive
definite matrices with all elements bounded in the interval [−C,C].

For theoretical analysis, we further assume the following two assumptions.
Assumption E′′: We assume

E′′.1 Let δijts = E(eitejs), and we assume 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |δijts| ≤ C.

E′′.2 Let π1 = 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1

δijts

w2
i w2

j
(mi ⊗ ft)(m′

j ⊗ f ′
s), and assume

lim
N,T →∞

π1 = π1∞ > 0; in other words, the limit of π1 exits and is positive definite.

E′′.3 Let π2 = 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1

ϱijts

w4
i w4

j
(mi ⊗mi)(m′

j ⊗m′
j) with

ϱijts = E
[
(e2

it − w2
i )(e2

js − w2
j )
]
. We assume lim

N,T →∞
π2 = π2∞ > 0.

E′′.4 Let π3 = 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1

ϑijts

w2
i w4

j
(mi ⊗ ft)(m′

j ⊗m′
j) with

ϑijts = E
[
eit(e2

js − w2
j )
]
. We assume lim

N,T →∞
π3 = π3∞ > 0.

E′′.5 For each i, as T → ∞, 1√
T

∑T
t=1(e2

it − w2
i ) d−→ N(0, ϖ2

i∞), with ϖ2
i∞ = lim

T →∞
ϖ2

i and

ϖ2
i = 1

T

∑T
t=1

∑T
s=1E

[
(e2

it − w2
i )(e2

is − w2
i )
]
.

Assumption F′′: We assume

F′′.1 For all j, E
[∥∥∥ 1√

NT

∑N
i=1

∑T
t=1

m′
iΛ

w2
i

[
eitejt − E(eitejt)

]∥∥∥2
]

≤ C.

F′′.2 We assume E
[∥∥∥ 1√

NT

∑N
i=1

∑T
t=1

m′
iΛΛ′mi

w2
i

(
e2

it − w2
i

)∥∥∥2
]

≤ C.

F′′.3 For all t, E
[∥∥∥ 1√

NT

∑N
i=1

∑T
s=1

1
w2

i
fs
[
eiteis − E(eiteis)

]∥∥∥2
]

≤ C.

F′′.4 For all t, E
[

1
N

∑N
i=1

∥∥∥ 1√
T

∑N
s=1 fs

[
eiteis − E(eiteis)

]∥∥∥2
]

≤ C.

F′′.5 For all t, E
[∥∥∥ 1√

NT

∑N
i=1

∑T
s=1

1
w4

i
m′

iΛ
(
e2

is − w2
i

)
eit

∥∥∥2
]

≤ C.

F′′.6 We assume E
[∥∥∥ 1√

NT

∑N
i=1

∑T
t=1

∑T
s=1

1
w4

i
fteit

(
e2

is − w2
i

)
m′

i

∥∥∥2
]

≤ C.
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Assumption E′′ is used in deriving the limiting distributions. Assumption F′′ provides
some moment conditions which are needed in inferential analysis.

To remove the rotational indeterminacy, the identification conditions considered here,
which are denoted by IC′′, are the same with those in Section 3 except that the matrix Σee

is replaced with W.
Even that the model allows for general weak dependence among idiosyncratic errors, we

still use (3.2) as the objective function to estimate the loadings and idiosyncratic variances,
with Σee replaced by W. Now the parameter is θ = (Λ,W). As shown in Bai and Li (2016),
although the objective function is misspecified, the consistency of the estimated loadings
can be maintained if some regularity conditions are satisfied.

Let θ̂ = (Λ̂, Ŵ) be the maximizer of the objective function. Then we can derive the
first order conditions for Λ and W, which are similar to (3.3) and (3.4), except that Σ̂ee

should be replaced by Ŵ. Based on these first order conditions, together with the similar
arguments, we develop inferential theories under the weak dependence idiosyncratic errors.
The following theorem presents the convergence rates of the MLE. The consistency is
implied by the theorem.

Theorem 9.1 (Convergence rates) Under Assumptions A,B′′, C′′, D′′ and F′′, together
with IC′′, when N,T → ∞, we have

Λ̂−Λ = Op

( 1√
NT

)
+Op

( 1
T

)
+Op

( 1
N

)
,

1
N

N∑
i=1

(ŵ2
i −w2

i )2 = Op

( 1
T

)
+Op

( 1
N2

)
.

In contrast with the results in Theorem 4.1, we see that there is an extra term Op( 1
N ) in

(Λ̂ − Λ) and another extra term Op( 1
N2 ) in 1

N

∑N
i=1(ŵ2

i −w2
i )2 under the weak dependence

data structure.
Before we state the asymptotic result of Λ̂, below we first introduce some symbols.

D†
1 =

[
2D+

r

D[(P ⊗ Ir) + (Ir ⊗ P)Kr]

]
,

B†
1 = Kkr[(P−1Λ′) ⊗ Λ] + R−1 ⊗ Ir −Kkr(Ir ⊗ Λ)(D†

1)−1D2[(P−1Λ′) ⊗ Ir],
B†

2 = Kkr(Ir ⊗ Λ)(D†
1)−1D3(Λ ⊗ Λ)′, B†

3 = Kkr(Ir ⊗ Λ)(D†
1)−1D3(Λ ⊗ Λ)′,

B†
4 =

(
(R−1) ⊗ (P−1Λ′)

)
− 1

2
Kkr(Ir ⊗ Λ)(D†

1)−1D2(P ⊗ P)−1(Λ ⊗ Λ)′,

∆† = B†
2

1
N

N∑
i=1

T∑
t=1

ϖ2
i

w6
i

(mi ⊗mi),

Π† = B†
4

1
N

N∑
i=1

N∑
j=1,j ̸=i

Oij

w2
iw

2
j

(mj ⊗mi) − B†
3

1
N

N∑
i=1

ςi
w4

i

(mi ⊗mi).

where D+
r ,D,Kr,Kkr,D2 and D3 are defined the same as in Theorem 4.2; P and R are de-

fined in Assumption C′′; Oij is the (i, j)th entry of matrix O; ςi = 1
Nm

′
iΛP−1Λ′M ′W−1(O−

W)W−1MΛP−1Λ′mi − 2m′
iΛGN Λ′M ′W−1(O − W)i where GN = NG with G = (Ir +

Λ′M ′W−1MΛ)−1 and (O−W)i is the ith column of (O−W); ϖ2
i = 1

T

∑T
t=1

∑T
s=1E

[
(e2

it −
w2

i )(e2
is −w2

i )
]

is defined in Assumption E′′.5; both ςi and ϖ2
i are scalars. Then we provide

the asymptotic representation of Λ̂ in the following theorem.
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Theorem 9.2 (Asymptotic representation for Λ̂) Under assumptions of Theorem 9.1,

vec(Λ̂′ − Λ′) = B†
1

1
NT

N∑
i=1

T∑
t=1

1
w2

i

(mi ⊗ ft)eit − B†
2

1
NT

N∑
i=1

T∑
t=1

1
w4

i

(mi ⊗mi)(e2
it − w2

i )

+ 1
T

∆† + 1
N

Π† +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

(9.1)

where the symbols B†
1,B

†
2,∆† and Π† are defined in the preceding paragraph.

Given the above theorem, we have the following corollary.

Corollary 9.1 (Limiting distribution for Λ̂) Under assumptions of Theorem 9.1 and
Assumption E′′, as N,T → ∞, N/T 2 → 0 and T/N3 → 0, we have

√
NT

[
vec(Λ̂′ − Λ′) − 1

T
∆† − 1

N
Π†
]

d−→ N(0,Ξ),

where Ξ = lim
N→∞

ΞNT , and

ΞNT = B†
1π1B†′

1 + B†
2π2B†′

2 − B†
1π3B†′

2 − B†
2π

′
3B

†′
1

where B†
1 and B†

2 are defined the same as in Theorem 9.2; the symbols π1, π2 and π3 are
defined in Assumption E′′. Furthermore, by Assumption E′′.2, E′′.3 and E′′.4, we have

Ξ = B†
1π1∞B†′

1 + B†
2π2∞B†′

2 − B†
1π3∞B†′

2 − B†
2π

′
3∞B†′

1 .

where the symbols π1∞, π2∞ and π3∞ are defined in Assumption E′′.

we also have the following theorem for w2
i .

Theorem 9.3 (Asymptotic properties for ŵ2
i ) Under assumptions of Theorem 9.1,

ŵ2
i − w2

i = 1
T

T∑
t=1

(e2
it − w2

i ) +Op

( 1√
NT

)
+Op

( 1
T

)
+Op

( 1
N

)
.

As N,T → ∞ and T/N2 → 0, we have

√
T (ŵ2

i − w2
i ) = 1√

T

T∑
t=1

(e2
it − w2

i ) + op(1).

Furthermore, by Assumption E′′.5, we have
√
T (ŵ2

i − w2
i ) d−→ N(0, ϖ2

i∞),

where ϖ2
i∞ is defined in Assumption E′′.5.

This limiting result is the same as that in the unconstrained approximate factor model,
see Bai and Li (2016).
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10 Conclusion

This paper considers the ML estimation of large dimensional constrained factor models
in which both cross sectional units (N) and time periods (T ) are large but the num-
ber of loadings is fixed. We investigate the asymptotic properties of the MLE including
consistency, convergence rates, asymptotic representations and limiting distributions. We
show that the MLE for the loadings in a constrained factor model converges much faster
than that in a standard factor model. In addition, we also find that the MLE has a
non-negligible bias asymptotically and some bias corrections are needed when conducting
inference. A W statistic is proposed to conduct model specification check in a constrained
factor model versus a standard factor model. The test is valid for a large N and a large
T setup. We also analyze partially constrained factor models where only partial factor
loadings are constrained. We run simulations to investigate the finite sample performance
of the MLE and the proposed W test. The simulation results are encouraging and show
that the MLE outperform the PC estimates and the proposed W test has good empirical
sizes and powers. Monte carlo simulations show that our proposed MLE has better finite
sample performances than that of PC estimates. In addition, we consider the extension of
a general weak dependence structure on idiosyncratic errors and we study MLE asymptotic
properties of the resulting approximate factor models.

Appendices: Proofs of the main theoretical results

We will prove the main theoretical results reported in Section 4 in appendices A and B.
The supplementary appendices C to G contain proofs of additional results reported in the
paper and also report some additional simulation results.

Appendix A: Proof for Proposition 4.1 (consistency)

The following notation will be used in this appendix.

P̂ = 1
N

Λ̂′M ′Σ̂−1
ee M Λ̂; R̂ = 1

N
M ′Σ̂−1

ee M ; Ĝ = (Ir + Λ̂′M ′Σ̂−1
ee M Λ̂)−1;

P̂N = N · P̂ = Λ̂′M ′Σ̂−1
ee M Λ̂; R̂N = N · R̂ = M ′Σ̂−1

ee M, ĜN = N · Ĝ.

From (A + B)−1 = A−1 − A−1B(A + B)−1, we have P̂−1
N = Ĝ(I − Ĝ)−1. From Σzz =

MΛΛ′M ′ + Σee, we have

Σ−1
zz = Σ−1

ee − Σ−1
ee MΛ(Ir + Λ′M ′Σ−1

ee MΛ)−1Λ′M ′Σ−1
ee . (A.1)

It follows that

Λ̂′M ′Σ̂−1
zz = Λ̂′M ′Σ̂−1

ee −Λ̂′M ′Σ̂−1
ee M Λ̂(Ir+Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee = ĜΛ̂′M ′Σ̂−1

ee . (A.2)

We use symbols with superscript “*” to denote the true parameters. Variables without
superscript “*” denote the arguments of the likelihood function.
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Let θ = (Λ, σ2
1, · · · , σ2

N ) and let Θ be the parameter set such that Λ take values in a
compact set and C−2 ≤ σ2

i ≤ C2 for all i = 1, ..., N . We assume θ∗ = (Λ∗, σ∗2
1 , · · · , σ∗2

N ) is
an interior point of Θ. For simplicity, we write θ = (Λ,Σee) and θ∗ = (Λ∗,Σ∗

ee).
The following lemmas are useful for our analysis

Lemma A.1 Under assumptions of A-D, we have

(a) sup
θ∈Θ

1
NT

∣∣∣∣∣tr[Λ∗′M ′Σ−1
zz

T∑
t=1

etf
∗′
t

]∣∣∣∣∣ p−→ 0;

(b) sup
θ∈Θ

1
NT

∣∣∣∣∣tr[
T∑

t=1
(ete

′
t − Σ∗

ee)Σ−1
zz

]∣∣∣∣∣ p−→ 0;

where θ∗ = (Λ∗,Σ∗
ee) denotes the true parameters and Σzz = MΛΛ′M ′ + Σee.

Proof of Lemma A.1. First, we consider (a). Let mip be the (i, p)th element of M for
i = 1, . . . , N, p = 1, . . . , k and Λ = [λ1, λ2, . . . , λk]′. By equation (A.1), we have

1
NT

Λ′∗M ′Σ−1
zz

T∑
t=1

etf
∗′
t = 1

NT

N∑
i=1

T∑
t=1

( k∑
p=1

λ∗
pmip

) 1
σ2

i

eitf
∗′
t (A.3)

−Λ∗′M ′Σ−1
ee MΛ(Ir + Λ′M ′Σ−1

ee MΛ)−1 1
NT

N∑
i=1

T∑
t=1

( k∑
p=1

λpmip

) 1
σ2

i

eitf
∗′
t .

By the Cauchy-Schwartz inequality, the first term on the right side of (A.3) is bounded in
norm by ( 1

N

N∑
i=1

1
σ4

i

∥
k∑

p=1
λ∗

pmpi∥2
)1/2[ 1

N

N∑
i=1

∥ 1
T

T∑
t=1

f∗
t eit∥2

]1/2
.

The first factor ( 1
N

∑N
i=1

1
σ4

i
∥
∑k

p=1 λ
∗
pmpi∥2)1/2 is bounded by the boundedness of σ−2 and

1
N

∑N
i=1 ∥

∑k
p=1 λ

∗
pmpi∥2 by Assumptions C and D. The second factor does not depend

on any unknown parameters, and it is Op(T−1/2) because E( 1
N

∑N
i=1 ∥ 1

T

∑T
t=1 f

∗
t eit∥2) =

O(T−1). Therefore, the first part on the right hand side of (A.3) is op(1) uniformly on θ.
For the second part, we rewrite it in terms of PN as

Λ∗′M ′Σ−1
ee MΛP−1/2

N (P−1
N + Ir)−1 1

NT

N∑
i=1

T∑
t=1

P
−1/2
N

( k∑
p=1

λpmip

) 1
σ2

i

eitf
∗′
t . (A.4)

The term Λ∗′M ′Σ−1
ee MΛP−1/2

N =
∑N

i=1
1

σ2
i
(
∑k

p=1 λ
∗
pmip)(

∑k
p=1 λ

′
pmip)P−1/2

N is bounded in
norm by

C
( N∑

i=1

∥∥∥ k∑
p=1

λ∗
pmip

∥∥∥2)1/2( N∑
i=1

1
σ2

i

∥∥∥ k∑
p=1

λ′
pmipP

−1/2
N

∥∥∥2)1/2
= a1, say.

Notice that
N∑

i=1

1
σ2

i

∥∥∥P−1/2
N

k∑
p=1

λpmip

∥∥∥2
=

N∑
i=1

1
σ2

i

( k∑
p=1

λ′
pmipP

−1
N

k∑
q=1

λqmiq

)
= tr

[
P−1

N Λ′M ′Σ−1
ee MΛ

]
= tr[P−1

N PN ] = r.

(A.5)
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We have a1 = Op(N1/2). As regard to the term 1
NT

∑N
i=1

∑T
t=1 P

−1/2
N (

∑k
p=1 λpmip) 1

σ2
i
eitf

∗′
t ,

it is bounded in norm by

C
1√
N

( N∑
i=1

1
σ2

i

∥∥∥P−1/2
N

k∑
p=1

λpmip

∥∥∥2)1/2( 1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

f∗
t eit

∥∥∥2)1/2
= Op(N−1/2T−1/2)

by (A.5). In addition, the term (P−1
N + Ir)−1 = Op(1) uniformly on Θ. So the expression

in (A.4) is Op(T−1/2) uniformly on θ. Then result (a) follows.
Next, we consider (b). By equation (A.1), we have

tr
[ 1
NT

T∑
t=1

(ete
′
t − Σ∗

ee)Σ−1
zz

]

= tr
[ 1
NT

T∑
t=1

(ete
′
t − Σ∗

ee)
(
Σ−1

ee − Σ−1
ee MΛ(Ir + Λ′M ′Σ−1

ee MΛ)−1Λ′M ′Σ−1
ee

)]

= tr
[ 1
NT

T∑
t=1

(ete
′
t − Σ∗

ee)Σ−1
ee

]
− tr

[ 1
NT

T∑
t=1

(
Λ′M ′Σ−1

ee (ete
′
t − Σ∗

ee)Σ−1
ee MΛ

)
(Ir + Λ′M ′Σ−1

ee MΛ)−1
]
.

The first term tr[ 1
NT

∑T
t=1(ete

′
t − Σ∗

ee)Σ−1
ee ] = 1

NT

∑N
i=1

∑T
t=1

1
σ2

i
(e2

it − σ∗2
i ) is bounded by

( 1
N

N∑
i=1

1
σ4

i

)1/2( 1
N

N∑
i=1

( 1
T

T∑
t=1

e2
it − σ∗2

i

)2)1/2
,

which is Op(T−1/2) uniformly on θ. The second term can be written as

tr
[ 1
NT

P
−1/2
N Λ′M ′Σ−1

ee

[ T∑
t=1

(ete
′
t − Σ∗

ee)
]
Σ−1

ee MΛP−1/2
N (P−1

N + Ir)−1
]
.

The above term is equal to

tr
[( 1
NT

N∑
i=1

N∑
j=1

1
σ2

i σ
2
j

P
−1/2
N

k∑
p=1

λpmip

k∑
q=1

λ′
qmqjP

−1/2
N

T∑
t=1

[eitejt − E(eitejt)]
)
(P−1

N + Ir)−1
]
.

Since the expression

1
NT

N∑
i=1

N∑
j=1

1
σ2

i σ
2
j

P
−1/2
N

k∑
p=1

λpmip

k∑
q=1

λ′
qmqjP

−1/2
N

T∑
t=1

[eitejt − E(eitejt)]

is bounded in norm by

C2
[ N∑

i=1

1
σ2

i

∥P−1/2
N

k∑
p=1

λpmip∥2
][ 1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

[eitejt − E(eitejt)]
)2]1/2

which is Op(T−1/2) uniformly on θ by (A.5). Given (P−1
N + Ir)−1 = O(1) uniformly on θ,

the second term is op(1) uniformly on θ. This proves (b). �
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Lemma A.2 Under Assumptions A-D, we have

(a)
∥∥∥ 1
N

Λ∗′M ′(Σ̂−1
ee − Σ∗−1

ee )MΛ∗
∥∥∥ = Op

([ 1
N

N∑
i=1

(σ̂2
i − σ∗

i
2)2
] 1

2
)
;

(b)
∥∥∥ 1
N
M ′(Σ̂−1

ee − Σ∗−1
ee )M

∥∥∥ = Op

([ 1
N

N∑
i=1

(σ̂2
i − σ∗

i
2)2
] 1

2
)
.

Given the above results, if N−1∑N
i=1(σ̂2

i − σ∗2
i )2 = op(1), we have

(c) R̂N = Op(N), R̂ = 1
N
R̂N = Op(1);

(d) ∥R̂−1/2∥ = Op(1).

where R̂ and R̂N are defined above appendix A.

Proof of Lemma A.2. We first consider (a). The left hand side of (a) can be written as

1
N

N∑
i=1

(
k∑

p=1
λ∗

pmip)(
k∑

q=1
mqiλ

∗′
q ) σ̂

2
i − σ∗2

i

σ̂2
i σ

2
i

,

which is bounded in norm by

C4
( 1
N

N∑
i=1

∥∥∥ k∑
p=1

λ∗
pmip

∥∥∥4)1/2( 1
N

N∑
i=1

(σ̂2
i − σ∗2

i )2
)1/2

.

Then result (a) follows because ∥
∑k

p=1 λ
∗
pmip∥4 is bounded by Assumption C.

Next, we consider (b). The left hand side of (b) can be written as 1
N

∑N
i=1mim

′
i

σ̂2
i −σ∗2

i

σ̂2
i σ∗2

i
,

where mi is the transpose of the ith row of M . This term is bounded in norm by

C4
( 1
N

N∑
i=1

∥mi∥4
)1/2( 1

N

N∑
i=1

(σ̂2
i − σ∗2

i )2
)1/2

.

Then result (b) follows because 1
N

∑N
i=1 ∥mi∥4 is bounded by Assumption C.

We now consider (c). From result (b) and result N−1∑N
i=1(σ̂2

i −σ∗
i

2)2 = op(1), we have
R̂ − 1

NM
′Σ−1

ee M = op(1) which implies R̂ p−→ R > 0, where R is defined in Assumption C.
So R̂ = Op(1) and R̂N = NR̂ = Op(N). Result (c) follows.

Result (d) is a direct result of ∥R̂−1/2∥2 = tr(R̂−1) = Op(1) by R̂ p−→ R > 0 from result
(c).

This completes the proof of Lemma A.2. �

Lemma A.3 Under Assumptions A-D, we have

(a) 1
N2 P̂

−1Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee M Λ̂P̂−1 = ∥P̂−1/2∥2 ·Op(T−1/2);

(b) 1
N
P̂−1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t = ∥P̂−1/2∥ ·Op(T−1/2);
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(c) 1
N2 P̂

−1Λ̂′M ′Σ̂−1
ee (Σ̂ee − Σee)Σ̂−1

ee M Λ̂P̂−1 = ∥P̂−1
N ∥ ·Op(1);

(d) 1
NT

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1 = Op(T−1/2);

(e) 1
N2 P̂

−1Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

[ete
′
t − Σee]Σ̂−1

ee MR̂−1 = ∥P̂−1/2∥ ·Op(T−1/2);

(f) 1
N2 P̂

−1Λ̂′M ′Σ̂−1
ee (Σ̂ee − Σee)Σ̂−1

ee MR̂−1 = ∥P̂−1/2∥ ·Op

([ 1
N3

N∑
i=1

(σ̂2
i − σ2

i )2
] 1

2
)
.

Proof of Lemma A.3. We first consider (a). The left hand side can be rewritten as

1
N2 P̂

−1/2
[ N∑

i=1

N∑
j=1

P̂−1/2
( k∑

p=1
λ̂pmip

) 1
σ̂2

i σ̂
2
j

1
T

T∑
t=1

[eitejt−E(eitejt)]
( k∑

q=1
mjqλ̂

′
q

)
P̂−1/2

]
P̂−1/2,

which is bounded in norm by

C2∥P̂−1/2∥2
[ N∑

i=1

1
σ̂2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2][ 1
N2

N∑
i=1

N∑
j=1

∣∣∣ 1
T

T∑
t=1

[eitejt − E(eitejt)]
∣∣∣2]1/2

,

which is ∥P̂−1/2∥2 ·Op(T−1/2) by (A.5). Thus, (a) follows.
Next, we consider (b). The left hand side can be rewritten as

1√
N
P̂−1/2

N∑
i=1

P̂
−1/2
N

1
σ̂2

i

k∑
p=1

λ̂pmip
1
T

T∑
t=1

eitf
′
t ,

which is bounded in norm by

C∥P̂−1/2∥
( N∑

i=1

1
σ̂2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2)1/2( 1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

eitf
′
t

∥∥∥2)1/2
,

which is ∥P̂−1/2∥ ·Op(T−1/2) by (A.5). This proves result (b).
To prove result (c), notice that Σ̂−1

ee (Σ̂ee −Σee) is bounded by 2C4IN by C−2 ≤ σ̂2
i ≤ C2

and C−2 ≤ σ2
i ≤ C2. Hence, the left hand side is bounded in norm by∥∥∥P̂−1

N Λ̂′M ′
(
2C4IN

)
Σ̂−1

ee M Λ̂P̂−1
N

∥∥∥ = 2C4∥P̂−1
N ∥.

Result (c) then follows.
We now consider (d). The left hand side is equal to

1
NT

N∑
i=1

T∑
t=1

1
σ̂2

i

fteitm
′
iR̂,

which is bounded in norm by

C∥R̂∥ ·
[ 1
N

N∑
i=1

∥mi∥2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2]1/2
,
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which is Op(T−1/2) by Lemma A.2(c) and Assumption C. Hence, result (d) follows.
For result (e), the left hand side is equal to

1
N3/2 P̂

−1/2
[ N∑

i=1

N∑
j=1

P̂
−1/2
N

( k∑
p=1

λ̂pmip

) 1
σ̂2

i σ̂
2
j

1
T

T∑
t=1

[eitejt − E(eitejt)]m′
j

]
R̂−1,

which is bounded in norm by

C2∥P̂−1/2∥ · ∥R̂−1∥ ·
[ N∑

i=1

1
σ̂2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2]1/2[ 1
N

N∑
j=1

∥mj∥2
]1/2

×
[ 1
N2

N∑
i=1

N∑
j=1

∣∣∣ 1
T

T∑
t=1

[eitejt − E(eitejt)]
∣∣∣2]1/2

,

which is ∥P̂−1/2∥ ·Op(T−1/2) by (A.5) and Lemma A.2(c). Thus, result (d) follows.
Finally, we consider (f). The left hand side can be written as

1
N3/2 P̂

−1/2
N∑

i=1
P̂

−1/2
N

( k∑
p=1

λ̂pmip

)( σ̂2
i − σ2

i

σ̂4
i

)
m′

iR̂
−1,

which is bounded in norm by

1
N

· ∥P̂−1/2∥ · ∥R̂−1∥
[ N∑

i=1

1
σ̂2

i

∥P̂−1/2
N

k∑
p=1

λ̂pmip∥2
]1/2[ 1

N

N∑
i=1

∥mi∥2

σ̂4
i

(σ̂2
i − σ2

i )2
]1/2

.

By the boundedness of ∥mi∥ and σ̂−2 by Assumptions C and D, we have

1
N

N∑
i=1

∥mi∥2

σ̂4
i

(σ̂2
i − σ2

i )2 ≤ C
1
N

N∑
i=1

(σ̂2
i − σ2

i )2.

This result, together with (A.5) and Lemma A.2(c), gives result (f). �

Proof of Proposition 4.1. Throughout the proof, we use the following centered objec-
tive function

L(θ) = L(θ) +R(θ),

where
L(θ) = − 1

N
ln |Σzz| − 1

N
tr
(
Σ∗

zzΣ−1
zz

)
+ 1 + 1

N
ln |Σ∗

zz|

and
R(θ) = − 1

N
tr
[
(Mzz − Σ∗

zz)Σ−1
zz

]
,

where Σzz = MΛΛ′M ′ + Σee and Σ∗
zz = MΛ∗Λ∗′M ′ + Σ∗

ee. The above objective function
differs from the objective function of the main text only by a constant and is convenient
for the subsequent analysis. By the definition of Mzz, we have

R(θ) = −2 1
NT

tr
[
MΛ∗

T∑
t=1

f∗
t e

′
tΣ−1

zz

]
− 1
NT

tr
[ T∑

t=1
(ete

′
t − Σ∗

ee)Σ−1
zz

]
.
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By Lemma A.1, we have supθ |R(θ)| = op(1). Since θ̂ maximizes L(θ), it follows L(θ̂) +
R(θ̂)) ≥ L(θ∗) + R(θ∗). This implies that L(θ̂) ≥ L(θ∗) + R(θ∗) − R(θ̂) ≥ L(θ∗) −
2 supθ∈Θ |R(θ)| = −|op(1)|, where L(θ∗) is normalized to be zero.

Now consider L(θ̂) which is equivalent to

L(θ̂) = − 1
N

ln |Σ̂zz| − 1
N

tr(Σ∗
zzΣ̂−1

zz ) + 1 + 1
N

ln |Σ∗
zz|. (A.6)

By Σzz = MΛΛ′M ′ + Σee, we have |Σzz| = |Σee| · |Ir + Λ′M ′Σ−1
ee MΛ|. Similarly, |Σ∗

zz| =
|Σ∗

ee| · |Ir + Λ∗′
M ′Σ∗−1

ee MΛ∗|. Then equation (A.6) can be written as

L(θ̂) = − 1
N

ln |Σ̂ee| − 1
N

ln |Ir + Λ̂′M ′Σ−1
ee M Λ̂| − 1

N
tr[MΛ∗Λ∗′M ′Σ̂−1

zz ]

− 1
N

tr[Σ∗
eeΣ̂−1

zz ] + 1
N

ln |Σ∗
ee| + 1

N
ln |Ir + Λ∗′M ′Σ∗−1

ee MΛ∗| + 1

=
{

− 1
N

ln |Σ̂ee| + 1
N

ln |Σ∗
ee| − 1

N
tr[Σ∗

eeΣ̂−1
zz ] + 1

}
+
{

− 1
N

tr[MΛ∗Λ∗′M ′Σ̂−1
zz ]
}

+
{

− 1
N

ln |Ir + Λ̂′M ′Σ̂−1
ee M Λ̂|

}
+
{ 1
N

ln |Ir + Λ∗′M ′Σ∗−1
ee MΛ∗|

}
.

Notice that
1
N

tr[Σ∗
eeΣ̂−1

zz ] = 1
N

tr[Σ∗
eeΣ̂−1

ee ] − 1
N

tr[Σ∗
eeΣ̂−1

ee M Λ̂ĜΛ̂′M ′Σ̂−1
ee ] = 1

N
tr[Σ∗

eeΣ̂−1
ee ] + op(1)

by
0 < 1

N
tr[Σ∗

eeΣ̂−1
ee M Λ̂ĜΛ̂′M ′Σ̂−1

ee ] ≤ C
1
N

tr[Λ̂′M ′Σ̂−1
ee M Λ̂Ĝ] ≤ C

r

N
,

where we use the fact that there exists a constant C such that Σ∗
eeΣ̂−1

ee ≤ C · IN due to the
boundedness of σ̂2

i and σ∗2
i .

Given the above result, together with 1
N ln |Ir + Λ∗′M ′Σ∗−1

ee MΛ∗| = O(lnN/N), we can
further write L(θ̂) as

L(θ̂) = −
{ 1
N

ln |Σ̂ee| − 1
N

ln |Σ∗
ee| + 1

N
tr[Σ∗

eeΣ̂−1
ee ] − 1

}
−
{ 1
N

tr[MΛ∗Λ∗′M ′Σ̂−1
zz ]
}

−
{ 1
N

ln |Ir + Λ̂′M ′Σ̂−1
ee M Λ̂|

}
+ op(1).

The above three expressions in the big curly bracket are all non-negative. Together with
L(θ̂) ≥ −2|op(1)|, we have that each expression is op(1), that is,

1
N

ln |Σ̂ee| − 1
N

ln |Σ∗
ee| + 1

N
tr[Σ∗

eeΣ̂−1
ee ] − 1 p−→ 0, (A.7)

1
N

tr[MΛ∗Λ∗′M ′Σ̂−1
zz ] p−→ 0. (A.8)

Equation (A.7) is equivalent to

1
N

N∑
i=1

(ln σ̂2
i − ln σ∗2

i + σ∗2
i

σ̂2
i

− 1) p−→ 0.
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Consider the function g(x) = ln x+ σ∗2
i
x − ln σ∗2

i − 1. Given that 0 < C−2 ≤ σ2
i ≤ C2 < ∞

for C > 1, for any x ∈ [C−2, C2], we can find a constant d (for example, let d = 1
4C4 ) such

that g(x) ≥ d(x− σ∗2
i )2. It follows

op(1) = 1
N

N∑
i=1

(ln σ̂2
i + σ∗2

i

σ̂2
i

− 1 − ln σ∗2
i ) ≥ d

1
N

N∑
i=1

(σ̂2
i − σ∗2

i )2.

The above argument implies
1
N

N∑
i=1

(σ̂2
i − σ∗2

i )2 p−→ 0. (A.9)

This proves the first result of Proposition 4.1.
Next, we consider (A.8), which is equivalent to

1
N

tr(MΛ∗Λ′∗M ′Σ̂−1
zz ) = 1

N
tr
[
Λ′∗M ′(Σ̂−1

ee − Σ̂−1
ee M Λ̂ĜΛ̂′M ′Σ̂−1

ee

)
MΛ∗

]
.

By (Ir + Λ̂′M ′Σ̂−1
ee M Λ̂)−1 = (Λ̂′M ′Σ̂−1

ee M Λ̂)−1 − (Λ̂′M ′Σ̂−1
ee M Λ̂)−1(Ir + Λ̂′M ′Σ̂−1

ee M Λ̂)−1,
the preceding expression can be alternatively written as

1
N

tr(MΛ∗Λ′∗M ′Σ̂−1
zz )

= 1
N

tr
[
Λ∗′M ′Σ̂−1

ee MΛ∗ − Λ∗′M ′Σ̂−1
ee M Λ̂(Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee MΛ∗

]
+ 1
N

tr
[
Λ∗′M ′Σ̂−1

ee M Λ̂(Λ̂′M ′Σ̂−1
ee M Λ̂)−1(Ir + Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee MΛ∗

]
Both terms on the right hand side are non-negative. By (A.8), it follows that

1
N

tr
[
Λ∗′M ′Σ̂−1

ee MΛ∗ − Λ∗′M ′Σ̂−1
ee M Λ̂(Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee MΛ∗

]
p−→ 0, (A.10)

1
N

tr
[
Λ∗′M ′Σ̂−1

ee M Λ̂(Λ̂′M ′Σ̂−1
ee M Λ̂)−1(Ir + Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee MΛ∗

]
p−→ 0. (A.11)

By (A.9) and Lemma A.2(a), we know 1
N tr(Λ∗′M ′Σ̂−1

ee MΛ∗) converges to a positive con-
stant. Then (A.10) implies that 1

N tr(Λ∗′M ′Σ̂−1
ee M Λ̂(Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee MΛ∗) con-

verges to the same positive constant. Together with (A.11), we have (Ir+Λ̂′M ′Σ̂−1
ee M Λ̂)−1 =

op(1), i.e. Ĝ = op(1). Furthermore, from P̂−1
N = Ĝ(I − Ĝ)−1, we have P̂−1

N = op(1). We
obtain the following results

Ĝ = op(1); P̂−1
N = op(1). (A.12)

Consider (A.10) again. The matrix on the left-hand side is finite dimensional (r × r) and
is semi-positive definite, so its trace is op(1) if and only if every entry is op(1). Thus, we
have

1
N

[
Λ∗′M ′Σ̂−1

ee MΛ∗ − Λ∗′M ′Σ̂−1
ee M Λ̂(Λ̂′M ′Σ̂−1

ee M Λ̂)−1Λ̂′M ′Σ̂−1
ee MΛ∗

]
p−→ 0. (A.13)

Let A ≡ (Λ̂ − Λ∗)′M ′Σ̂−1
ee M Λ̂P̂−1

N . Then Ir − A = Λ∗′M ′Σ̂−1
ee M Λ̂P̂−1

N . So equation (A.13)
simplifies to

1
N

Λ∗′M ′Σ̂−1
ee MΛ∗ − (Ir −A) 1

N
Λ̂′M ′Σ̂−1

ee M Λ̂(Ir −A)′ p−→ 0.
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By Lemma A.2(a) and (A.9), we know 1
N Λ∗′M ′Σ̂−1

ee MΛ∗ = 1
N Λ∗′M ′Σ∗−1

ee MΛ∗ + op(1).
Thus,

1
N

Λ∗′M ′Σ∗−1
ee MΛ∗ − (Ir −A) 1

N
Λ̂′M ′Σ̂−1

ee M Λ̂(Ir −A)′ p−→ 0. (A.14)

By Assumption C.3, the expression 1
N Λ∗′M ′Σ∗−1

ee MΛ∗ is positive definite in the limit, so
the second term is of full rank in the limit which implies that (Ir −A) is of full rank in the
limit.

Alternatively, equation (A.13) can be rewritten as

1
N

(Λ̂ − Λ∗)′M ′Σ̂−1
ee M(Λ̂ − Λ∗) −A

( 1
N

Λ̂′M ′Σ̂−1
ee M Λ̂

)
A′ p−→ 0. (A.15)

We now make use of the first-order conditions to proceed the proof. The first-order condi-
tion (3.3) post-multiplied by Λ̂ implies

Λ̂′M ′Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz M Λ̂ = 0.

By (A.2), the above equation can be simplified as

Λ̂′M ′Σ̂−1
ee (Mzz − Σ̂zz)Σ̂−1

ee M Λ̂ = 0,

which is equivalent to

Λ̂′M ′Σ̂−1
ee M Λ̂Λ̂′M ′Σ̂−1

ee M Λ̂ = −Λ̂′M ′Σ̂−1
ee (Σ̂ee − Σ∗

ee)Σ̂−1
ee M Λ̂

+Λ̂′M ′Σ̂−1
ee MΛ∗Λ∗′M ′Σ̂−1

ee M Λ̂ + Λ̂′M ′Σ̂−1
ee MΛ∗ 1

T

T∑
t=1

f∗
t e

′
tΣ̂−1

ee M Λ̂

+Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etf
∗′
t Λ∗′M ′Σ̂−1

ee M Λ̂ + Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σ∗

ee)Σ̂−1
ee M Λ̂.

With notations of P̂ and A, we have

Ir = (Ir −A)′(Ir −A) + 1
N2 P̂

−1Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σ∗

ee)Σ̂−1
ee M Λ̂P̂−1

+(Ir −A)′ 1
NT

T∑
t=1

f∗
t e

′
tΣ̂−1

ee M Λ̂P̂−1 + 1
N
P̂−1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
∗′
t (Ir −A) (A.16)

− 1
N2 P̂

−1Λ̂′M ′Σ̂−1
ee (Σ̂ee − Σ∗

ee)Σ̂−1
ee M Λ̂P̂−1 = i1 + i2 + · · · + i5, say

Term i2 is ∥P̂−1/2∥2 ·Op(T−1/2) by Lemma A.3(a). Term i3 is ∥I−A∥·∥P̂−1/2∥·Op(T−1/2)
by Lemma A.3(b). Term i4 is the transpose of i3 and therefore has the same convergence
rate as i3. The last term is op(1) by Lemma A.3(c) and (A.12). Given these results, we
have

Ir = (I−A)′(I−A) + ∥P̂−1/2∥2Op(T−1/2) + ∥I−A∥ · ∥P̂−1/2∥ ·Op(T−1/2) +op(1). (A.17)

Moreover, by the definition of P̂ , equation (A.14) yields( 1
N

Λ̂′M ′Σ̂−1
ee M Λ̂

)−1
= (Ir −A)′

( 1
N

Λ∗′M ′Σ∗−1
ee MΛ∗

)−1
(Ir −A) + op(∥Ir −A∥2).
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This implies that

∥P̂−1/2∥2 = tr(P̂−1) = tr
[
(Ir −A)′

( 1
N

Λ∗′M ′Σ∗−1
ee MΛ∗

)−1
(Ir −A) + op(∥Ir −A∥2)

]
.

The right hand side is at most Op[(A2)∨1], implying that ∥P̂−1/2∥ = Op(A∨1), where a∨b
denotes the maximum of a and b. So together with (A.17), we obtain A = Op(1). To see
this, notice that the left hand side of equation (A.17) is bounded. Hence, if A ̸= Op(1), then
A is stochastically unbounded, the right hand side of (A.17) is dominated by A′A in view
of ∥P̂−1/2∥ = Op(A), but A′A diverges. Then a contradiction arises. Thus, A = Op(1),
which in turn implies that ∥P̂−1/2∥ = Op(1), or equivalently ∥P̂−1∥ = Op(1).

Now we sharpen the result to A = op(1). From equation (A.17), ∥P̂−1/2∥ = Op(1) and
A = Op(1), we have

(Ir −A)′(Ir −A) − Ir
p−→ 0.

And from (A.14),
1
N

Λ∗′M ′Σ∗−1
ee MΛ∗ − (Ir −A) 1

N
Λ̂′M ′Σ̂−1

ee M Λ̂(Ir −A)′ = op(1).

By the identification condition, 1
N Λ∗′M ′Σ∗−1

ee MΛ∗ and 1
N Λ̂′M ′Σ̂−1

ee M Λ̂ are both diagonal
with distinct diagonal elements. Applying Lemma A.1 of the supplement of Bai and Li
(2012) to the preceding two equations, we have that Ir − A converges in probability to a
diagonal matrix with diagonal elements either 1 or -1. By correctly choosing the column
signs, the case −1 is precluded. Therefore, we have Ir −A

p−→ Ir, or equivalently A = op(1).
Next, we consider the first-order condition on Λ (equation (3.3)). By (A.2), we can

simplify equation (3.3) as

Λ̂′M ′Σ̂−1
ee (Mzz − Σ̂zz)Σ̂−1

ee M = 0.

Using the expression of Mzz, we can write the preceding equation as

Λ̂′ − Λ∗′ = −A′Λ∗′ + (I −A)′ 1
T

T∑
t=1

f∗
t e

′
tΣ̂−1

ee MR̂−1
N + P̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etf
∗′
t Λ∗′ (A.18)

+P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[ete
′
t − Σ∗

ee]Σ̂−1
ee MR̂−1

N − P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σ∗
ee)Σ̂−1

ee MR̂−1
N .

By A = op(1) and Lemma A.3 (d), we have that the first two terms are op(1). By ∥P̂−1∥ =
Op(1) and Lemma A.3 (b), the third term is op(1). By ∥P̂−1∥ = Op(1) and Lemma A.3
(e), the fourth term is op(1). By ∥P̂−1∥ = Op(1) and Lemma A.3 (f), the last term is
op(1). Given the above result, we have Λ̂′ − Λ∗′ = op(1), which implies that Λ̂ p−→ Λ∗′. This
completes the proof of Proposition 4.1. �

Corollary A.1 Under Assumptions A-D,

(a) 1
N

Λ̂′M ′Σ̂−1
ee M Λ̂ − 1

N
Λ∗′M ′Σ∗−1

ee MΛ∗ = op(1);

(b) P̂N = Op(N), P̂ = Op(1), Ĝ = Op(N−1), ĜN = Op(1);

(c) 1
N

(Λ̂ − Λ)′M ′Σ̂−1
ee M Λ̂ = op(1).
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Proof of Corollary A.1. Result (a) follows from equation (A.14) and A = (Λ̂ −
Λ)′M ′Σ̂−1

ee M Λ̂P̂−1
N = op(1).

For part (b), by Assumption C.3, N−1Λ∗′M ′Σ∗−1
ee MΛ∗ → P∞ > 0. This result, together

with result (a) of this corollary, implies P̂ = Op(1) and therefore P̂N = Op(N). From
Ĝ = (Ir + P̂N )−1, we have Ĝ = Op(N−1) and hence ĜN = Op(1).

Result (c) follows from P̂ = Op(N) and A = op(1). �

Appendix B: Proofs of Theorems 4.1, 4.2 and 4.5

Hereafter, for notational simplicity, we drop “*” from the symbols of underlying true values.
The following lemmas are used in the proofs of Theorems 4.1 and 4.2.

Lemma B.1 Under Assumptions A-D,

(a) P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee M Λ̂P̂−1
N = Op(T−1/2);

(b) P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t = Op(T−1/2);

(c) P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee M Λ̂P̂−1

N = 1√
N
Op

([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
] 1

2
)
;

(d) 1
T

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1
N = Op(T−1/2);

(e) P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[ete
′
t − Σee]Σ̂−1

ee MR̂−1
N = Op(T−1/2);

(f) P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee MR̂−1

N = 1√
N
Op

([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
] 1

2
)
.

Proof of Lemma B.1. First, we consider (a). The left hand side is equal to

P̂−1 1
N2

[ N∑
i=1

N∑
j=1

( k∑
p=1

λ̂pmip

) 1
σ̂2

i σ̂
2
j

1
T

T∑
t=1

[eitejt − E(eitejt)]
( k∑

q=1
mjqλ̂

′
q

)]
P̂−1,

which is bounded in norm by

C2∥P̂−1∥2
[ 1
N

N∑
i=1

1
σ̂2

i

∥∥∥ k∑
p=1

λ̂pmip

∥∥∥2][ 1
N2

N∑
i=1

N∑
j=1

∣∣∣ 1
T

T∑
t=1

[eitejt − E(eitejt)]
∣∣∣2]1/2

.

Moreover, by Corollary A.1(a), we have

1
N

N∑
i=1

1
σ̂2

i

∥∥∥ k∑
p=1

λ̂pmip

∥∥∥2
= tr[ 1

N
Λ̂′M ′Σ̂−1

ee M Λ̂] p−→ tr[ 1
N

Λ′M ′Σ−1
ee MΛ] = tr(P ). (B.1)

By

E

[ 1
N2

N∑
i=1

N∑
j=1

∣∣∣ 1
T

T∑
t=1

[eitejt − E(eitejt)]
∣∣∣2] = O(T−1),
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together with Corollary A.1(b) and (B.1), we obtain (a).
Next, we consider (b). The left hand side can be written as

P̂−1 1
N

N∑
i=1

1
σ̂2

i

( k∑
p=1

λ̂pmip
) 1
T

T∑
t=1

eitf
′
t ,

which is bounded in norm by

C∥P̂−1∥
[ 1
N

N∑
i=1

1
σ̂2

i

∥∥∥ k∑
p=1

λ̂pmip

∥∥∥2]1/2[ 1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

eitf
′
t

∥∥∥2]1/2
,

which is Op(T−1/2) by (B.1). Thus, (b) follows.
For part (c), the left hand side can be written as

P̂
−1/2
N

[ N∑
i=1

P̂
−1/2
N

( k∑
p=1

λ̂pmip

) σ̂2
i − σ2

i

σ̂4
i

( k∑
q=1

miqλ̂
′
q

)
P̂

−1/2
N

]
P̂

−1/2
N ,

which is bounded in norm by

C2∥P̂−1/2
N ∥2 ·

N∑
i=1

1
σ̂2

i

∥∥∥P̂−1/2
N

( k∑
p=1

λ̂pmip

)∥∥∥2
(σ̂2

i − σ2
i ). (B.2)

Since
N∑

i=1

1
σ̂2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2
= r

by (A.5), this gives
1
σ̂i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥ ≤
√
r.

Hence, expression in (B.2) is bounded by

C2√
r∥P̂−1/2

N ∥2 ·
N∑

i=1

1
σ̂i

∥∥∥P̂−1/2
N

( k∑
p=1

λ̂pmip

)∥∥∥(σ̂2
i − σ2

i ),

which is further bounded by

C2√
r∥P̂−1/2

N ∥2 ·
[ N∑

i=1

1
σ̂2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2]1/2[ N∑
i=1

(σ̂2
i − σ2

i )2
]1/2

.

Then result (c) follows by noticing that P̂N = Op(N).
The proofs of the remaining three parts are similar to those of the first three. The

details are therefore omitted. �

Lemma B.2 Under Assumptions A-D,

A ≡ (Λ̂ − Λ)′M ′Σ̂−1
ee M Λ̂P̂−1

N = Op(T−1/2) +Op(∥Λ̂ − Λ∥2) +Op

([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
] 1

2
)
.
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Proof of Lemma B.2. Consider equation (A.16) in the proof of Proposition 4.1, we had
shown A = op(1). So term AA′ is of a smaller order and hence negligible. With Lemma
B.2 (a), (b) and (c), equation (A.16) can be simplified as

A+A′ = Op(T−1/2) + op

([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
] 1

2
)
. (B.3)

By the identification condition, we know both Λ′( 1
NM

′Σ−1
ee M)Λ and Λ̂′( 1

NM
′Σ̂−1

ee M)Λ̂ are
diagonal matrices, which implies

Ndg
{

Λ′( 1
N
M ′Σ−1

ee M)Λ − Λ̂′( 1
N
M ′Σ̂−1

ee M)Λ̂
}

= 0,

where Ndg denotes the operator which sets the diagonal elements of its input to zeros. By
adding and subtracting terms,

Ndg
{

(Λ̂ − Λ)′( 1
N
M ′Σ̂−1

ee M)Λ̂ + Λ̂′( 1
N
M ′Σ̂−1

ee M)(Λ̂ − Λ) (B.4)

−(Λ̂ − Λ)′( 1
N
M ′Σ̂−1

ee M)(Λ̂ − Λ) + Λ′
[ 1
N
M ′(Σ̂−1

ee − Σ−1
ee )M

]
Λ
}

= 0.

By Lemma A.2 (b), 1
NM

′Σ̂−1
ee M = 1

NM
′Σ−1

ee M+op(1) = R+op(1), where the last equation
is due to Assumption C.3. So term (Λ̂ − Λ)′( 1

NM
′Σ̂−1

ee M)(Λ̂ − Λ) = Op(∥Λ̂ − Λ∥2). Given
this result, together with Lemma A.2(a), we have

Ndg
{

(Λ̂ − Λ)′( 1
N
M ′Σ̂−1

ee M)Λ̂ + Λ̂′( 1
N
M ′Σ̂−1

ee M)(Λ̂ − Λ)
}

(B.5)

= Op(∥Λ̂ − Λ∥2) +Op([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2]1/2).

Notice that (Λ̂ − Λ)′( 1
NM

′Σ̂−1
ee M)Λ̂ = (Λ̂ − Λ)′( 1

NM
′Σ̂−1

ee M)Λ̂P̂−1P̂ = AP̂ , where the last
inequality is due to the definition of A. By P̂ = P + op(1) from Corollary A.1 (a), we have

(Λ̂ − Λ)′( 1
N
M ′Σ̂−1

ee M)Λ̂ = AP + op(A).

According to the preceding result, we can rewrite (B.5) as

Ndg{AP + PA′} = Op(∥Λ̂ − Λ∥2) +Op([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2]1/2), (B.6)

where op(A) is discarded since it has an smaller order than other terms.
Now equation (B.3) has 1

2r(r+ 1) restrictions and equation (B.6) has 1
2r(r− 1) restric-

tions, the r× r matrix A can be uniquely determined. Solving this linear equation system,
we have

A = Op(T−1/2) +Op(∥Λ̂ − Λ∥2) +Op

([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
] 1

2
)
.

This completes the proof. �
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Proof of Theorem 4.1. We first consider the first order condition (3.4), which can be
written as

diag
{

(Mzz − Σ̂zz) − (Mzz − Σ̂zz)Σ̂−1
ee M Λ̂ĜΛ̂′M ′ −M Λ̂ĜΛ̂′M ′Σ̂−1

ee (Mzz − Σ̂zz)
}

= 0,

where “diag” denotes the diagonal operator and Ĝ = (Ir + Λ̂′M ′Σ̂−1
ee M Λ̂)−1. By

Mzz = MΛΛ′M ′ + Σee +MΛ 1
T

T∑
t=1

fte
′
t + 1

T

T∑
t=1

etf
′
tΛ′M ′ + 1

T

T∑
t=1

(ete
′
t − Σee),

with some algebra manipulations, we can further write the preceding equation as

σ̂2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i + 2m′
iΛ

1
T

T∑
t=1

fteit − 2m′
iΛ̂ĜΛ̂′M ′Σ̂−1

ee MΛ 1
T

T∑
t=1

fteit

−2m′
iΛ

1
T

T∑
t=1

fte
′
tΣ̂−1

ee M Λ̂ĜΛ̂′mi − 2m′
iΛ̂ĜΛ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)] (B.7)

+m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi − 2m′

i(Λ̂ − Λ)Λ̂′mi + 2m′
i(Λ̂ − Λ)Λ̂′M ′Σ̂−1

ee M Λ̂ĜΛ̂′mi

+2m′
iΛ(Λ̂ − Λ)′M ′Σ̂−1

ee M Λ̂ĜΛ̂′mi + 2 σ̂
2
i − σ2

i

σ̂2
i

m′
iΛ̂ĜΛ̂′mi.

By ĜP̂N = P̂N Ĝ = IN − Ĝ, we have Ĝ = (IN − Ĝ)P̂−1
N = P̂−1

N (IN − Ĝ). Then, the third
term on right hand side (ignoring the factor 2) is equal to

m′
iΛ̂(IN − Ĝ)P̂−1

N Λ̂′M ′Σ̂−1
ee MΛ 1

T

T∑
t=1

fteit = m′
iΛ̂(IN − Ĝ)(I −A)′ 1

T

T∑
t=1

fteit (B.8)

and the sum of the seventh and eighth terms is equal to −2m′
i(Λ̂ − Λ)ĜΛ̂′mi. Define

ψ̈ = 1
T

T∑
t=1

fte
′
tΣ̂−1

ee M Λ̂P̂−1
N ; ϕ̈ = P̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee M Λ̂P̂−1
N .

Now consider the sum of the fourth and ninth terms. By Ĝ = P̂−1
N (IN − Ĝ), together with

the definitions of ψ̈, this term is equal to

−2m′
iΛ

1
T

T∑
t=1

fte
′
tΣ̂−1

ee M Λ̂ĜΛ̂′mi + 2m′
iΛ(Λ̂ − Λ)′M ′Σ̂−1

ee M Λ̂ĜΛ̂′mi

= −2m′
iΛψ̈(IN − Ĝ)Λ̂′mi + 2m′

iΛA(IN − Ĝ)Λ̂′mi

= 2m′
iΛψ̈ĜΛ̂′mi − 2m′

iΛAĜΛ̂′mi − 2m′
iΛψ̈(Λ̂ − Λ)′mi + 2m′

iΛA(Λ̂ − Λ)′mi

+m′
iΛ(A+A′ − ψ̈ − ψ̈′)Λ′mi.

Also, by (A.16), we have

A′ +A = A′A+ ϕ̈+ (Ir −A)′ψ̈ + ψ̈′(Ir −A) − P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee M Λ̂P̂−1

N ,

or equivalently

A′ +A− ψ̈ − ψ̈′ = A′A+ ϕ̈−A′ψ̈ − ψ̈′A− P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee M Λ̂P̂−1

N .
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Thus, it follows that

−2m′
iΛ

1
T

T∑
t=1

fte
′
tΣ̂−1

ee M Λ̂ĜΛ̂′mi + 2m′
iΛ(Λ̂ − Λ)′M ′Σ̂−1

ee M Λ̂ĜΛ̂′mi (B.9)

= 2m′
iΛψ̈ĜΛ̂′mi − 2m′

iΛAĜΛ̂′mi − 2m′
iΛψ̈(Λ̂ − Λ)′mi + 2m′

iΛA(Λ̂ − Λ)′mi −m′
iΛA′AΛ′mi

−m′
iΛϕ̈Λ′mi + 2m′

iΛA′ψ̈Λ′mi +m′
iΛP̂−1

N Λ̂′M ′Σ̂−1
ee (Σ̂ee − Σee)Σ̂−1

ee M Λ̂P̂−1
N Λ′mi.

Using (B.8) and (B.9), we can rewrite (B.7) as

σ̂2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) − 2m′
i(Λ̂ − Λ) 1

T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ

1
T

T∑
t=1

fteit (B.10)

+ 2m′
iΛ̂A′ 1

T

T∑
t=1

fteit − 2m′
iΛ̂ĜA′ 1

T

T∑
t=1

fteit + 2m′
iΛψ̈ĜΛ̂′mi

− 2m′
iΛAĜΛ̂′mi − 2m′

iΛψ̈(Λ̂ − Λ)′mi + 2m′
iΛA(Λ̂ − Λ)′mi

+m′
iΛA′AΛ′mi − 2m′

iΛA′ψ̈Λ′mi − 2m′
i(Λ̂ − Λ)ĜΛ̂′mi + 2 σ̂

2
i − σ2

i

σ̂2
i

m′
iΛ̂ĜΛ̂′mi

+m′
iΛϕ̈Λ′mi −m′

iΛP̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee M Λ̂P̂−1

N Λ′mi

− 2m′
iΛ̂ĜΛ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)] +m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi

= ai,1 + ai,2 + · · · + ai,17, say.

By the Cauchy-Schwartz inequality, we have

1
N

N∑
i=1

(σ̂2
i − σ2

i )2 ≤ 17 1
N

N∑
i=1

(∥ai,1∥2 + · · · + ∥ai,17∥2).

The first term N−1∑N
i=1 ∥a1i∥2 = Op(T−1) by

E

[ 1
N

N∑
i=1

∣∣∣ 1
T

T∑
t=1

(e2
it − σ2

i )
∣∣∣2] = O(T−1).

The second term is bounded in norm by

4C2∥Λ̂ − Λ∥2 1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2
= op(T−1)

by Λ̂ − Λ = op(1) and

E

[ 1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2]
= O(T−1).

Similarly, one can show that the 3rd, 4th, 5th, 6th, 8th, 11th and 14th terms are all
op(T−1). The 7th term is bounded in norm by

(4∥Λ∥2 · ∥Λ̂∥2 · ∥Ĝ∥2 · ∥A∥2) 1
N

N∑
i=1

∥mi∥4,
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which is Op(N−2T−1) +Op(N−2) ·Op(∥Λ̂ − Λ∥4) +Op(N−2) ·Op[ 1
N

∑N
i=1(σ̂2

i −σ2
i )] by Ĝ =

Op(N−1), Λ̂ = Λ+op(1) and Lemma B.2. This result can be simplified to 1
N

∑N
i=1 ∥ai,7∥2 =

op(T−1) + op(∥Λ̂ − Λ∥2) since Op(N−2) · Op[ 1
N

∑N
i=1(σ̂2

i − σ2
i )] is of smaller order than

1
N

∑N
i=1(σ̂2

i − σ2
i )2. Similar to the 7th term, the 9th and 10th terms are both of the order

op(T−1) + op(∥Λ̂ − Λ∥2). The 12th term is op(∥Λ̂ − Λ∥2) by Ĝ = Op(N−1). The 13th term
is of smaller order term than 1

N

∑N
i=1(σ̂2

i − σ2
i ) and therefore negligible. The 15th term

is op( 1
N

∑N
i=1(σ̂2

i − σ2
i )) by Lemma B.1 (f). The 16th term is Op(T−1). The last term is

Op(∥Λ̂ − Λ∥4). Given the above results, we have

1
N

N∑
i=1

(σ̂2
i − σ2

i )2 = Op(T−1) + op(∥Λ̂ − Λ∥2). (B.11)

Next, we derive bounds for ∥Λ̂ − Λ∥2. By equation (A.18), together with Lemma B.1(b),
(d), (e) and (f) and Lemma B.2, we have

Λ̂ − Λ = Op(T−1/2) +Op([ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2]1/2). (B.12)

Substituting equation (B.12) into (B.11), we have 1
N

∑N
i=1(σ̂2

i − σ2
i )2 = Op(T−1). This

proves the second result of Theorem 4.1. �

To prove the first result of Theorem 4.1, we need the following lemmas.

Lemma B.3 Under Assumptions A-D, we have

(a) P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee M Λ̂P̂−1
N

= Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2);

(b) P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t = Op(N−1/2T−1/2) +Op(T−1);

(c) P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee M Λ̂P̂−1

N = Op(N−1T−1/2);

(d) 1
T

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1
N = Op(N−1/2T−1/2) +Op(T−1);

(e) P̂−1
N Λ̂′

(
M ′Σ̂−1

ee

1
T

T∑
t=1

[ete
′
t − Σee]Σ̂−1

ee M
)
R̂−1

N

= Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2);
(f) P̂−1

N Λ̂′M ′Σ̂−1
ee (Σ̂ee − Σee)Σ̂−1

ee MR̂−1
N = Op(N−1T−1/2).

Proof of Lemma B.3. We first consider (a). We rewrite it as

P̂−1Λ̂′
( 1
N2M

′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee M
)
Λ̂P̂−1.
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Since we already know that ∥P̂−1∥ = Op(1) and ∥Λ̂′∥ = Op(1), we only need to consider
the term in the big parenthesis, which is

1
N2T

N∑
i=1

N∑
j=1

mim
′
j

1
σ̂2

i σ̂
2
j

T∑
t=1

[eitejt − E(eitejt)]

= 1
N2T

N∑
i=1

N∑
j=1

mim
′
j

( 1
σ̂2

i

− 1
σ2

i

)( 1
σ̂2

j

− 1
σ2

j

) T∑
t=1

[eitejt − E(eitejt)]

+ 1
N2T

N∑
i=1

N∑
j=1

mim
′
j

1
σ2

i

( 1
σ̂2

j

− 1
σ2

j

) T∑
t=1

[eitejt − E(eitejt)]

+ 1
N2T

N∑
i=1

N∑
j=1

mim
′
j

1
σ2

j

( 1
σ̂2

i

− 1
σ2

i

) T∑
t=1

[eitejt − E(eitejt)]

+ 1
N2T

N∑
i=1

N∑
j=1

mim
′
j

1
σ2

i σ
2
j

T∑
t=1

[eitejt − E(eitejt)].

By the Cauchy-Schwarz inequality, one can show the first term is bounded in norm by

C8
( 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
)( 1
N2

N∑
i=1

N∑
j=1

∥∥∥ 1
T

T∑
t=1

[eitejt − E(eitejt)]
∥∥∥2)1/2

,

which is Op(T−3/2) by the second part of Theorem 4.1. The second term equals to

1
N2T

N∑
i=1

N∑
j=1

mim
′
j

1
σ2

i

( 1
σ̂2

j

− 1
σ2

j

) T∑
t=1

[eitejt − E(eitejt)]

= 1
N

N∑
j=1

m′
j

( 1
σ̂2

j

− 1
σ2

j

)( 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

mi[eitejt − E(eitejt)]
)
,

which is bounded in norm by

C4
[ 1
N

N∑
j=1

(σ̂2
j − σ2

j )2
]1/2[ 1

N

N∑
j=1

( 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

mi[eitejt − E(eitejt)]
)2]1/2

,

which is Op(N−1/2T−1). Similarly, the third term is also Op(N−1/2T−1). The last term is
Op(N−1T−1/2). Hence result (a) follows.

Next, we consider (b). The left hand side of (b) is equivalent to

P̂−1Λ̂′
( 1
N
M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t

)
.

Similarly to (a), it suffices to consider the term inside the parenthesis, which is

1
N
M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t = 1

N

N∑
i=1

1
σ̂2

i

mi
1
T

T∑
t=1

eitf
′
t

= 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

mif
′
teit + 1

N

N∑
i=1

( 1
σ̂2

i

− 1
σ2

i

) 1
T

T∑
t=1

mif
′
teit.
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The first term is Op(N−1/2T−1/2). The second term is bounded in norm by

C4
[ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2]1/2
,

which is Op(T−1) by the second part of Theorem 4.1. Hence. result (b) follows.
For part (c), the left hand side of (c) is equivalent to

P̂−1Λ̂′
( 1
N2M

′Σ̂−1
ee (Σ̂ee − Σee)Σ̂−1

ee M
)
Λ̂P̂−1.

It suffices to consider the expression in the parenthesis:

1
N2

N∑
i=1

mim
′
i

σ̂2
i − σ2

i

σ̂4
i

≤ 1
N

( 1
N

N∑
i=1

∥mi∥2
)1/2( 1

N

N∑
i=1

∥m′
i∥2 (σ̂2

i − σ2
i )2

σ̂8
i

)1/2
,

which is Op(N−1T−1/2) by the second part of Theorem 4.1. This proves result (c). The
proofs of results (d), (e) and (f) are similar to those of (a), (b) and (c). The details are
therefore omitted. �

Lemma B.4 Under Assumptions A-D,

A ≡ (Λ̂ − Λ)′M ′Σ̂−1
ee M Λ̂P̂−1

N = Op

( 1√
NT

)
+Op

( 1
T

)
+Op(∥Λ̂ − Λ∥2).

Proof of Lemma B.4. Consider equation (A.16). Using the results in Lemma B.3 and
the fact that A′A has an order smaller than that of A and is therefore negligible, we have

A+A′ = Op

( 1√
NT

)
+Op

( 1
T

)
. (B.13)

Now consider the term 1
N Λ′M ′(Σ̂−1

ee − Σ−1
ee )MΛ, which can be written as

1
N

Λ′M ′(Σ̂−1
ee − Σ−1

ee )MΛ = −Λ′
[ 1
N

N∑
i=1

mim
′
i

σ̂2
i − σ2

i

σ̂2
i σ

2
i

]
Λ (B.14)

= −Λ′
[ 1
N

N∑
i=1

mim
′
i

σ̂2
i − σ2

i

σ4
i

]
Λ + Λ′

[ 1
N

N∑
i=1

mim
′
i

(σ̂2
i − σ2

i )2

σ̂2
i σ

4
i

]
Λ.

The norm of the second expression on the right hand side of (B.14) is bounded by

C
1
N

N∑
i=1

(σ̂2
i − σ2

i )2 = Op(T−1),

by the boundedness of mi, σ̂
2
i , σ

2
i by Assumptions C and D. Substituting (B.10) into the

first expression on the right hand side of (B.14) and using the same arguments as we did
at before (B.11), one can show that the first expression is Op( 1√

NT
) + op( 1

T ). Hence, we
have

1
N

Λ′M ′(Σ̂−1
ee − Σ−1

ee )MΛ = Op

( 1√
NT

)
+Op

( 1
T

)
. (B.15)
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Now consider (B.4). Using the same arguments as in the derivation of (B.6) except that the
result for 1

N Λ′M ′(Σ̂−1
ee − Σ−1

ee )MΛ is given by (B.15) instead of op([ 1
N

∑N
i=1(σ̂2

i − σ2
i )2]1/2),

we have
Ndg{AP + PA′} = Op

( 1√
NT

)
+Op

( 1
T

)
+Op(∥Λ̂ − Λ∥2). (B.16)

Solving the equation system (B.13) and (B.16), we have

A = Op

( 1√
NT

)
+Op

( 1
T

)
+Op(∥Λ̂ − Λ∥2),

as asserted in this lemma. This proves Lemma B.4. �

Proof of Theorem 4.1 (continued). Using the results in Lemma B.3 and Lemma B.4
and noticing that ∥Λ̂ − Λ∥2 is of smaller order than Λ̂ − Λ and therefore negligible, we have
from (A.18)

Λ̂ − Λ = Op

( 1√
NT

)
+Op

( 1
T

)
,

as asserted by the first result of Theorem 4.1. This completes the proof of Theorem 4.1.

Corollary B.1 Under Assumptions A-D,

A ≡ (Λ̂ − Λ)′M ′Σ̂−1
ee M Λ̂P̂−1

N = Op

( 1√
NT

)
+Op

( 1
T

)
.

Corollary B.1 is a direct result of Lemma B.4 and Theorem 4.1.

Lemma B.5 Under Assumptions A-D,

(a) 1
T

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1
N = 1

T

T∑
t=1

fte
′
tΣ−1

ee MR−1
N +Op(N−1/2T−1) +Op(T−3/2);

(b) P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
t = P−1

N Λ′M ′Σ−1
ee

1
T

T∑
t=1

etf
′
t +Op(N−1/2T−1) +Op(T−3/2);

(c) 1
N
M ′(Σ̂−1

ee − Σ−1
ee )M = − 1

NT

N∑
i=1

T∑
t=1

1
σ4

i

mim
′
i(e2

it − σ2
i ) + 1

NT

N∑
i=1

mim
′
i

κi,4 − σ4
i

σ4
i

+Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2).

Proof of Lemma B.5. Equation (B.10) can be written as

σ̂2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) + Ri, (B.17)

where

Ri = −2m′
iΛ̂ĜΛ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)] + Si

with

Si = −2m′
i(Λ̂ − Λ) 1

T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ

1
T

T∑
t=1

fteit + 2m′
iΛ̂A′ 1

T

T∑
t=1

fteit − 2m′
iΛ̂ĜA′ 1

T

T∑
t=1

fteit
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+ 2m′
iΛψ̈ĜΛ̂′mi − 2m′

iΛAĜΛ̂′mi − 2m′
iΛψ̈(Λ̂ − Λ)′mi + 2m′

iΛA(Λ̂ − Λ)′mi

+m′
iΛA′AΛ′mi − 2m′

iΛA′ψ̈Λ′mi − 2m′
i(Λ̂ − Λ)ĜΛ̂′mi + 2 σ̂

2
i − σ2

i

σ̂2
i

m′
iΛ̂ĜΛ̂′mi

+m′
iΛϕ̈Λ′mi −m′

iΛP̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee M Λ̂P̂−1

N Λ′mi +m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi.

Given that ψ̈ = Op(N−1/2T−1/2)+Op(T−1) by Lemma B.3 (b), Λ̂−Λ = Op(N−1/2T−1/2)+
Op(T−1) by Theorem 4.1, A = Op(N−1/2T−1/2) +Op(T−1) by Corollary B.1, by the same
arguments in the derivation of (B.10), we have

1
N

N∑
i=1

S2
i = Op(N−1T−2) +Op(N−2T−1) +Op(T−3). (B.18)

We now consider
1
N

N∑
i=1

∣∣∣m′
iΛ̂ĜΛ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit −E(eteit)]
∣∣∣2,

which is bounded in norm by

C2∥Λ̂∥4 · ∥ĜN ∥2 · 1
N

N∑
i=1

∣∣∣ 1
N
M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)]
∣∣∣2.

Since Λ̂ = Λ + op(1) and ĜN = Op(1), it suffices to consider the term

1
N

N∑
i=1

∣∣∣ 1
N
M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)]
∣∣∣2,

which, by the Cauchy-Schwarz inequality, is bounded by

2 1
N

N∑
i=1

∣∣∣ 1
NT

N∑
j=1

1
σ2

j

mj

T∑
t=1

[ejteit −E(ejteit)]
∣∣∣2

+2 1
N

N∑
i=1

∣∣∣ 1
NT

N∑
j=1

σ̂2
j − σ2

j

σ̂2
jσ

2
j

mj

T∑
t=1

[ejteit − E(ejteit)]
∣∣∣2.

The first expression is Op(N−1T−1). The second expression is bounded by

C10
[ 1
N

N∑
j=1

(σ̂2
j − σ2

j )2
][ 1
N2

N∑
i=1

N∑
j=1

∣∣∣ 1
T

T∑
t=1

[eitejt − E(eitejt)]
∣∣∣2] = Op(T−2).

Given the above result, we have

1
N

N∑
i=1

∣∣∣m′
iΛ̂ĜΛ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)]
∣∣∣2 = Op

( 1
NT

)
+Op

( 1
T 2

)
.

This result, together with (B.18), gives

1
N

N∑
i=1

R2
i = Op

( 1
NT

)
+Op

( 1
T 2

)
. (B.19)
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Notice that

1
NT

T∑
t=1

fte
′
tΣ̂−1

ee M = 1
NT

N∑
i=1

T∑
t=1

1
σ̂2

i

fteitm
′
i

= 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

fteitm
′
i − 1

NT

N∑
i=1

T∑
t=1

σ̂2
i − σ2

i

σ̂2
i σ

2
i

fteitm
′
i.

The second term can be written as

1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ̂2

i σ
2
i

fteit(e2
is − σ2

i )m′
i + 1

NT

N∑
i=1

T∑
t=1

1
σ̂2

i σ
2
i

Rifteitm
′
i

The second term of the above equation is bounded in norm by

C5
[ 1
N

N∑
i=1

∥Ri∥2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2]1/2
,

which is Op(N−1/2T−1) +Op(T−3/2) by (B.19). The first term can be written as

1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ4

i

fteit(e2
is − σ2

i )m′
i − 1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

σ̂2
i − σ2

i

σ̂2
i σ

4
i

fteit(e2
is − σ2

i )m′
i.

The first term of the above expression is Op(N−1/2T−1). The second term is bounded in
norm by

C5
[ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2
·
∥∥∥ 1
T

T∑
t=1

e2
is − σ2

i

∥∥∥2]1/2
,

which is Op(T−3/2). Given the above results, we have

1
NT

T∑
t=1

fte
′
tΣ̂−1

ee M = 1
NT

T∑
t=1

fte
′
tΣ−1

ee M +Op

( 1√
NT

)
+Op

( 1
T 3/2

)
. (B.20)

Given (B.20), together with R̂ = R+Op(T−1/2), we immediately obtain (a). Given (B.20),
together with P̂ = P +Op(T−1/2) and Λ̂ = Λ +Op( 1√

NT
) +Op( 1

T ), we also have (b).
We now consider (c). The left hand side of (c) is equal to

− 1
N

N∑
i=1

σ̂2
i − σ2

i

σ̂2
i σ

2
i

mim
′
i = − 1

N

N∑
i=1

σ̂2
i − σ2

i

σ4
i

mim
′
i + 1

N

N∑
i=1

(σ̂2
i − σ2

i )2

σ̂2
i σ

4
i

mim
′
i.

We use i1 and i2 to denote the two expressions on the right hand side of the above equation.
We first consider i1. Substituting (B.17) into this term, we obtain

i1 = − 1
N

N∑
i=1

σ̂2
i − σ2

i

σ4
i

mim
′
i = − 1

NT

N∑
i=1

T∑
t=1

1
σ4

i

(e2
it − σ2

i )mim
′
i

+2 1
N

N∑
i=1

1
σ4

i

tr
[
Λ̂ĜΛ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)]m′
i

]
mim

′
i − 1

N

N∑
i=1

1
σ4

i

Simim
′
i.
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Consider the second expression. The (v, u) element of this expression (v, u = 1, . . . , k) is

tr
[ 1
N

N∑
i=1

Λ̂ĜΛ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

[eteit −E(eteit)]
1
σ4

i

m′
imivmiu

]
which can be proved to be Op(N−1T−1/2)+Op(N−1/2T−1)+Op(T−3/2) similarly as Lemma
B.3(a). The third term is bounded by

C6
[ 1
N

N∑
i=1

S2
i

]1/2
= Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2)

by (B.18). Hence, we have

i1 = − 1
NT

N∑
i=1

T∑
t=1

1
σ4

i

(e2
it − σ2

i )mim
′
i +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Proceed to consider i2. By

σ̂2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) + Ri,

we can write i2 as

1
N

N∑
i=1

1
σ̂2

i σ
4
i

[ 1
T

T∑
t=1

(e2
it−σ2

i )
]2
mim

′
i+2 1

N

N∑
i=1

1
σ̂2

i σ
4
i

[ 1
T

T∑
t=1

(e2
it−σ2

i )
]
Rimim

′
i+

1
N

N∑
i=1

1
σ̂2

i σ
4
i

R2
imim

′
i.

We analyze the three terms at right-hand-side of the above equation one by one. The
second term is bounded in norm by

2C8
[ 1
N

N∑
i=1

∣∣∣ 1
T

T∑
t=1

(e2
it − σ2

i )
∣∣∣2]1/2[ 1

N

N∑
i=1

R2
i

]1/2
,

which is Op(N−1/2T−1) by (B.19). The third term is bounded in norm by

C8 1
N

N∑
i=1

R2
i = Op

( 1
NT

)
+Op

( 1
T 2

)
by (B.19). Finally, the first term can be written as

1
N

N∑
i=1

1
σ6

i

[ 1
T

T∑
t=1

(e2
it − σ2

i )
]2
mim

′
i − 1

N

N∑
i=1

σ̂2
i − σ2

i

σ̂2
i σ

6
i

[ 1
T

T∑
t=1

(e2
it − σ2

i )
]2
mim

′
i

The first term of the above expression is equal to

1
NT

N∑
i=1

κi,4 − σ4
i

σ6
i

mim
′
i +Op(N−1/2T−1).

The second term is bounded in norm by

C10
[ 1
N

N∑
i=1

(σ̂2
i − σ2

i )2
]1/2[ 1

N

N∑
i=1

∣∣∣ 1
T

T∑
t=1

(e2
it − σ2

i )
∣∣∣4]1/2

= Op(T−3/2).
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Hence, we have

i2 = 1
NT

N∑
i=1

κi,4 − σ4
i

σ6
i

mim
′
i +Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Summarizing the results on i1 and i2, we have (c). �

Proof of Theorem 4.2. We first derive the asymptotic behavior of A. Consider equation
(A.16), using Lemma B.3 (a) and (f), Lemma B.5 (b) and Lemma B.4, we have

A+A′ = η + η′ +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2),

where

η = 1
NT

T∑
t=1

fte
′
tΣ−1

ee MΛP−1.

Let vech(B) be the operation which stacks the elements on and below the diagonal of
matrix B into a vector, for any square matrix B. Taking vech operation on both sides, we
get

vech(A+A′) = vech(η + η′) +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2).

Let Dr be the r-dimensional duplication matrix and D+
r be its Moore-Penrose inverse. By

the basic fact that vech(B +B′) = 2D+
r vec(B), for any r × r matrix B, we have

2D+
r vec(A) = 2D+

r vec(η) +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2). (B.21)

Furthermore, define

ζ = Λ′
[ 1
NT

N∑
i=1

T∑
t=1

mim
′
i

σ4
i

(e2
it − σ2

i )
]
Λ, µ = Λ′

[ 1
NT

N∑
i=1

κi,4 − σ4
i

σ6
i

mim
′
i

]
Λ.

Proceed to consider equation (B.4). By Lemma B.5(c) and Λ̂ − Λ = Op(N−1/2T−1/2) +
Op(T−1) by Theorem 4.1, we have

Ndg
{

Λ̂′( 1
N
M ′Σ̂−1

ee M)(Λ̂ − Λ) + (Λ̂ − Λ)′( 1
N
M ′Σ̂−1

ee M)Λ̂
}

= Ndg{ζ − µ} +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2).

Using the same arguments in the derivation of (B.16), we have

Ndg(AP + PA′) = Ndg(ζ − µ) +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2).

Let veck(B) be the operation which stacks the elements below the diagonal of matrix B

into a vector, for any square matrix B. Let D be the matrix such that veck(B) = Dvec(B)
for any r × r matrix B. By the preceding equation,

veck(AP + PA′) = veck(ζ − µ) +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2),
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or equivalently

Dvec(AP + PA′) = Dvec(ζ − µ) +Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2).

Using vec(ABC) = (C ′ ⊗A)vec(B), we can rewrite the preceding equation as

D[(P⊗Ir)+(Ir⊗P )Kr]vec(A) = Dvec(ζ−µ)+Op(N−1T−1/2)+Op(N−1/2T−1)+Op(T−3/2),
(B.22)

where Kr is the r-dimensional communication matrix such that Krvec(B′) = vec(B) for
any r × r matrix B. By (B.21) and (B.22), we have[

2D+
r

D[(P ⊗ Ir) + (Ir ⊗ P )Kr]

]
vec(A) =

[
2D+

r vec(η)
0

]
+
[

0
Dvec(ζ)

]
−
[

0
Dvec(µ)

]
(B.23)

+Op( 1
N

√
T

) +Op( 1√
NT

) +Op( 1
T 3/2 ).

Define

D1 =
[

2D+
r

D[(P ⊗ Ir) + (Ir ⊗ P )Kr]

]
, D2 =

[
2D+

r

0 1
2 r(r−1)×r2

]
, D3 =

[
0 1

2 r(r+1)×r2

D

]
.

The above result can be rewritten as

D1vec(A) = D2vec(η)+D3vec(ζ)−D3vec(µ)+Op( 1
N

√
T

)+Op( 1√
NT

)+Op( 1
T 3/2 ). (B.24)

Also, notice that

vec(η) = vec
[ 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

fteitm
′
iΛP−1

]
= (P−1Λ′ ⊗ Ir) 1

NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit,

vec(ζ) = vec
[
Λ′ 1
NT

N∑
i=1

T∑
t=1

mim
′
i

σ4
i

(e2
it − σ2

i )Λ
]

= (Λ ⊗ Λ)′ 1
NT

N∑
i=1

T∑
t=1

1
σ4

i

(mi ⊗mi)(e2
it − σ2

i )

and

vec(µ) = vec
[
Λ′ 1
NT

N∑
i=1

κi,4 − σ4
i

σ6
i

mim
′
iΛ
]

= (Λ ⊗ Λ)′ 1
NT

N∑
i=1

1
σ6

i

(mi ⊗mi)(κi,4 − σ4
i ).

Given the above three results, we can rewrite (B.24) as

vec(A) = D−1
1 D2(P−1Λ′ ⊗ Ir) 1

NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit (B.25)

+ D−1
1 D3(Λ ⊗ Λ)′ 1

NT

N∑
i=1

T∑
t=1

1
σ4

i

(mi ⊗mi)(e2
it − σ2

i )

− D−1
1 D3(Λ ⊗ Λ)′ 1

NT

N∑
i=1

1
σ6

i

(mi ⊗mi)(κi,4 − σ4
i )

+Op( 1
N

√
T

) +Op( 1√
NT

) +Op( 1
T 3/2 ).
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Consider equation (A.18). Using the results of Lemma B.5 (a) and (b) and Lemma B.3
(e) and (f), we have

Λ̂′ − Λ′ = −A′Λ′ + 1
NT

T∑
t=1

fte
′
tΣ−1

ee MR−1 + P−1Λ′ 1
NT

M ′Σ−1
ee

T∑
t=1

etf
′
tΛ′

+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
. (B.26)

Notice that

vec
[ 1
NT

T∑
t=1

fte
′
tΣ−1

ee MR−1
]

= vec
[ 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

fteitm
′
iR

−1
]

= (R−1 ⊗ Ir) 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit

and

vec
[
P−1Λ′ 1

NT
M ′Σ−1

ee

T∑
t=1

etf
′
tΛ′
]

= vec
[
P−1Λ′ 1

NT

N∑
i=1

T∑
t=1

1
σ2

i

mieitf
′
tΛ′
]

= Kkrvec
[
Λ 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

fteitm
′
iΛP−1

]

= Kkr[(P−1Λ′) ⊗ Λ] 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit,

where Kmn is the commutation matrix such that Kmnvec(B) = vec(B′) for any m × n

matrix B.
Taking vectorization operation on the both sides of (B.26), we have

vec(Λ̂′ − Λ′) =
[
Kkr[(P−1Λ′) ⊗ Λ] +R−1 ⊗ Ir

] 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit

−Kkr(Ir ⊗ Λ)vec(A) +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
. (B.27)

Substituting (B.25) into (B.27),

vec(Λ̂′ − Λ′) = B1
1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit − B2
1
NT

N∑
i=1

T∑
t=1

1
σ4

i

(mi ⊗mi)(e2
it − σ2

i )

+ 1
T

∆ +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
, (B.28)

where

B1 = Kkr[(P−1Λ′) ⊗ Λ] +R−1 ⊗ Ir −Kkr(Ir ⊗ Λ)D−1
1 D2[(P−1Λ′) ⊗ Ir],

B2 = Kkr(Ir ⊗ Λ)D−1
1 D3(Λ ⊗ Λ)′,

∆ = B2
1
N

N∑
i=1

T∑
t=1

1
σ6

i

(mi ⊗mi)(κi,4 − σ4
i ).
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Given the above results and by a Central Limit Theorem, we obtain as N,T → ∞ and
N/T 2 → 0,

sqrtNT
[
vec(Λ̂′ − Λ′) − 1

T
∆
]

d−→ N(0,Ω),

where Ω = lim
N→∞

ΩN with

ΩN = B1(R⊗ Ir)B′
1 + B2

[ 1
N

N∑
i=1

κi,4 − σ4
i

σ8
i

(mim
′
i) ⊗ (mim

′
i)
]
B′

2.

This completes the proof of Theorem 4.2. �

Proof of Theorem 4.5. By the definition of f̂t = (Λ̂′M ′Σ̂−1
ee M Λ̂)−1Λ̂′M ′Σ̂−1

ee zt and A,
we have

f̂t − ft = −A′ft + P̂−1 1
N

Λ̂′M ′Σ̂−1
ee et.

From Corollary B.1, we know A = Op( 1√
NT

) + Op( 1
T ), then the first term of the above

equation is Op( 1√
NT

) + Op( 1
T ). From Corollary A.1 (a)(b), we know P̂ = P + op(1) and

P̂ = Op(1), and from Assumption C.3, we know P∞ = lim
N→∞

P where P∞ is positive definite

matrix. Consider the part 1
N Λ̂′M ′Σ̂−1

ee et, which can be rewritten as

1
N

N∑
i=1

1
σ̂2

i

Λ̂′mieit = 1
N

Λ′M ′Σ−1
ee et,−

1
N

N∑
i=1

σ̂2
i − σ2

i

σ̂2
i σ

2
i

Λ′mieit + 1
N

N∑
i=1

1
σ̂2

i

(Λ̂ − Λ)′mieit,

where mi is the transpose of the ith row of M . Use a1, a2, a3 to denote the three terms on
the right hand side of the above equation. Term a2 can be shown to be Op( 1√

NT
)+Op( 1

T 3/2 )
by the equation (B.10). Term a3 can be shown to be Op( 1√

NT
)+Op( 1

T ) by equation (A.18).
Then we have

1
N

Λ̂′M ′Σ̂−1
ee et = 1

N
Λ′M ′Σ−1

ee et +Op

( 1√
NT

)
+Op

( 1
T

)
.

Therefore,
f̂t − ft = P−1 1

N
Λ′M ′Σ−1

ee et +Op

( 1√
NT

)
+Op

( 1
T

)
Based on the above result, by a Central Limit Theorem, we obtain as N,T → ∞ and
N/T 2 → 0, √

N(f̂t − ft)
d−→ N(0, P−1

∞ ).

This completes the proof of Theorem 4.5. �
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SUPPLEMENTARY MATERIALS (not for publication)

This supplement includes Appendices C to G, where we provide detailed proofs for the
theorems in Sections 5, 6 and 9, and more simulation results in addition to Section 8.
These supplementary appendices are for referees’ convenience, not for publication and

they will become online available material.

Appendix C: Proof of Theorem 5.2

We only derive the asymptotic result under H0 : L = MΛ. The consistency of the test can
be easily verified. In addition, we note that since Λ̂† −Λ = Op( 1√

NT
)+op( 1

T ), the proof for
the statistic calculated by Λ̂† is almost the same as the statistic calculated by Λ̂. Hence,
we will only consider the statistic calculated by Λ̂ in the proofs below. We first consider
the term

1
N

(M Λ̂ − L̂)′Σ̃−1
ee (M Λ̂ − L̂) = 1

N

[
M(Λ̂ − Λ) − (L̂− L)

]′
Σ̃−1

ee

[
M(Λ̂ − Λ) − (L̂− L)

]
= (Λ̂ − Λ)′

[ 1
N
M ′Σ̃−1

ee M
]
(Λ̂ − Λ) − (Λ̂ − Λ)′

[ 1
N
M ′Σ̃−1

ee (L̂− L)
]

−
[ 1
N

(L̂− L)′Σ̃−1
ee M

]
(Λ̂ − Λ) + 1

N
(L̂− L)′Σ̃−1

ee (L̂− L) = Ia − Ib − Ic + Id, say

Consider the first term Ia. Notice that

1
N
M ′Σ̃−1

ee M − 1
N
M ′Σ−1

ee M = op(1) (C.1)

by Lemma A.4 in the supplement of Bai and Li (2012). This result, together with Λ̂ − Λ =
Op( 1√

NT
) +Op( 1

T ) by Theorem 4.1, gives Ia = Op( 1
NT ) +Op( 1

T 2 ).
For the second term Ib, the term inside the squared parenthesis is

1
N
M ′Σ̃−1

ee (L̂− L) = 1
N

N∑
i=1

1
σ̃2

i

mi(l̂i − li)′. (C.2)

According to (A.14) in the supplement of Bai and Li (2012), we know that

l̂i − li = (L̂− L)′Σ̃−1
ee L̂Ĥli − ĤL̂′Σ̃−1

ee (L̂− L)(L̂− L)′Σ̃−1
ee L̂Ĥli

−ĤL̂′Σ̃−1
ee L

( 1
T

T∑
t=1

fte
′
t

)
Σ̃−1

ee L̂Ĥli − ĤL̂′Σ̃−1
ee

( 1
T

T∑
t=1

etf
′
t

)
L′Σ̃−1

ee L̂Ĥli

−Ĥ
( N∑

i=1

N∑
j=1

1
σ̃2

i σ̃
2
j

l̂i l̂
′
j

1
T

T∑
t=1

[eitejt −E(eitejt)]
)
Ĥli + Ĥ

N∑
i=1

1
σ̃4

i

l̂i l̂
′
i(σ̃2

i − σ2
i )Ĥli

+ĤL̂′Σ̃−1
ee

( 1
T

T∑
t=1

etf
′
t

)
li + ĤL̂′Σ̃−1

ee L
( 1
T

T∑
t=1

fteit

)
(C.3)

+Ĥ
( N∑

j=1

1
σ̃2

j

l̂j
1
T

T∑
t=1

[ejteit − E(ejteit)]
)

− Ĥli
1
σ̃2

i

(σ̃2
i − σ2

i ).
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Substituting (C.3) into the right hand side of (C.2),

1
N
M ′Σ̃−1

ee (L̂− L) =
( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)
ĤL̂′Σ̃−1

ee (L̂− L) (C.4)

−
( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)
ĤL̂′Σ̃−1

ee (L̂−L)(L̂−L)′Σ̃−1
ee L̂Ĥ +

( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)
Ĥ

N∑
i=1

1
σ̃4

i

l̂i l̂
′
i(σ̃2

i −σ2
i )Ĥ

−
( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)
ĤL̂′Σ̃−1

ee

( 1
T

T∑
t=1

etf
′
t

)
L′Σ̃−1

ee L̂Ĥ +
( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)( 1
T

T∑
t=1

fte
′
t

)
Σ̃−1

ee L̂Ĥ

−
( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)
ĤL̂′Σ̃−1

ee L
( 1
T

T∑
t=1

fte
′
t

)
Σ̃−1

ee L̂Ĥ +
( 1
NT

N∑
i=1

1
σ̃2

i

mieitf
′
t

)
L′Σ̃−1

ee L̂Ĥ

−
( 1
N

N∑
i=1

1
σ̃2

i

mil
′
i

)
Ĥ
( N∑

i=1

N∑
j=1

1
σ̃2

i σ̃
2
j

l̂i l̂
′
j

1
T

T∑
t=1

[eitejt − E(eitejt)]
)
Ĥ

+ 1
N

N∑
i=1

N∑
j=1

1
σ̃2

i σ̃
2
j

mi l̂
′
j

1
T

T∑
t=1

[eitejt − E(eitejt)]Ĥ − 1
N

N∑
i=1

σ̃2
i − σ2

i

σ̃4
i

mil
′
iĤ.

Similar to (C.1), we have

1
N

N∑
i=1

1
σ̃2

i

mil
′
i − 1

N

N∑
i=1

1
σ2

i

mil
′
i = op(1), (C.5)

which implies that 1
N

∑N
i=1

1
σ̃2

i
mil

′
i = Op(1). Now we analyze the terms on the right hand

side of (C.4) one by one. The first term is Op( 1√
NT

)+Op( 1
T ) due to (C.5) and ĤL̂′Σ̃−1

ee (L̂−
L) = Op( 1√

NT
)+Op( 1

T ) by (C.10) in the supplement of Bai and Li (2012). The second term
isOp( 1

NT )+Op( 1
T 2 ) by the same argument. The third term isOp( 1

N
√

T
) by (C.5) and Lemma

C.1 (f) of Bai and Li (2012). The fourth, fifth and sixth terms are all Op( 1√
NT

) + Op( 1
T )

because L′Σ̃−1
ee L̂Ĥ = Op(1) by Lemma C.1 (a) and ĤL̂′Σ̃−1

ee ( 1
T

∑T
t=1 etf

′
t) = Op( 1√

NT
) +

Op( 1
T ) by Lemma C.1 (e) of Bai and Li (2012). The seventh term is also Op( 1√

NT
)+Op( 1

T )
since L′Σ̃−1

ee L̂Ĥ = Op(1) and 1
NT

∑N
i=1

1
σ̃2

i
mieitf

′
t = Op( 1√

NT
) +Op( 1

T ), where the proof of
the second result is implicitly contained in the one of Lemma C.1 (e) of Bai and Li (2012).
The eighth and ninth terms are both Op( 1

N
√

T
) + Op( 1

T ) by Lemma C.1 (c) of Bai and Li
(2012). The last term is Op( 1

N
√

T
) by the same arguments as the third term. Summarizing

all the above results, we have

1
N
M ′Σ̃−1

ee (L̂− L) = Op

( 1√
NT

)
+Op

( 1
T

)
.

This result, together with Theorem 4.1, shows that

Ib = Op

( 1
NT

)
+Op

( 1
T 2

)
.

Term Ic is also Op( 1
NT ) +Op( 1

T 2 ) since it is the transpose of Ib.
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We now consider the last term Id. We first rewrite equation (C.3) as

l̂i − li = 1
T

T∑
t=1

fteit + Ti, (C.6)

where

Ti = (L̂− L)′Σ̃−1
ee L̂Ĥli − ĤL̂′Σ̃−1

ee (L̂− L)(L̂− L)′Σ̃−1
ee L̂Ĥli

−ĤL̂′Σ̃−1
ee L

( 1
T

T∑
t=1

fte
′
t

)
Σ̃−1

ee L̂Ĥli − ĤL̂′Σ̃−1
ee

( 1
T

T∑
t=1

etf
′
t

)
L′Σ̃−1

ee L̂Ĥli

−Ĥ
( N∑

i=1

N∑
j=1

1
σ̃2

i σ̃
2
j

l̂i l̂
′
j

1
T

T∑
t=1

[eitejt −E(eitejt)]
)
Ĥli + Ĥ

N∑
i=1

1
σ̃4

i

l̂i l̂
′
i(σ̃2

i − σ2
i )Ĥli

+ĤL̂′Σ̃−1
ee

( 1
T

T∑
t=1

etf
′
t

)
li − ĤL̂′Σ̃−1

ee (L̂− L)
( 1
T

T∑
t=1

fteit

)

+Ĥ
( N∑

j=1

1
σ̃2

j

l̂j
1
T

T∑
t=1

[ejteit − E(ejteit)]
)

− Ĥli
1
σ̃2

i

(σ̃2
i − σ2

i ).

Now term Id can be written as

Id = 1
N

N∑
i=1

1
σ̃2

i

(l̂i − li)(l̂i − li)′ = 1
N

N∑
i=1

1
σ̃2

i

[ 1
T

T∑
t=1

fteit + Ti

][ 1
T

T∑
t=1

fteit + Ti

]′
= 1
N

N∑
i=1

1
σ̃2

i

[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
+ 1
N

N∑
i=1

1
σ̃2

i

[ 1
T

T∑
t=1

fteit

]
T ′

i

+ 1
N

N∑
i=1

1
σ̃2

i

Ti

[ 1
T

T∑
t=1

fteit

]′
+ 1
N

N∑
i=1

1
σ̃2

i

TiT ′
i = IIa + IIb + IIc + IId.

First consider IIa, which can be written as

IIa = 1
N

N∑
i=1

1
σ2

i

[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
− 1
N

N∑
i=1

σ̃2
i − σ2

i

σ̃2
i σ

2
i

[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
. (C.7)

The first expression of (C.7) is equal to

1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

ftf
′
s[eiteis − E(eiteis)] + 1

T
Ir.

The second expression of (C.7) can be written as

1
N

N∑
i=1

σ̃2
i − σ2

i

σ4
i

[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
− 1
N

N∑
i=1

(σ̃2
i − σ2

i )2

σ̃2
i σ

4
i

[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
.

(C.8)
Equation (B.9) in the supplement of Bai and Li (2012) implies that

σ̃2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) + Si
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with
1
N

N∑
i=1

S2
i = Op( 1

NT
) +Op( 1

T 2 ).

Consider the first term of (C.8), which can be written as

1
N

N∑
i=1

σ̃2
i − σ2

i

σ4
i

1
T 2

T∑
t=1

T∑
s=1

ftf
′
s[eiteis − E(eiteis)] + 1

NT

N∑
i=1

σ̃2
i − σ2

i

σ2
i

Ir. (C.9)

The first term of the preceding equation can be further written as

1
N

N∑
i=1

Si

σ4
i

1
T 2

T∑
t=1

T∑
s=1

ftf
′
s[eiteis −E(eiteis)]

+ 1
NT 3

N∑
i=1

T∑
u=1

T∑
t=1

T∑
s=1

1
σ4

i

ftf
′
s[εi,uts − E(εi,uts)] + 1

NT 3

N∑
i=1

T∑
u=1

T∑
t=1

T∑
s=1

1
σ4

i

ftf
′
sE(εi,uts),

where εi,uts = (e2
iu −σ2

i )[eiteis −E(eiteis)]. The first term of the above equation is bounded
in norm by

C4
[ 1
N

N∑
i=1

S2
i

]1/2[ 1
N

N∑
i=1

∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

ftf
′
s[eiteis − E(eiteis)]

∥∥∥2]1/2
,

which is Op( 1√
NT 3 ) + Op( 1

T 2 ). The second term is Op( 1√
NT 3 ). The third term is O( 1

T 2 ).
Given the above analysis, we have that the first expression of (C.9) is Op( 1√

NT 3 ) +Op( 1
T 2 ).

Consider the second term of (C.9). Ignoring Ir, this term is equal to

1
NT 2

N∑
i=1

T∑
t=1

1
σ2

i

(e2
it − σ2

i ) + 1
NT

N∑
i=1

Si

σ2
i

.

The first term is Op( 1√
NT 3 ). The second term is bounded in norm by C2 1

T ( 1
N

∑N
i=1 S2

i )1/2,
which is Op( 1√

NT 3 ) + Op( 1
T 2 ). Summarizing all the results, we have shown that the first

term of (C.8) is Op( 1√
NT 3 ) +Op( 1

T 2 ).
The second term of (C.8) is bounded by

C6 1
N

N∑
i=1

(σ̃2
i − σ2

i )2
[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
,

which is further bounded in norm by

2C6 1
N

N∑
i=1

[ 1
T

T∑
t=1

(e2
it − σ2

i )
]2[ 1

T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′

+2C6 1
N

N∑
i=1

[ 1
T

T∑
t=1

Si

]2[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
.

The first term is Op( 1
T 2 ) and the second term is Op( 1

T 3 ) + Op( 1
NT 2 ). Given these results,

we have

IIa = 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

ftf
′
s[eiteis − E(eiteis)] + 1

T
Ir +Op

( 1√
NT 3

)
+Op

( 1
T 2

)
.
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The derivations of IIb and IIc are similar. So we only consider IIc. Substituting the
expression of Ti into IIc, we have

IIc = (L̂− L)′Σ̃−1
ee L̂Ĥ

1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

− ĤL̂′Σ̃−1
ee (L̂− L)(L̂− L)′Σ̃−1

ee L̂Ĥ
1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

− ĤL̂′Σ̃−1
ee L

( 1
T

T∑
t=1

fte
′
t

)
Σ̃−1

ee L̂Ĥ
1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

− ĤL̂′Σ̃−1
ee

( 1
T

T∑
t=1

etf
′
t

)
L′Σ̃−1

ee L̂Ĥ
1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

− Ĥ
( N∑

i=1

N∑
j=1

1
σ̃2

i σ̃
2
j

l̂i l̂
′
j

1
T

T∑
t=1

[eitejt − E(eitejt)]
)
Ĥ

1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

+ Ĥ
N∑

i=1

1
σ̃4

i

l̂i l̂
′
i(σ̃2

i − σ2
i )Ĥ 1

NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

+ ĤL̂′Σ̃−1
ee

( 1
T

T∑
t=1

etf
′
t

) 1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit

− ĤL̂′Σ̃−1
ee (L̂− L) 1

N

N∑
i=1

1
σ̃2

i

[ 1
T

T∑
t=1

fteit

][ 1
T

T∑
t=1

fteit

]′
+ Ĥ

1
N

N∑
i=1

N∑
j=1

1
σ̃2

j σ̃
2
i

l̂j
1
T

T∑
t=1

[ejteit − E(ejteit)]
[ 1
T

T∑
t=1

fteit

]′

− Ĥ
1
N

N∑
i=1

li
1
σ̃4

i

(σ̃2
i − σ2

i )
[ 1
T

T∑
t=1

fteit

]′
.

Notice that
1
NT

N∑
i=1

T∑
t=1

1
σ̃2

i

lif
′
teit = Op

( 1√
NT

)
+Op

( 1
T

)
,

which is shown in Lemma C.1 (e) of Bai and Li (2012). Given the above result, together
with (L̂ − L)′Σ̃−1

ee L̂Ĥ = Op( 1√
NT

) + Op( 1
T ) by (C.10) in the supplement of Bai and Li

(2012), we have that the first term is Op( 1
NT ) + Op( 1

T 2 ). By similar arguments, one can
show that the second term is Op( 1√

N3T 3 )+Op( 1
T 3 ), the third and the fourth terms are both

Op( 1
NT ) +Op( 1

T 2 ). The fifth term is Op( 1√
N3T 2 ) +Op( 1

T 2 ). The sixth term is Op( 1√
N3T 2 ).

The seventh term is Op( 1
NT ) +Op( 1

T 2 ). The eighth term is bounded in norm by

C
∥∥∥ĤL̂′Σ̃−1

ee (L̂− L)
∥∥∥ · 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2
,

which is Op( 1√
NT 3 ) +Op( 1

T 2 ). The ninth term can be written as

Ĥ
N∑

j=1

1
σ̃2

j

l̂j

{ 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

f ′
teit[ejseis − E(ejseis)]

}
(C.10)
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− 1
N
Ĥ

N∑
i=1

N∑
j=1

σ̃2
i − σ2

i

σ̃2
i σ̃

2
jσ

2
i

l̂j
1
T 2

T∑
t=1

T∑
s=1

f ′
teit[ejseis − E(ejseis)].

The first term of (C.10) can be written as

1
NT 2 Ĥ

N∑
j=1

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i σ
2
j

ljf
′
teit[ejseis − E(ejseis)]

−Ĥ
N∑

j=1

σ̃2
j − σ2

j

σ̃2
jσ

2
j

lj

{ 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

f ′
teit[ejseis − E(ejseis)]

}

−Ĥ
N∑

j=1

1
σ̃2

j

(l̂j − lj)
{ 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

f ′
teit[ejseis − E(ejseis)]

}
.

The first term is Op( 1
NT ) since its variance is O( 1

N2T 2 ). The second term is bounded in
norm by

C · ∥NĤ∥ ·
[ 1
N

N∑
j=1

(σ̃2
j − σ2

j )2
]1/2[ 1

N

N∑
j=1

∥∥∥ 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

f ′
teit[ejseis − E(ejseis)]

∥∥∥2]1/2
,

which is Op( 1√
NT 3 ) by Theorem 5.1 of Bai and Li (2012). The third term is bounded in

norm by

C · ∥NĤ∥ ·
[ 1
N

N∑
j=1

1
σ̃2

j

∥l̂j − lj∥2
]1/2[ 1

N

N∑
j=1

∥∥∥ 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

f ′
teit[ejseis −E(ejseis)]

∥∥∥2]1/2
,

which is also Op( 1√
NT 3 ) by Theorem 5.1 of Bai and Li (2012). The second term of (C.10)

can be written as

− 1
N
Ĥ

N∑
i=1

N∑
j=1

(σ̃2
i − σ2

i )(σ̃2
j − σ2

j )
σ̃2

i σ̃
2
jσ

2
i σ

2
j

lj
1
T 2

T∑
t=1

T∑
s=1

f ′
teit[ejseis − E(ejseis)]

+ 1
N
Ĥ

N∑
i=1

N∑
j=1

σ̃2
i − σ2

i

σ̃2
i σ̃

2
jσ

2
i

(l̂j − lj) 1
T 2

T∑
t=1

T∑
s=1

f ′
teit[ejseis − E(ejseis)]

+ 1
N
Ĥ

N∑
i=1

σ̃2
i − σ2

i

σ̃2
i σ

2
i

1
NT 2

N∑
j=1

1
σ2

j

lj

T∑
t=1

T∑
s=1

f ′
teit[ejseis − E(ejseis)].

The first term is bounded in norm by

C · ∥NĤ∥ ·
[ 1
N

N∑
j=1

(σ̃2
j − σ2

j )2
][ 1
N2

N∑
i=1

N∑
j=1

∥∥∥f ′
teit[ejseis −E(ejseis)]

∥∥∥2]1/2
,

which is Op( 1
T 2 ) by Theorem 5.1 of Bai and Li (2012). The second term is bounded in

norm by

C · ∥NĤ∥
[ 1
N

N∑
j=1

(σ̃2
j − σ2

j )2
]1/2[ 1

N

N∑
j=1

1
σ̃2

j

∥l̂j − lj∥2
]1/2
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×
[ 1
N2

N∑
i=1

N∑
j=1

∥∥∥f ′
teit[ejseis − E(ejseis)]

∥∥∥2]1/2
,

which is also Op( 1
T 2 ) by Theorem 5.1 of Bai and Li (2012). The third term is bounded in

norm by

C · ∥NĤ∥
[ 1
N

N∑
i=1

(σ̃2
i − σ2

i )2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
NT 2

N∑
j=1

1
σ2

j

lj

T∑
t=1

T∑
s=1

f ′
teit[ejseis − E(ejseis)]

∥∥∥2]1/2
,

which is Op( 1√
NT 3 ) by Theorem 5.1 of Bai and Li (2012). Summarizing all the results, we

have that that the ninth term is Op( 1√
NT 3 ) + Op( 1

T 2 ). The last term is bounded in norm
by

C∥Ĥ∥
[ 1
N

N∑
i=1

(σ̃2
i − σ2

i )2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2]1/2
,

which is Op( 1
NT ). Given the above analysis, we have

IIc = Op

( 1√
NT 3

)
+Op

( 1
T 2

)
.

Term IId is bounded in norm by C 1
N

∑N
i=1 ∥Ti∥2. Using the argument to prove IIc, we can

show that it is bounded in norm by Op( 1√
NT 3 ) +Op( 1

T 2 ).
Given the above analysis, we have

Id = 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

ftf
′
s[eiteis − E(eiteis)] + 1

T
Ir +Op

( 1√
NT 3

)
+Op

( 1
T 2

)
.

Summarizing the results on Ia, . . . , Id, we have
1
N

(M Λ̂ − L̂)′Σ̃−1
ee (M Λ̂ − L̂)

= 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

ftf
′
s[eiteis − E(eiteis)] + 1

T
Ir +Op

( 1√
NT 3

)
+Op

( 1
T 2

)
,

Now consider the term 1√
NT 2

∑N
i=1

∑T
t=1

∑T
s=1

1
σ2

i
ftf

′
s[eiteis − E(eiteis)], which we use

ω to denote. Then the variance of tr(ω) is

var(tr(ω)) = 1
N

N∑
i=1

1
σ4

i

var
[ 1
T

T∑
t=1

T∑
s=1

f ′
tfseiteis

]
= 1
N

N∑
i=1

1
σ4

i

var
[
e′

i

FF ′

T
ei

]
where ei = (ei1, ei2, . . . , eiT )′. By the well-known result that

var(V ′BV ) = (µv
4 − 3σ4)

T∑
t=1

b2
tt + σ4

[
tr(BB′) + tr(B2)

]
where V = (v1, v2, . . . , vT )′ with each vt is iid over t with mean zero and variance σ2,
µv

4 = E(v4
t ), and B is a T ×T matrix with its tth diagonal element denoted as btt, together

with the fact that eit is iid over t with mean zero and variance σ2
i , then we have

var
[
e′

i

FF ′

T
ei

]
= (µ4 − 3σ4

i )
T∑

t=1

(f ′
tft

T

)2
+ σ4

i

[
tr
(FF ′

T

FF ′

T

)
+ tr

(FF ′

T

FF ′

T

)]
,
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where µ4 = E(e4
it). By the identification condition that F ′F/T = Ir, the above equation

can be rewritten as

var
[
e′

i

FF ′

T
ei

]
= (µ4 − 3σ4

i )
T∑

t=1

(f ′
tft

T

)2
+ σ4

i 2r.

Notice that
∑T

t=1

(
f ′

tft

T

)2
= 1

T
1
T

∑T
t=1(f ′

tft)2 is Op( 1
T ), since 1

T

∑T
t=1(f ′

tft)2 is Op(1) from
Assumption A. Meanwhile from Assumption B, we know both σ2

i and µ4 are bounded.
Therefore as T → ∞, the first term on the right hand side of the above equation goes to
zero, hence

var
[
e′

i

FF ′

T
ei

]
= σ4

i 2r,

which implies that var(tr(ω)) = 2r. Hence as N,T → ∞ and N/T 2 → 0,

W , tr
[√
NT 2

( 1
N

(M Λ̂ − L̂)′Σ̃−1
ee (M Λ̂ − L̂) − 1

T
Ir

)]
= 1√

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
σ2

i

f ′
sft[eiteis − E(eiteis)] + op(1) d−→ N(0, 2r).

This completes the whole proof of Theorem 5.2. �

Appendix D: Partially constrained factor models

We first give detailed derivations of equations (6.2)-(6.4). The first order condition for Λ
is

Λ̂′M ′Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz M = 0. (D.1)

The first order condition for Γ is

Γ̂′Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz = 0. (D.2)

The first order condition for Σee is

diag[Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz ] = 0. (D.3)

By (D.1) and (D.2), together with the definition of Φ, we have

Φ̂′Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz Φ̂ = 0, (D.4)

where Φ̂ = [M Λ̂, Γ̂]. Let Ĝ = (Ir + Φ̂′Σ̂−1
ee Φ̂)−1. By the Woodbury formula

Σ̂−1
zz = Σ̂−1

ee − Σ̂−1
ee Φ̂ĜΦ̂′Σ̂−1

ee , (D.5)

we have Φ̂′Σ̂−1
zz = ĜΦ̂′Σ̂−1

ee . Given this result, together with (D.4), we have

ĜΦ̂′Σ̂−1
ee (Mzz − Σ̂zz)Σ̂−1

ee Φ̂Ĝ = 0,

or equivalently
Φ̂′Σ̂−1

ee (Mzz − Σ̂zz)Σ̂−1
ee Φ̂ = 0. (D.6)
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Now equation (D.1) can be written as

0 = [Ir1 , 0]
[
Λ̂′M ′

Γ̂′

]
Σ̂−1

zz (Mzz − Σ̂zz)Σ̂−1
zz M = [Ir1 , 0]Φ̂′Σ̂−1

zz (Mzz − Σ̂zz)Σ̂−1
zz M

= [Ir1 , 0]ĜΦ̂′Σ̂−1
ee (Mzz − Σ̂zz)Σ̂−1

zz M = [Ir1 , 0]ĜΦ̂′Σ̂−1
ee (Mzz − Σ̂zz)(Σ̂−1

ee − Σ̂−1
ee Φ̂ĜΦ̂′Σ̂−1

ee )M.

Using (D.6), we have
[Ir1 , 0]ĜΦ̂′Σ̂−1

ee (Mzz − Σ̂zz)Σ̂−1
ee M = 0. (D.7)

By identification condition IC′, we see that Ĝ is a diagonal matrix, which we partition into

Ĝ =
[
Ĝ1 0
0 Ĝ2

]
.

So we can rewrite (D.7) as

Ĝ1Λ̂′M ′Σ̂−1
ee (Mzz − Σ̂zz)Σ̂−1

ee M = 0,

or equivalently
Λ̂′M ′Σ̂−1

ee (Mzz − Σ̂zz)Σ̂−1
ee M = 0. (D.8)

Proceed to consider (D.2). Post-multiplying Σ̂zz on both side of (D.2) gives,

0 = Γ̂′Σ̂−1
zz (Mzz − Σ̂zz) = [0, Ir2 ]

[
Λ̂′M ′

Γ̂′

]
Σ̂−1

zz (Mzz − Σ̂zz)

= [0, Ir2 ]Φ̂′Σ̂−1
zz (Mzz − Σ̂zz) = [0, Ir2 ]ĜΦ̂′Σ̂−1

ee (Mzz − Σ̂zz) = Ĝ2Γ̂′Σ̂−1
ee (Mzz − Σ̂zz),

which implies that
Γ̂′Σ̂−1

ee (Mzz − Σ̂zz) = 0. (D.9)

For ease of exposition, we introduce a matrix A in a partial constrained factor model, which
is defined as

A , (Φ̂ − Φ)′Σ̂−1
ee Φ̂(Φ̂′Σ̂−1

ee Φ̂)−1 = (Φ̂ − Φ)′Σ̂−1
ee Φ̂Ĥ−1

N ,

where ĤN = Φ̂′Σ̂−1
ee Φ̂. We partition matrix A as

A =
[
A11 A12
A21 A22

]
.

By definition, we have

A11 = (Λ̂ − Λ)′M ′Σ̂−1
ee M Λ̂P̂−1

N , A12 = (Λ̂ − Λ)′M ′Σ̂−1
ee Γ̂Q̂−1

N ,

A21 = (Γ̂ − Γ)′Σ̂−1
ee M Λ̂P̂−1

N , A22 = (Γ̂ − Γ)′Σ̂−1
ee Γ̂Q̂−1

N ,

where P̂N = Λ̂′M ′Σ̂−1
ee M Λ̂ and Q̂N = Γ̂′Σ̂−1

ee Γ̂. With some algebra manipulations, together
with Λ̂′M ′Σ̂−1

ee Γ̂ = 0 by the identification condition, we can rewrite the first order condition
(D.8) as

Λ̂′ − Λ′ = −A′
11Λ′ −A′

21Γ′Σ̂−1
ee MR̂−1

N − P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee MR̂−1

N
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+(I −A11)′ 1
T

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1
N −A′

21
1
T

T∑
t=1

gte
′
tΣ̂−1

ee MR̂−1
N + P̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etf
′
tΛ′

+P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tΓ′Σ̂−1

ee MR̂−1
N + P̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee MR̂−1
N .

The above result can be alternatively written as

Λ̂′ − Λ′ = −A′
11Λ′ −A′

21Γ′Σ̂−1
ee MR̂−1

N + 1
T

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1
N (D.10)

+P̂−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′ + P̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etg
′
tΓ′Σ̂−1

ee MR̂−1
N + JΛ,

where

JΛ = −P̂−1
N Λ̂′M ′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee MR̂−1

N −A′
11

1
T

T∑
t=1

fte
′
tΣ̂−1

ee MR̂−1
N

−A′
21

1
T

T∑
t=1

gte
′
tΣ̂−1

ee MR̂−1
N + P̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee MR̂−1
N .

By similar arguments as above, the first order condition (D.9) can be written as

γ̂i − γi = 1
T

T∑
t=1

gteit + Ji,Γ, (D.11)

where

Ji,Γ = −A′
22γi −A′

12Λ′mi −A′
22

1
T

T∑
t=1

gteit + Q̂−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi − Q̂−1

N γi
σ̂2

i − σ2
i

σ̂2
i

−A′
12

1
T

T∑
t=1

fteit + Q̂−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi + Q̂−1

N Γ̂′Σ̂−1
ee

1
T

T∑
t=1

[eteit − E(eteit)].

Similarly, we can rewrite the first order condition (D.3) as

diag
(
(Mzz − Σ̂zz) −M Λ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Mzz − Σ̂zz) − (Mzz − Σ̂zz)Σ̂−1
ee M Λ̂Ĝ1Λ̂′M ′

)
= 0.

Given the above result, with some algebra computation, we have

σ̂2
i − σ̂2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) + Ji,σ2 , (D.12)

where

Ji,σ2 = −2γ′
iJi,Γ − (γ̂i − γi)′(γ̂i − γi) − 2m′

i(Λ̂ − Λ)Λ′mi

−m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi − 2m′

i(Λ̂ − Λ) 1
T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ1

1
T

T∑
t=1

fteit

+2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ) 1
T

T∑
t=1

fteit − 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi
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+2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)Λ′mi + 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee MΛ(Λ̂ − Λ)′mi

+2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)(Λ̂ − Λ)′mi + 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)γi

+2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee ΓJi,Γ + 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)(γ̂i − γi)

+2m′
iΛ̂Ĝ1Λ̂′mi

σ̂2
i − σ2

i

σ̂2
i

− 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

−2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)].

Equation (D.6) is equal to

Φ̂′Σ̂−1
ee

[
ΦΦ′ + Σee − Φ̂Φ̂′ − Σ̂ee + Φ 1

T

T∑
t=1

hte
′
t + 1

T

T∑
t=1

eth
′
tΦ′ + 1

T

T∑
t=1

(ete
′
t − Σee)

]
Σ̂−1

ee Φ̂ = 0.

The above equation can be written as

A+A′ = A′A+ (I −A)′ 1
T

T∑
t=1

hte
′
tΣ̂−1

ee Φ̂Ĥ−1
N + Ĥ−1

N Φ̂′Σ̂−1
ee

1
T

T∑
t=1

eth
′
t(I −A) (D.13)

+Ĥ−1
N Φ̂′Σ̂−1

ee

1
T

T∑
t=1

(ete
′
t − Σee)Σ̂−1

ee Φ̂Ĥ−1
N − Ĥ−1

N Φ̂′Σ̂−1
ee (Σ̂ee − Σee)Σ̂−1

ee Φ̂Ĥ−1
N .

By identification condition IC’, we have

Ndg
{ 1
N

Φ̂′Σ̂−1
ee Φ̂ − 1

N
Φ′Σ−1

ee Φ
}

= 0.

The expression on the left hand side of the preceding equation is equal to

Ndg
{ 1
N

(Φ̂ − Φ)′Σ̂−1
ee Φ̂ + 1

N
Φ̂′Σ̂−1

ee (Φ̂ − Φ) − 1
N

(Φ̂ − Φ)′Σ̂−1
ee (Φ̂ − Φ) + 1

N
Φ′(Σ̂−1

ee − Σ−1
ee )Φ

}
.

Given the above result, by the definition of A, we have

Ndg(AĤ + ĤA′) (D.14)

= Ndg
{

1
N

(Φ̂ − Φ)′Σ̂−1
ee (Φ̂ − Φ) − 1

N

N∑
i=1

ϕiϕ
′
i

σ̂2
i σ

4
i

(σ̂2
i − σ2

i )2 + 1
N

N∑
i=1

ϕiϕ
′
i

σ4
i

(σ̂2
i − σ2

i )
}
,

where Ĥ = Φ̂′Σ̂−1
ee Ĥ/N . Now we use the above results to prove Theorem 6.1. First we can

show that
1
N

N∑
i=1

1
σ̂2

i

∥ϕ̂i − ϕi∥2 p−→ 0 (D.15)

and
1
N

N∑
i=1

(σ̂2
i − σ2

i )2 p−→ 0. (D.16)

Notice that the present model is a mixture of a standard factor model and a constrained
factor model. In Proposition 4.1, we have shown the consistency of the MLE for a con-
strained factor model. In Proposition 5.1 of Bai and Li (2012), the consistency of the
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MLE for a standard factor model is shown. By combining the arguments in the proofs
of Proposition 4.1 and Proposition 5.1 of Bai and Li (2012), one can prove the above two
results.

Along with the argument of consistency, using (D.9), (D.10), one can further show that

Λ̂ − Λ = Op

( 1√
NT

)
+Op

( 1
T

)
,

1
N

N∑
i=1

1
σ̂2

i

∥γ̂i − γi∥2 = Op

( 1
T

)
, (D.17)

1
N

N∑
i=1

(σ̂2
i − σ2

i )2 = O

( 1
T

)
.

Equation (D.13) corresponds to equation (A.16) in the pure constrained factor model.
Using the arguments as in the derivation of (B.13), one can obtain a similar result

A+A′ = Op

( 1√
NT

)
+Op

( 1
T

)
. (D.18)

By the consistency results (D.15) and (D.16), one can show that Ĥ = H + op(1). So
A(Ĥ−H) is of smaller order term than A and therefore negligible. Similar to the derivation
of (B.16), one can show that

Ndg(AH + HA′) = Op

( 1√
NT

)
+Op

( 1
T

)
. (D.19)

The equation system (D.18) and (D.19) gives

A = Op

( 1√
NT

)
+Op

( 1
T

)
. (D.20)

Using the above result, it can be shown that

Ji,σ2 = Op

( 1√
NT

)
+Op

( 1
T

)
.

The above result, together with (D.9), gives

√
T (σ̂2

i − σ2
i ) = 1√

T

T∑
t=1

(e2
it − σ2

i ) + op(1).

Similarly, using the results in Lemma B.3 and (D.20), we have

Ji,Γ = Op

( 1√
NT

)
+Op

( 1
T

)
.

This result, together with (D.10), gives

√
T (γ̂i − γi) = 1√

T

T∑
t=1

gteit + op(1).
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Let ψ = (M ′Σ−1
ee M)−1M ′Σ−1

ee Γ. It can be shown that Lemmas B.3 and B.5 continue to
hold for a constrained factor model. Given this, we can rewrite (D.10) as

Λ̂′ − Λ′ = −A′
11Λ′ −A′

21ψ
′ + 1

T

T∑
t=1

fte
′
tΣ−1

ee MR−1
N + P−1

N Λ′M ′Σ−1
ee

1
T

T∑
t=1

etf
′
tΛ′ (D.21)

+ P−1
N Λ′M ′Σ−1

ee

1
T

T∑
t=1

etg
′
tψ

′ +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

We note that

vec
( 1
T

T∑
t=1

fte
′
tΣ−1

ee MR−1
N

)
= vec

( 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

fteitm
′
iR

−1
)

= (R−1 ⊗ Ir1) 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit,

vec
(
P−1

N Λ′M ′Σ−1
ee

1
T

T∑
t=1

etf
′
tΛ′
)

= vec
(
P−1Λ′ 1

NT

N∑
i=1

T∑
t=1

1
σ2

i

mif
′
teitΛ′

)

= Kkr1vec
(

Λ 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

ftm
′
ieitΛP−1

)

= Kkr1 [(P−1Λ′) ⊗ Λ] 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit,

vec
(
P−1

N Λ′M ′Σ−1
ee

1
T

T∑
t=1

etg
′
tψ

′
)

= vec
(
P−1Λ′ 1

NT

N∑
i=1

T∑
t=1

1
σ2

i

mig
′
teitψ

′
)

= Kkr1vec
(
ψ

1
NT

N∑
i=1

T∑
t=1

1
σ2

i

gtm
′
ieitΛP−1

)

= Kkr1 [(P−1Λ′) ⊗ ψ] 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ gt)eit.

In addition

−A′
11Λ′ −A′

21ψ
′ = −[Ir1 , 0r1×r2 ]

[
A′

11 A′
21

A′
12 A′

22

] [
Λ′

ψ′

]
= −E′

1A
′Ψ′,

where Ψ = [Λ, ψ], E1 =
[
Ir1

0r2×r1

]
and E2 =

[
0r1×r2

Ir2

]
. Given the above result, we have

vec
(
A′

11Λ′ +A′
21ψ

′
)

= vec(E′
1A

′Ψ′) = Kkr1vec(ΨAE1) = Kkr1(E′
1 ⊗ Ψ)vec(A).

Taking the vectorization operation on both sides of (D.21), we get

vec(Λ̂′ − Λ′) =
[
(R−1 ⊗ Ir1) +Kkr1 [(P−1Λ′) ⊗ Λ]

] 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ ft)eit (D.22)

+Kkr1 [(P−1Λ′) ⊗ ψ] 1
NT

N∑
i=1

T∑
t=1

1
σ2

i

(mi ⊗ gt)eit −Kkr1(E′
1 ⊗ Ψ)vec(A)
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+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Now consider (D.13) and (D.14). Again, using similar arguments as in the derivation of
(B.21), one can show by (D.13) that

2D+
r vec(A) = 2D+

r vec(η⋆) +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
, (D.23)

where η⋆ = 1
T

∑T
t=1 hte

′
tΣ−1

ee ΦH−1
N with HN = Φ′Σ−1

ee Φ. To proceed the analysis, we first
consider the expression Ji,σ2 . The sum of the 3rd term and the 10th term is equal to

−2m′
i(Λ̂ − Λ)Λ′mi + 2m′

iΛ̂Ĝ1Λ̂′M ′Σ̂−1
ee MΛ(Λ̂ − Λ)′mi

= 2m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi − 2m′

iΛ̂Ĝ1(Λ̂ − Λ)′mi − 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)(Λ̂ − Λ)′mi.

By Λ̂′M ′Σ̂−1
ee Γ̂ = 0, we can rewrite the 13th term as −2m′

iΛ̂Ĝ1Λ̂′M ′Σ̂−1
ee (Γ̂−Γ)Ji,Γ. Further

consider the sum of the 1st, 8th, 9th, 12th and 16th terms, which is equal to

− 2γ′
iJi,Γ − 2m′

iΛ̂Ĝ1Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etf
′
tΛ′mi + 2m′

iΛ̂′Ĝ1Λ̂′M ′Σ̂−1
ee M(Λ̂ − Λ)Λ′mi

+ 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)γi − 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

= 2γ′
iA

′
22γi + 2γ′

iA
′
12Λ′mi + 2γ′

iA
′
22

1
T

T∑
t=1

gteit − 2γ′
iQ̂

−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi + 2γ′

iA
′
12

1
T

T∑
t=1

fteit

− 2γ′
iQ̂

−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi − 2γ′

iQ̂
−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)] + 2γ′
iQ̂

−1
N γi

σ̂2
i − σ2

i

σ̂2
i

− 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi + 2m′

iΛĜ1P̂
−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi

− 2m′
iΛP̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etf
′
tΛ′mi + 2m′

i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1
ee M(Λ̂ − Λ)Λ′mi

− 2m′
iΛĜ1A

′
11Λ′mi + 2m′

iΛA′
11Λ′mi + 2m′

i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1
ee (Γ̂ − Γ)γi − 2m′

iΛĜ1A
′
21γi

+ 2m′
iΛA′

21γi − 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi + 2m′

iΛĜ1P̂
−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

− 2m′
iΛP̂−1

N Λ̂′M ′Σ̂−1
ee

1
T

T∑
t=1

etg
′
tγi

= ϕ′
i

[
A+A′ − Ĥ−1

N Φ̂′Σ̂−1
ee

1
T

T∑
t=1

eth
′
t − 1

T

T∑
t=1

hte
′
tΣ̂−1

ee Φ̂Ĥ−1
N

]
ϕi + 2γ′

iA
′
22

1
T

T∑
t=1

gteit

+ 2γ′
iA

′
12

1
T

T∑
t=1

fteit − 2γ′
iQ̂

−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)] + 2γ′
iQ̂

−1
N γi

σ̂2
i − σ2

i

σ̂2
i

− 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi + 2m′

iΛĜ1P̂
−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi
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+ 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)Λ′mi − 2m′
iΛĜ1A

′
11Λ′mi − 2m′

iΛĜ1A
′
21γi

+ 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)γi − 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

+ 2m′
iΛĜ1P̂

−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

= ϕ′
iA

′Aϕi − 2ϕ′
iA

′ 1
T

T∑
t=1

hte
′
tΣ̂−1

ee Φ̂Ĥ−1
N ϕi − ϕ′

iĤ−1
N Φ̂′Σ̂−1

ee (Σ̂ee − Σee)Σ̂−1
ee Φ̂Ĥ−1

N ϕi + 2γ′
iA

′
22

1
T

T∑
t=1

gteit

+ ϕ′
iĤ−1

N Φ̂′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σ−1

ee )Σ̂−1
ee Φ̂Ĥ−1

N ϕi + 2γ′
iA

′
12

1
T

T∑
t=1

fteit + 2γ′
iQ̂

−1
N γi

σ̂2
i − σ2

i

σ̂2
i

− 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi + 2m′

iΛĜ1P̂
−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi

+ 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)Λ′mi − 2m′
iΛĜ1A

′
11Λ′mi − 2m′

iΛĜ1A
′
21γi

+ 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)γi − 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

+ 2m′
iΛĜ1P̂

−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi − 2γ′

iQ̂
−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

[eteit −E(eteit)].

Given the above result, we can rewrite σ̂2
i − σ2

i as

σ̂2
i − σ2

i = 1
T

T∑
t=1

(e2
it − σ2

i ) − (γ̂i − γi)′(γ̂i − γi) + J ∗
i,σ2 ,

where

J ∗
i,σ2 = m′

i(Λ̂ − Λ)(Λ̂ − Λ)′mi − 2m′
i(Λ̂ − Λ) 1

T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ1

1
T

T∑
t=1

fteit

+2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ) 1
T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)(Λ̂ − Λ)′mi

−2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)Ji,Γ + 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)(γ̂i − γi)

+2m′
iΛ̂Ĝ1Λ̂′mi

σ̂2
i − σ2

i

σ̂2
i

− 2m′
iΛ̂Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)]

−2m′
iΛ̂Ĝ1(Λ̂ − Λ)′mi − 2m′

iΛ̂Ĝ1Λ̂′M ′Σ̂−1
ee M(Λ̂ − Λ)(Λ̂ − Λ)′mi

+ϕ′
iA

′Aϕi − 2ϕ′
iA

′ 1
T

T∑
t=1

hte
′
tΣ̂−1

ee Φ̂Ĥ−1
N ϕi − ϕ′

iĤ−1
N Φ̂′(Σ̂ee − Σee)Σ̂−1

ee Φ̂Ĥ−1
N + 2γ′

iA
′
22

1
T

T∑
t=1

gteit

+ϕ′
iĤ−1

N Φ̂′Σ̂−1
ee

1
T

T∑
t=1

(ete
′
t − Σ−1

ee )Σ̂−1
ee Φ̂Ĥ−1

N ϕi + 2γ′
iA

′
12

1
T

T∑
t=1

fteit + 2γ′
iQ̂

−1
N γi

σ̂2
i − σ2

i

σ̂2
i

−2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi + 2m′

iΛĜ1P̂
−1
N Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etf
′
tΛ′mi

+2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee M(Λ̂ − Λ)Λ′mi − 2m′
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′
11Λ′mi − 2m′

iΛĜ1A
′
21γi
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+2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee (Γ̂ − Γ)γi − 2m′
i(Λ̂ − Λ)Ĝ1Λ̂′M ′Σ̂−1

ee

1
T

T∑
t=1

etg
′
tγi

+2m′
iΛĜ1P̂

−1
N Λ̂′M ′Σ̂−1

ee

1
T
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etg
′
tγi − 2γ′

iQ̂
−1
N Γ̂′Σ̂−1

ee

1
T

T∑
t=1

[eteit − E(eteit)].

Given the expression of J ∗
i,σ2 , one can show that

1
N

N∑
i=1

ϕiϕ
′
i

σ4
i

J ∗
i,σ2

i
= Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Given this result, we have

1
N

N∑
i=1

ϕiϕ
′
i

σ4
i

(σ̂2
i −σ2

i ) = 1
NT

N∑
i=1

T∑
t=1

ϕiϕ
′
i

σ4
i

(e2
it−σ2

i )− 1
T
r1H+Op

( 1
N

√
T

)
+Op
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NT
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+Op

( 1
T 3/2

)
.

Let E2 = [0r2×r1 , Ir2 ]′. We introduce the following notation for ease of exposition:

ζ⋆ = 1
NT

N∑
i=1

T∑
t=1

ϕiϕ
′
i

σ4
i

(e2
it − σ2

i ),

µ⋆ = 1
T
r1H + 1

NT

N∑
i=1

ϕiϕ
′
i

σ6
i

(κi,4 − σ4
i ) − 1

T
E2E

′
2.

Using similar arguments as in the derivation of (B.22), one can show that

D[(HN ⊗Ir)+(Ir⊗Kr)Kr]vec(A) = Dvec(ζ⋆−µ⋆)+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Let D1,D2 and D3 be defined the same as in the main text. Similar to (B.24), we have

D1vec(A) = D2vec(η⋆)+D3vec(ζ⋆)−D3vec(µ⋆)+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
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)
.

Also notice that

vec(η⋆) = vec
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T
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′
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ee ΦH−1
N

]
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i
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′
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]
,
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i
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1
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i
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+ [(H−1E2) ⊗ E2] 1
NT
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1
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i

(γi ⊗ gt)eit,
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Given the above result, we have

vec(A) = D−1
1 D2[(H−1

N E1Λ′) ⊗ E1] 1
NT
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+ D−1
1 D3

1
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1
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it − σ2

i )

− D1D3

{ 1
NT

N∑
i=1

1
σ6

i

(ϕi ⊗ ϕi)(κi,4 − σ2
i ) + 1

T
vec
[
r1HN −E2E

′
2

]}
+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Now we define

B⋆
1 = R−1 ⊗ Ir1 +Kkr1 [(P−1Λ′) ⊗ Λ] −Kkr1(E′
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Substituting (D.24) into (D.22), we can rewrite (D.22) in terms of B⋆
i as
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Given the above result, by a Central Limit Theorem, we have
√
NT

[
vec(Λ̂′ − Λ′) − 1

T
∆⋆
]

d−→ N(0,Ω⋆),

where Ω⋆ = lim
N→∞

Ω⋆
N with

Ω⋆
N = B⋆

1(R⊗ Ir1)B⋆′
1 + B⋆

2(P ⊗ Ir1)B⋆′
2 + B⋆

3(Q⊗ Ir1)B⋆′
3 + B⋆

4(Q⊗ Ir2)B⋆′
4

+ B⋆
1(S ⊗ Ir1)B⋆′

3 + B⋆
3(S′ ⊗ Ir1)B⋆′

1 + B⋆
5

[ 1
N

N∑
i=1

1
σ8

i

(ϕiϕ
′
i) ⊗ (ϕiϕ

′
i)(κi,4 − σ4

i )
]
B⋆′

5 .

Appendix E: More simulation results

In this appendix, we provide additional simulation results when errors have t-distribution
and χ2-distribution. The results are given in Tables E1-E4.

Table E1: k = 3, r = 1, and ϵit ∼ t5.

Λ3×1 MLE PC
N T MAD RMSE RAvar MAD RMSE RAvar
30 30 0.0451 0.0717 2.2151 0.1016 0.1499 N/A
50 30 0.0328 0.0523 2.1456 0.0682 0.0997 N/A

100 30 0.0229 0.0346 1.8912 0.0465 0.0676 N/A
150 30 0.0198 0.0293 2.0935 0.0384 0.0547 N/A
30 50 0.0319 0.0495 1.9587 0.0781 0.1114 N/A
50 50 0.0227 0.0365 2.0295 0.0558 0.0804 N/A

100 50 0.0166 0.0262 1.8357 0.0367 0.0522 N/A
150 50 0.0142 0.0220 1.9402 0.0302 0.0426 N/A
30 100 0.0227 0.0371 1.8139 0.0679 0.0965 N/A
50 100 0.0154 0.0251 1.9126 0.0448 0.0642 N/A

100 100 0.0111 0.0179 1.7941 0.0280 0.0394 N/A
150 100 0.0094 0.0151 1.7799 0.0221 0.0313 N/A

Table E2: k = 8, r = 3, and ϵit ∼ t5.
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Λ3×1 MLE PC
N T MAD RMSE RAvar MAD RMSE RAvar
30 30 0.3478 0.4961 15.1723 0.5800 0.8257 N/A
50 30 0.2379 0.3498 13.1208 0.3959 0.5677 N/A

100 30 0.1461 0.2217 12.3297 0.2236 0.3244 N/A
150 30 0.1156 0.1751 11.8396 0.1661 0.2415 N/A
30 50 0.2584 0.3742 14.6463 0.5165 0.7541 N/A
50 50 0.1727 0.2530 13.2355 0.3226 0.4753 N/A

100 50 0.1154 0.1826 13.1610 0.1816 0.2686 N/A
150 50 0.0930 0.1429 11.5573 0.1402 0.2069 N/A
30 100 0.1880 0.2761 15.5842 0.4626 0.7075 N/A
50 100 0.1249 0.1928 12.8791 0.2734 0.4208 N/A

100 100 0.0812 0.1321 12.3295 0.1410 0.2144 N/A
150 100 0.0639 0.1025 14.4627 0.1065 0.1592 N/A

Table E3: k = 3, r = 1, and ϵit ∼ χ2(2).

Λ3×1 MLE PC
N T MAD RMSE RAvar MAD RMSE RAvar
30 30 0.0409 0.0649 2.0501 0.0941 0.1394 N/A
50 30 0.0319 0.0497 1.9461 0.0707 0.1011 N/A

100 30 0.0225 0.0351 1.9543 0.0459 0.0654 N/A
150 30 0.0207 0.0320 2.1578 0.0388 0.0553 N/A
30 50 0.0335 0.0541 1.8213 0.0841 0.1216 N/A
50 50 0.0229 0.0362 1.8956 0.0569 0.0826 N/A

100 50 0.0172 0.0281 1.9791 0.0371 0.0526 N/A
150 50 0.0135 0.0208 1.9470 0.0285 0.0401 N/A
30 100 0.0220 0.0362 1.9443 0.0673 0.0959 N/A
50 100 0.0165 0.0274 1.8368 0.0456 0.0647 N/A

100 100 0.0109 0.0175 1.7312 0.0281 0.0397 N/A
150 100 0.0088 0.0141 1.7539 0.0219 0.0311 N/A

Table E4: k = 8, r = 3, and ϵit ∼ χ2(2).

Λ3×1 MLE PC
N T MAD RMSE RAvar MAD RMSE RAvar
30 30 0.3446 0.4909 15.2244 0.5657 0.8061 N/A
50 30 0.2353 0.3481 13.6764 0.3746 0.5424 N/A

100 30 0.1547 0.2475 12.9084 0.2242 0.3258 N/A
150 30 0.1203 0.1893 13.3989 0.1752 0.2559 N/A
30 50 0.2632 0.3831 15.0428 0.5189 0.7618 N/A
50 50 0.1795 0.2697 13.7256 0.3214 0.4769 N/A

100 50 0.1160 0.1803 12.4406 0.1813 0.2632 N/A
150 50 0.0959 0.1656 13.1984 0.1417 0.2096 N/A
30 100 0.1839 0.2687 14.8799 0.4666 0.7114 N/A
50 100 0.1271 0.1945 15.0769 0.2718 0.4124 N/A

100 100 0.0854 0.1452 13.9679 0.1439 0.2214 N/A
150 100 0.0676 0.1151 14.4559 0.1045 0.1617 N/A
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Appendix F: More comparison of W and LR

In this appendix, we make a comparison on the proposed W test and the traditional LR
test. The LR test is advocated in Tsai and Tsay (2010). Following Bartlett (1950) and
Anderson (2003), Tsai and Tsay consider a modified version of the LR statistic to improve
the finite sample performance. The modified LR statistic is defined as

LR =
(
T − 2N + 11

6
− 2r

3

)(
ln|Σ̂c| − ln|Σ̂u|

)
,

where Σ̂c = M Λ̂Λ̂′M + Σ̂ee is the estimated variance for the constrained model and Σ̂u =
L̂L̂′ + Σ̃ee the estimated variance for the unconstrained one. Here Λ̂ and Σ̂ee are the MLEs
for the constrained model and L̂ and Σ̃ee the MLEs for the unconstrained one. We run
simulations based on the same data generating processes as in Section 8.2. The empirical
sizes and powers of the modified LR statistic are given in Tables F1 and F2 below.

Table F1: The empirical size of the LR test with (k, r) = (3, 1) under normal errors

Empirical size of LR
ϵit ∼ N(0, 1) t5 χ2(2)
N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 0.3% 10.5% 27.4% 1.3% 11.0% 28.6% 0.9% 10.0% 26.7%
50 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

100 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
150 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 50 23.7% 72.4% 90.6% 25.0% 70.3% 88.4% 25.0% 72.4% 90.0%
50 50 5.0% 27.8% 55.1% 4.3% 29.3% 55.8% 4.5% 30.8% 56.7%

100 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1%
150 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 100 64.4% 95.3% 99.6% 67.7% 96.1% 99.8% 69.2% 96.7% 99.6%
50 100 77.3% 98.4% 99.7% 78.7% 98.5% 99.9% 80.4% 98.2% 99.6%

100 100 29.4% 74.4% 91.1% 27.6% 77.9% 92.7% 28.5% 75.0% 91.0%
150 100 0.1% 0.1% 0.3% 0.0% 0.0% 0.3% 0.1% 0.1% 0.1%
30 150 79.3% 98.2% 99.9% 79.3% 98.7% 99.8% 78.5% 98.5% 100.0%
50 150 95.7% 99.9% 100.0% 95.0% 99.7% 100.0% 93.8% 99.6% 100.0%

100 150 96.3% 100.0% 100.0% 95.8% 100.0% 100.0% 96.5% 100.0% 100.0%
150 150 65.1% 95.2% 98.5% 65.2% 93.6% 98.3% 65.2% 95.0% 98.9%
100 100 29.4% 74.4% 91.1% 27.6% 77.9% 92.7% 28.5% 75.0% 91.0%
200 100 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 0.2%
300 100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 200 100.0% 100.0% 100.0% 99.6% 99.9% 99.9% 99.8% 100.0% 100.0%
200 200 81.5% 93.4% 93.5% 82.7% 94.2% 94.8% 83.2% 94.3% 94.7%
300 200 0.3% 0.3% 0.4% 0.1% 0.2% 0.5% 0.3% 0.3% 0.4%
100 300 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 300 94.7% 94.7% 94.7% 94.3% 94.3% 94.3% 95.0% 95.0% 95.0%
300 300 74.0% 74.8% 74.8% 76.6% 76.8% 76.9% 74.0% 74.3% 74.4%
100 500 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 500 93.4% 93.4% 93.4% 94.7% 94.7% 94.7% 93.8% 93.8% 93.8%
300 500 77.4% 77.4% 77.4% 75.0% 75.0% 75.0% 77.0% 77.0% 77.0%

Table F1 presents the empirical sizes in all combinations of N and T . We are surprised
to find that the modified LR statistic has severe size distortions in all the sample sizes. In
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some cases, the LR test over-accepts the null hypothesis with empirical sizes deceasing to
zero. In other cases, the LR test over-rejects the null hypothesis with empirical sizes larger
than 50%. As far as we see, the poor performance of the LR test is not related with the
adjusted factor T − (2N + 11)/6 − 2r/3 since we also consider the unmodified LR statistic
and the results are not good either.

Table F2 presents the empirical powers of the modified LR test. We see that the LR
test does not have stable powers. If N is comparable to or smaller than T , the LR test
would have good powers. However, if N ≫ T , say N = 150, T = 30, the power decreases
to zero. This is in contrast with the proposed W test, which has stable powers in all
combinations of N and T .

From Tables F1 and F2, we conclude that the proposed W test dominates the LR test
in terms of empirical size and power.

Table F2: The empirical power of the LR test with (k, r) = (3, 1) under normal errors
Empirical power of LR

α 0.2 0.5 2 5
N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
30 30 16.9% 35.4% 54.0% 44.4% 60.8% 73.5% 89.0% 93.6% 96.6% 99.6% 100.0% 100.0%
50 30 6.0% 9.5% 11.2% 25.3% 31.4% 34.9% 71.9% 76.2% 78.6% 97.5% 98.5% 98.7%

100 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
150 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 50 54.8% 84.8% 95.9% 72.6% 91.3% 97.3% 96.2% 99.5% 99.9% 99.9% 100.0% 100.0%
50 50 33.3% 60.0% 77.7% 61.5% 78.2% 87.5% 95.6% 98.4% 99.4% 99.9% 100.0% 100.0%

100 50 6.4% 7.4% 8.3% 26.3% 31.6% 33.9% 68.2% 70.5% 72.7% 94.3% 95.3% 96.1%
150 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 100 79.3% 97.4% 99.6% 90.9% 99.4% 99.7% 99.2% 100.0% 100.0% 100.0% 100.0% 100.0%
50 100 91.0% 99.2% 99.9% 95.6% 99.8% 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0%

100 100 66.4% 92.2% 98.1% 83.0% 95.8% 99.1% 99.0% 99.9% 99.9% 100.0% 100.0% 100.0%
150 100 28.9% 36.1% 41.1% 57.1% 61.4% 63.5% 85.6% 89.1% 92.4% 99.8% 99.9% 100.0%
30 150 88.4% 99.5% 100.0% 94.9% 99.8% 100.0% 99.7% 100.0% 100.0% 100.0% 100.0% 100.0%
50 150 97.7% 99.8% 100.0% 99.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

100 150 99.0% 100.0% 100.0% 99.3% 99.9% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
150 150 85.7% 97.9% 99.0% 92.1% 98.3% 98.8% 99.1% 99.3% 99.3% 100.0% 100.0% 100.0%
100 100 69.3% 90.4% 97.6% 84.2% 96.0% 98.9% 98.2% 99.9% 100.0% 100.0% 100.0% 100.0%
200 100 8.2% 10.6% 11.4% 34.6% 38.0% 40.1% 70.9% 72.8% 73.5% 93.9% 95.0% 95.2%
300 100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100 200 99.9% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 200 90.2% 93.9% 94.1% 92.9% 94.3% 94.3% 95.8% 95.9% 95.9% 98.2% 98.2% 98.2%
300 200 19.5% 23.8% 26.6% 37.0% 39.9% 42.5% 66.7% 70.6% 72.4% 82.0% 82.2% 82.2%
100 300 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 300 93.6% 93.6% 93.6% 93.8% 93.8% 93.8% 95.1% 95.1% 95.1% 97.4% 97.4% 97.4%
300 300 75.7% 75.8% 75.8% 76.0% 76.1% 76.1% 77.3% 77.3% 77.3% 85.3% 85.3% 85.3%
100 500 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
200 500 93.1% 93.1% 93.1% 94.9% 94.9% 94.9% 94.8% 94.8% 94.8% 96.8% 96.8% 96.8%
300 500 79.7% 79.7% 79.7% 75.6% 75.6% 75.6% 80.9% 80.9% 80.9% 79.9% 79.9% 79.9%

Appendix G: Proofs of the theoretical results in Section 9

In this appendix, we define the following notation:

P̂ = 1
N

Λ̂′M ′Ŵ−1M Λ̂; R̂ = 1
N
M ′Ŵ−1M ; Ĝ = (Ir + Λ̂′M ′Ŵ−1M Λ̂)−1;

P̂N = N · P̂ = Λ̂′M ′Ŵ−1M Λ̂; R̂N = N · R̂ = M ′Ŵ−1M, ĜN = N · Ĝ.
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Then we have P̂−1
N = Ĝ(I − Ĝ)−1 and

Σ−1
zz = W−1 − W−1MΛ(Ir + Λ′M ′W−1MΛ)−1Λ′M ′W−1, (G.1)

and

Λ̂′M ′Σ̂−1
zz = Λ̂′M ′Ŵ−1 − Λ̂′M ′Ŵ−1M Λ̂(Ir + Λ̂′M ′Ŵ−1M Λ̂)−1Λ̂′M ′Ŵ−1 = ĜΛ̂′M ′Ŵ−1.

(G.2)
The following lemma is a direct result of Assumptions A and B′′, which will be used

throughout the whole proof.

Lemma G.1 From assumptions of A and B′′, we have

(a) E

(∥∥∥ 1√
T

T∑
t=1

fteit

∥∥∥2
)

≤ C, for all i;

(b) E

(
1
N

N∑
i=1

∥∥∥ 1√
T

T∑
t=1

fteit

∥∥∥2
)

≤ C;

(c) E

(∣∣∣ 1√
T

T∑
t=1

(e2
it − w2

i )
∣∣∣2) ≤ C.

Further, we have

(d) 1
N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2
= Op(T−1);

(e) 1
N

N∑
i=1

( 1
T

T∑
t=1

(e2
it − w2

i )
)2

= Op(T−1);

(f) 1
N2

N∑
i=1

N∑
j=1

( 1
T

T∑
t=1

[
eitejt − E(eitejt)

])2
= Op(T−1);

Appendix G1: Proof of the consistency of the MLE in Section 9

Similar to Appendix A, we use symbols with superscript “*” to denote the true parameters
and variables without superscript “*” denote the arguments of the likelihood function in this
section. Let θ = (Λ, w2

1, · · · , w2
N ) and let Θ be a parameter set such that Λ take values in

a compact set and C−2 ≤ w2
i ≤ C2 for all i = 1, ..., N . We assume θ∗ = (Λ∗, w∗2

1 , · · · , w∗2
N )

is an interior point of Θ. For simplicity, we write θ = (Λ,W) and θ∗ = (Λ∗,W∗).
The following lemmas are useful to prove the following Proposition G.1, and Proposition

G.1 will be used in the proofs in the following Appendix G2.

Lemma G.2 Under assumptions of A, B′′, C′′ and D′′, we have

(a) sup
θ∈Θ

1
NT

∣∣∣∣∣tr[Λ∗′M ′Σ−1
zz

T∑
t=1

etf
∗′
t

]∣∣∣∣∣ p−→ 0;

(b) sup
θ∈Θ

1
NT

∣∣∣∣∣tr[
T∑

t=1
(ete

′
t − O∗)Σ−1

zz

]∣∣∣∣∣ p−→ 0;

(c) sup
θ∈Θ

1
N

∣∣∣∣∣tr[(O∗ − W∗)Σ−1
zz

]∣∣∣∣∣ p−→ 0;
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where θ∗ = (Λ∗,W∗) denotes the true parameters and Σzz = MΛΛ′M ′ + W.

Results (a) and (b) in Lemma G.2 can be proved in the same way as in Lemma A.1,
and proof of G.2(c) is similar to that of Lemma S.3(b) in Bai and Li (2016). Details are
therefore omitted.

Lemma G.3 Under assumptions of A, B′′, C′′ and D′′, we have

(a)
∥∥∥ 1
N

Λ∗′M ′(Ŵ−1 − W∗−1)MΛ∗
∥∥∥ = Op

([ 1
N

N∑
i=1

(ŵ2
i − w∗

i
2)2
] 1

2
)
;

(b)
∥∥∥ 1
N
M ′(Ŵ−1 − W∗−1)M

∥∥∥ = Op

([ 1
N

N∑
i=1

(ŵ2
i − w∗

i
2)2
] 1

2
)
.

Given the above results, if N−1∑N
i=1(ŵ2

i − w∗2
i )2 = op(1), we have

(c) R̂N = Op(N), R̂ = 1
N

R̂N = Op(1);

(d) ∥R̂−1/2∥ = Op(1).

where R̂ and R̂N are defined in the beginning of Appendix G.

The proof of this lemma is similar to that of Lemma A.2 and hence omitted here.

Lemma G.4 Under assumptions of A, B′′, C′′ and D′′, we have

(a) 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

(ete
′
t − O)Ŵ−1M Λ̂P̂−1 = ∥P̂−1/2∥2 ·Op(T−1/2);

(b) 1
N

P̂−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

etf
′
t = ∥P̂−1/2∥ ·Op(T−1/2);

(c) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M Λ̂P̂−1 = ∥P̂−1
N ∥ ·Op(1);

(d) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1 = ∥P̂−1/2∥2 ·Op(N−1/2);

(e) 1
NT

T∑
t=1

fte
′
tŴ−1M R̂−1 = Op(T−1/2);

(f) 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

[ete
′
t − O]Ŵ−1M R̂−1 = ∥P̂−1/2∥ ·Op(T−1/2);

(g) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M R̂−1 = ∥P̂−1/2∥ ·Op

([ 1
N3

N∑
i=1

(ŵ2
i − w2

i )2
] 1

2
)
;

(h) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O − W)Ŵ−1M R̂−1 = ∥P̂−1/2∥ ·Op(N−1).

Proof of Lemma G.4. Proofs for (a)-(c) and (e)-(g) are similar to those for Lemma A.3,
so we only include the proofs for (d) and (h) which are different from Lemma A.3.
Consider (d). The left hand side can be rewritten as

1
N

P̂−1/2
[ N∑

i=1

N∑
j=1

P̂−1/2
N

1
ŵ2

i

k∑
p=1

λ̂pmip

[
Oij − 1(i = j)w2

i

] 1
ŵ2

j

k∑
l=1

λ̂′
lmjlP̂

−1/2
N

]
P̂−1/2,
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where 1(i = j) is the indicator function, equals 1 if i = j and 0 otherwise. The above
expression is bounded in norm by

C
1√
N

∥P̂−1/2∥2
( N∑

i=1

1
ŵ2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2)( 1
N

N∑
i=1

N∑
j=1,j ̸=i

(Oij)2
)1/2

,

which is ∥P̂−1/2∥2 · Op(N−1/2) by the fact that
(∑N

i=1
1

ŵ2
i

∥∥∥P̂−1/2
N

∑k
p=1 λ̂pmip

∥∥∥2)
= r and(

1
N

∑N
i=1

∑N
j=1,j ̸=i(Oij)2

)
is Op(1) from Assumption B′′. So result (d) follows.

Next consider (h). Similarly, the left hand side can be rewritten as

1
N3/2 P̂

−1/2
[ N∑

i=1

N∑
j=1

P̂−1/2
N

1
ŵ2

i

k∑
p=1

λ̂pmip

[
Oij − 1(i = j)w2

i

] 1
ŵ2

j

m′
j

]
R̂−1,

which is bounded in norm by

C
1
N

∥P̂−1/2∥∥R̂−1∥
( N∑

i=1

1
ŵ2

i

∥∥∥P̂−1/2
N

k∑
p=1

λ̂pmip

∥∥∥2)1/2( 1
N

N∑
i=1

∥∥∥ N∑
j=1,j ̸=i

Oijmj

∥∥∥2)1/2
,

which is ∥P̂−1/2∥ ·Op(N−1) by R̂−1 = Op(1) from Lemma G.3(c) and
∥∥∥∑N

j=1,j ̸=i Oijmj

∥∥∥ =
Op(1) from Assumption B′′. Hence we have result (h). �

Proposition G.1 (Consistency) Let θ̂ = (Λ̂, Ŵ) be the MLE that maximizes (3.2).
Then under Assumptions A,B′′, C′′ and D′′, together with IC′′, when N,T → ∞, we have

Λ̂ − Λ p−→ 0; 1
N

N∑
i=1

(ŵ2
i − w2

i )2 p−→ 0.

Proof of Proposition G.1. Similar to the proof of Proposition 4.1, we consider the
following centered objective function

L†(θ) = L
†(θ) +R†(θ),

where
L

†(θ) = − 1
N

ln |Σzz| − 1
N

tr
(
Σ∗

zzΣ−1
zz

)
+ 1 + 1

N
ln |Σ∗

zz|

and
R†(θ) = − 1

N
tr
[
(Mzz − Σ∗

zz)Σ−1
zz

]
,

where Σzz = MΛΛ′M ′ +W and Σ∗
zz = MΛ∗Λ∗′M ′ +W∗. By the definition of Mzz, we have

R†(θ) = −2 1
NT

tr
[
MΛ∗

T∑
t=1

f∗
t e

′
tΣ−1

zz

]
− 1
NT

tr
[ T∑

t=1
(ete

′
t − O∗)Σ−1

zz

]
− 1
N

tr
[
(O∗ − W∗)Σ−1

zz

]
.

By Lemma G.2, we have supθ |R†(θ)| = op(1). Then using the same approach as in the
proof of Proposition 4.1, we get L†(θ̂) ≥ −2|op(1)|, which implies

1
N

ln |Ŵ| − 1
N

ln |W∗| + 1
N

tr[W∗Ŵ−1] − 1 p−→ 0, (G.3)
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1
N

tr[MΛ∗Λ∗′M ′Σ̂−1
zz ] p−→ 0. (G.4)

The above arguments further imply

1
N

N∑
i=1

(ŵ2
i − w∗2

i )2 p−→ 0. (G.5)

which is the second result of Proposition G.1, and other results as following:

Ĝ = op(1); P̂−1
N = op(1); (G.6)

1
N

Λ∗′M ′W∗−1MΛ∗ − (Ir − A) 1
N

Λ̂′M ′Ŵ−1M Λ̂(Ir − A)′ p−→ 0, (G.7)

1
N

(Λ̂ − Λ∗)′M ′Ŵ−1M(Λ̂ − Λ∗) − A
( 1
N

Λ̂′M ′Ŵ−1M Λ̂
)
A′ p−→ 0. (G.8)

where A ≡ (Λ̂ − Λ∗)′M ′Ŵ−1M Λ̂P̂−1
N .

We now consider the first-order condition for Λ̂. Post multiplying (3.3) by Λ̂ implies

Λ̂′M ′Σ̂−1
zz (Mzz − Σ̂zz)Σ̂−1

zz M Λ̂ = 0.

By (G.2), we can simplify the above equation as

Λ̂′M ′Ŵ−1(Mzz − Σ̂zz)Ŵ−1M Λ̂ = 0,

which can be further rewritten as

Λ̂′M ′Ŵ−1M Λ̂Λ̂′M ′Ŵ−1M Λ̂ = −Λ̂′M ′Ŵ−1(Ŵ − W∗)Ŵ−1M Λ̂

+Λ̂′M ′Ŵ−1MΛ∗Λ∗′M ′Ŵ−1M Λ̂ + Λ̂′M ′Ŵ−1MΛ∗ 1
T

T∑
t=1

f∗
t e

′
tŴ−1M Λ̂

+Λ̂′M ′Ŵ−1 1
T

T∑
t=1

etf
∗′
t Λ∗′M ′Ŵ−1M Λ̂ + Λ̂′M ′Ŵ−1 1

T

T∑
t=1

(ete
′
t − O∗)Ŵ−1M Λ̂

+Λ̂′M ′Ŵ−1(O∗ − W∗)Ŵ−1M Λ̂.

By the definitions of P̂ and A, we have

Ir = (Ir − A)′(Ir − A) + 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

(ete
′
t − O∗)Ŵ−1M Λ̂P̂−1

+ (Ir − A)′ 1
NT

T∑
t=1

f∗
t e

′
tŴ−1M Λ̂P̂−1 + 1

N
P̂−1Λ̂′M ′Ŵ−1 1

T

T∑
t=1

etf
∗′
t (Ir − A) (G.9)

− 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W∗)Ŵ−1M Λ̂P̂−1 + 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O∗ − W∗)Ŵ−1M Λ̂P̂−1

= i1 + i2 + · · · + i6, say

Compared to (A.16), there exists an extra term i6 in the above equation, due to the weak
dependence structure of the error. Based on (G.9) and (G.8), together with Lemma G.4,
we can show that A = Op(1) and ∥P̂−1∥ = Op(1). Furthermore, applying Lemma A.1 of
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the supplement of Bai and Li (2012) and using the identification condition IC2′′, we can
prove that A = op(1).

Again, we consider the first-order condition (3.3), which can be simplified as (by (G.2))

Λ̂′M ′Ŵ−1(Mzz − Σ̂zz)Ŵ−1M = 0.

By the definition of Mzz, the above equation can be rewritten as

Λ̂′ − Λ∗′ = −A′Λ∗′ + (I − A)′ 1
T

T∑
t=1

f∗
t e

′
tŴ−1M R̂−1

N + P̂−1
N Λ̂′M ′Ŵ−1 1

T

T∑
t=1

etf
∗′
t Λ∗′ (G.10)

+P̂−1
N Λ̂′M ′Ŵ−1 1

T

T∑
t=1

[ete
′
t − O∗]Ŵ−1M R̂−1

N − P̂−1
N Λ̂′M ′Ŵ−1(Ŵ − W∗)Ŵ−1M R̂−1

N

+P̂−1
N Λ̂′M ′Ŵ−1(O∗ − W∗)Ŵ−1M R̂−1

N

We need to show all the six terms on the right hand side of the above equation are op(1).
From the preceding results that A = op(1) and Lemma G.4(e), we know the first two terms
are op(1). From ∥P̂−1∥ = Op(1) and the results in Lemma G.4, we see that the remaining
four terms are also op(1). Therefore we have Λ̂′ − Λ∗′ = op(1), which implies that Λ̂ p−→ Λ∗′.
This completes the proof of Proposition G.1. �

Corollary G.1 Under Assumptions A, B′′, C′′ and D′′,

(a) 1
N

Λ̂′M ′Ŵ−1M Λ̂ − 1
N

Λ∗′M ′W∗−1MΛ∗ = op(1);

(b) P̂N = Op(N), P̂ = Op(1), Ĝ = Op(N−1), ĜN = Op(1);

(c) 1
N

(Λ̂ − Λ)′M ′Ŵ−1M Λ̂ = op(1).

Proof of Corollary A.1. Proof for the above corollary is similar to Corollary A.1, and
therefore omitted here.

Appendix G2: Proofs of Theorem 9.1, 9.2 and 9.1

In this appendix, we drop “*” from the symbols of underlying true values for notational
simplicity. The following lemmas will be useful in the proofs of Theorems 9.1 and 9.2.

Lemma G.5 Under Assumptions A, B′′, C′′ and D′′, we have

(a) 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

(ete
′
t − O)Ŵ−1M Λ̂P̂−1 = Op(T−1/2);

(b) 1
N

P̂−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

etf
′
t = Op(T−1/2);

(c) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M Λ̂P̂−1 = 1√
N
Op

([ 1
N

N∑
i=1

(ŵ2
i − w2

i )2
] 1

2
)
;

(d) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1 = Op(N−1/2);
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(e) 1
NT

T∑
t=1

fte
′
tŴ−1M R̂−1 = Op(T−1/2);

(f) 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

[ete
′
t − O]Ŵ−1M R̂−1 = Op(T−1/2);

(g) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M R̂−1 = 1√
N
Op

([ 1
N

N∑
i=1

(ŵ2
i − w2

i )2
] 1

2
)
;

(h) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O − W)Ŵ−1M R̂−1 = Op(N−1).

The above lemma is strengthened from Lemma G.4, with its proof similar to Lemma B.1
and hence omitted here.

Based on (G.9) and IC2′′, together with Lemma G.5, we have the following Lemma
G.6, which corresponds to Lemma B.2 with modification.

Lemma G.6 Under Assumptions A, B′′, C′′ and D′′, we have

A ≡ (Λ̂−Λ)′M ′Ŵ−1M Λ̂P̂−1
N = Op( 1√

T
)+Op( 1

N
)+Op(∥Λ̂−Λ∥2)+Op

([ 1
N

N∑
i=1

(ŵ2
i −w2

i )2
] 1

2
)
.

Proof of Lemma G.6 is similar to Lemma B.2 and hence omitted here.

Proof of Theorem 4.1. We can rewrite the first order condition of Ŵ as

diag
{

(Mzz − Σ̂zz) − (Mzz − Σ̂zz)Ŵ−1M Λ̂ĜΛ̂′M ′ −M Λ̂ĜΛ̂′M ′Ŵ−1(Mzz − Σ̂zz)
}

= 0.

With

Mzz = MΛΛ′M ′ + W +MΛ 1
T

T∑
t=1

fte
′
t + 1

T

T∑
t=1

etf
′
tΛ′M ′ + 1

T

T∑
t=1

(ete
′
t − O) + (O − W),

we can further rewrite the above first order condition as

ŵ2
i − w2

i = 1
T

T∑
t=1

(e2
it − w2

i ) + 2m′
iΛ

1
T

T∑
t=1

fteit − 2m′
iΛ̂ĜΛ̂′M ′Ŵ−1MΛ 1

T

T∑
t=1

fteit

−2m′
iΛ

1
T

T∑
t=1

fte
′
tŴ−1M Λ̂ĜΛ̂′mi − 2m′

iΛ̂ĜΛ̂′M ′Ŵ−1 1
T

T∑
t=1

[eteit −E(eteit)] (G.11)

+m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi − 2m′

i(Λ̂ − Λ)Λ̂′mi + 2m′
i(Λ̂ − Λ)Λ̂′M ′Ŵ−1M Λ̂ĜΛ̂′mi

+2m′
iΛ(Λ̂ − Λ)′M ′Ŵ−1M Λ̂ĜΛ̂′mi + 2 ŵ

2
i − w2

i

ŵ2
i

m′
iΛ̂ĜΛ̂′mi − 2m′

iΛ̂ĜΛ̂′M ′Ŵ−1(O − W)i.

where (O − W)i denotes the ith column of the N ×N matrix (O − W). Define

ψ1 = 1
T

T∑
t=1

fte
′
tŴ−1M Λ̂P̂−1

N ; φ1 = P̂−1
N Λ̂′M ′Ŵ−1 1

T

T∑
t=1

(ete
′
t − O)Ŵ−1M Λ̂P̂−1

N ;

φ2 = P̂−1
N Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M Λ̂P̂−1

N ;
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φ3 = P̂−1
N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1

N .

Using the argument deriving (B.10), we can rewrite (G.11) as

ŵ2
i − w2

i = 1
T

T∑
t=1

(e2
it − w2

i ) − 2m′
i(Λ̂ − Λ) 1

T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ

1
T

T∑
t=1

fteit (G.12)

+ 2m′
iΛ̂A′ 1

T

T∑
t=1

fteit − 2m′
iΛ̂ĜA′ 1

T

T∑
t=1

fteit + 2m′
iΛψ1ĜΛ̂′mi

− 2m′
iΛAĜΛ̂′mi − 2m′

iΛψ1(Λ̂ − Λ)′mi + 2m′
iΛA(Λ̂ − Λ)′mi

+m′
iΛA′AΛ′mi − 2m′

iΛA′ψ1Λ′mi − 2m′
i(Λ̂ − Λ)ĜΛ̂′mi + 2 ŵ

2
i − w2

i

ŵ2
i

m′
iΛ̂ĜΛ̂′mi

+m′
iΛφ1Λ′mi −m′

iΛφ2Λ′mi − 2m′
iΛ̂ĜΛ̂′M ′Ŵ−1 1

T

T∑
t=1

[eteit − E(eteit)]

+m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi +m′

iΛφ3Λ′mi − 2m′
iΛ̂ĜΛ̂′M ′Ŵ−1(O − W)i

= ai,1 + ai,2 + · · · + ai,19, say.

Using the Cauchy-Schwartz inequality, we have

1
N

N∑
i=1

(ŵ2
i − w2

i )2 ≤ 19 1
N

N∑
i=1

(∥ai,1∥2 + · · · + ∥ai,19∥2).

Analyzing term by term of the first 17 terms on the left hand side of the above inequality
(similar to the derivation of (B.11)), and notice that the last two terms are Op(N−2), we
have

1
N

N∑
i=1

(ŵ2
i − w2

i )2 = Op(T−1) +Op(N−2) + op(∥Λ̂ − Λ∥2). (G.13)

Next, we consider the term ∥Λ̂ − Λ∥. Using Lemma G.5(b), (e)-(h) and Lemma G.6,
together with equation (G.10), we have

Λ̂ − Λ = Op(T−1/2) +Op(N−1) +Op([ 1
N

N∑
i=1

(ŵ2
i − w2

i )2]1/2). (G.14)

Substituting equation (G.14) into (G.13), we get 1
N

∑N
i=1(ŵ2

i −w2
i )2 = Op(T−1)+Op(N−2),

which is the second result of Theorem 9.1. The proof for the first result of Theorem 9.1 is
provided after Lemma G.8. �

The following two lemmas will be useful in proving the first result of Theorem 9.1.

Lemma G.7 Under Assumptions A, B′′, C′′, D′′ and F′′, we have

(a) 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

(ete
′
t − O)Ŵ−1M Λ̂P̂−1

= Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2);
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(b) 1
N

P̂−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

etf
′
t = Op(N−1/2T−1/2) +Op(T−1);

(c) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M Λ̂P̂−1 = Op(N−1T−1/2) +Op(N−2);

(d) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1 = Op(N−1);

(e) 1
NT

T∑
t=1

fte
′
tŴ−1M R̂−1 = Op(N−1/2T−1/2) +Op(T−1);

(f) 1
N2 P̂

−1Λ̂′M ′Ŵ−1 1
T

T∑
t=1

[ete
′
t − O]Ŵ−1M R̂−1

= Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2);

(g) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(Ŵ − W)Ŵ−1M R̂−1 = Op(N−1T−1/2) +Op(N−2);

(h) 1
N2 P̂

−1Λ̂′M ′Ŵ−1(O − W)Ŵ−1M R̂−1 = Op(N−1).

The proof of the above lemma is similar to that of Lemma B.3 and the details are
therefore omitted.

Lemma G.8 Under Assumptions A, B′′, C′′, D′′ and F′′, we have

A ≡ (Λ̂ − Λ)′M ′Ŵ−1M Λ̂P̂−1
N = Op( 1√

NT
) +Op( 1

T
) +Op( 1

N
) +Op(∥Λ̂ − Λ∥2).

Proof of the above lemma is similar to that of Lemma B.4 with a slight modification
to account for the weak dependence in errors. The results (a)-(d) in Lemma G.7 and the
second part of Theorem 9.1 are used to control the magnitude. Details are omitted.

Proof of Theorem 4.1 (continued). Now we prove the first result of Theorem 9.1.
Notice that the term ∥Λ̂ − Λ∥2 is of smaller order than Λ̂ − Λ and hence negligible. Then
from (G.10), together with Lemma G.7 and Lemma G.8, we have

Λ̂ − Λ = Op

( 1√
NT

)
+Op

( 1
T

)
+Op

( 1
N

)
.

This completes the proof of Theorem 9.1. �
From Lemma G.8 and Theorem 9.1, we have the following corollary directly.

Corollary G.2 Under Assumptions A, B′′, C′′, D′′ and F′′, we have

A ≡ (Λ̂ − Λ)′M ′Ŵ−1M Λ̂P̂−1
N = Op

( 1√
NT

)
+Op

( 1
T

)
+Op

( 1
N

)
.

The following lemma will be useful in proving Theorem 9.2.

Lemma G.9 Under Assumptions A, B′′, C′′, D′′ and F′′, we have

(a) 1
T

T∑
t=1

fte
′
tŴ−1M R̂−1

N = 1
T

T∑
t=1

fte
′
tW−1MR−1

N +Op

( 1√
NT

)
+Op

( 1
N

√
T

)
+Op

( 1
T 3/2

)
;
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(b) P̂−1
N Λ̂′M ′Ŵ−1 1

T

T∑
t=1

etf
′
t

= P−1
N Λ′M ′W−1 1

T

T∑
t=1

etf
′
t +Op

( 1√
NT

)
+Op

( 1
N

√
T

)
+Op

( 1
T 3/2

)
;

(c) P̂−1
N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M R̂−1

N

= P−1
N Λ′M ′W−1(O − W)W−1MR−1

N +Op

( 1
N

√
T

)
+Op

( 1
N2

)
;

(d) P̂−1
N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1

N

= P−1
N Λ′M ′W−1(O − W)W−1MΛP−1

N +Op

( 1
N

√
T

)
+Op

( 1
N2

)
;

(e) 1
N
M ′(Ŵ−1 − W−1)M = − 1

NT

N∑
i=1

T∑
t=1

1
w4

i

mim
′
i(e2

it − w2
i ) + 1

NT

N∑
i=1

mim
′
i

ϖ2
i

w4
i

− 1
N

N∑
i=1

mim
′
i

w4
i

m′
iΛP−1

N Λ′M ′W−1(O − W)W−1MΛP−1
N Λ′mi

+ 1
N

N∑
i=1

mim
′
i

w4
i

2m′
iΛGΛ′M ′W−1(O − W)i

+Op

( 1√
NT

)
+Op

( 1
N

√
T

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
.

where ϖ2
i = 1

T

∑T
t=1

∑T
s=1E

[
(e2

it − w2
i )(e2

is − w2
i )
]
.

Proof of Lemma G.9. First we reconsider the equation (G.12), which can be written
as

ŵ2
i − w2

i = 1
T

T∑
t=1

(e2
it − w2

i ) +m′
iΛP̂−1

N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1
N Λ′mi (G.15)

− 2m′
iΛ̂ĜΛ̂′M ′Ŵ−1(O − W)i + R̃i,

where

R̃i = −2m′
iΛ̂ĜΛ̂′M ′Ŵ−1 1

T

T∑
t=1

[eteit −E(eteit)] + S̃i

with Using the argument deriving (B.10), we can rewrite (G.11) as

S̃i = −2m′
i(Λ̂ − Λ) 1

T

T∑
t=1

fteit + 2m′
iΛ̂Ĝ

1
T

T∑
t=1

fteit (G.16)

+ 2m′
iΛ̂A′ 1

T

T∑
t=1

fteit − 2m′
iΛ̂ĜA′ 1

T

T∑
t=1

fteit + 2m′
iΛψ1ĜΛ̂′mi

− 2m′
iΛAĜΛ̂′mi − 2m′

iΛψ1(Λ̂ − Λ)′mi + 2m′
iΛA(Λ̂ − Λ)′mi

+m′
iΛA′AΛ′mi − 2m′

iΛA′ψ1Λ′mi − 2m′
i(Λ̂ − Λ)ĜΛ̂′mi + 2 ŵ

2
i − w2

i

ŵ2
i

m′
iΛ̂ĜΛ̂′mi

+m′
iΛφ1Λ′mi −m′

iΛφ2Λ′mi +m′
i(Λ̂ − Λ)(Λ̂ − Λ)′mi.
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By the same arguments in the derivation of (B.18) and (B.19), we have

1
N

N∑
i=1

S̃2
i = Op

(
N−1T−2

)
+Op

(
N−2T−1

)
+Op(T−3). (G.17)

and further

1
N

N∑
i=1

R̃2
i = Op

( 1
NT

)
+Op

( 1
T 2

)
. (G.18)

Now consider (a). Notice that

1
NT

T∑
t=1

fte
′
tŴ−1M = 1

NT

N∑
i=1

T∑
t=1

1
ŵ2

i

fteitm
′
i

= 1
NT

N∑
i=1

T∑
t=1

1
w2

i

fteitm
′
i − 1

NT

N∑
i=1

T∑
t=1

ŵ2
i − w2

i

ŵ2
iw

2
i

fteitm
′
i = j1 + j2, say.

The term j2 can be written as

j2 = 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
ŵ2

iw
2
i

fteit(e2
is−w2

i )m′
i−

1
NT

N∑
i=1

T∑
t=1

1
ŵ2

iw
2
i

[
2m′

iΛ̂ĜΛ̂′M ′Ŵ−1(O−W)i

]
fteitm

′
i

+ 1
NT

N∑
i=1

T∑
t=1

1
ŵ2

iw
2
i

[
m′

iΛP̂−1
N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1

N Λ′mi

]
fteitm

′
i

+ 1
NT

N∑
i=1

T∑
t=1

1
ŵ2

iw
2
i

R̃ifteitm
′
i = j21 + j22 + j23 + j24, say.

The term j24 is bounded in norm by

C5
[ 1
N

N∑
i=1

∥R̃i∥2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2]1/2
,

which is Op(N−1/2T−1) +Op(T−3/2) by (G.18). Similarly by

1
N

N∑
i=1

∥∥∥2m′
iΛ̂ĜΛ̂′M ′Ŵ−1(O − W)i

∥∥∥2
= Op(N−2), (G.19)

and

1
N

N∑
i=1

∥∥∥m′
iΛP̂−1

N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1
N Λ′mi

∥∥∥2
= Op(N−2), (G.20)

we can show that j22 = Op(N−1T−1/2) and j23 = Op(N−1T−1/2). Then consider the term
j21, which can be rewritten as

1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

1
w4

i

fteit(e2
is − w2

i )m′
i − 1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

ŵ2
i − w2

i

ŵ2
iw

4
i

fteit(e2
is − w2

i )m′
i.
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The first term of the above expression is Op(N−1/2T−1) due to Assumption F′′.6 in Section
9. The second term is bounded in norm by

C5
[ 1
N

N∑
i=1

(ŵ2
i − w2

i )2
]1/2[ 1

N

N∑
i=1

∥∥∥ 1
T

T∑
t=1

fteit

∥∥∥2
·
∥∥∥ 1
T

T∑
t=1

e2
is − w2

i

∥∥∥2]1/2
,

which is Op(T−3/2). By the preceding results, we have

1
NT

T∑
t=1

fte
′
tŴ−1M = 1

NT

T∑
t=1

fte
′
tW−1M +Op

( 1√
NT

)
+Op

( 1
N

√
T

)
+Op

( 1
T 3/2

)
.

(G.21)

Combining the above result and R̂ = R + Op(T−1/2), we have (a). Combining the above
result and P̂ = P +Op(T−1/2) and Λ̂ = Λ +Op( 1√

NT
) +Op( 1

T ) +Op( 1
N ), we have (b).

Next we consider (c). Notice the expression of the left hand side is Op(N−1) from
Lemma G.7 (h). Then by R̂ = R + Op(T−1/2), P̂ = P + Op(T−1/2), Λ̂ = Λ + Op( 1√

NT
) +

Op( 1
T ) +Op( 1

N ) and ŵ2
i −w2

i = Op(T−1/2) +Op(N−1) +Op(N−1/2T−1/2) from (G.15), we
have result (c). Result (d) can be proved similarly.

Finally we consider (e). The left hand side of (e) equals

− 1
N

N∑
i=1

ŵ2
i − w2

i

ŵ2
iw

2
i

mim
′
i = − 1

N

N∑
i=1

ŵ2
i − w2

i

w4
i

mim
′
i + 1

N

N∑
i=1

(ŵ2
i − w2

i )2

ŵ2
iw

4
i

mim
′
i = l1 + l2, say.

We first consider l1. By (G.15), l1 can be rewritten as

l1 = − 1
N

N∑
i=1

ŵ2
i − w2

i

w4
i

mim
′
i = − 1

NT

N∑
i=1

T∑
t=1

1
w4

i

(e2
it − w2

i )mim
′
i

− 1
N

N∑
i=1

mim
′
i

w4
i

[
m′

iΛP̂−1
N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1

N Λ′mi

]

+ 1
N

N∑
i=1

mim
′
i

w4
i

[
2m′

iΛ̂ĜΛ̂′M ′Ŵ−1(O − W)i

]

+2 1
N

N∑
i=1

1
w4

i

tr
[
Λ̂ĜΛ̂′M ′Ŵ−1 1

T

T∑
t=1

[eteit − E(eteit)]m′
i

]
mim

′
i − 1

N

N∑
i=1

1
w4

i

S̃imim
′
i

= l11 + · · · + l15, say.

First consider l12. Using the argument to prove (c), we have

l12 = − 1
N

N∑
i=1

mim
′
i

w4
i

m′
iΛP−1

N Λ′M ′W−1(O−W)W−1MΛP−1
N Λ′mi+Op

( 1
N

√
T

)
+Op

( 1
N2

)
.

Similarly, by the fact that
[
m′

iΛGΛ′M ′W−1(O − W)i
]

= Op(N−1), we have

l13 = 1
N

N∑
i=1

mim
′
i

w4
i

2m′
iΛGΛ′M ′W−1(O − W)i +Op

( 1
N

√
T

)
+Op

( 1
N2

)
.
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Then consider l14, whose (v, u) element (v, u = 1, . . . , k) equals

tr
[ 1
N

N∑
i=1

Λ̂ĜΛ̂′M ′Ŵ−1 1
T

T∑
t=1

[eteit −E(eteit)]
1
w4

i

m′
imivmiu

]
which can be proved to be Op(N−1T−1/2)+Op(N−1/2T−1)+Op(T−3/2) similarly as Lemma
G.7(a). The last term l15 is bounded by (using (G.17))

C6
[ 1
N

N∑
i=1

S̃2
i

]1/2
= Op(N−1T−1/2) +Op(N−1/2T−1) +Op(T−3/2).

Hence, we have

l1 = − 1
NT

N∑
i=1

T∑
t=1

1
w4

i

(e2
it − w2

i )mim
′
i

− 1
N

N∑
i=1

mim
′
i

w4
i

m′
iΛP−1

N Λ′M ′W−1(O − W)W−1MΛP−1
N Λ′mi

+ 1
N

N∑
i=1

mim
′
i

w4
i

2m′
iΛGΛ′M ′W−1(O − W)i

+Op( 1
N

√
T

) +Op( 1√
NT

) +Op( 1
T 3/2 ) +Op( 1

N2 ).

Then consider l2, which can be rewritten as (by (G.15))

l2 = 1
N

N∑
i=1

1
ŵ2

iw
4
i

[ 1
T

T∑
t=1

(e2
it − w2

i )
]2
mim

′
i + 2 1

N

N∑
i=1

1
ŵ2

iw
4
i

[ 1
T

T∑
t=1

(e2
it − w2

i )
]
R̃imim

′
i

+ 1
N

N∑
i=1

1
ŵ2

iw
4
i

R̃2
imim

′
i + 1

N

N∑
i=1

1
ŵ2

iw
4
i

(di)2mim
′
i + 2 1

N

N∑
i=1

1
ŵ2

iw
4
i

[ 1
T

T∑
t=1

(e2
it − w2

i )
]
dimim

′
i

+2 1
N

N∑
i=1

1
ŵ2

iw
4
i

diR̃imim
′
i = l21 + · · · + l26, say.

where di = m′
iΛP̂

−1
N Λ̂′M ′Ŵ−1(O − W)Ŵ−1M Λ̂P̂−1

N Λ′mi − 2m′
iΛ̂ĜΛ̂′M ′Ŵ−1(O − W)i. We

analyze the six terms on the right hand side of the above equation one by one. The term
l22 is bounded in norm by

2C8
[ 1
N

N∑
i=1

∣∣∣ 1
T

T∑
t=1

(e2
it − w2

i )
∣∣∣2]1/2[ 1

N

N∑
i=1

R̃2
i

]1/2
,

which is Op(N−1/2T−1) by (G.18). The term l23 is bounded in norm by

C8 1
N

N∑
i=1

R̃2
i = Op

( 1
NT

)
+Op

( 1
T 2

)
.
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Similarly, by (G.19) and (G.20), we can show l24 = Op(N−2), l25 = Op(N−1T−1/2) and
l26 = Op(N−3/2T−1/2) +Op(N−1T−1). Finally, the term l21 can be written as

1
N

N∑
i=1

1
w6

i

[ 1
T

T∑
t=1

(e2
it − w2

i )
]2
mim

′
i − 1

N

N∑
i=1

ŵ2
i − w2

i

ŵ2
iw

6
i

[ 1
T

T∑
t=1

(e2
it − w2

i )
]2
mim

′
i

The first term of the above expression is equal to

1
NT

N∑
i=1

ϖ2
i

w6
i

mim
′
i +Op

(
N−1/2T−1

)
,

where ϖ2
i is defined in Lemma G.9. The second term is bounded in norm by

C10
[ 1
N

N∑
i=1

(ŵ2
i − w2

i )2
]1/2[ 1

N

N∑
i=1

∣∣∣ 1
T

T∑
t=1

(e2
it − w2

i )
∣∣∣4]1/2

= Op

(
T−3/2

)
.

So

l21 = 1
NT

N∑
i=1

ϖ2
i

w6
i

mim
′
i +Op(N−1/2T−1) +Op(T−3/2).

Hence we have

l2 = 1
NT

N∑
i=1

ϖ2
i

w6
i

mim
′
i +Op

( 1√
NT

)
+Op

( 1
T 3/2

)
.

Combining the preceding results on l1 and l2, we have result (e). �

Proof of Theorem 9.2. To derive the asymptotic representation of Λ̂, we first study
the asymptotic behavior of A. By equation (G.9), together with Lemma G.7(a), (c) and
(d), Lemma G.8 as well as Lemma G.9(d),

A + A′ = η1 + η′
1 + ξ1 +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

where

η1 = 1
NT

T∑
t=1

fte
′
tW−1MΛP−1, ξ1 = 1

N2P
−1Λ′M ′W−1(O − W)W−1MΛP−1.

Taking vech operation on both sides,

vech(A+A′) = vech(η1+η′
1)+vech(ξ1)+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

implying

2D+
r vec(A) = 2D+

r vec(η1)+D+
r vec(ξ1)+Op( 1

N
√
T

)+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

(G.22)
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where D+
r is defined the same as in Theorem 4.2. By the identification condition, we know

both Λ′( 1
NM

′W−1M)Λ and Λ̂′( 1
NM

′Ŵ−1M)Λ̂ are diagonal matrices, which implies

Ndg
{

Λ′( 1
N
M ′W−1M)Λ − Λ̂′( 1

N
M ′Ŵ−1M)Λ̂

}
= 0,

where Ndg(·) denote the non-diagonal elements of its argument. By adding and subtracting
terms,

Ndg
{

(Λ̂ − Λ)′( 1
N
M ′Ŵ−1M)Λ̂ + Λ̂′( 1

N
M ′Ŵ−1M)(Λ̂ − Λ) (G.23)

−(Λ̂ − Λ)′( 1
N
M ′Ŵ−1M)(Λ̂ − Λ) + Λ′

[ 1
N
M ′(Ŵ−1 − W−1)M

]
Λ
}

= 0.

Using Lemma G.9(e) and Λ̂ − Λ = Op( 1√
NT

) +Op( 1
T ) +Op( 1

N ) from Theorem 9.1, we have

Ndg
{

Λ̂′( 1
N
M ′Ŵ−1M)(Λ̂ − Λ) + (Λ̂ − Λ)′( 1

N
M ′Ŵ−1M)Λ̂

}
= Ndg{ζ1 − µ1 + ξ2} +Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

where

ζ1 = Λ′
[ 1
NT

N∑
i=1

T∑
t=1

mim
′
i

w4
i

(e2
it − w2

i )
]
Λ,

µ1 = Λ′
[ 1
NT

N∑
i=1

ϖ2
i

w6
i

mim
′
i

]
Λ,

ξ2 = Λ′
[ 1
N

N∑
i=1

mim
′
i

w4
i

m′
iΛP−1

N Λ′M ′W−1(O − W)W−1MΛP−1
N Λ′mi

− 2
N

N∑
i=1

mim
′
i

w4
i

m′
iΛGΛ′M ′W−1(O − W)i

]
Λ

= 1
N

Λ′
[ 1
N

N∑
i=1

mim
′
i

w4
i

ςi

]
Λ

where ςi is a scalar defined in the paragraph before Theorem 9.2 and ϖ2
i = 1

T

∑T
t=1

∑T
s=1

E
[
(e2

it −w2
i )(e2

is −w2
i )
]
. With the same definition of D given in Theorem 4.2, together with

the definition of P, the preceding equation can be rewritten as

veck(AP+PA′) = veck(ζ1 −µ1+ξ2)+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

or equivalently

Dvec(AP+PA′) = Dvec(ζ1−µ1+ξ2)+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
.

Furthermore, we can rewrite the above equation as

D[(P⊗Ir)+(Ir⊗P)Kr]vec(A) = Dvec(ζ1−µ1+ξ2)+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
,

(G.24)
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where Kr is defined the same as in Theorem 4.2. The above equation has r(r−1)
2 restrictions.

Then combining (G.22) and (G.24), we have[
2D+

r

D[(P ⊗ Ir) + (Ir ⊗ P)Kr]

]
vec(A) =

[
2D+

r vec(η1)
0

]
+
[

0
Dvec(ζ1)

]
−
[

0
Dvec(µ1)

]
(G.25)

+
[
D+

r vec(ξ1)
0

]
+
[

0
Dvec(ξ2)

]

+Op

( 1
N

√
T

)
+Op

( 1√
NT

)
+Op

( 1
T 3/2

)
+Op

( 1
N2

)
.

Let

D†
1 =

[
2D+

r

D[(P ⊗ Ir) + (Ir ⊗ P)Kr]

]
,

together with the same definitions of D2 and D3 given in Theorem 4.2, the above equation
can be rewritten as

D†
1vec(A) = D2vec(η1) + D3vec(ζ1) − D3vec(µ1) + 1

2
D2vec(ξ1) + D3vec(ξ2) (G.26)

+Op

( 1
N

√
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)
+Op
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)
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)
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)
.

Noticing that
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T∑
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1
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i

fteitm
′
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]
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1
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i
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vec(ξ2) = 1
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i
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]

×
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i

(mi ⊗mi).

Now we can rewrite the asymptotic expression of A as

vec(A) = (D†
1)−1D2(P−1Λ′ ⊗ Ir) 1

NT

N∑
i=1

T∑
t=1

1
w2

i

(mi ⊗ ft)eit (G.27)
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+ (D†
1)−1D3(Λ ⊗ Λ)′ 1
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.

Next consider equation (G.10), which is derived from the first order condition of Λ̂. By
Lemma G.7 (f)(g) and Lemma G.9 (a)(b)(c), we have

Λ̂′ − Λ′ = −A′Λ′ + 1
NT

T∑
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fte
′
tW−1MR−1 + P−1Λ′ 1

NT
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,

where
ξ3 = P−1

N Λ′M ′W−1(O − W)W−1MR−1
N .

Taking vec operation on both sides of the above equation (G.28) and noticing that
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where Kkr is defined the same as in Theorem 4.2, we have
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(G.29)
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−Kkr(Ir ⊗ Λ)vec(A) +Op
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.

Plug (G.27) into (G.29), then we have
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, (G.30)

where B†
1,B

†
2,∆† and Π† are defined in the paragraph before Theorem 9.2. This completes

the proof of Theorem 9.2. �

Proof of Theorem 9.1. Given the results in Theorem 9.2, letting N,T → ∞ and
N/T 2 → 0 and T/N3 → 0, by the Central Limit Theorem, we have the following limiting
distribution √

NT
[
vec(Λ̂′ − Λ′) − 1

T
∆† − 1

N
Π†
]

d−→ N(0,Ξ),

where Ξ = lim
N→∞

ΞNT with ΞNT defined in Theorem 9.1. This completes the proof. �

Proof of Theorem 9.3. From equation (G.15) and the analysis in the proof of Lemma
G.9(e), we know both the second and third terms on the right hand side of (G.15) are
Op(N−1), and the last term R̃i is Op(N−1/2T−1/2) + Op(T−1), which directly implies the
asymptotic representation of ŵ2

i as in Theorem 9.3. Hence we prove Theorem 9.3. �
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