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Abstract 

The results of an experiment with simulated data show that using multiple positive lineal 

aggregators of the same inputs instead of the original variables increases the accuracy of 

the Data Envelopment Analysis (DEA) technical efficiency estimator in data sets beset 

by dimensionality problems. Aggregation of the inputs achieves more than the mere 

reduction of the number of variables, since replacement of the original inputs with an 

equal number of aggregates improves DEA performance in a wide range of cases. 
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1. Introduction 

Data Envelopment Analysis (DEA) is one of the most widely-used non-parametric 

frontier models for evaluating the technical efficiency of Decision Making Units (DMUs) 

in multiple input/output scenarios. However, while statistically consistent (see Simar and 

Wilson 2015, for a summary of DEA properties), the DEA radial technical efficiency 

estimator is also, like many other non-parametric estimators, prey to the curse of 

dimensionality, which means that its rate of convergence to true efficiency diminishes as 

more inputs and outputs are added. DEA technical efficiency scores estimated from data 

sets containing large numbers of inputs and outputs and a small number of observations 

are well known to be upwardly biased (Banker 1993; Simar and Wilson 2008).  

The aggregation of inputs or outputs has been widely used to reduce number of variables 

(Podinovski and Thanassoulis 2007) in DEA applications. A frequent procedure in many 

studies is to collapse the set of inputs or outputs into a single linear aggregate using prior 

information such as prices, unit pollutant output coefficients, energy coefficients, etc. It 

is very common, for example, to transform groups of inputs or outputs into a single cost 

or income variable. The relation between the DEA aggregated models and the DEA 

disaggregated based models is well known: estimates obtained from aggregated value 

models can be downwardly biased by price allocative inefficiency with respect to those 

obtained from the fully-disaggregated DEA efficiency model (Primont 1993; Thomas and 

Tauer, 1994; Färe and Zelenyuk 2002; Färe et al. 2004; Banker et al. 2007). Then, 

aggregation of the value of inputs or outputs expands the DEA production possibility set 

towards the cost possibility set or the revenue possibility set (Banker et al. 2007; 

Hougaard and Tind 2009; Primont 1993), thereby improving the accuracy of the DEA 

efficiency estimator in studies with data sets beset by dimensionality problems. 
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This expansion could, however, lead to the loss of relevant technological information of 

the efficiency frontier: strong efficient units might classified as inefficient after 

aggregation and full dimension efficient facets might be blurred. Olesen and Petersen 

(1996) emphasize the negative consequences of this loss of information in research 

oriented towards the identification of substitution ratios. Less attention has been given to 

its impact on the consistency of the efficiency estimator. This has potential relevance, 

given that one of the main aspects of the problem of dimensionality in DEA estimation is 

that a large proportion of the DMUs might not naturally lie within the strongly efficient 

frontier (Bessent et al. 1988). This suggests that the aggregation technique could be 

improved by identifying an  input or output aggregation procedure that would reduce the 

size of the data set while preserving the maximum amount of relevant information of the 

strong efficient  frontier.  

In this respect, Aldanondo and Casasnovas (2015) have shown that, if the DEA model 

with a single linear aggregate of each input is extended to one using several linear 

aggregates of the same inputs has two effects: 1º) the aggregation bias with respect the 

fully disaggregated model diminishes, and 2º) the two models coincide for the set 

observations that are canonical combinations of allocatively efficient units under 

either/any aggregation criterion. Then the estimated best-practice frontier using multiple 

aggregates is an envelope that preserves a greater amount of information about the 

original frontier of the fully disaggregated DEA model than the one estimated from the 

single-aggregate model. There is no proof that this necessarily leads to a more accurate 

efficiency estimate, however.  

The precise aim of this study is to explore the extent to which the use of models with 

multiple linear aggregates of the same inputs affects the accuracy of the DEA estimator. 

The basic idea is to use an input-aggregation approach that will preserve the maximum 
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amount information about the efficient frontier in order to improve the sufficiency of the 

estimator.1  By means of Monte Carlo simulation, we compare results across aggregated-

input technical efficiency models in order to show how they vary as a function of sample 

size and inefficiency distribution. In this experiment we generate a set of input prices and 

one output price for each DMU to simulate input demand and randomly choose a set of 

several DMU input prices to create input aggregates. Through this experiment, we find 

that the DEA technical efficiency estimator improves as the number of aggregators is 

increased.  

This note is organized as follows: section two describes the Monte Carlo design and the 

methodology used to analyze the DEA model; section three presents the results of the 

analysis of aggregation bias in technical efficiency when using multiple aggregate 

criteria. The paper ends with some conclusions from the research.  

2. Experimental design  

We use a Monte Carlo experiment to compare the performance of constant return DEA radial 

technical efficiency models with different numbers of linear aggregates of the same inputs. The 

accuracy of the models, including the baseline model, is determined by comparing the simulated 

true efficiency value with the DEA efficiency estimates.2  

                                                 

1 Another approach would be incorporate statistics to improve the efficiency of the variable aggregation 

process in DEA. Simar and Wilson (2001), for example, use “aggregation bias” as a statistic to test the 

potential of the aggregation of variables. Dario and Simar (2007) use the index of correlation between 

variables to construct a single ad hoc aggregate set of inputs or outputs. Models based on Principal 

Component Analysis DEA (Alder and Golany 2001, 2002) or Independent Component Analysis DEA (Kao 

et al. 2011) include a single or multiple linear aggregates (components) of the same inputs, in accordance 

with the variance explained. These components do not need to be positive linear combinations as used in 

this study.  A comparison of the different procedures that can be used to improve the aggregation of 

variables in DEA is beyond the scope of this note. 

2 Spearman rank correlation coefficients estimated to measure the accuracy of the estimator in no way alter 

the conclusions from this paper. They are omitted for reasons of space but are available from the authors 

upon request. 
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In our experiment, the different aggregation criteria are represented by different price sets. Thus, 

the procedure is similar to that reported in Tauer (2001).3 In particular, we generate random input 

price and output quantity data for each DMU and use them to simulate factor demands for a 

constant-returns-to-scale Cobb-Douglas production function. This procedure ensures that the 

aggregate coefficients represent marginal rates of substitution on the frontier for the data 

production set (Varian 1984; Banker and Maindiratta 1988).  

All comparisons are carried out for different numbers of observations n Є (10, 50, 100, 500, 1000, 

2000 and 5000). Samples larger than 500 units are not very common in empirical research, but 

we have simulated samples of this size in order to analyze convergence of estimators (Simar and 

Wilson 2008). There are five inputs xik (k=1,…,5) for each observation i and a single efficient 

output . Our choice of efficiency simulation procedure was guided by that of Simar and Wilson 

(2000, 2001): the efficient output of each DMU was multiplied by an inefficient term with no a 

priori assumptions regarding the distribution of the DMUs along the efficiency frontier. Based 

on these general criteria, the experiment consists of 1000 replications of the following procedure.  

1) Five parameters k  are generated from a uniform distribution [0.1, 1] and each k  is divided 

by the sum of the five selected k , such that the coefficients add up to 1. 

2) 5,000 observations of a single efficient output,
e

iy , are generated from a uniform distribution 

[0.1, 100], and five ikw  input prices, from independent random variables with uniform 

distribution [0.1, 5]. The quantity of inputs of each DMU is computed by means of the factor 

demand function: 
   


kk

ikik

e

ikkik wwy= x



11

. 

3) Inefficiency is simulated by multiplying the output of each unit 
e

iy  by the technical inefficiency 

coefficient
 ii uA  exp

, where iu  is a random value drawn from a normal distribution 

                                                 
3 In other DEA experimental studies, such as Principal Components (Adler and Yazhemsky 2010) or 

Independent Components (Kao et al. 2011), the aggregation criteria are based on input covariance. The 

procedure consists of the generation of random observations of inputs which are then used to simulate a 

production function. 

e

iy
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 uN ,0 . u  takes the values 0.2 and 0.3. Then, the observed output value of each unit i is 

computed as 
e

iii yAy 
. 

4) Four different linear aggregates of the same four inputs are created for each DMU. The 

aggregator coefficients are the same for all the DMUs included in the sample.4 By arbitrary 

selection ,  the prices of these inputs for the first four units of the sample are taken as weights: 5 

respectively, 
ik

k

jk

j

i xwC 



4

1  (i=1,…,n ; j=1,…,4) where 
j

iC  denotes the aggregate of the k 

inputs of unit i, weighted by the jkw  input prices of unit j. 

5) From this initial 5000-unit population, we take subsamples of the first 10, 50, 100, 500, 1000 

and 2000 observations in order to obtain smaller samples. Thus, this study simulates change in 

sample size as successive enlargements up to population size, thereby maintaining the same 

technology and the same aggregate weights for different-sized samples in each replication. 

6) The linear programming in Equation (1) is used to compute radial technical input efficiency 

h

iÂ  with constant returns to scale (Charnes et al. 1978) for unit i, with models with different 

numbers of aggregates (h=0,1,2,3,4). The baseline model 
0ˆ
iA  computes the efficiency scores 

obtained with the five original inputs. The other models include one or several aggregates 

(h=1,2,3,4) of the first four inputs and the fifth original input.6 

                                                 
4 In contrast to this procedure, Tauer (2001) uses different prices for each DMU.  

5 The prices of any DMU can be chosen indistinctly.  

6 Thus, the aggregate models have different numbers of composite inputs and one original input. We have 

replicated this experiment with different numbers of original and aggregated inputs. We chose to present 

this case because it is highly illustrative. Results of other simulations,  similar to the case presented here, 

are available from the authors upon request. 
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iii

ik

j

ii

h

i

,...,1    0

0  if  5  and  0  if  51    

0h  if  1  and  0h  if  0  ;,1   
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min),,(ˆ























 (1) 

All the efficiency scores are computed using FEAR software (Wilson 2008) for platform R.

 

7) For every replication, we compute average technical efficiency scores and mean absolute error 

(MAE) (absolute difference between estimated efficiency and true or simulated efficiency), 





n

i

i

h

i AA
n

MAE
1

ˆ1

 .  

8) Finally, we compute the average over 1000 replications to obtain average technical efficiency 

and the MAE values reported in the tables below. 

3. Results and discussion 

Tables 1 and 2 give the estimates for standard deviations of inefficiency of 0.2 and 0.3, 

respectively. For the sake of clarity, both tables include average technical efficiency and mean 

absolute error (MAE). The results are discussed in blocks, starting with the average technical 

efficiency scores, which are the indicators most widely discussed in the literature cited above. 

This is followed by an analysis of the MAE in each model.  

The average technical efficiency scores uphold some known theoretical and experimental findings 

reported by Färe et al. (2004) and Thomas and Tauer (1994). Firstly, the DEA average efficiency 

score for the baseline model, using the five original inputs, is well above the true average 

efficiency score for small sample sizes, converging towards true efficiency with growing sample 

size. This can be checked by looking at the average efficiency trends displayed in Table 1 and 

Table 2. In Table 1, for example, the DEA baseline model average efficiency score decreases 

from 0.993 (n=10) to 0.890 (n=5000) for a true average efficiency score of 0.858. Secondly, the 

average efficiency score obtained using models with input aggregators is lower than that given 
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by the model with fully disaggregated inputs. This difference decreases as more aggregates of the 

same inputs are added. Thirdly, the average efficiency score for models with composite inputs 

falls below true efficiency as the sample size increases. Again, Table 1 shows that the average 

efficiency score drops to 0.706 (n=5000) for the single-aggregate model and to 0.817 (n=5000) 

for the four-aggregate model. This has been reported by Tauer (2001) as evidence of the 

inconsistency of DEA technical efficiency estimation using aggregates, since the computed 

average efficiency score does not converge towards true average efficiency.  

The true error values, that is, the MAE scores, confirm some of the above observations while also 

providing new findings. With respect to aggregation bias, the trend of the MAE as a function of 

sample size confirms the inconsistency of DEA efficiency estimators when using aggregates for 

non-additive inputs. As the two tables show, the MAE does not converge towards zero with larger 

sample size in any of the aggregated models, while it always decreases with larger simple in the 

baseline non-aggregated DEA estimator model. By way of example, with four aggregates of four 

inputs and u =0.2, the MAE score gradually decreases from 0.104 to 0.049 as sample size grows 

from 10 to 1000 units, and increases slightly to 0.051 when sample size reaches 5000 units. The 

stabilization or increase in MAE appears in all the aggregated models reported in Tables 1 and 2, 

thereby highlighting the fact that an increase in sample size does not correct the true error or bias 

in a misspecification of the variables. However, aggregation bias is lower in models with more 

aggregators of the same inputs.  

The MAE performance does, however, suggest that it is better to use aggregates when faced with 

dimensionality problems. Indeed, although the aggregate models contain some bias and do not 

converge towards true efficiency, they may, in certain empirical contexts, have greater estimation 

accuracy than the baseline model. As can be seen in Table 2 for the case of n=10-unit, for example, 

the MAE for the single-aggregate model is 0.111, which is lower than in the baseline model 

(MAE=0.211) and all the other models. Conversely, using the same table, the lowest MAE for 

n=50 is found in the three-aggregate model and, for n=100, in the four-aggregate model. Overall, 

the results show that models with fewer aggregates produce better estimates with small sample 

size and high standard deviation of efficiency; while the accuracy of estimators using a larger 
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number of linear aggregates improves as sample size grows. For sufficient sample size , the basic 

non-aggregated DEA estimator gives the best performance.  

As far as we are aware, there is no evidence from experimental studies that the DEA efficiency 

estimator obtained using a number of aggregates equal to the original number of inputs could give 

a better result than the model using fully disaggregated inputs, even when both programs have the 

same dimension.7 It can be seen, for example, that the four-aggregate model has a lower MAE 

than the model with the five original inputs when applied to samples of 1000 units or less for a 

u =0.2 (Table 1) or to samples of 2000 units or less for a u =0.3 (Table 2). This holds even for 

a production function without additive inputs, like that specified in this study.  

Thus, input aggregation achieves more than the mere reduction of the number of variables in the 

DEA program. Although it is not immediately obvious from the results of this study how 

aggregates work to improve the estimates, the literature provides some possible interpretations. 

Charnes et al. (1990) and Podinovski and Thanassoulis (2007), for example, suggest that, in very 

particular circumstances,8 replacing the inputs with linear aggregates in the primal DEA program 

is equivalent to constraining input weights in the corresponding multiplicative DEA model. In 

accordance with this theory, it can be assumed that the introduction of aggregates intervenes in a 

similar way to that of weight constraints: by expanding the DEA technical efficiency envelope, 

thereby preventing the occurrence of non-zero slacks in the DEA solution (Allen et al. 1997; 

Podinovski 2004; Podinovski 2005) while preserving  part of the information provided by the 

production efficient frontier data set (Aldanondo and Casasnovas 2015). Thus, the radial technical 

efficiency score more accurately reflects all the excess in inputs and shortfall in outputs. To our 

knowledge, however, no definite relationship between the two methods (relative weight 

                                                 
7 In contrast to Principal Component - DEA studies, when the number of aggregates is equal to the number 

of inputs or outputs (explaining the total variance of the sample), the DEA efficiency estimator gives the 

same result with or without aggregates (Adler and Golany 2001). 

8 Charnes et al. (1990) demonstrate the mathematical equivalence of constraining relative input weights 

(assurance region) and aggregating inputs, for the very simple case of a data set with two inputs and one 

output. Podinovski and Thanassoulis (2007) suggest the equivalence of aggregating inputs or outputs in the 

baseline DEA and constraining their relative weights in the dual form of the DEA model. This, however, 

would hold whenever the constraint on the respective aggregate input (output) in the DEA model holds.  
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constraints and the use of input or output aggregates) under all types of conditions has ever been 

confirmed.9 In conclusion, all we are able to say is that our results suggest that multiple-aggregate 

DEA models could work in two ways: firstly, the higher the degree of aggregation, the fewer 

slacks (or zero weights) will appear (Olesen and Petersen 1996; Førsund 2013); and, secondly, 

the larger the number of aggregators, the closer the DEA envelope approaches the true efficiency 

frontier.  

4. Conclusions 

The main conclusion from this research is that the use of multiple linear aggregates of the same 

inputs has a positive impact on the performance of the radial DEA efficiency estimator in the 

presence of dimensionality problems. Our results show that this positive effect outweighs the 

known effect of reducing the number of variables in the DEA program. Indeed, in many cases,  

the mean absolute error (MAE) of the model with four linear aggregates of the same four inputs 

is lower than the MAE of the program using the original inputs. Assuming no dimensionality 

problems and no additive inputs, DEA technical efficiency models with fully disaggregated inputs 

are the most appropriate method.  

Estimators with multiple aggregates of the same inputs perform better overall than those with a 

single aggregate, except when applied to very small samples with high standard deviation of 

inefficiency. These results have major implications for DEA efficiency estimation. The use of 

multiple, rather than a single linear aggregate of the same inputs can improve the performance of 

the radial DEA efficiency estimator while also ensuring coherence between technical efficiency 

measures and multiple criteria of overall efficiency. 

 

 

 

 

                                                 
9 See Førsund (2013) for a recent review of the research on weight constraints.  
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Table 1. Computed average technical efficiency, mean aggregation bias and mean absolute 

error (from random production data and σu=0.2) 

 DEA Basic 1 agg. 2 agg. 3 agg. 4 agg. 

 Efficiency scores 

n=10 0.993 0.864 0.920 0.942 0.953 

 (0.020)* (0.140) (0.108) (0.089) (0.077) 

50 0.967 0.788 0.852 0.878 0.893 

 (0.066) (0.147) (0.129) (0.118) (0.111) 

100 0.953 0.765 0.831 0.857 0.873 

 (0.077) (0.145) (0.130) (0.121) (0.115) 

500 0.922 0.729 0.797 0.824 0.841 

 (0.093) (0.141) (0.129) (0.122) (0.117) 

1,000 0.910 0.719 0.787 0.815 0.832 

 (0.096) (0.140) (0.128) (0.122) (0.117) 

2,000 0.901 0.710 0.779 0.807 0.824 

 (0.097) (0.139) (0.128) (0.121) (0.116) 

5,000 0.890 0.706 0.772 0.801 0.817 

 (0.099) (0.137) (0.127) (0.120) (0.116) 

 Mean Absolute Error (MAE) 

n=10 0.135 0.104 0.096 0.100 0.104 

50 0.108 0.108 0.074 0.068 0.067 

100 0.094 0.116 0.073 0.062 0.058 

500 0.063 0.136 0.078 0.059 0.050 

1,000 0.052 0.144 0.082 0.061 0.049 

2,000 0.042 0.151 0.086 0.063 0.050 

5,000 0.031 0.153 0.090 0.064 0.051 

Standard deviation of computed efficiency in parentheses. True mean efficiency is 0.858 with standard 

deviation 0.097 for all sample sizes.  
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Table 2. Computed average technical efficiency, mean aggregation bias and mean absolute 

error (from random production data and σu=0.3) 

 DEA Basic 1 agg. 2 agg. 3 agg. 4 agg. 

 Efficiency scores 

n=10 0.979 0.837 0.892 0.913 0.924 

 (0.049)* (0.163) (0.135) (0.121) (0.111) 

50 0.935 0.751 0.810 0.835 0.850 

 (0.107) (0.166) (0.154) (0.148) (0.143) 

100 0.914 0.726 0.786 0.811 0.827 

 (0.119) (0.164) (0.155) (0.149) (0.146) 

500 0.873 0.687 0.749 0.775 0.790 

 (0.132) (0.157) (0.152) (0.148) (0.145) 

1,000 0.859 0.675 0.738 0.764 0.780 

 (0.135) (0.155) (0.150) (0.147) (0.145) 

2,000 0.847 0.666 0.730 0.756 0.772 

 (0.136) (0.154) (0.149) (0.146) (0.144) 

5,000 0.835 0.661 0.722 0.749 0.764 

 (0.136) (0.152) (0.148) (0.145) (0.143) 

 Mean Absolute Error (MAE) 

n=10 0.211 0.111 0.116 0.124 0.130 

50 0.136 0.099 0.076 0.075 0.076 

100 0.115 0.104 0.071 0.064 0.063 

500 0.074 0.122 0.072 0.056 0.049 

1,000 0.060 0.130 0.075 0.056 0.047 

2,000 0.048 0.137 0.078 0.057 0.046 

5,000 0.035 0.140 0.082 0.058 0.047 

Standard deviation of computed efficiency in parentheses. True mean efficiency is 0.799 with standard 

deviation 0.133 for all sample sizes.  

 

 


