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A New Nonlinearity Test to Circumvent the Limitation of

Volterra Expansion with Applications

Abstract:

In this paper, we propose a quick, efficient, and easy method to examine whether a time

series Yt possesses any nonlinear feature. The advantage of our proposed nonlinearity test

is that it is not required to know the exact nonlinear features and the detailed nonlinear

forms of Yt. We find that our proposed test can be used to detect any nonlinearity

for the variable being examined and detect GARCH models in the innovations. It can

also be used to test whether the hypothesized model, including linear and nonlinear, to

the variable being examined is appropriate as long as the residuals of the model being

used can be estimated. Our simulation study shows that our proposed test is stable and

powerful. We apply our proposed statistic to test whether there is any nonlinear feature

in the sunspot data and whether the S&P 500 index follows a random walk model. The

conclusion drawn from our proposed test is consistent those from other tests.

Keywords: Nonlinearity, U-statistics, Volterra expansion, sunspots, efficient market

JEL Classification: C01, C12, G10
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1 Introduction

It is well-known that nonlinearity always appears in many time series like natural data and

economic and financial time series, including some well-known datasets like the sunspots

(Moran, 1954), Canadian lynx (Tong, 1990), and inflation rate (Engle, 1982). In practice,

nonlinearity is common in both stationary or non-stationary time series. Nevertheless,

detecting nonlinearity in time series is very important because very often academics and

practitioners have to know this feature in the data before conducting their analysis. For

example, Fourier analysis assumes the time series to be linear and stationary while, on the

other hand, the wavelet analysis (Cheng, et al., 1996) is raised for linear but nonstationary.

Thus, before academics and practitioners apply Fourier analysis and/or wavelet analysis

in their work, they have to examine whether there is any nonlinearity in the time series.

It is a growing interest in the testing, estimation, specification, and developing proper-

ties for nonlinearity for decades. There are many nonlinear features including asymmetric

cycles, nonlinear relationship among the variables being studied and their lags, time irre-

versibility, sensitivity to initial conditions, and others. The early development of nonlinear

models include bilinear models (Granger and Andersen, 1978), threshold autoregressive

models (Tong, 1978), state-dependent model (Priestley, 1980), exponential autoregres-

sive model (Haggan and Ozaki, 1981), ARCH model (Engle, 1982), Markov switching

model (Hamilton, 1989), and nonlinear state-space model (Carlin, et al., 1992). In ad-

dition, Chen and Tsay (1993a) use an arranged local regression procedure to construct

functional-coefficient autoregressive models while Chen and Tsay (1993b) develop some

new techniques for a class of nonlinear additive autoregressive models with exogenous

variables. On the other hand, Tjϕstheim (1994) uses nonparametric regression techniques

as an alternative nonlinear time series model. Tiao and Tsay (1994) discuss the advances

in non-linear modelling and in Bayesian inference via the Gibbs sampler.

Nonetheless, the most general form of a nonlinear stationary process is the Volterra

expansion. Using the idea of Volterra expansions, Keenan (1985) applies the one-degree-of

freedom test (Tukey, 1949) for nonadditivity to derive a time-domain statistic for discrimi-

nating nonlinear from linear models. Tsay (1986) extends the work of Keenan to establish
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a more powerful test. Other nonlinear tests include a simple portmanteau test (Petruccelli

and Davies, 1986), the quasi-likelihood ratio test (Chan and Tong, 1990), and the Wald

test (Hansen, 1996). In addition, Li and Li (2011) develop a quasi-likelihood ratio test

statistic for an autoregressive moving average model against its threshold extension.

Since the number of parameters of the nonlinearity part could be very large, this could

affect the performance of the existing nonlinear tests. In addition, nonlinearity may occur

in many and could be infinitely ways. The advantage of our proposed nonlinearity test

is that it is not required to know the exact nonlinear features and the detailed nonlinear

forms of a time series. Residuals of an appropriate linear model is independent under the

linearity hypothesis. In this paper we use this idea to develop a new nonlinearity test to

examine whether there is any nonlinearity in a time series.

The objective in this paper is to circumvent the limitation of Volterra expansion or

other similar approaches that result in many parameters in the estimation by developing

a new method to test the nonlinearity for a time series that does not involve many

parameters. We find that our proposed test can be used to detect any nonlinearity for

the variable being examined and detect GARCH models in the innovations. It can also

be used to test whether the hypothesized model, including linear and nonlinear, to the

variable being examined is appropriate as long as the residuals of the model being used

can be estimated. We will discuss this feature more in the conclusion section.

To demonstrate the performance of our proposed nonlinear test, we conduct simula-

tion study on two types of threshold autoregressive models and GARCH models. Our

simulation reveals that for the GARCH models, our proposed test is dominantly more

powerful than Tsay’s test for large sample size. On the other hand, for the threshold

autoregressive models, our simulation shows that Tsay’s test is more powerful than our

proposed test in a region while our test is more powerful in another region. We note that

this finding is not surprising because there are many different forms of nonlinearity, and

thus, there may not exist any test that could outperform the others in detecting nonlin-

earity. However, our simulation shows that our proposed test has three more desirable

features when comparing with Tsay’s test: our proposed test is more stable, the power of
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our proposed test increases while that of Tsay’s test could decrease when the magnitude

of parameter increases, and the power of our proposed test reaches one quickly while that

of Tsay’s test may not reach one when the magnitude of parameter increases. Thus, the

result of our simulation supports our claim that our proposed test is a more desirable test.

At last, to demonstrate the applicability of our proposed test, we first apply both

Tsay’s test and the nonlinearity test we developed in this paper to test whether there

exists any nonlinear feature in the sunspot data, and thereafter, apply our proposed

nonlinearity test, Tsay’s test, and Chow-Denning’s variance ratio tests to test whether

the S&P 500 index follows a random walk model. Both our proposed nonlinearity test and

the Tsay’s test conclude that there exists nonlinearity component in the sunspot data. On

the other hand, our proposed nonlinearity test, Tsay’s test, and Chow-Denning’s variance

ratio tests conclude that the S&P 500 index does not follow the random walk model. The

conclusion drawn from our proposed test is consistent with those drawn from Tsay (1986)

and others. Thus, our illustration supports our claim that our proposed statistic is useful.

The remainder of the paper is organized as follows. In Section 2, we first discuss the

Volterra expansion and state the nonlinearity test developed by Tsay (1986). Thereafter,

we develop our proposed new nonlinearity test to circumvent the limitation of Volterra

expansion. In Section 3, we illustrate the superiority of the nonlinearity test we developed

in Section 2 by conducting a simulation to examine its performance over the test developed

by Tsay (1986). In Section 4, we illustrate the applicability of our proposed nonlinearity

test by applying it to examine whether there is any nonlinear feature in the sunspot data

and whether the S&P 500 index follows a random walk model. Section 5 wraps up the

paper by providing several well-grounded observations while the proof is provided in the

appendix.

2 Theory

We suppose that Yt follows a time series model of the current and past independent and

identically distributed (i.i.d.) shocks such that Yt = f(εt, εt−1, · · · ). If f(·) is a linear

4



function of the shocks, the model is linear; otherwise, it is nonlinear. One of the most

commonly used linear models is an ARMA process that could be presented as an AR

and/or MA representation (Box, et al., 1994). There are many approaches, for example,

parametric, semi-parametric, and nonparametric approaches, to identify the nonlinear

forms of the models. There are also several nonlinearity tests available. For example, Fan

and Yao (2003) establish a likelihood ratio test to test for a linear model versus a TAR

model with two regimes. Cox (1981) suggests using quadratic or cubic regression to test

for nonlinearity.

One of the most commonly used approaches is to apply the Volterra expansion (Wiener,

1958) to expand a nonlinear and stationary time series, say, Yt, to be in terms of the linear,

quadratic, cubic, etc. such that

Yt = µ+
∞∑
−∞

auεt−u +
∞∑

u,v=−∞

auvεt−uεt−v +
∞∑

u,v,w=−∞

auvwεt−uεt−vεt−w + · · · , (1)

where εt (−∞ < t < ∞) is an i.i.d. innovation with zero mean.

If the null hypothesis of linearity is true, residuals of the hypothesized linear model

are independent. This is the basic idea used in the development of various nonlinearity

tests.

2.1 Tsay’s F Test

Tsay (1986) develops a nonlinearity test based on the idea of using the Volterra expansion.

His test is popular and is well-known to have decent power on detecting nonlinearity in a

sequence, say, {Yt}. In his test, the following null hypothesis is used:

H0 : there is no nonlinearity in the time series being examined. (2)

The test mainly consists three steps:

Step 1: Applying the linear regression model Yt = WtΦ+et to fit Yt on {1, Yt−1, · · · , Yt−M}

and obtain the estimate of its innovation {êt}, for t = M + 1, · · · , T , where Wt =

(1, Yt−1, · · · , Yt−M), M is a pre-specified positive integer, and T is the length of

sequence {Yt}.
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Step 2: Adopting the multivariate regression model Zt = WtH+Xt to fit Zt on

{1, Yt−1, · · · , Yt−M} and obtain the error term {X̂t}, for t = M + 1, · · · , T , where

ZT
t = vech(VT

t Vt) with Vt = (Yt−1, · · · , Yt−M) and vech denotes the half stacking

vector.

Step 3: Thereafter, fit êt = X̂tβ + εt, (t = M + 1, · · · , T ) to obtain the Tsay’s test:

F̂ =
(
∑T

t=M+1 X̂têt)(
∑T

t=M+1 X̂
T
t X̂t)

−1(
∑T

t=M+1 X̂
T
t êt)/M

∗∑T
t=M+1 ε̂

2
t/(T −M −M∗ − 1)

. (3)

Under the null hypothesis of linearity and for large T , the statistic F̂ follows approx-

imately a F -distribution with 1
2
M(M + 1) and T − 1

2
M(M + 3) − 1 degrees of freedom.

Thus, for the test level α, one could reject the null hypothesis of linearity if

F̂ > F( 1
2
M(M+1),T− 1

2
M(M+3)−1

)(α) . (4)

Readers may refer to Tsay (1986) for more details for his test.

2.2 New Non-Linearity Test

The major drawback of applying the Volterra expansion is that the number of parameters

is too large. To circumvent the limitation, one could assume au, auv, and auvw in equation

(1) to be functions of small numbers of parameters. However, the problem of this approach

is that we do not know the forms of “functions” and, in fact, such “functions” may not

exist. Thus, in this paper we introduce another approach to circumvent the limitation of

the Volterra expansion of getting too many parameters. To identify any nonlinearity of

the time series {Yt}, we first follow the idea from Tsay (1986) to use the following AR

model to remove any autocorrelation in the data:

Yt =

p∑
i=1

ϕiYt−i + et , (5)

where εt ∼ WN(0, σ2) and WN stands for ‘white noise.’ After removing the linear compo-

nents in {Yt} by introducing the linear model in (5), we proceed to examine whether there

is any remaining incremental power from time t to the later time t + h in the residuals

sequence. If such power is identified, there exists nonlinear feature in the corresponding
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residuals, {êt}. We use this concept to develop a nonlinearity test to the residual series

{êt} of the variables being studied to examine whether there is any remaining nonlinear-

ity in the residuals. For simplicity, we denote Yt to be the corresponding residuals of the

variable being examined. We first state the following definition:

Definition 2.1 Let {Yt} be a strictly stationary and weakly dependent series, the m-

length lead vector of Yt is

Y m
t ≡

(
Yt, Yt+1, · · · , Yt+m−1

)
, m = 1, 2, · · · , t = 1, 2, · · ·

and Ly-length lag vector of Yt is

Y
Ly

t−Ly
≡
(
Yt−Ly , Yt−Ly+1, · · · , Yt−1

)
, Ly = 1, 2, · · · , t = Ly + 1, Ly + 2, · · · .

In addition,

Y
m+Ly

t−Ly
≡
(
Yt−Ly , · · · , Yt−1, Yt, Yt+1, · · · , Yt+m−1

)
, Ly = 1, 2, · · · , t = Ly + 1, Ly + 2, · · · .

Series {Yt} does not possess any nonlinearity if and only if

Pr
(
∥Y m

t − Y m
s ∥ < e

∣∣∣∥ Y
Ly

t−Ly
− Y

Ly

s−Ly
∥< e

)
= Pr (∥Y m

t − Y m
s ∥ < e) , (6)

at any time t and s, for any length m and lag length Ly, and for any e > 0,where Pr(· | · )

denotes conditional probability and ∥ · ∥ denotes the maximum norm which is defined as

∥X − Y ∥ = max
(
|x1 − y1|, |x2 − y2|, · · · , |xn − yn|

)
,

for any two vectors X =
(
x1, · · · , xn

)
and Y =

(
y1, · · · , yn

)
.

In addition, we define

C1

(
m+ Ly, e

)
≡ Pr

(
∥ Y

m+Ly

t−Ly
− Y

m+Ly

s−Ly
∥< e

)
, C2

(
Ly, e

)
≡ Pr

(
∥ Y

Ly

t−Ly
− Y

Ly

s−Ly
∥< e

)
,

C3

(
m, e

)
≡ Pr (∥Y m

t − Y m
s ∥ < e) . (7)

Because

Pr
(
∥ Y m

t − Y m
s ∥< e

∣∣ ∥ Y
Ly

t−Ly
− Y

Ly

s−Ly
∥< e

)
=

Pr
(
∥ Y m

t − Y m
s ∥< e, ∥ Y

Ly

t−Ly
− Y

Ly

s−Ly
∥< e

)
Pr
(
∥ Y

Ly

t−Ly
− Y

Ly

s−Ly
∥< e

) =
C1

(
m+ Ly, e

)
C2

(
Ly, e

) ,
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when one tests the existence of the nonlinearity of a sequence {Yt}, instead of testing the

linearity hypothesis stated in (2), one could test the following hypothesis:

H0 :
C1

(
m+ Ly, e

)
C2

(
Ly, e

) − C3

(
m, e

)
= 0 (8)

where ci is defined in (7). The series {Yt} is said to possess nonlinearity if the hypothesis

H0 in (8) is rejected.

Under Definition 2.1, the nonlinearity test statistic is given by

Tn =
√
n

(
C1

(
m+ Ly, e, n

)
C2

(
Ly, e, n

) − C3

(
m, e, n

))
, (9)

where

C1

(
m+ Ly, e, n

)
≡ 2

n(n− 1)

∑∑
t<s

I
(
y
m+Ly

t−Ly
, y

m+Ly

s−Ly
, e
)
;

C2

(
Ly, e, n

)
≡ 2

n(n− 1)

∑∑
t<s

I
(
y
Ly

t−Ly
, y

Ly

s−Ly
, e
)
;

C3

(
m, e, n

)
≡ 2

n(n− 1)

∑∑
t<s

I (ymt , y
m
s , e) ;

I(x, y, e) =

{
0, if ∥x− y∥ > e

1, if ∥x− y∥ ≤ e
;

t, s = Ly + 1, · · · , T −m+ 1; n = T + 1−m− Ly; and T is the length of sequence Yt.

We note that the idea of nonlinearity used in Definition 2.1 is that if A and B are

independent, then Pr (A|B) = Pr (A). If equation (6) holds, we will have
{
∥ Y

Ly

t−Ly
−

Y
Ly

s−Ly
∥< e

}
is independent of

{
∥Y m

t − Y m
s ∥ < e

}
, and thus, the past of Yt could not be

used to explain the present and the future of Yt and, in this situation, we claim that Yt

does not contain any nonlinearity. We establish the following property for our proposed

test statistic Tn defined in (9):

Theorem 2.1 Assuming that {Yt} is strictly stationary, weakly dependent, and satis-

fies the conditions1 stated in Denker and Keller (1983) and for any given values of m,

1See Conditions (a), (b), and (c) in Theorem A1 in the Appendix.
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Ly, and e > 0 defined in Definition 2.1, if {Yt} does not possess any nonlinear feature,

then the test statistic defined in (9) is distributed as N
(
0, σ2(m,Ly, e)

)
asymptotically. A

consistent estimator of the variance σ2(m,Ly, e) follows:

σ̂2
(
m,Ly, e

)
= ∇̂f(θ)

T

· Σ̂ · ∇̂f(θ)
T

,

in which

∇̂f(θ) =

[
1

θ̂2
,
−θ̂1

θ̂22
,−1

]T
=

[
1

C2

(
Ly, e, n

) ,−C1

(
m+ Ly, e, n

)
C2

2

(
Ly, e, n

) ,−1

]T
and each component Σi,j (i, j = 1, 2, 3) of the covariance matrix Σ is given by

Σi,j = 4 ·
∑

k≥1 ωkE(Ai,t · Aj,t+k−1),

where

ωk =

{
1 if k = 1

2, otherwise
, A1,t = h11

(
y
m+Ly

t−Ly
, e
)
− C1(m+ Ly, e) ,

A2,t = h12

(
y
Ly

t−Ly
, e
)
− C2(Ly, e) , A3,t = h13 (y

m
t , e)− C3(m, e) ,

zt = Y
m+Ly

t−Ly
, and h1i(zt), i = 1, · · · , 3, is the conditional expectation of hi(zt, zs) given

the value of zt as follows:

h11

(
y
m+Ly

t−Ly
, e
)
= E

(
h1

∣∣ ym+Ly

t−Ly

)
, h12

(
y
Ly

t−Ly
, e
)
= E

(
h2

∣∣ yLy

t−Ly

)
, h13 (y

m
t , e) = E

(
h3

∣∣ ymt ) .
Moreover, a consistent estimator of Σi,j element is given by:

Σ̂i,j = 4 ·
K(n)∑
k=1

ωk(n)

[
1

2(n− k + 1)

∑
t

(
Âi,t(n) · Âj,t−k+1(n) + Âi,t−k+1(n) · Âj,t(n)

)]
,
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in which t = Ly + k, · · · , T −m+ 1, K(n) = [n1/4], [x] is the integer part of x,

ωk(n) =

{
1, if k = 1

2
(
1− [(k − 1)/K(n)]

)
, otherwise

,

Â1,t(n) =
1

n− 1

(∑
s̸=t

I
(
Y

m+Ly

t−Ly
, Y

m+Ly

s−Ly
, e
))

− C1

(
m+ Ly, e, n

)
,

Â2,t(n) =
1

n− 1

(∑
s̸=t

I
(
Y

Ly

t−Ly
, Y

Ly

s−Ly
, e
))

− C2

(
Ly, e, n

)
,

Â3,t(n) =
1

n− 1

(∑
s̸=t

I
(
Y m
t , Y m

s , e
))

− C3

(
Ly, e, n

)
,

t, s = Ly + 1, · · · , T −m+ 1 .

The hypothesis H0 defined in (2) is rejected at level α if∣∣∣Tn

∣∣∣ > N
(α
2
; 0, σ̂2(m,Ly, e)

)
,

where Tn is defined in (9). In this situation, Yt is concluded to possess nonlinearity.

We suggest academics and practitioners could consider to standardize the variable,

say, for example, Yt, before conducting the test. The reason for standardization is that

the value of e to be chosen depends on the standard deviation σ of Yt. The larger the

standard deviation, the larger e should be chosen. Thus, standardizing the variable under

examination allows us to choose a similar value of e for different magnitudes of Yt in

practice.

3 Simulation

In this section, we illustrate the superiority of the nonlinearity test we developed in Section

2 by conducting simulation to compare the performance of our proposed test and that

of the test developed by Tsay (1986). For simplicity, we call the test developed by Tsay

(1986) “Tsay test” and the test developed in this paper “HWBZ test.”

As Volterra expansion in (1) is one of the most commonly used forms for a nonlinear

and stationary time series while threshold autoregressive model is another popular method
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in nonlinear analysis, in this paper we first use the following two models in our simulation

study:

Model A : Yt = εt + βεt−1εt−2 , and

Model B : Yt =

{
−βYt−1 + εt Yt−1 ≥ 0

βYt−1 + εt Yt−1 < 0
, (10)

where {εt} is assumed to be i.i.d. N(0, 1) for both Models A and B and |β| < 1 for

Model B. Readers may refer to Tsay (1986) for more information about Model A and we

modify a simple threshold autoregressive model in Fan and Yao (2003) to get Model B.

We use 10,000 replications to generate different samples in our simulation to compare the

performance of our test with Tsay’s test.

In addition, since GARCH models are found in many financial data, in this paper

we also conduct simulation for the GARCH model. We will conduct simulation for the

GARCH(1,1) model such that

Model C : Yt = ϕ0 + ϕ1Yt−1 + εt, εt = ht · et (11)

in which ht =
√

α+ β1ε2t−1 + β2h2
t−1, et is assumed to be i.i.d. N(0, 1). For simplicity, we

consider ϕ0 = ϕ1 = α = 0.5, 0 ≤ β1, β2 < 1 and β = β1 + β2 < 1, and β1 = β2 = β/2,

β = 0.1, 0.2, · · · , 0.9 in our simulation.

Let R be the times of rejecting the null hypothesis that Yt does not possess any

nonlinearity in the 10,000 replications at level 5%, and thus, the empirical power is then

R/10, 000. To conduct our simulation, we let Ly = m = 1 and e = 1.5 for the HWBZ

test and let M = 4 for the Tsay’s F test, this is the same M used in Tsay (1986) in his

simulation.

We first conduct simulation for the HWBZ test for the sample size T = 100 and 200

for both Models A and B. The results are plotted in Figures 1 and 2, respectively. For

Model B, we only conduct simulation for β ≥ 0 due to the symmetry property of the

model. From both Figures 1 and 2, our findings show that (1) for both T = 100 and 200,

our test gets higher power when nonlinear feature weights more in absolute values, (2) for
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Figure 1: Empirical Power of the HWBZ test for different values of β in Model A.
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Note: The solid and dotted lines show the powers of the HWBZ test for different values of β in
Model A for the sample size T = 100 and 200, respectively. Simulation is conducted with the
test level α = 5% and 10,000 replications.

Figure 2: Empirical Power of the HWBZ test for different values of β in Model B.
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Note: The solid and dotted lines show the power of the HWBZ Test for different values of β in
Model B for the sample size T = 100 and 200, respectively. Simulation is conducted with the
test level α = 5% and 10,000 replications.
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Figure 3: Empirical Power of the HWBZ test for different values of β in Model C.
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Note: The solid and dotted lines show the power of the HWBZ test for different values of β in
Model D for the sample size T = 100 and 200, respectively. Simulation is conducted with the
test level α = 5% and 10,000 replications.

any β, the empirical power increases as the length T increases, and (3) when T = 200,

our test’s power quickly reach 1, inferring that our test is powerful and stable.

We turn to compare the power and size of our test with those of Tsay’s test for different

values of β in Models A and B. To do so, we conduct simulation and report the simulation

results in Figures 4 and 5. For Model A, we observe from Figure 4 that Tsay’s test is

more powerful than our proposed test for 0 < |β| < 1 whereas our proposed test is much

more powerful than Tsay’s test when |β| > 1. However, our simulation shows that (1)

the empirical power of Tsay’s test decreases sharply when |β| > 1 and (2) it decreases

further when the magnitude of |β| increases further after 1 and becomes stabilized at

power below 0.4 when |β| > 2. On the contrary, the empirical power of our proposed test

increases steadily as nonlinear weight |β| increases, and quickly increases to 1 when the

length T = 200. This shows that our proposed test is more stable than Tsay’s test.

For Model B, as displayed in Figure 5, the conclusion drawn from the results of our

simulation are similar to those for Model A: (1) Tsay’s test is more powerful than our

proposed test when |β| < 0.65 while our proposed test is more powerful afterward for
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both T = 100 and 200, and (2) the empirical power of Tsay’s test decreases sharply

when |β| > 0.65 and decreases further when the magnitude of β increases further whereas

the empirical power of our proposed test increases steadily as β increases, and quickly

increases to 1 for both T = 100 and 200. Thus, our proposed test is more stable than

Tsay’s test and is more powerful for large magnitude of β.

For Model C, we display our simulation results in Figure 6. From the figure, we

first find that our proposed test is more powerful than Tsay’s test in one region while

Tsay’s test is more powerful in another region for T = 100. However, when T = 200,

our proposed test is more powerful than Tsay’s test in nearly the entire range. Since the

quality of a sequence is more reliable when the sequence is longer, we could say that our

propose test is more powerful than Tsay’s test for larger T .

In short, our simulation shows that for Model C our proposed test is more powerful

than Tsay’s test for larger T . However, for Models A and B, our proposed test is more

powerful than Tsay’s test in one region while Tsay’s test is more powerful in another

region. We note that since there are too many nonlinearity forms, it is not surprised that

no single test will dominate the others in testing nonlinearity feature. Thus, we are not

surprised that Tsay’s test is more powerful than ours in a region while our test is more

powerful in another region. Nonetheless, to be stable is one of the most important features

for a test statistic and since our proposed test more stable than Tsay’s. In addition, the

power of our proposed test reaches one quickly when the magnitude of β increases is a

desirable property while the power of Tsay’s test is decreasing for Models A and B when

the magnitude of β increases is not a desirable feature. Thus, we claim that our test is a

more desirable test.

4 Illustration

In this section, we illustrate the applicability of the nonlinearity test we have developed in

Section 2 by applying our proposed nonlinearity test, Tsay’s test and some other related

statistics to test whether there exists any nonlinear feature in the sunspot data and stock
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Figure 4: Empirical Power of Tsay’s and HWBZ’s Tests for different values of β in Model
A.
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Note: The left panel shows the plot for the sample size T = 100 and the right panel displays
the plot for T = 200. The solid line exhibits the HWBZ’s test while the dashed line shows the
power of Tsay’s Test for different values of β in Model A. Simulation is conducted with the test
level α = 5% and 10,000 replications.

Figure 5: Empirical Power of Tsay’s and HWBZ’s Tests for different values of β in Model
B.
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The solid line exhibits the HWBZ’s test while the dashed line shows the power of Tsay’s Test
for different values of β in Model B. Simulation is conducted with the test level α = 5% and
10,000 replications.
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Figure 6: Empirical Power of Tsay’s and HWBZ’s Tests for different values of β in Model
C.
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The solid line exhibits the HWBZ’s test while the dashed line shows the power of Tsay’s Test
for different values of β in Model C. Simulation is conducted with the test level α = 5% and
10,000 replications.

market returns in this section.

4.1 Sunspots

Sunspots refer to dark spots on the surface of the sun related to the motion of the solar

dynamo. Johann Rudolf Wolf (1816-1893) introduces a formula for calculating the sunspot

numbers: R = k(10g + f), where g is the number of groups of sunspots, f is the total

number of individual spots, and k is a constant for the observations. To honor the

contribution by Johann Rudolf Wolf, it is common to call sunspot number “Wolf’s sunspot

number” (Izenman, 1983)

The earliest linear model built for the sunspot data is probably done by Yule (1927)

who introduces the class of linear autoregressive models to analyze the data. Since then,

the literature, see, for example, Moran (1954), of linear time series analysis of the sunspot

data has been growing exponentially. However, some works, see, for example, Tong and

Lim (1980) points out that linear model is not adequate for fitting the data and forecasting.

In this paper we illustrate the applicability of our proposed test and Tray’s test to

examine the nonlinearity in the quarterly Wolf’s sunspot numbers from the first quarter
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Figure 7: Wolf’s Sunspots Numbers
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Note: Quarterly Wolf’s sunspot numbers from first quarter of 1749 to first quarter of 2012.

of 1749 to the first quarter of 2012. Let Yt be Wolf’s quarterly sunspot numbers from

the first quarter of 1749 to the first quarter of 2012, we exhibit the time series plot of

the sunspot data in Figure 7. We first discuss how to use our test statistic to examine

whether there is any nonlinearity in {Yt}. To do so, as discussed in Section 2, we first fit

the data by using the following AR(p) model:

Yt =

p∑
i=1

ϕiYt−i + et, et ∼ WN(0, σ2) (12)

to the sunspot data. We find that the “best” linear model for the sunspot data is

Yt = 19.8849− 0.7051Yt−1 − 0.1549Yt−2 − 0.1873Yt−3 − 0.0834Yt−4 .

+0.1055Yt−6 + 0.0712Yt−7 + 0.0810Yt−9 + et . (13)

We exhibit the results in Table 1. Thereafter, we apply the Ljung-Box test to test the

hypothesis of no autocorrelations up to lag k for the residuals and display the results in

Table 2. In addition, we display the autocorrelations of the residuals in Figure 8. The

results from Table 2 and Figure 8 show that the autocorrelations of the residuals are not
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significantly different from zero for any lag up to 42,2 and thus, one may conclude that

the AR model in (13) is adequate and there is no other linear relationship remained in

the residuals.

Table 1: The Results of the Linear AR Model

Parameter Estimate Standard Error t Value
intercept 19.8849 2.2872 8.694***

Yt−1 0.7029 0.0305 23.004***
Yt−2 0.1545 0.0375 4.114***
Yt−3 0.1872 0.0378 4.948***
Yt−4 0.0883 0.0353 2.497**
Yt−6 -0.1049 0.0353 -2.965***
Yt−7 -0.0722 0.0346 -2.083**
Yt−9 -0.0830 0.0247 -3.355***

Note: This table exhibits the results of the linear AR model as shown in (13).

*, **, and *** mean significant at levels 10%, 5%, and 1%, respectively.

Table 2: Autocorrelation Check: The Result of Ljung-Box Test

Check for Sunspots Numbers Check for Residuals
Lag (k) df χ2(k) Lag (k) df χ2(k)

6 6 4075.119*** 12 5 6.632
12 12 4708.268*** 18 11 13.377
18 18 5146.997*** 24 17 18.366
24 24 6232.194*** 30 23 25.434
30 30 6540.412*** 36 29 33.231
36 36 7060.406*** 42 35 46.582

Note: The null hypothesis of Ljung-Box test is that the autocorrelations up to lag k in the
population from which the sample is taken are 0. χ2(k) is the test statistic with k degrees of
freedom. Readers may refer to Ljung and Box (1978) for more details of the test. The left
panel displays the values of χ2(k) for the Sunspots numbers while the right panel shows the
values for the residuals after fitting the linear AR model as shown in (13).

*, **, and *** mean significant at levels 10%, 5%, and 1%, respectively.

One may believe that the linear model in (13) fits the sunspot data well. To check

whether this is true, we apply the test we developed in Section 2 to examine whether there

2Readers may consider to apply the approach developed by Li (1992) to correct the residual autocor-
relations for nonlinear time series models.
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is sequential dependence within the standardized residuals,
(
êt − mean(êt)

)/√
var(êt),

obtained from fitting the linear model in (12). To do so, we use Ly = m = 1 and e = 1.5

in our proposed test, as the same values being used our simulation. The p value of the

HWBZ test is 6.9837e−7, which strongly reveals some kind of dependence within the

residuals. Thus, applying our test, one could realize that there still exists nonlinearity

component in the sunspot data. This result is consistent with the findings by Tong and

Lim (1980), Tong (1983), and many others. In addition, we use Tsay’s test to detect the

nonlinearity in the Wolf’s Sunspots numbers. Its p value is 3.5416e−14, inferring that both

our proposed test and Tsay’s test draw the same conclusion that there exists nonlinearity

in the Wolf’s Sunspots numbers.

Figure 8: Plots of the Autocorrelation Functions
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Note: The left panel exhibits the ACF for Sunspots numbers whereas the right panel displays
the ACF for the residuals after fitting the linear AR model as shown in (13).

4.2 Random Walk Hypothesis and Nonlinearity in the Efficient
Market

We turn to apply our proposed statistics to test for the random walk hypothesis (RWH).

There are several approaches to test for RWH. For example, one could apply a unit root

test, see, for example, Tiku and Wong (1998) and the references therein to test whether

the data are stationary. If the stationarity is rejected, the RWH is supported; otherwise,

the RWH is rejected. Lo and MacKinlay (LM, 1988) develop the variance ratio (VR)
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tests to test for the RWH. In addition, Chow and Denning (CD, 1993) use several VRs

for different holding periods to test whether the multiple VRs are jointly equal to one.

Wright (2000) modifies the VR tests by considering “rank and sign” whereas Whang and

Kim (2003) propose to use “subsampling” technical to improve the VR tests. Kim (2006)

adopts a resampling method to estimate the sampling distribution of the VR statistic

that can be used to data with conditional and unconditional heteroscedasticity. Most of

literature of the RWH examine the RWH on stock prices. However, there are still some

papers examine the RWH on other variables, e.g. exchange rates, currency futures prices,

gross national product. In this paper, we illustrate the applicability of the nonlinearity

test we developed to test for the RWH for the Standard & Poor’s 500 index (S&P 500),

to test whether it follows a random walk model.

The S&P 500 is a capitalization-weighted index of the prices of 500 USA stocks listed

on the NYSE or NASDAQ with largest capitalization. The data are obtained from Datas-

tream. In this paper we analyze the weekly index of S&P500 from January 1, 1950 to

December 31, 2011, totally 62 years. We denote the S&P500 index at week t as Pt and

follow Lo and MacKinlay (1988) to analyze its logarithm so that we define Xt = lnPt, as

the logarithm of the index process. In this paper we use the following null hypothesis H0:

Xt = µ+Xt−1 + εt (14)

to test whether the log S&P 500 follows a random walk (RW) model stated in (14) in

which µ is a drift parameter and εt is the random disturbance term with zero mean and

does not possess any nonlinearity. We exhibit the time series plots of the S&P 500 and its

logarithm in Figure 9. If ε̂t obtained from equation (14) possesses any nonlinear feature,

we will reject the RWH and conclude that Xt does not follow the RW model in (14). We

note that the advantage of using our statistic is that if we reject H0, we not only conclude

that Xt does not follow the RW model, we also know that there is nonlinear feature for

Xt, and thus, academics and practitioners could think of any nonlinear component to be

included in (14) to improve the model. We also note that our statistic can test not only

the RW model stated in (14), but also any RW model with and without drift, any RW

model with break(s) in intercept(s) and/or trend(s), and actually any linear and nonlinear
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model as long as their residuals could be estimated. Once the residuals can be estimated,

one could use our proposed statistic to test whether there is any (additional) nonlinear

feature that should be included in the model.

Figure 9: Time Series Plots of S&P 500 Index and Its Logarithm
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Note: The data are from January 1950 to December 2011, totally 62 years.

We first fit Xt by the model in (14) and obtain its residuals ε̂t. We then standardize

the residuals and follow the idea from Hiemstra and Jones (1994) and Bai, et al. (2010,

2011) from causality to choose Ly = m = 1 and e = 1.5. In order to get more information

of the underlying series, we follow Lo and MacKinlay (1988) to examine the full period
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as well as different sub-periods. To form the sub-periods, we first cut the entire period

into two equally-distanced sub-periods, we then further cut them into 4 equally-distanced

sub-periods and report the test results in Table 3. For comparison, we also employ the

LM, CD, and Tsay tests in our analysis. The p-values of the HWBZ’s nonlinearity test

reported in the second column of Table 3 strongly reject H0, leading us to conclude that

ε̂t is nonlinear, and thus, we claim that ln S&P500 index Xt does not follow a random

walk model for the whole period as well as for any of the sub-periods. This result is

consistent with the results of Tsay’s test (reported in the third column of Table 3), LM

tests (reported in the fourth and fifth columns of Table 3) and CD tests (reported in

the sixth and seventh columns of Table 3) for the whole period as well as for any of the

sub-periods.

We note that one may also be interested in testing the martingale hypothesis (which

is a weak form about the efficient market) that Xt = ln(S&P500) is a martingale with

respect to some filtration (Fn); that is, to test whether the return sequence rt = Xt−Xt−1

forms a martingale difference (E(rt|Fn) = µ). To do so, one could use the wild bootstrap

Cramer von Mises test statistic (denoted as Cp) and wild bootstrap Kolmogorov-Smirnov

test statistic (denoted as Kp) (Domı́nguez and Lobato, 2003) to test whether the return

sequence {rt} is a martingale difference sequence. We denote the two martingale difference

test Cp and Kp as MTD and display the tests results in the fourth and fifth columns of

Table 3. The results lead us not to reject Xt to be a martingale at 5% for the whole

period as well as for any sub-period except for sub-period January of 1981 to December of

2011. We can find that the returns rt are serially uncorrelated, but dependent. Because

in this paper we are only interested in testing nonlinear feature in the random walk

model, not testing the martingale hypothesis. Thus, we skip detailed discussion on testing

the martingale hypothesis. Readers may refer to Shiryaev (1999) for more details and

discussions on testing the martingale hypothesis and the conjecture of the ‘martingale

property’ that generalizes ‘random walk’ conjecture in the concept of efficient market.
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Table 3: Test for the martingale and random walk hypothesis of the ln S&P 500 index.

Time period HWBZ Tsay MTD Chow-Denning
(p) (p) Cp(p) Kp(p) CD1 CD2

Jan, 1950 - Dec, 2011 5.2e-08 1.7e-05 0.2666 0.1833 190.90 141.35
Jan, 1950 - Dec, 1980 5.5e-05 8.1e-14 0.0900 0.0666 130.94 80.23
Jan, 1981 - Dec, 2011 4.4e-05 1.6e-05 0.0200 0.0266 133.85 99.18
Jan, 1950 - Jun, 1965 0.0044 0.0015 0.1233 0.0866 90.47 66.95
Jul, 1965 - Dec, 1980 0.0023 1.1e-11 0.4566 0.6033 80.41 43.57
Jan, 1981 - Jun, 1996 0.0001 0.0953 0.0833 0.1766 91.20 67.00
Jul, 1996 - Dec, 2011 0.0027 7.4e-05 0.0433 0.0600 84.24 50.63

Note:
1) H0 of HWBZ and Tsay test is: there is no nonlinearity in the return rt = Xt −Xt−1; H0 of
MTD (Cp and Kp) test is: the return rt = Xt −Xt−1 is a martingale difference sequence; H0

of CD test is: Xt in equation (14) is a random walk.
2) We report p-values for HWBZ, Tsay and MTD (Cp and Kp) tests and critical values for CD
tests.
3) For HWBZ test, we use Ly = m = 1 and e = 1.5 in the estimation. For Tsay test, we choose
M = 4 (readers may refer to Section 2.1 for the definition of M).
4) For MTD (Cp and Kp) tests, the number of bootstrap replications is 300, and the lag value
is 1.

5) For CD tests, CD1 tests for i.i.d. εt whereas CD2 tests for uncorrelated with possible

heteroskedasticity εt. The 10%, 5%, and 1% critical value of CD test are 2.2262, 2.4909, and

3.0222, respectively. The vector of holding periods p is (2, 4, 8, 16) for this multiple test.
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5 Conclusion

There are many works in the development of nonlinearity tests. A nonlinearity test could

be portmanteau. It could also be parametric, semi-parametric, or nonparametric. In

general, the number of parameters in a nonlinearity test could be very large, this could

affect the performance of the existing nonlinear tests. In addition, nonlinearity may

occur in many and could be infinitely ways. Thus, it is not our intention to develop

a single test that outperforms all others in examining nonlinearity. In this paper we

focus on nonlinearity within a stationary time series, which is often ignored by academics

and practitioners, especially in applied science such as finance and economics. We add

a reliable, user-friendly, desirable, and powerful test to the nonparametric nonlinearity

test category in the literature. As a nonlinear feature is in general more complex and

more difficult to model than a linear one, it is not reasonable to restrict the form of the

nonlinearities at the stage of detecting them within a sequence. Our test satisfies this

criterion and circumvents the limitation of using too many parameters like those using

the Volterra expansion.

To demonstrate the performance of our proposed nonlinear test, we conduct simulation

study on two types of threshold autoregressive models and GARCH models. Our simula-

tion reveals that for the GARCH models, our proposed test is more powerful than Tsay’s

test for large sample size. On the other hand, for the threshold autoregressive models,

our simulation shows that Tsay’s test is more powerful than ours in a region while our

test is more powerful in another region. We note that this finding is not surprised because

there are many nonlinearity features, and thus, there may not exist any single test that

could outperform the others in examining nonlinearity. However, our simulation shows

that our proposed test has three desirable features than Tsay’s test: (1) our proposed test

is more stable, (2) the power of our proposed test increases while that of Tsay’s test could

decrease when the magnitude of parameter increases, and (3) the power of our proposed

test reaches one quickly but the power of Tsay’s test is decreasing when the magnitude of

β increases. Thus, the results of our simulation support our claim that our test is a more

desirable test.
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To demonstrate the applicability of our proposed test, we first apply both Tsay’s

test and the nonlinearity test we developed in this paper to test whether there exists any

nonlinear feature in the sunspot data, one of the most typical nonlinear cases. Thereafter,

we apply our proposed nonlinearity test, Tsay’s test, and Chow-Denning’s variance ratio

statistics to test whether the S&P 500 index follows a random walk model. Our findings

show that both our proposed test and Tsay’s test draw the same conclusion that there

exists nonlinearity in the Wolf’s Sunspots numbers. Our findings also reveal that our

proposed test, Tsay’s test, and Chow-Denning’s variance ratio statistics draw the same

conclusion that the S&P 500 index does not follow random walk models. The test result

from our proposed statistic is consistent with those of the tests developed by Tsay (1986)

and others.

At last, we note that our test could not only be used to detect any nonlinearity for

the variable being examined. If one believes a predetermined model could be fitted to the

variable and its residuals could be estimated. Then, the test developed in this paper could

also be used to examine whether there is an nonlinearity in the residuals and, in turn,

test whether the model being used to fit to the variable is appropriate. For example,

if one believes that a model, say Model D, which could be linear or nonlinear, is the

right model for the data, and thus, she could fit Model D to the variable and obtain

its residuals. Thereafter, she could apply our proposed statistic to test whether the null

hypothesis of linearity is rejected for the residuals. If it does not, this infers that Model

D is appropriate to be used for the variable being studied. On the other hand, if our test

rejects the linearity of the residuals, this infers that the model is not appropriate and one

may then think of any nonlinear component to be included in Model D to make it more

appropriate to the data. However, if one could not find any model to be appropriate for

the data but one could find two models, say, Model D and Model E, that could be the

best choices for the data and one could estimate the residuals for both Models D and E.

Then, one could still apply our proposed statistic to test for their residuals and the one

with smaller p-value will be the more desirable model for the data.

There are many nonlinear time series models. One may not be able to estimate the
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residuals for some nonlinear time series models. However, it is still possible for academics

and practitioners to estimate the residuals for some nonlinear time series models, for

example, one could choose a few terms such as the linear, quadratic and cubic terms in

the Volterra expansion to be the one’s desired nonlinear time series models. As long as

the residuals of the nonlinear time series models can be estimated, one could apply the

test developed in this paper to test whether there is still any nonlinearity in the residuals.

If the null hypothesis of linearity is not rejected, then one could conclude that the chosen

nonlinear time series model is appropriate.
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