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Illiquid Life Annuities∗

Hippolyte d’Albis† Johanna Etner‡

Abstract

In this article, we consider illiquid life annuity contracts and show that they may
be preferred to those illustrated by Yaari (1965). In an overlapping-generation
economy, liquid life annuities are demanded only if the equilibrium is dynamically
inefficient. Conversely, an equilibrium displaying a positive demand for illiquid life
annuities is efficient. In this latter case, the welfare at steady-state is larger if
illiquid life annuity contracts are available.

1. Introduction

In this article, we challenge the common thought that the life annuity contract proposed
by Yaari in his seminal 1965 paper is optimal. We indeed show, in a standard neo-classical
framework, that another contract, which actually resembles more the contracts offered
by annuity providers, may be preferred by rational individuals.

The economic theory of annuities has been strongly influenced by Yaari (1965), a
paper that has studiedoptimal demand for annuities in a life-cycle model with or without
bequest motives. The financial asset that is named “annuity” by Yaari has positive
returns if the bearer is alive and zero if he is not. Annuities are nevertheless demanded
since their returns are larger than the one yielded by risk-free bonds. The difference
between the two yields is the annuity premium, which is said to be fair when it equals
the inverse of the survival probability. Importantly, as the individual ages, the premium
increases. This characterization of an annuity has been quite influential and has lead to
numerous studies (See among others Davidoff et al, 2005, and Sheshinski, 2008).

However, there are many types of annuity contracts (Cannon and Tonks, 2008). Their
features are quite different from Yaari’s annuities. For instance, the premium is age-
independent. The individual purchases some annuities during youth and, after a given
age -let’s say post retirement- he periodically receives a fixed amount as long as he
survives. Another feature is that the contract is irreversible. Once payments have begun,
one can not recover the amount invested. An implicit assumption in Yaari is that agents,
upon survival, receive the capital and the interests of their annuity. This means that they
are in position to renegotiate their contract at each period, hence the premium increases
as the individual ages.
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disclaimer applies.
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In this article, we propose a standard framework in which the individual has the
choice between two types of life annuity contracts. The first one, which we name here
“flexible”, is the one proposed by Yaari (1965). The second one, which we name “illiquid”,
is irreversible and proposes age-independent returns. In both case, we suppose that the
annuity premium is such that annuity providers make no profit. Illiquid annuities have
been introduced in life-cycle models by Horneff et al. (2008) and Peijnenburg et al.
(2011) in order to discuss the issue of low demand for annuities. Our purpose is to study
analytically the equilibrium and welfare consequences of the existence of such contracts.

First, we analyze the consumer’s optimal decisions over the life-cycle under uncertain
lifetime. We consider a setting in which the individual ages, which more precisely means
that survival probabilities decrease with age. We therefore depart from the two-period
life-cycle setting, which would not have allowed us to make a clear distinction between
increasing and fixed returns. We show that illiquid annuities are preferred to flexible ones
if the expected returns of the first are sufficiently greater than those of the second. This is
the consequence of an arbitrage between more flexibility and more returns. We are aware
that partial equilibrium analysis may bias the evaluation of the efficiency of annuity
markets (Heijdra and Mierau, 2012) and, therefore, we move to a general equilibrium
analysis.

Second, we study an overlapping generation economy with neoclassical production
(Diamond, 1965), in which returns of both contracts are determined at the equilibrium.
We show that illiquid annuities are preferred when the equilibrium is dynamically efficient,
while flexible annuities are preferred when it is inefficient. This result is based on the fact
that illiquid annuities represent a transfer from one generation to the next generation.
When the population growth rate is relatively low, which is the case when the equilibrium
is efficient, this transfer is inexpensive and the investment is profitable. We then discuss
the optimality of both annuity contracts. In particular, for the dynamically efficient
equilibrium, the welfare at steady-state is larger if illiquid life annuity contracts are
available.

The efficiency of transfer from the old to the young has been shown in overlapping
generation models with accidental bequests by Pecchenino and Pollard (1997), Feigen-
baum et al. (2013) and Heijdra et al. (2014). In equilibrium, partial annuitization
may dominate full annuitization strategies as they imply an unintended transfer to the
next generation and an increase in savings. Our results differ from theirs for two reasons.
First, we assume full annuitization and compare annuity contracts. Second, we show that
illiquid annuities are preferred at both the individual level and the long-run equilibrium.

Finally, to test the robustness of our results, we propose three extensions of our model
by considering successively a background risk, a bequest motive and a subjective evalu-
ation of survival probabilities. We also discuss our result by introducing an alternative
annuity pricing where redistribution between cohorts is forbidden.

2. Individual behavior

2.1. Demographics

We consider an overlapping generations model in which agents live a finite yet uncertain
length of time. They live for a maximum of three periods, also called ages, which are
denoted i = {0, 1, 2}. The probability of being alive at age i, conditional on survival until
age i − 1, is denoted pi. Survival probabilities at each age are constant over time, but
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decrease with age.
Let Ni,t be the number of agents of age i at time t. At each time t = 0, 1, 2...,

N0,t, identical agents are born. Thus, the number of agents of age 1 born at time t is
N1,t+1 = p1N0,t and the number of agents of age 2 born at time t is N2,t+2 = p1p2N0,t.
Finally, we assume that the number of agents of age 0 grows at a constant rate, denoted
n, with n > −1:

N0,t = (1 + n)N0,t−1. (1)

2.2. Annuity markets

Agents can invest in two types of financial products: bonds and life annuities. The yield
on bonds is risk free: each unit of consumption invested at time t− 1 yields Rt units of
consumption at time t. As for annuities, two types of contracts are offered by annuity
providers. It is assumed that information on the probability of survival is perfect and that
markets for each contract are competitive, which implies that the proposed contracts are
fair. It is further assumed that a company cannot cross-subsidize the types of contracts
it offers. All these assumptions imply that the profit of annuity providers is zero for each
contract. The characteristics of the anuities are explained below.

The first annuity contract offered to agents is that found in most articles of the
literature, dating back to the seminal article of Yaari (1965). This is an actuarially fair
contract that can be renegotiated each time. If the agent survives, he recovers the capital
plus interest and can consume or invest again. Because of this feature, we refer to it
as a flexible annuity contract. Assuming zero profit as stated above, calculation of the
annuity yield is well known; it results from sharing, among the survivors of a cohort, the
capital plus the interest of the deceased agents. A unit of consumption invested at time
t − 1 by an agent of age i, i = {1, 2}, therefore yields Rt/pi+1 units of consumption at
time t, upon survival. We denote a0,t and a1,t+1 as the demand for flexible annuities at
ages 0 and 1 by an agent born at time t. At age 2, the demand for annuities must be
zero because the agent has reached, by assumption, the last period of life.

The second annuity contract proposed to agents has the following features: (1) the
investment must be made at age 0; (2) the capital cannot be recovered before age 2 and;
(3) the remuneration received is independent of age. This annuity is said to be illiquid
because, at age 1, the agent receives only the interest of his investment. Equivalently, it
can be said that the agent must invest at age 1 the same amount that he invested at age
0. We denote bt as the demand for illiquid annuities by an agent of age 0 at time t. To
calculate the annuity yield, the condition of zero profit for annuity providers is applied.
The companies collect at time t− 1 the agent’s savings and invest them at the risk-free
rate. At time t, the value of this investment, which is equal to

(N0,t−1bt−1 +N1,t−1bt−2)Rt, (2)

is redistributed among the surviving agents. If we denote Rt/πt as the yield at time
t for each unit of consumption invested in t − 1 or t − 2, we conclude that the amount
distributed must be equal to

(N1,tbt−1 +N2,tbt−2)
Rt

πt
. (3)
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Consequently, by equalizing (2) and (3), the inverse of the premium solves for the
following

πt =
p1 (1 + n) bt−1 + p1p2bt−2

(1 + n) bt−1 + p1bt−2
. (4)

If the demand for illiquid annuities are positive, it is easy to show that πt ∈ [p2, p1].
We conclude that the interest paid at age 1 is higher than that of the flexible annuities,
while the interest paid at age 2 is lower. Hence, the flexible contract is more profitable the
older the agent and illiquid annuities can be interpreted as an intergenerational transfer
from agents age 2 to agents age 1. This explains why the yield Rt/πt is a decreasing
function of the population growth rate, n. Finally, we note that in the limit case p1 = p2,
which is considered in Blanchard (1985), the yields of the two annuity contracts are equal.

In some countries, like the UK, the redistribution between cohorts of annuitants is
forbidden in order to guarantee sufficient assets to pay for annuitants in the distant future.
As we consider here a transfer from old generations to young ones, the sustainability of
the system is ensured. But, to put our results in perspective, we discuss this issue in
Section 5.

2.3. Consumer’s choice along the life cycle

Each agent chooses a portfolio and a savings strategy to achieve an optimal consumption
allocation between the different ages. The intertemporal expected utility of an agent of
age 0 at time t is the following,

u (c0,t) + θp1u (c1,t+1) + θ2p1p2u (c2,t+2) , (5)

where ci,t+i is the consumption at age i, and θ > 0 is a discount factor. The instan-
taneous utility function u, is increasing and concave, u′ > 0 and u′′ < 0, and is such that
lim
x→0

u′ (x) = +∞ and lim
x→+∞

u′ (x) = 0. The budget constraints are as follows: at time t,

the agent of age 0 receives a wage, denoted wt, which he allocates between consumption
and savings. It may consist of flexible annuities, a0,t, and illiquid annuity, bt. The budget
constraint at age 0 is:

c0,t = wt − a0,t − bt. (6)

We note that investment in risk-free bonds is not modeled here because it is never an
optimal strategy. Furthermore, short selling constraints are imposed on both investments,
which together with positivity constraints on consumption allow us to eliminate the
strategy that consists of borrowing an infinite amount of one asset to purchase an infinite
amount of the other one.

a0,t ≥ 0, bt ≥ 0, c0,t ≥ 0, c1,t+1 ≥ 0, c2,t+2 ≥ 0. (7)

At time t + 1, the agent receives the capital and interest of his flexible annuity in-
vestment and the interest of his illiquid annuity investment. These financial revenues are
used by the agent to finance his consumption and savings in the form of flexible annuities,
for which the demand is denoted a1,t+1. Note that no borrowing constraint is imposed on
a1,t+1 in this basic framework, an assumption that is discussed in Section 4. The budget
constraint at age 1 is:
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c1,t+1 = a0,t
Rt+1

p1
+ bt

(
Rt+1

πt+1

− 1

)
− a1,t+1. (8)

At time t + 2, which corresponds to the last period of life of the agent, consumption
is equal to the capital and interest of his flexible and illiquid annuity investments. The
bounded lifespan hypothesis implies that the capital invested in illiquid life annuities is
recovered at age 2. The budget constraint at age 2 is:

c2,t+2 = a1,t+1
Rt+2

p2
+ bt

Rt+2

πt+2

. (9)

Remark.The assumption of the recovery of capital at age 2 is necessary as death is
certain at the end of the period 2. This assumption is the counterpart of a transversality
condition that should be introduced in a more realistic model with a large number of
periods of life where survival probabilities converge to 0 when age tends to infinity. In
such a model the annuity income would be the expected present discounted value of the
annuity payments, if the contract is fair (Inkmann et al., 2011).

The problem of the agent is to choose {c0,t, c1,t+1, c2,t+2, a0,t, bt, a1,t+1} that maximizes
(5) subject to (6), (7), (8) and (9).

Let us denote:

Rt+1 :=
p1
πt+1

Rt+1 − p1
(

1− p2
πt+2

)
. (10)

Our first result is the following.

Proposition 1. The optimal portfolio satisfies:
bt > 0 and a0,t = 0 if Rt+1 > Rt+1

bt = 0 and a0,t > 0 if Rt+1 < Rt+1 (11)

A portfolio satisfying bt > 0 and a0,t > 0 can be optimal only if Rt+1 = Rt+1.
Proof. See Appendix.

Through πt+1 and πt+2 given in (4), we see that Rt+1 is affected by the demands for
annuities by past and future generations. In particular, Rt+1 increases with bt−1 and
decreases with bt+1. Because the illiquid annuity contract acts as a transfer from the
oldest to the youngest, the more it is demanded by the previous generation, the more the
comparative advantage increases, but the more it is demanded by the next generation,
the more the comparative advantage decreases. We also note that the yields of the two
contracts are equal in the limit case p1 = p2.

With Proposition 1, we have seen that the portfolio is generically composed of a single
type of contract. The optimal consumption allocation of the agent then depends on the
chosen contract. If flexible annuities are chosen at age 0, the result is typical of that
found in the literature: consumption dynamics are independent of survival probabilities
and increase according to the ratio of the interest factor over the discount factor (Yaari,
1965). Conversely, if illiquid annuities are chosen, the optimal consumption dynamics
can be characterized by the following proposition.
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Proposition 2. Suppose that Rt+1 > Rt+1. The optimal consumption allocation satisfies:

u′ (c0,t)

u′ (c1,t+1)
>
u′ (c1,t+1)

u′ (c2,t+2)
ifRt+1 ≥ Rt+2. (12)

Thus, if the utility function is homogenous, inequality (12) can be rewritten as:

c1,t+1

c0,t
>
c2,t+2

c1,t+1

ifRt+1 ≥ Rt+2. (13)

Proof. See Appendix.

Provided that the interest rate is not increasing and that the utility function has
standard properties, the holding of a portfolio composed of illiquid annuities implies that
the consumption growth rate decreases with age. This is explained by the fact that the
marginal rate of substitution (MRS) between ages 0 and 1 is given by Rt+1, which is
higher than Rt+1 (as shown in Proposition 1), turns to be greater than the MRS between
ages 1 and 2, which is given by Rt+2. Between ages 1 and 2, all additional savings
are indeed invested in flexible annuities. The lower yield of investment opportunities
when the agent ages can explain the decrease in the growth of consumption. Introducing
illiquid annuities in a life-cycle model allows better reproduction of the stylized facts of
the individual’s consumption during his life cycle (see, e.g., Gourinchas and Parker, 2002
and Fernández-Villaverde and Krueger, 2007) even though annuities are fairly priced.1

It should be noted, moreover, that the MRS between periods 0 and 1 depends on the
survival probabilities even if the intertemporal utility function is additively separable.
For a given and constant demand for annuities, it can be shown that the relationship is
positive if the interest rate is higher than the population growth rate.

2.4. A numerical illustration

In this section we parametrize the model and solve it numerically. This serves to illustrate
our theoretical results, but also leads to some new insights. Each period corresponds to
ten years. Period 0 corresponds to ages 51-60, which is roughly the ages of annuity
purchasers in the OECD countries. Periods 1 and 2 correspond to ages 61-70 and 71-80,
respectively.

We compare a representative individual of the U.S. population and one of the Euro-
pean population. We assume that preferences are the same and that they differ according
to their survival probabilities and the prevailing interest rates. Preferences are represented
by a Constant Relative Risk Aversion utility function. We use fairly standard parameters
in the literature: the Relative Risk Aversion is equal to 1.6; the annual discount factor is
set to 0.996 (the ten-year discount factor is thus equal to 0.96).2 To compute the survival
probabilities, we used data from the United Nations World Population Prospects (the
2015 revision): p1 is the probability of surviving till age 65 conditional on being alive at
age 55 while p2 is the probability of surviving till age 75 conditional on being alive at
age 65. The long-term interest rates refer to government bonds maturing in ten years,

1Alternatively, a concave consumption can be obtained if annuities are not available (Davis, 1981)
or not fairly priced (Hansen and Imrohoroglu, 2008), or if agents are not utility maximizers (Drouhin,
2015).

2Our result are robust to other relevant values of RRA.
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we use OECD data.3 The wage is normalized to 10 for each individual. Finally, if the
illiquid annuity market is created, we assume that the premium for both periods are the
same for all countries. We fixed their level to an intermediary one between the minimum
value of p1 and the maximum value of p2, here π1 = π2 = 0.9. Table 1 presents the main
parameter values.

θ = 0.96 One-period discount factor
RRA = 1.6 Relative Risk Aversion
w = 10 Initial wage
RUS

1 = 1.0214 Risk-free yield at period 1 in the U.S.
RUS

2 = 1.032 Risk-free yield at period 2 in the U.S.
REU

1 = 1.0096 Risk-free yield at period 1 in the E.U.
REU

2 = 1.014 Risk-free yield at period 2 in the E.U.
π1 = 0.94 Illiquid annuity premium at period 1
π2 = 0.94 Illiquid annuity premium at period 2

Table 1: Parameters’ values

From Figure 1, we can see that illiquid annuities are not demanded at the beginning.
The yields are too low to be attractive compared to the ones for flexible annuities. Fol-
lowing Proposition 1, R1 is lower than R1 for all countries. Considering the demographic
scenarios used by UN, the probabilities of surviving will increase and the probabilities in
the U.S. will be higher than the European ones. As a consequence, the demand for illiq-
uid annuities appears earlier in U.S. than in the E.U. In our simulations, U.S. households
have a positive demand for illiquid annuities in 2030-2035 while E.U. households have a
positive demand in 2045-2050.

Insert Figure 1.

3. General equilibrium analysis

In the previous section, we showed that there exists a set of interest rate values for which
illiquid annuities are purchased by agents. In this section, we analyze the choice of agents
when prices are determined by the equilibrium conditions in all markets.

3.1. Annuities and the efficiency of the equilibrium

The production side of the model is standard. There exists a unique good that is produced
by many firms operating in a perfectly competitive market. The production function
displays constant returns-to-scale and satisfies the Inada conditions. We assume that
only agents of age 0 are working and denote by kt the capital stock per worker at time t.
Assuming that capital depreciation rate is 100% per period, the optimality conditions of
the firms can be written as:

wt = f (kt)− ktf ′ (kt) (14)

Rt = f ′ (kt) .

3OECD(2016), long-term interest rates (indicator) doi: 10.1787/2cc37d77-en (Accessed on 27 May
2016).
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The equilibrium condition on the capital market is satisfied if the capital stock at
time t + 1 is equal to the sum of the savings of agents born at times t and t − 1. This
condition can be written as:

kt+1 =
a0,t + bt
1 + n

+
p1 (a1,t + bt−1)

(1 + n)2
. (15)

At the intertemporal equilibrium, agents and firms behave optimally and markets
clear. In what follows, we focus on a steady-state analysis, whose existence is proven
below.

Lemma 1. There exists a steady-state equilibrium.
Proof. See Appendix.

Let a starred variable denote the steady-state equilibrium value of the considered
variable. Depending on the model parameter values, the interest rate at steady-state may
be higher or lower than the population growth rate. It is well known that a converging
trajectory to such a steady-state is efficient when f ′(k∗) ≥ 1 +n and inefficient otherwise
(Cass, 1972, De La Croix and Michel, 2002). In the remainder of this article, we will
compare various steady-states that could emerge for various parameter configurations. In
particular, we will compare the equilibrium outcomes when the steady-state is efficient
(f ′ (k∗) ≥ 1 + n) and when it is not (f ′ (k∗) < 1 + n).

The following proposition, which is the counterpart at equilibrium of Proposition 1,
characterizes the portfolio choices of agents based on the efficiency of the steady state.

Proposition 3. At the steady-state equilibrium, the optimal portfolio satisfies:{
b∗ > 0 and a∗0 = 0 if f ′ (k∗) > 1 + n,
b∗ = 0 and a∗0 > 0 if f ′ (k∗) < 1 + n.

(16)

A portfolio satisfying b∗ > 0 and a∗0 > 0 can be optimal only if f ′ (k∗) = 1 + n.
Proof. See Appendix.

Proposition 3 states that if the equilibrium is dynamically efficient, agents hold illiquid
annuities in the steady state. It is only when the equilibrium is inefficient that they are
not held. The proof is simple and is based on the difference between the yields offered
by flexible and illiquid annuities. Using equations (4), (10) and (15), written in steady
state, we observe that R

∗
can be written as a linear function of the marginal productivity

of capital:

R
∗

=
1 + n+ p1
1 + n+ p2

f ′ (k∗)− (p1 − p2) (1 + n+ p2)

1 + n+ p2
(17)

The yield on illiquid annuities is greater than that on flexible life annuities if, and only if,
it is greater than 1 +n, the population growth factor. The figure below shows the spread
in yields as a function of the steady state interest factor R∗.

Insert Figure 2.

The intuition behind the result stated in Proposition 3 is based on the fact that illiquid
annuity represents a transfer from one generation to the next. When the population
growth rate is relatively low, which is the case when the equilibrium is efficient, this
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transfer is inexpensive and the investment is profitable. Conversely, when the growth
rate is high, illiquid annuity investment is unprofitable. Finally, at the Golden Rule,
flexible and illiquid annuities have exactly the same profitability. In fact, illiquid life
annuities are the opposite of a Pay-As-You-Go pension system, which is a transfer to the
older generation and a profitable investment when the equilibrium is inefficient. A Pay-
As-You-Go pension system has been shown to reduce welfare (Bruce and Turn, 2013).
In the next section, it is shown that illiquid life annuities may have a positive impact on
welfare.

3.2. Annuities and welfare at steady-state

The next step concerns the welfare of an agent in the steady state. We have seen that
when the equilibrium is efficient, illiquid annuity is preferred to flexible annuity. This
has been established for an equilibrium interest rate associated to the equilibrium level
of capital per worker. It does not, however, take into account the fact that the capital
per worker may be different in an economy where illiquid annuities are available, versus
one where they are not. Therefore, to evaluate the effect of the supply of illiquid annuity
contracts on welfare, we proceed as follows: we compare the welfare obtained in an
economy where the two types of contracts are offered to welfare obtained in an economy
where only flexible annuities are available. The result of this comparison is presented in
the following proposition.

Proposition 4. Let f ′ (k∗) > 1 +n. The welfare at the steady-state equilibrium is larger
if illiquid annuity contracts are available.
Proof. See Appendix.

In the proof of Proposition 4, we show that the introduction of illiquid annuity con-
tracts increases the capital per worker in the steady state. The intuition for this result
is the following: as it induces a shift to youth, illiquid annuities stimulate savings. This
increase is conducive to steady-state welfare when the equilibrium is inefficient, as the
utility increases with capital in that case. The proof of Proposition 4 is based on the
assumption of the existence of a unique steady state. In the case of multiple equilibria,
the same comparison can be made using the stability properties.

In the long run, agents benefit from the existence of an illiquid annuity market pro-
vided that the equilibrium is efficient. However, the existence of an illiquid annuity
market in the steady state depends on the decisions made by agents along the transitory
path. This is demonstrated in the following proposition.

Proposition 5. Illiquid annuity contracts are offered in the steady state only if all
previous generations have purchased illiquid annuity.
Proof. See Appendix.

Proposition 5 shows that the Pareto optimality of illiquid annuity contracts at steady-
state is not a sufficient condition for the existence of such a market. While the generation
born in t chooses not to invest in illiquid annuities, we see, by using equation (4), that
the preceding generation benefits at age 2 from a yield equal to Rt+1/p2, which s equal
to the one of flexible annuities, and the generation that follows would settle at age 1 for
a yield equal to Rt+2/p1. As this yield is equal to one of flexible annuities, the generation
born at t+ 1 has no interest in investing in illiquid annuities, after which the contract is
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never requested. We conclude that if it exists, the illiquid annuity contract represents a
Pareto improvement for all generations.

Equivalently, we note that illiquid annuities will never be demanded if the contract is
not available at the beginning of time t = 0, that is to say, if agents born at t = −1 do not
have illiquid annuities in their portfolio at t = 0. If the contract does not initially exist,
it will not appear spontaneously in a market economy. This fact makes it necessary to
intervene in order to possibly compensate for earlier generations, and in order to increase
the welfare of future generations. Although it is not sufficient, this result may also help
understand the low participation in annuity markets (for a recent survey on the annuity
puzzle, see Benartzi et al. 2011).

In this section, we have presented the conditions for the existence of an illiquid annuity
market and demonstrated the Pareto improvement that it generates. In the next section,
we discuss the robustness of our results.

4. Robustness

The results presented above are not changed if we consider alternative assumptions about
the agents’ preferences and the environment in which they make their decisions. We
consider, in particular, a non-borrowing constraint at age 1, possibly with a background
risk that may affect consumption at ages 1 and 2, an assumption of bequest motivated by
joy-of-giving, and finally, a subjective evaluation of the survival probabilities. We show
that in all these cases, Proposition 1 is not changed.

The first extension we consider is a non-borrowing constraint at age 1. In our frame-
work, this implies that selling annuities short, or equivalently purchasing life insurance
contracts (Bernheim, 1991), is not allowed. We therefore add the following inequality to
the optimization problem described above:

a1,t+1 ≥ 0. (18)

Proposition 1 is modified as follows.

Proposition 6. Let the agent maximize (5) subject to (6), (7), (8), (9) and (18). The
optimal portfolio satisfies: bt > 0 if Rt+1 > Rt+1,

bt = 0, a0,t > 0, a1,t > 0 if Rt+1 < Rt+1.
(19)

A portfolio satisfying bt > 0 and a0,t > 0 can be optimal only if Rt+1 ≥ Rt+1. In the case
Rt+1 > Rt+1, a0,t > 0 can be optimal only if a1,t+1 = 0.
Proof. See Appendix.

With proposition 6, we see that introducing a non-borrowing constraint at age 1 barely
modifies the optimal portfolio. Constraint (18) is binding only if the demand for illiquid
annuities is positive, as the consumption at age 2 would be otherwise zero. Provided
that constraint (18) is binding, the MRS between ages 0 and 1 is still greater than Rt+1

while remaining lower than Rt+1, whereas between ages 1 and 2 is greater than Rt+2. In
a nutshell, it is the dynamics of consumption that are modified by the non-borrowing
constraint, not the optimal portfolio.

10



Let us now introduce a background risk that may reduce consumptions at ages 1
and 2. This risk can be interpreted as health shocks that require costly treatments and
against with it is not possible to be insured.4 Together with constraint (18), this shock
makes the annuity contract non flexible (Direr, 2010). Consumption at ages 1 and 2 are
then written as random variables, denoted c̃1,t+1 and c̃2,t+2, and the expected utility of
the agent of age 0 at time t reads as:

u (c0,t) + θp1Eu (c̃1,t+1) + θ2p1p2Eu (c̃2,t+2) . (20)

The optimal behavior of the agent is given in the following.

Proposition 7. Let the agent maximize (20) subject to (6), (7), (8), (9) and (18). The
optimal portfolio satisfies the same conditions as those described in Proposition 6.
Proof. See Appendix.

As the portfolio choice depends on a comparison of yields, it is not affected by con-
sidering random utilities.

The second extension we consider is a bequest motive. The investment in regular
bonds can indeed be justified on the grounds of intergenerational altruism and, as shown
by Hong and Rios-Rull (2007), Inkmann and Michaelides (2012), Lockwood (2012) and
Heijdra et al. (2014), which may help explain the low demand for annuities. Following
Yaari (1965), the bonds held in the portfolio at the age of death are bequeathed, and the
utility of the agent increases with the amount that is bequeathed. As in Davidoff et al.
(2005), we assume that the capitalized value of bequest enter the expected utility, which
reads as:

u (c0,t) + θp1u (c1,t+1) + θ2p1p2u (c2,t+2) + (1− p1) v (Rt+1Rt+2h0,t)

+p1 (1− p2) v (Rt+2h1,t+1) + p1p2v (h2,t+2) , (21)

where hi,t+i is the demand for bonds made by an agent of age i, i = {0, 1, 2}, as of
time t + i. Function v is increasing and concave and we assume that lim

x→0
v′ (x) = +∞,

which restrict our analysis to interior solutions. The yield of bonds is the risk-free rate.
Thus, the budget constraints (6), (8), (9) are replaced by the following ones:

c0,t = wt − a0,t − bt − h0,t, (22)

c1,t+1 = a0,t
Rt+1

p1
+ bt

(
Rt+1

πt+1

− 1

)
+ h0,tRt+1 − a1,t+1 − h1,t+1, (23)

c2,t+2 = a1,t+1
Rt+2

p2
+ bt

Rt+2

πt+2

+ h1,t+1Rt+2 − h2,t+2. (24)

The optimal behavior of the agent is given in the following.

Proposition 8. Let the agent maximize (21) subject to (7), (22), (23), and (24). The
optimal portfolio satisfies conditions (11). Moreover, the capitalized bequests are such
that:  Rt+1Rt+2h0,t = Rt+2h1,t+1 = h2,t+2 if bt = 0,

Rt+1Rt+2h0,t < Rt+2h1,t+1 = h2,t+2 if a0,t = 0.
(25)

4Long-Term care can be, however, an example of this even though insurance contracts are offered in
some countries. See Brown and Finkelstein (2011) or de Donder and Pestieau (2016).
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Proof. See Appendix.

The introduction of a joy-of-giving altruistic motive modifies the optimal portfolio as
regular bonds are demanded in order to be bequeathed. However, the remainder of the
optimal portfolio is composed of flexible annuities for Rt+1 < Rt+1 and of illiquid annuities
for Rt+1 > Rt+1. With flexible annuities, the optimal trade-off between consumption and
bequest is the same as in Davidoff et al. (2005). The capitalized value of the bequest is
constant and the consumption at age 2 equals the return of what was invested in annuities
at age 1. With illiquid annuities, the capitalized value of the bequest increases with age
(for the same reasons as those detailed for consumption in Proposition 2). However, at
age 2, the agent still consumes the share of his portfolio invested in annuities.

The third extension considers a subjective evaluation of the survival probabilities.
Many studies have indeed demonstrated the importance of probability distortion in risky
choices, and notably when the risk at stake concerns health and longevity (Brewer et al.,
2007). We consider an agent endowed with subjective survival probabilities, denoted p̂1
and p̂2, which are such that p̂1 6= p1 and p̂2 6= p2. His preferences are represented by the
following subjective expected utility5:

u (c0,t) + p̂1θu (c1,t+1) + p̂2θ
2u (c2,t+2) . (26)

The rest of the model is the same as in section 2.3, which implies that agent’s beliefs
differ from the survival probabilities estimated by insurers.To simplify, we therefore do
not take into account the possibility for insurers to use this information and modify
annuity yields. The optimal behavior of the agent is given in the following.

Proposition 9. Let the agent maximize (26) subject to (6), (7), (8), and (9). The
optimal portfolio satisfies conditions (11).
Proof. See Appendix.

Once again, our main results are robust. Introducing a subjective evaluation of
longevity risk does not modify the preference for illiquid annuity as long as their ob-
jective yield is sufficiently large.

5. Discussion

In our model, we assume that insurance companies can collect premia and distribute
yields between two generations, which permits the existence of illiquid contracts as we
defined them. It is obvious that our results strongly rely on this possible transfer from
the old to the young.

However, in some countries, the redistribution between cohorts is forbidden. We now
discuss the consequences of this regulation in our framework. If transfers are not allowed,
the pricing of the illiquid annuity premium is different. In that case, when an agent
chooses to invest in illiquid annuities, she also ’chooses’ a constant return since it no
longer depends on the next generation. Let us denote by 1/π̃t the constant premium
offered to cohort t at date t+ 1 and t+ 2. Thus, a representative agent of age 0 at time

t who is investing the quantity bt in illiquid annuities will receive
(
Rt+1

π̃t
− 1
)
bt at age 1

5Although different models of representation of preferences under uncertainty have been proposed, in
the case of two states of nature, the main models reach to one, namely the subjective model (Savage,
1954). For an application of non-expected utility models for annuities, see d’Albis and Thibault (2012).
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and Rt+2

π̃t
bt at age 2. To compute the premium, we use the fact that insurance companies

make no profit on the contracts they offer to a given generation and only redistribute
savings within the same cohort. This restriction can be written as follows:

N0,tbtRt+1Rt+2 + p1N0,tbtRt+2 = p1N0,t

(
Rt+1

π̃t
− 1

)
btRt+2 + p1p2N0,t

Rt+2

π̃t
bt. (27)

The latter condition says that the capitalized value of savings that were collected from
the cohort born at date t is equal to the capitalized value of the annuity returns that will
be paid to the same cohort. Using (27), we deduce the annuity premium:

π̃t =
Rt+1 + p2
Rt+1

p1
+ 2

. (28)

Interestingly, by replacing (28) in (10), we obtain R̄t+1 = Rt+1 + p1 and conclude,
using Proposition 1, that agents never purchase flexible annuity contracts. This is due
to the fact that the return of illiquid annuities is always higher.

However, condition (27) does not imply that the profit that an insurance company
makes at each date t is zero. To see that, we compute the profit at date t of all insurances
companies made with contracts concluded with cohorts who were born in t− 1 and t− 2.
Let Πt denotes this profit. It satisfies:

Πt = N0,t−1

{(
bt−1 +

p1
1 + n

bt−2

)
Rt −

(
p1bt−1

(
Rt

π̃t−1
− 1

)
+

p1p2
1 + n

bt−2
Rt

π̃t−2

)}
. (29)

By replacing (28) in (29), we obtain:

Πt =

[
(p2 − p1)Rt + p1p2

(Rt + p2)

]
bt−1 −

Rt

1 + n

[
(p2 − p1)Rt−1 + p1p2

Rt−1 + p2

]
bt−2. (30)

At steady-state, such that Rt = Rt−1 and bt−1 = bt−2, we conclude that Πt ≥ 0 ⇐⇒
Rt ≤ 1 + n. Hence, in a perfectly competitive economy, the only possible equilibrium
is the Golden Rule such that Rt = 1 + n. Since the existence of this specific equilib-
rium is non-generic, we conclude that such a annuity contract cannot be considered in
a competitive equilibrium framework. If one supposes that the equilibrium satisfies the
Golden Rule, we note that π̃ = p1 (1 + n+ p2) / (1 + n+ 2p1), which is lower than the
inverse of the annuity premium (4) computed at the Golden Rule and which is equal to
π = p1 (1 + n+ p2) / (1 + n+ p1). Conditional on its availability, illiquid annuities with-
out intergenerational transfers induce higher welfare than those considered above. But
this contract does not generically exist in our framework. An interesting extension could
consider non-competitive insurance markets.

6. Conclusion

In this paper, we showed that illiquid annuity is preferred to flexible ones provided that the
equilibrium is dynamically efficient. Moreover, the availability of illiquid annuities permit
a welfare improvement in the long run. Nevertheless, they are offered in the steady-state
only if all generations have purchased them in the past. Consequently, policy intervention
can be justified even if the equilibrium is efficient.

This study can be extended in several directions. First a multi-period setting can
be analyzed in order to investigate the issue of the optimal timing of annuity purchase

13



(Brugiavini, 1993) and discuss the opportunity represented by deferred annuities. Second,
heterogeneous agents could be introduced in order to focus on adverse selection (Heijdra
and Reijnders, 2013) and redistribution issues (Cremer et al., 2010). Finally, aggregate
risk on mortality (Schulze and Post, 2010) as well as other aggregate risks could be
introduced in order to discuss the risk sharing properties (Gollier, 2008) of the illiquid
annuities we considered.

14



7. Appendix

Proof of Proposition 1. We denote µt as the Kuhn-Tucker multiplier associated with the
non-negativity constraint: a0,t ≥ 0, and λt as the one associated with: bt ≥ 0. The first
order conditions of the optimization problem can be written as:

u′ (c0,t)− θRt+1u
′ (c1,t+1) = µt,

u′ (c0,t)− θp1
(
Rt+1

πt+1
− 1
)
u′ (c1,t+1)− θ2p1p2Rt+2

πt+2
u′ (c2,t+2) = λt,

u′ (c1,t+1)− θRt+2u
′ (c2,t+2) = 0,

(31)

while the complementary slackness conditions are:

µta0,t = 0 and λtbt = 0. (32)

By rearranging equations in system (31), we obtain:(
R̃t+1 −Rt+1

)
θu′ (c1,t+1) + λt − µt = 0, (33)

where Rt+1 is defined in (10).
Let us first note that having both λt > 0 and µt > 0 is not possible as we can see,

using the complementary slackness conditions (32) and the budget constraints (8) and
(9), that this would imply:

c1,t+1 = −a1,t+1 and c2,t+2 = a1,t+1
Rt+2

p2
, (34)

which contradicts the fact that optimal consumption should be positive. Consequently,
we use (33) to state that:

λt = 0, µt > 0 if Rt+1 −Rt+1 > 0,

λt > 0, µt = 0 if Rt+1 −Rt+1 < 0,

λt = µt = 0 if Rt+1 −Rt+1 = 0,

(35)

which, using the complementary slackness conditions (32), allow us to conclude the proof.
�

Proof of Proposition 2. For Rt+1 > Rt+1, we have seen in the proof of Proposition 1 that
λt = 0 and µt > 0. Thus, the last two equations of system (31) can be rewritten as
follows:  −u

′ (c0,t) + θRt+1u
′ (c1,t+1) = 0,

−u′ (c1,t+1) + θRt+2u
′ (c2,t+2) = 0.

(36)

Thus, we have:
u′ (c0,t)

u′ (c1,t+1)
≥ u′ (c1,t+1)

u′ (c2,t+2)
⇔ Rt+1 ≥ Rt+2, (37)
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which, using that fact that Rt+1 > Rt+1, allow us to write (12). To obtain (13), we us
the fact that if u is homogeneous of degree κ + 1, u′ is homogeneous of degree κ, then
(37) can be rewritten as follows:(

c1,t+1

c0,t

)κ
≥
(
c2,t+2

c1,t+1

)κ
⇔ Rt+1 ≥ Rt+2 .� (38)

Proof of Lemma 1. An intertemporal equilibrium is a collection:

{c0,t, c1,t, c2,t, bt, a0,t, a1,t, πt+1, Rt+1, wt+1, kt+1}t≥0 ,

which satisfies the budget constraints (6), (8) and (9), the optimality conditions (15)
and (31), the complementary slackness conditions (32), the zero-profit condition (4) and
the equilibrium condition (15). At steady state, the equilibrium is the solution of the
following system:

c0 = f (k)− kf ′ (k)− a0 − b,

c1 = a0
f ′(k)
p1

+ b
(
f ′ (k) 1+n+p1

p1(1+n+p2)
− 1
)
− a1,

c2 = a1
f ′(k)
p2

+ bf ′ (k) 1+n+p1
p1(1+n+p2)

,

k = a0+b
1+n

+ p1(a1+b)

(1+n)2
,

0 = [u′ (c0)− θf ′ (k)u′ (c1)] a0,

0 =
[
u′ (c0)− θp1

(
f ′ (k) 1+n+p1

p1(1+n+p2)
− 1
)
u′ (c1)− θ2p2f ′ (k) 1+n+p1

1+n+p2
u′ (c2)

]
b,

0 = u′ (c1)− θf ′ (k)u′ (c2) ,

(39)

as well as (4) and (15).
Let us first consider the steady-state such that a0 = 0 and b > 0. It reduces to a

system in (c0, k) that writes:{
−u′ (c0) + θ[f ′(k)(1+n+p1)−(p1−p2)(1+n)]

(1+n+p2)
u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,
(40)

where:

c1 =
[f (k)− kf ′ (k)− c0]

p1

(
f ′ (k) (1 + n+ p1)

1 + n+ p2
+ (1 + n)

)
− (1 + n)2 k

p1
, (41)

c2 =
(1 + n)2

p1p2
kf ′ (k)− [f (k)− kf ′ (k)− c0] f ′ (k) (1 + n+ p1) (1 + n)

p1p2 (1 + n+ p2)
. (42)

Consider also the steady-state such that b = 0 and a0 > 0, which reduces to:{
−u′ (c0) + θf ′ (k)u′ (c1) = 0,
−u′ (c1) + θf ′ (k)u′ (c2) = 0,

(43)
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where:

c1 = [f (k)− kf ′ (k)− c0]
f ′ (k) + (1 + n)

p1
− (1 + n)2 k

p1
, (44)

c2 = [(1 + n) k − [f (k)− kf ′ (k)− c0]]
(1 + n) f ′ (k)

p1p2
. (45)

To prove the existence of a steady-state, we consider a more general problem parametrized

by z ∈
[
1, 1+n+p1

1+n+p2

]
that encompasses system (40) for z = 1 and system (43) for z = 1+n+p1

1+n+p2
.

This general system can be written as:{
F (k, c1) = 0,
G (k, c1) = 0,

where:

F (k, c1) = −u′
(
f (k)− kf ′ (k)− p1c1 + (1 + n)2 k

[f ′ (k) z + (1 + n)]

)
(46)

+θ [f ′ (k) z − (1 + n) (z − 1)]u′ (c1) ,

G (k, c1) = −u′ (c1) (47)

+θf ′ (k)u′

([
(1 + n) k − p1c1 + (1 + n)2 k

[f ′ (k) z + (1 + n)]
z

]
(1 + n) f ′ (k)

p1p2

)
.

Let us define

c1 (k, ε) =
[f (k)− kf ′ (k)− ε] [f ′ (k) z + (1 + n)]− (1 + n)2 k

p1
, (48)

where 0 < ε� 1, which corresponds to c0 = ε. Let kFε be the solution of F (k, c1 (k, ε)) =
0,and kGε be the solution of G (k, c1 (k, ε)) = 0. As F (k, c1 (k, ε)) > G (k, c1 (k, ε)) , we
conclude that kFε < kGε .

Let us now define

c1 (k, ε′) =
[(1+n)k−ε′][f ′(k)z+(1+n)]

z
− (1 + n)2 k

p1
, (49)

where 0 < ε′ � 1, which corresponds to c2 = ε′. Let kFε′ be the solution of F (k, c1 (k, ε′)) =
0,and kGε′ be the solution of G (k, c1 (k, ε′)) = 0. As F (k, c1 (k, ε′)) < G (k, c1 (k, ε′)) , we
conclude that kFε′ > kGε′ . �

Proof of Proposition 3. From Proposition 1, we know that the possible portfolios at
steady-state are: (1) a∗0 > 0 and b∗ > 0, (2) a∗0 = 0 and b∗ > 0, (3) a∗0 > 0 and
b∗ > 0. Let us consider those three cases successively.

For a∗0 > 0 and b∗ > 0, the last three equations of (39) can be rewritten as:[
f ′ (k) + p1 − (f ′ (k) + p2)

1 + n+ p1
1 + n+ p2

]
u′ (c1) = 0, (50)

which is satisfied for f ′ (k) = 1 + n, i.e. when the capital is at the Golden Rule.
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For a∗0 = 0 and b∗ > 0, the last three equations of (39) can be rewritten as:
u′ (c0)− θf ′ (k)u′ (c1) ≥ 0,

u′ (c0)− θ
(
f ′ (k) 1+n+p1

1+n+p2
− p1 + p2

1+n+p1
1+n+p2

)
u′ (c1) = 0,

(51)

which are satisfied only if f ′ (k) ≥ 1 + n. Using what has been shown just above, we
conclude that if f ′ (k) > 1 + n, one has a∗0 = 0.

Finally, for a∗0 > 0 and b∗ = 0, the last three equations of (39) can be rewritten as:[
f ′ (k)

(
1− 1 + n+ p1

1 + n+ p2

)
+ p1 − p2

1 + n+ p1
1 + n+ p2

]
u′ (c1) ≥ 0, (52)

which is satisfied only if f ′ (k) ≤ 1 + n. As above, f ′ (k) < 1 + n, implies b∗ = 0. �

Proof of Proposition 4. The proof proceeds in two steps. In step 1, we show that the
capital stock is higher in an economy where flexible and illiquid annuities are proposed
than in an economy where only flexible annuities are proposed. In step 2, we show that
the utility increases with the capital stock.
Step 1. Let us consider first an economy where flexible and illiquid annuities are pro-
posed. If f ′ (k) > 1+n, we can use the proof of Proposition 3 to state that the steady-state
solves: 

c0 = f (k)− kf ′ (k)− b,

c1 = b
(
f ′ (k) 1+n+p1

p1(1+n+p2)
− 1
)
− a1,

c2 = a1
f ′(k)
p2

+ bf ′ (k) 1+n+p1
p1(1+n+p2)

,

k = b
1+n

+ p1(a1+b)

(1+n)2
,

0 = u′ (c0)− θ
(

[f ′ (k) + p2]
1+n+p1
1+n+p2

− p1
)
u′ (c1) ,

0 = u′ (c1)− θf ′ (k)u′ (c2) .

(53)

System (53) reduces to a system in (c0, k) that reads as: −u
′ (c0) + θ[f ′(k)(1+n+p1)−(p1−p2)(1+n)]

(1+n+p2)
u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,
(54)

where: 
c1 = [f(k)−kf ′(k)−c0]

p1

(
f ′(k)(1+n+p1)

1+n+p2
+ (1 + n)

)
− (1+n)2k

p1
,

c2 = (1+n)2

p1p2
kf ′ (k)− [f(k)−kf ′(k)−c0]f ′(k)(1+n+p1)(1+n)

p1p2(1+n+p2)
.

(55)

Let us consider now an economy where only flexible annuities are proposed. The steady-
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state of such an economy solves:

c0 = f (k)− kf ′ (k)− a0,

c1 = a0
f ′(k)
p1
− a1,

c2 = a1
f ′(k)
p2
,

k = a0
1+n

+ p1a1
(1+n)2

,

0 = u′ (c0)− θf ′ (k)u′ (c1) ,

0 = u′ (c1)− θf ′ (k)u′ (c2) .

(56)

System (56) reduces to a system in (c0, k) that reads as: −u
′ (c0) + θf ′ (k)u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,
(57)

where: 
c1 = [f (k)− kf ′ (k)− c0] f

′(k)+(1+n)
p1

− (1+n)2k
p1

,

c2 = {(1 + n) k − [f (k)− kf ′ (k)− c0]} (1+n)f ′(k)
p1p2

.

(58)

The objective is thus to compare the steady-state capital that is the solution of (54) with
the one that is the solution of (57). To do so, we set up, for z ∈ [1, (1 + n+ p1) / (1 + n+ p2)],
a more general system that writes: −u

′ (f (k)− kf ′ (k)− x) + θ [f ′ (k) z − (1 + n) (z − 1)]u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,
(59)

where 
x = f (k)− kf ′ (k)− c0,

c1 = x[f ′(k)z+(1+n)]
p1

− (1+n)2k
p1

,

c2 = [(1 + n) k − xz] (1+n)f ′(k)
p1p2

.

(60)

We notice that for z = 1, system (59) reduces to system (57) while for z = (1 + n+ p1) / (1 + n+ p2),
system (59) reduces to system (54). To prove our claim, we hence aim at showing that:

dk∗

dz
> 0, (61)

where k∗ is the capital stock that is the solution of (59). Let us rewrite the first equation
in (59) as F (x, k; z) = 0 and the second as G (x, k; z) = 0. One has:

dk

dz
= −

F ′z −
G′

z

G′
x
F ′x

F ′k −
G′

k

G′
x
F ′x
. (62)
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Consider first the numerator of (62). Let σ (c) := −u′ (c) /cu′′ (c). Simple computations
give that the sign of F ′z −G′zF ′x/G′x is the same as the one of:

f ′ (k)− (1 + n)

f ′ (k) z − (1 + n) (z − 1)

×
{

1

σ (c1)

f ′ (k) z + (1 + n)

x [f ′ (k) z + (1 + n)]− (1 + n)2 k
+

1

σ (c2)

z

(1 + n) k − xz

}
+

1

c0σ (c0)

1

σ (c1)

xf ′ (k)

x [f ′ (k) z + (1 + n)]− (1 + n)2 k

+
1

c0σ (c0)

1

σ (c2)

x

(1 + n) k − xz

+
1

σ (c1)

1

σ (c2)

x

(1 + n) k − xz
(1 + n)

x [f ′ (k) z + (1 + n)]− (1 + n)2 k
, (63)

which is positive as we supposed that f ′ (k) > (1 + n). To determine the sign of the
denominator, we use the assumption of the existence of a unique equilibrium. System
(59) can be written as a single dimension problem: F (φ (k; z) , k; z) = 0 where φ (.) is the
implicit function obtained using G (x, k; z) = 0. The derivative of F (φ (k; z) , k; z) with
respect to k is given by F ′k − G′kF ′x/G′x. As F (φ (0; z) , 0; z) > 0, we conclude that the
derivative, computed at the equilibrium k∗ is negative. Using (62), we finally conclude
that dk/dz > 0.
Step 2. We now compute the derivative of the intertemporal utility function with respect
to capital, such as

u′ (c0)
dc0
dk

+ θp1u
′ (c1)

dc1
dk

+ θ2p1p2u
′ (c2)

dc2
dk

, (64)

In steady-state of an economy where both flexible and illiquid annuities are proposed, we
use (54) and (55) to obtain that the sign of (64) is the same as the one of:

[f ′ (k)− (1 + n)]

[
k (1 + n)− [f (k)− 2kf ′ (k)− c0]

(
1 + n+ p1
1 + n+ p2

)]
. (65)

Using the fact that c2, whose expression is given in (55), is positive we conclude that
(65) is positive. Hence, an increase in capital increases the welfare of the agent in the
steady-state. �

Proof of Proposition 5. The objective is to prove that if there exists T such that bT−1 = 0
then bT+i = 0 for all i = 0, 1, 2, ... To prove it, we consider the yield of the investment in
illiquid annuities made at time T . Replacing (4) and bT−1 = 0 in (10), we obtain:

RT+1 = RT+1 − p1
(

1− p2
p1

(1 + n) bT+1 + p1bT
(1 + n) bT+1 + p2bT

)
. (66)

For bT+1 > 0, we obtain that RT+1 > RT+1, which implies, using Proposition 1, that
bT = 0. �

Proof of Proposition 6. The proof is similar to the one of Proposition 1. We denote
(µt, λt, γt) as the Kuhn-Tucker multipliers associated with the non-negativity constraints:
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a0,t ≥ 0, bt ≥ 0 and a1,t ≥ 0. The first order conditions of the optimization problem can
be written as:

u′ (c0,t)− θRt+1u
′ (c1,t+1) = µt,

u′ (c0,t)− θp1
(
Rt+1

πt+1
− 1
)
u′ (c1,t+1)− θ2p1p2Rt+2

πt+2
u′ (c2,t+2) = λt,

u′ (c1,t+1)− θRt+2u
′ (c2,t+2) = γt+1,

(67)

while the complementary slackness conditions are:

µta0,t = 0,λtbt = 0 andγt+1a1,t+1 = 0. (68)

By rearranging equations in system (67), we obtain:(
Rt+1 −Rt+1

)
θu′ (c1,t+1) + λt − µt − γt+1

p2
πt+2

= 0, (69)

where Rt+1 is defined in (10).
Let us consider the various configurations that are possible. As in the proof of Propo-

sition 1, the case λt > 0 and µt > 0 is not optimal as it implies that the sign of c1,t+1

is the opposite of the one of c2,t+2. Similarly, the case λt > 0 and γt+1 > 0 is neither
optimal as it implies c2,t+2 = 0. We now use equation (69) to establish that:
- for Rt+1 > Rt+1, one has λt < µt + γt+1p2/πt+2, which necessarily implies: λt = 0
and µt + γt+1p2/πt+2 > 0. Condition λtbt = 0 implies that bt ≥ 0. However, bt = 0 is
not possible as the positivity of c1,t+1 would thus imply a0,t > 0 (and µt = 0) while the
positivity of c2,t+2 would imply a1,t+1 > 0 (and γt+1 = 0). Thus, bt > 0. Moreover, µt ≥ 0
and γt+1 ≥ 0, with at least one of the two inequalities being strict.
- for Rt+1 = Rt+1, one has λt = µt + γt+1p2/πt+2, which necessarily implies: λt = µt =
γt+1 = 0.
- for Rt+1 > Rt+1, one has λt > µt + γt+1p2/πt+2, which necessarily implies: λt > 0 and
µt = γt+1 = 0. Due to (68) we conclude that bt = 0 while the positivity of c1,t+1 implies
a0,t > 0 and the positivity of c2,t+2 implies a1,t+1 > 0. �

Proof of Proposition 7. Following the same derivations as those made in the proof of
Proposition 6, we obtain:(

Rt+1 −Rt+1

)
θEu′ (c̃1,t+1) + λt − µt − γt+1

p2
πt+2

= 0, (70)

which is the counterpart of (69). The reasonning made after (69) also applies here. �

Proof of Proposition 8. The first order conditions of the agent’s problem are given by
(31), (32) and:

−u′ (c0,t) + θp1Rt+1u
′ (c1,t+1) + (1− p1)Rt+1Rt+2v

′ (Rt+1Rt+2h0,t) = 0,

−θu′ (c1,t+1) + θ2p2Rt+2u
′ (c2,t+2) + (1− p2)Rt+2v

′ (Rt+2h1,t+1) = 0,

−θ2u′ (c2,t+2) + v′ (h2,t+2) = 0.

(71)
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Consequently, (33) and (35) still hold. Moreover, by replacing the first and the third
equations of (31) in (71), we obtain:

− µt
(1−p1)Rt+1

− θu′ (c1,t+1) +Rt+2v
′ (Rt+1Rt+2h0,t) = 0,

−θu′ (c1,t+1) +Rt+2v
′ (Rt+2h1,t+1) = 0,

−θu′ (c1,t+1) +Rt+2v
′ (h2,t+2) = 0.

(72)

This allow us to conclude that: Rt+1Rt+2h0,t = Rt+2h1,t+1 = h2,t+2 if µt = 0,

Rt+1Rt+2h0,t < Rt+2h1,t+1 = h2,t+2 if µt > 0. �

Proof of Proposition 9. As in the proof of Proposition 1, the first order conditions of the
optimization problem can be written as:

u′ (c0,t)− θRt+1
p̂1
p1
u′ (c1,t+1) = µt,

u′ (c0,t)− θp̂1
(
Rt+1

πt+1
− 1
)
u′ (c1,t+1)− θ2p̂1p̂2Rt+2

πt+2
u′ (c2,t+2) = λt,

u′ (c1,t+1)− θRt+2
p̂2
p2
u′ (c2,t+2) = 0,

(73)

while the complementary slackness conditions are given by (32). By rearranging equations
in system (73), we obtain:(

R̃t+1 −Rt+1

)
θ
p̂1
p1
u′ (c1,t+1) + λt − µt = 0, (74)

where Rt+1 is defined in (10). The rest of the proof is similar to the one of Proposition
1. �
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Figure 1: Annuity demands at period 0

Figure 2 compares the optimal consumption dynamics.
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Figure 2. Spread in yields at steady state
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