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The traditional estimated return for the Markowitz mean-variance optimization has

been demonstrated to seriously depart from its theoretic optimal return. We prove that

this phenomenon is natural and the estimated optimal return is always
√
γ times larger

than its theoretic counterpart where γ = 1
1−y

with y as the ratio of the dimension to

sample size. Thereafter, we develop new bootstrap-corrected estimations for the optimal

return and its asset allocation and prove that these bootstrap-corrected estimates are

proportionally consistent with their theoretic counterparts. Our theoretical results are

further confirmed by our simulations, which show that the essence of the portfolio analysis

problem could be adequately captured by our proposed approach. This greatly enhances

the practical uses of the Markowitz mean-variance optimization procedure.

KEY WORDS: Optimal Portfolio Allocation, Mean-Variance Optimization; Large

Random Matrix; Bootstrap Method
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1 INTRODUCTION

The pioneer work of Markowitz (1952, 1959) on the mean-variance (MV) portfolio

optimization procedure is the milestone of modern finance theory for optimal portfolio

construction, asset allocation, and investment diversification. In the procedure, portfo-

lio optimizers respond to the uncertainty of an investment by selecting portfolios that

maximize profit subject to achieving a specified level of calculated risk or, equivalently,

minimize variance subject to obtaining a predetermined level of expected gain (Markowitz

(1952, 1959, 1991), Merton (1972), Kroll, Levy and Markowitz (1984)).

Despite the fact that the conceptual framework of the classical MV portfolio optimiza-

tion had first been set forth by Markowitz more than half a century ago, and despite the

fact that several procedures for computing the corresponding estimates (see, for example,

Sharpe (1967, 1971), Stone (1973), Elton, Gruber, and Padberg (1976, 1978), Markowitz

and Perold (1981) and Perold (1984)) have produced substantial experimentation in the

investment community for nearly four decades, there have been persistent doubts about

the performance of the estimates. Instead of implementing nonintuitive decisions dic-

tated by portfolio optimizations, it has long been known anecdotally that a number of

experienced investment professionals simply disregard the results or abandon the entire

approach, since many studies (see, for example, Michaud (1989), Canner, Mankiw, and

Weil (1997), Simaan (1997)) have found the MV-optimized portfolios to be unintuitive,

thereby making their estimates do more harm than good. For example, Frankfurter,

Phillips, and Seagle (1971) find that the portfolio selected according to the Markowitz

MV criterion is likely not as effective as an equally weighted portfolio, while Zellner and

Chetty (1965), Brown (1978), Kan and Zhou (2007) show that the Bayesian decision rule

under a diffuse prior outperforms the MV optimization. Michaud (1989) notes that MV

optimization is one of the outstanding puzzles in modern finance and that it has yet to

meet with widespread acceptance by the investment community, particularly as a practi-

cal tool for active equity investment management. He terms this puzzle the “Markowitz

optimization enigma” and calls the MV optimizers “estimation-error maximizers.”
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To investigate the reasons why the MV optimization estimate is so far away from its

theoretic counterpart, different studies have produced a range of opinions and observa-

tions. So far, all believe that it is because the “optimal” return is formed by a combina-

tion of returns from an extremely large number of stocks (see, for example, McNamara

(1998)). Jorion (1985), Best and Grauer (1991) and Britten-Jones (1999) suggest the

main difficulty concerns the extreme weights that often arise when constructing sample

efficient portfolios that are extremely sensitive to changes in asset means. Another school

suggests that the estimation of the correlation matrix plays an important role in this prob-

lem. For example, Laloux, Cizeau, Bouchaud, and Potters (1999) find that Markowitz’s

portfolio optimization scheme which is based on a purely historical determination of the

correlation matrix, is not adequate because its lowest eigenvalues dominating the smallest

risk portfolio are dominated by noise.

Many studies have tried to show that the difficulty can be alleviated by using different

approaches. For example, Pafka and Kondor (2004) impose some constraints on the

correlation matrix to capture the essence of the real correlation structure. Although this

is expected to improve the overall performance, it may certainly introduce some biases in

the estimation. In addition, by introducing the notion of ‘factors’ influencing the stock

prices, Sharpe (1964), Cohen and Pogue (1967) and Perold (1984) formulate the single

index model to simplify both the informational and computational complexity of the

general model. Konno and Yamazaki (1991) propose a mean-absolute deviation portfolio

optimization to overcome the difficulties associated with the classical Markowitz model

but Simaan (1997) finds that the estimation errors for both the mean-absolute deviation

portfolio model and the classical Markowitz model are still very severe, especially in small

samples.

Our paper complements the theoretical work of Markowitz by developing a new bias-

corrected estimator to reliably capture the essence of portfolio selection. We will first

explain and thereafter share the theoretical proofs of our discovery about the “Markowitz

optimization enigma.” Our findings support the idea from Laloux, Cizeau, Bouchaud,
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and Potters (1999) and others on this issue that the empirical correlation matrix plays

an important role in this problem. We also find that the estimation of the optimal

return is poor due to the poor estimation of the asset allocations.1 When the dimension

of the data is large, by the theory of the large dimensional random matrix, it is well

known that the sample covariance matrix is not an efficient estimator of the population

covariance matrix2. Thus, plugging the sample mean and covariance matrix into the MV

optimization procedure will result in a serious departure of the optimal return estimate

and the corresponding portfolio allocation estimate from their theoretic counterparts when

the number of the assets is large. In the remainder of this paper, this return estimate

will be called the “plug-in” return, and its corresponding estimate for the asset allocation

will be called the “plug-in” allocation.3 We also prove that the plug-in return is always

larger than its theoretical value with a fixed rate depending on the ratio of the dimension

to sample size.4 We call this phenomenon “over-prediction.” To circumvent this over-

prediction problem, we further propose a new method to reduce this error by incorporating

the idea of bootstrap into the theory of large dimensional random matrix. The principal

consideration of bootstrap is that there is a similar relationship between the biases of the

estimators based on the original sample and the resampled one. By doing this, we obtain a

bootstrap-modified estimate that analytically corrects the over-prediction and drastically

reduces the error. We further theoretically prove that the bootstrap-corrected estimate of

return and its corresponding allocation estimate are proportionally consistent with their

counterpart parameters. Our simulation further confirms the consistency of our proposed

estimates, implying that the essence of the portfolio analysis problem could be adequately

captured by our proposed estimates. Our simulation also shows that our proposed method

improves the estimation accuracy so substantially that its relative efficiency5 could be as

1We note that Aı̈t Sahalia and Brandt (2001) suggest focusing directly on the optimal portfolio weights
first. This could provide an alternative solution to overcome the Markowitz optimization enigma.

2See, for example, Laloux, Cizeau, Bouchaud, and Potters (1999).
3See, for example, Zellner and Chetty (1965), Brown (1978) and Kan and Zhou (2007).
4We note that Maller, Durand, and Lee (2005) also prove the maximum Sharpe ratio is biased upward

for its population value.
5Readers may refer to equations in (16) for the definition of “relative efficiency.”
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high as 139 times when compared with the traditional “plug-in” estimate for 300 assets

with a sample size of 500. The relative efficiency will be much higher for bigger sample

sizes and larger numbers of assets. Similar results are also obtained for its corresponding

allocation estimate.

2 THEORY

This section studies the theoretic optimal solution for Markowitz’s MV optimization pro-

cedure and introduces the theory of the large dimensional random matrix to explain

the “Markowitz optimization enigma,” which holds that the Markowitz MV optimization

procedure is impractical. In the next section, we invoke a new approach to make the opti-

mization procedure more practically useful. To distinguish the well-known results in the

literature from the ones derived in this paper, all cited results will be called Propositions

and our derived results will be called Theorems.

2.1 Optimal Solution

Suppose that there are p-branch assets, S = (s1, ..., sp)
T , whose returns are denoted by

r = (r1, ..., rp)
T with mean µ = (µ1, ..., µp)

T and covariance matrix Σ = (σij). In addition,

we suppose that an investor will invest capital C on the p-branch assets S such that s/he

wants to allocate her/his investable wealth on the assets but obtain any of the following:

1. to maximize return subject to a given level of risk, or

2. to minimize her/his risk for a given level of expected return.

Since the above two problems are equivalent, we only look for a solution to the first

problem in this paper.6 Without loss of generality, we assume C ≤ 1 and her/his invest-

6Readers may refer to (1) for the formulation of the maximization problem. This problem is equivalent
to

σ2 = min cTΣc subject to cT1 ≤ 1 and R ≤ cTµ. (1a)

As the minimization problem stated in (1a) above is the dual problem of the maximization problem in
(1), we only discuss the maximization problem in this paper.

5



ment plan to be c = (c1, ..., cp)
T . Hence, we have

∑p
j=1 cj = C ≤ 1. Also, the mean and

risk of her/his anticipated return will then be cTµ and cTΣc, respectively. In this paper,

we further assume that short selling is allowed, and hence any component of c could be

negative. Thus, the above maximization problem can be re-formulated as the following

optimization problem:

R = max cTµ, subject to cT1 ≤ 1 and cTΣc ≤ σ2
0 (1)

where l represents the p-dimensional vector of ones and σ2
0 is a given risk level.7 We call R

satisfying (1) the optimal return and the solution c to the maximization the optimal

allocation plan. One could easily extend the separation Theorem (Cass and Stiglitz

(1970)) and the mutual fund theorem (Merton (1972)) to obtain the analytical solution

of (1)8 from the following Proposition:

PROPOSITION 1 For the optimization problem shown in (1), the optimal return,

R, and its corresponding investment plan, c, are obtained as follows:

1. If
1TΣ−1µσ0√
µTΣ−1µ

< 1,

then the optimal return, R, and corresponding investment plan, c, will be

R = σ0

√
µTΣ−1µ

and

c =
σ0√

µTΣ−1µ
Σ−1µ.

2. If

7We note that in this paper we study the optimal return. However, another direction of research is
to study the optimal portfolio variance; see, for example, Pafka and Kondor (2003) and Papp, Pafka,
Nowak, and Kondor (2005).

8Many studies, for example, Ju and Pearson (1999) and Maller and Turkington (2002), use settings
similar to the setting in (1) to obtain different solutions.
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1TΣ−1µσ0√
µTΣ−1µ

> 1,

then the optimal return, R, and corresponding investment plan, c, will be

R =
1TΣ−1µ

1TΣ−11
+ b

(
µTΣ−1µ− (1TΣ−1µ)2

1TΣ−11

)
,

and

c =
Σ−11

1TΣ−11
+ b

(
Σ−1µ− 1TΣ−1µ

1TΣ−11
Σ−11

)
where

b =

√
1T

∑−1 1σ2
0 − 1

µTΣ−1µ1TΣ−11− (1TΣ−1µ)2
.

The proof of Proposition 1 can be found from many references in the literature.

REMARK 1 The intuition of the inequalities to distinguish the two cases of the so-

lutions in Proposition 1 can be seen from the following: The maximization is taken in the

intersection of the ellipsoid cTΣc ≤ σ0 and the half space cT l ≤ 1 (note that the intersec-

tion is not empty because the point c = 0 belongs to both the half space and the ellipsoid).

If the ellipsoid is completely contained in the half space, that is, the ellipsoid does not

intersect with the hyperplane cT l = 1, then the solution is the same as the maximization

problem without the half space restriction. Hence, the solution is then given by the first

case. Otherwise, the maximizer should be on the intersection of the ellipse cTΣc = σ0

and the hyperplane cT l = 1, since the target function cTµ is a linear function in c. The

inequality
1TΣ−1µσ0√
µTΣ−1µ

< 1 could then be used to test whether the maximizer of cTµ is in

the ellipsoid, i.e., whether c =
Σ−1µσ0√
µTΣ−1µ

is an inner point of the half space.

The set of efficient feasible portfolios for all possible levels of portfolio risk forms the

MV efficient frontier. We note that in this paper we formulate the p-branch assets for

this optimization problem in which the assets could be common stocks, preferred shares,

bonds, and other types of assets. We also note that in this paper a riskless asset is assumed

7



to be available for both borrowing and lending and that excess return is calculated by

subtracting the return of this riskless asset from the total return. The return calculated in

this paper could be set as the total return or the excess return. For any given level of risk,

Proposition 1 seems to provide a unique optimal return with its corresponding MV-optimal

investment plan or asset allocation to represent the best investment alternative given the

selected assets. Thus, it seems to provide a solution to Markowitz’s MV optimization

procedure. Nonetheless, one may expect the problem to be straightforward; however, this

is not so, since the estimation of the optimal return and its corresponding investment plan

is a difficult task. This issue will be discussed in the following sections.

2.2 Large Dimensional Random Matrix Theory

The large dimensional random matrix theory (LDRMT) traces back to the development

of quantum mechanics (QM) in the 1940s. Because of its rapid development in theoretic

investigation and its wide application, it has since attracted growing attention in many

areas, such as economics and finance, as well as mathematics and statistics. Wherever

the dimension of data is large, the classical limit theorems are no longer suitable, since

the statistical efficiency will be substantially reduced when they are employed. Hence,

statisticians have to search for alternative approaches in such data analysis, and thus,

the LDRMT is found to be useful. A major concern of the LDRMT is to investigate the

limiting spectrum properties of random matrices where the dimension increases propor-

tionally with the sample size. This turns out to be a powerful tool in dealing with large

dimensional data analysis.

We utilize the LDRMT (Bai, et al., 2011) to study MV optimization by analyzing

the corresponding high dimensional data. In the analysis, an estimation of the sample

covariance matrix plays an important role in examining this type of data. However, the

covariance matrix estimate is inherently limited to the MV framework and thus subject
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to the limitations of being a risk measure. For any practical use, it would therefore

be necessary to have reliable estimates for the correlations of returns, which are usually

obtained from historical return series data. If one estimates a p×p correlation matrix from

p time series of length n each, one inevitably introduces estimation errors that can become

so overwhelming that the whole applicability of the theory may become questionable for

large p. Suppose that {xjk} for j = 1, · · · , p and k = 1, · · · , n is a set of double array real

random variables that are independent and identically distributed (iid) with mean zero

and variance σ2. Let xk = (x1k, · · · , xpk)
T and X = (x1, · · · ,xn); the sample covariance

matrix9, S, of p× p dimension is then defined as

S =
1

n− 1

n∑
k=1

(xk − x)(xk − x)T (2)

where x =
∑n

k=1 xk/n.

It is widely recognized that the major difficulty in the estimation of optimal returns

is the inadequacy of using the inverse of the estimated covariance to measure the inverse

of the covariance matrix10. To circumvent this problem, we introduce some fundamental

limit theorems (see, among others, Jonsson (1982), Bai and Yin (1993), Bai (1999) and Bai

and Silverstein, (1998, 1999, 2004)) in the LDRMT to take care of the empirical spectral

distribution of the eigenvalues for the sample covariance matrix. Suppose that the sample

covariance matrix S defined in (2) is a p×p matrix with eigenvalues {λj : j = 1, 2, ..., p}.

Since all eigenvalues are real, the empirical spectral distribution function, F S, of the

eigenvalues {λj} for the sample covariance matrix, S, is then defined as

F S(x) =
1

p
#{j ≤ p : λj ≤ x}. (3)

Here, #E is the cardinality of the set E. Before introducing theorems for the empirical

spectral distribution function of the eigenvalues, we first define the Marčenko-Pastur Law

(MP Law) as follows:

9In the literature of LDRMT, the random variables are usually considered to be complex and the
sample covariance matrix is defined by S = 1

n−1

∑n
k=1(xk − x)(xk − x)∗, where ∗ stands for the complex

conjugate transpose of vectors or matrices. For the purposes of this paper and for simplicity, we limit
the general results of LDRMT to the real case in all of our quoted results.

10See, for example, Laloux, Cizeau, Bouchaud, and Potters (1999).
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DEFINITION 1 Let y be the limit of the dimension-to-sample-size ratio index, p/n,

and σ2 be the scale parameter. The MP law is defined as:

1. If y ≤ 1, the MP law Fy(x) is completely defined by the density function:

py(x) =


1

2πxyσ2

√
(b− x)(x− a) if a < x < b

0 otherwise
(4)

where a = σ2(1−√
y)2 and b = σ2(1 +

√
y)2; and

2. If y > 1,11 then Fy(x) has a point mass 1 − 1/y at the origin and the remaining

mass of 1/y is distributed over (a, b) by the density py defined in (4).

We note that if σ2 = 1, the MP law is called the standard MP law. The MP law is

named after Marčenko and Pastur because of their renowned work of 1967. We are now

ready to introduce the following theorem for the empirical spectral distribution function

of the sample covariance matrix:

PROPOSITION 2 Suppose that {xjk} for j = 1, · · · , p and k = 1, · · · , n is a set of

iid real random variables with mean zero and variance σ2. If p/n → y ∈ (0,∞); then,

with probability one, the empirical spectral distribution function, F S, defined in (3) tends

to the MP law almost surely.

Readers could refer to Bai (1999) for the proof of Proposition 2. This proposition

shows that the eigenvalues in the covariance matrix behave undesirably. As indicated by

Proposition 2, when the population covariance is an identity, that is, all the eigenvalues

are 1, the eigenvalues of the sample covariance will then spread from (1−√
y)2 to (1+

√
y)2.

For example, if n = 500 and p = 5, that is, even the dimension-to-sample-size ratio is

as small as y = p/n = 0.01, the eigenvalues of the sample covariance will then spread

11We note that in this paper, we only study the situation in which y < 1. However, as we cite the
well-known results from the literature, for completeness, we include all other situations (y = 1 and y > 1)
as stated in the original literature.

10



in the interval of (0.81, 1.21). The larger the ratio, the wider the interval. For instance,

for the same n with p = 300, we have y = 0.6 and the interval for the eigenvalues of

the sample covariance will then become (0.05, 3.14), a much wider interval. The spread

of eigenvalues for the inverse of the sample covariance matrix will be more severe; for

example, the spreading intervals for the inverses of the sample covariance matrices for the

above-mentioned two cases will be (0.83, 1.23) and (0.32, 19.68), respectively.

The returns being studied in the MV optimization procedure are usually assumed to

be independently and identically normal-distributed (Feldstein (1969), Hanoch and Levy

(1969), Rothschild and Stiglitz (1970, 1971), Hakansson (1972)). However, in reality,

most of the empirical returns are not identically normal-distributed and they are not

independent either. Nonetheless, some investors may choose to invest in assets with

small correlations and thus the independence requirement may not be essential. However,

the assumptions of identical distribution and normality may be violated in many cases;

for example, see Fama (1963, 1965), Blattberg and Gonedes (1974), Clark (1973), and

Fielitz and Rozelle (1983). Thus, it is of practical interest to consider the situation in

which the elements of matrix X depend on n and for each n, they are independent but

not necessarily identically nor normally distributed. For this non-iid and non-normality

case, we introduce the following proposition for the empirical distribution function of the

eigenvalues for the sample covariance matrix:

PROPOSITION 3 Suppose that {xjk} for j = 1, · · · , p and k = 1, · · · , n is a set

of independent real random variables with mean zero and variance σ2 but not necessarily

identically-distributed. Let n be the sample size and p be the number of assets. We assume

that p/n → y ∈ (0,∞), and that for any η > 0, we have

1

η2np

∑
jk

E(|x(n)
jk |

2I
(|x(n)

jk |≥η
√
n)
) → 0.

Then, with probability one, the empirical distribution function, F S, of the eigenvalues for

S defined in (3) tends to the MP law defined in Definition 1 with the dimension-to-sample-

size ratio index, y, and scale index, σ2.
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Refer to Bai (1999) for a proof of Proposition 3. Obviously, the Proposition 3 enables us

to relax the iid assumption to the one with independent but not necessarily identically

distributed entries in (2) in developing portfolio optimization theory. In practice, the

theory also applies to the case where the asset observations are correlated as explained

in Theorem 2. For example, if the vectors yk = Σ1/2xk and the entries of xk’s defined in

(2) are satisfy the assumption of Proposition 3. Clearly, the entries of yk are correlated.

In this case, the sample covariance matrix for yk’s is Σ1/2SΣ1/2. We shall apply the

Propositions 2 and 3 to S in Σ1/2SΣ1/2 in the development of our theory. However, for

simplicity, we will keep the iid assumption in developing the theory in this paper.

In many cases, the integrands of integrals with respect to the empirical spectral distribu-

tions are unbounded at 0 and/or at infinity. As such, when using the limiting spectral

distribution to find the limit of the linear spectral statistic, we must include the con-

dition that the eigenvalues of the random matrices are bounded away from the points

where the integrands are unbounded. To handle this situation, we introduce the follow-

ing proposition of the extreme eigenvalues for any large dimensional sample covariance

matrix:

PROPOSITION 4 Suppose that {xjk} for j = 1, · · · , p and k = 1, · · · , n is a set of

double array of iid real random variables with mean zero, variance σ2 and a finite fourth

moment. S is the sample covariance matrix constructed by the n vectors {(x1k, · · · , xpk)
T ;

k = 1, · · · , n}. If p/n → y ∈ (0,∞); then, with probability one, the maximum eigenvalue

of S tends to b = σ2(1 +
√
y)2 and in addition,

1. if y ≤ 1, the smallest eigenvalue of S tends to a = σ2(1−√
y)2; and

2. if y > 1, the p− n+ 2nd smallest eigenvalue of S tends to a = σ2(1−√
y)2.

The proof of this proposition can be found in Bai and Yin (1993)12 and Bai (1999). If p is

12In Bai and Yin (1993), their Conclusion 2 is the p − n + 1st smallest eigenvalue approaching to a
because the sample covariance matrix in their paper is defined by n−1

∑
xkx

T
k , which has one more rank

than the covariance matrix defined in this paper.
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fixed, applying the law of large numbers, one can easily show that the sample covariance

matrix will be close to the population covariance with high probability. However, accord-

ing to the LDRMT, when the dimension p is large, the sample covariance will no longer

be an efficient estimator for the population covariance (see, for example, Laloux, Cizeau,

Bouchaud, and Potters (1999)). Moreover, the performance of the estimator will rapidly

worsen with the increase of the dimension of the covariance matrix. This results in an un-

avoidable severe departure of its estimated optimal portfolio allocation from its theoretic

counterpart and, thus, explains the “Markowitz optimization enigma” phenomenon that

the “Markowitz optimal procedure” is not practically useful or that at least the procedure

is far from satisfactory.

3 ESTIMATION

In this section, we first introduce the traditional plug-in estimators and then develop the

bootstrap-corrected estimators for the optimal return and its asset allocation. In contrast

to conventional MV portfolio analysis implemented by simply plugging in the sample

means and sample covariance matrix into the formula of the theoretic optimal return,

our proposed bootstrap estimator will be constructed by incorporating the bootstrap

technique into the large dimensional random matrix theory. The former is found not to

be a good estimator, while the latter is. We will discuss the theory and the properties for

these estimators in the following subsections.

3.1 Plug-in Estimator

In the Markowitz MV optimization, we call the procedure of substituting the population

mean vector µ and covariance matrix Σ in the optimal return R shown in (1) by their

corresponding sample mean vector x and the sample covariance matrix S the “plug-in”

13



procedure and call its estimator of the optimal return the “plug-in” return (estimate)

to distinguish it from any attainable efficient return estimate, since this plug-in return

is far from satisfactory. As a result, many academic researchers and practitioners have

recommended not using the plug-in return estimate.

The poor estimation is actually due to the poor estimation of c by “plugging-in” the

sample mean vector x and the sample covariance matrix S into the formulae of the asset

allocation c in Proposition 1 such that

ĉp =


S−1x√
xTS−1x

, if σ01TS−1x√
xTS−1x

< 1,

S−11
1TS−11

+ b̂
(
S−1x− 1TS−1x

1TS−11
S−11

)
, otherwise;

(5)

where

b̂ =

√
1TS−11σ2

0

xTS−1x1TS−11− (1TS−1x)2
.

The problem arises because ĉp differs from the optimal allocation c dramatically when

the dimension p of the covariance matrix is large. Thereafter, when one “plugs” ĉp into

the optimal return cTµ as ĉTpµ, one should not be surprised that ĉTpµ is so far away from

cTµ that it is not practically useful. In this connection, we do not call ĉTpµ an estimator

of the optimal return cTµ. Instead, we call ĉp in (5) the plug-in allocation and

R̂p = ĉTpµ (6)

the plug-in return, respectively. Thereafter, we substitute x back to µ in (6) such that

ˆ̂
Rp = ĉTp x (7)

to get an estimate of the plug-in return. We note that although the sample covariance

S is not a good estimator of the true covariance Σ when the dimension is large, the

sample mean x is still a good estimator of µ. Thus, we expect to have ĉTp x ≃ ĉTpµ, and

hence,
ˆ̂
Rp is still a good estimator of R̂p. We note that the relation An ≃ Bn means

that An/Bn → 1 in the limiting procedure and we say that An and Bn are proportionally
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similar to each other in the sequel. If Bn is a sequence of parameters, we shall say that

An is proportionally consistent with Bn. Our simulation results shown in Figure 1 and

Table 1 in the next section support this argument. We further prove theoretically that

this argument is correct as stated in the following theorem:

THEOREM 1 Under the general conditions as stated in Theorem 2 below, the esti-

mator
ˆ̂
Rp of the plug-in return R̂p is asymptotically similar to R̂p, where R̂p and

ˆ̂
Rp are

defined in (6) and (7), respectively.

The proof of Theorem 1 is straightforward. Now, we explain the poor estimation in

detail. In reality, the number of assets available to the investors is very large, but the

dimension of the covariance is also huge. Thus, according to the above propositions and

theorems, the eigenvalues of the estimated covariance matrix will then be widely spread.

On the other hand, by the elementary law of large numbers, it is easy to prove that the

trace of the sample covariance matrix is almost surely proportionally consistent with the

trace of the population covariance matrix. Therefore, by Jessen’s inequality13, the linear

functional of the empirical spectral distribution of the sample covariance matrix with

respect to any convex function is definitely larger than the counterpart with respect to

the population covariance matrix. For the return in the MV optimization procedure, the

corresponding function is X−1 (X > 0), which is convex.14 This confirms that the plug-in

return is always larger than the theoretic optimal return. An intuitive interpretation for

this phenomenon is that the inverse of small eigenvalues will become very large, causing

the ill-conditioning properties when employing this plug-in MV optimization procedure.

We call this phenomenon “over-prediction.”

REMARK 2 We use the term “over-prediction” instead of the popularly used “esti-

mation/measurement error” for the following reasons: First, the ‘error’ does not attribute

13Jessen’s inequality states that φ(Ex) ≤ Eφ(x) for any convex function φ provided Eφ(x) is finite,
the inequality is strict unless φ is linear.

14We note that Jessen’s inequality holds for multivariate convex functions as well as matrix functions.
It is easy to show that x−1 is a convex function in the domain of positive definite matrices. Thus,
Σ−1 = (ES)−1 ≤ E(S−1) which implies that µ′Σ−1µ ≤ E(µ′S−1µ).
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to the measurement error. That is, even when there is no measurement error, for example,

even when the samples are exactly measured and recorded, the ‘error’ in the estimation of

the covariance matrix still exists. Hence, the plug-in return is still larger than the theoret-

ical return. Second, the measurement error could be positive or negative and should have

mean 0 in the long run. The phrase “over-prediction” means the plug-in return is always

larger than its theoretic counterpart, whether in the long run or short run.

To explain the over-prediction phenomenon, in this paper we further theoretically

prove that the plug-in return is not appropriate for practical use as shown in the following

theorem:

THEOREM 2 Assume that y1, · · · ,yn are n independent random p-vectors of iid

entries with mean zero and variance 1. Suppose that xk = µ+ zk with zk = Σ
1
2yk where

µ is an unknown p-vector and Σ is an unknown p×p covariance matrix. Also, we assume

that the entries of yk’s have finite fourth moments and assume that as p/n → y ∈ (0, 1),

we have
µTΣ−1µ

n
→ a1 ,

1TΣ−11

n
→ a2 ,

1TΣ−1µ

n
,→ a3,

satisfying a1a2 − a23 > 0. Then, with probability 1, we have

lim
n→∞

ˆ̂
Rp√
n
=


√
γa1 > lim

n→∞

R(1)

√
n

=
√
a1, when a3 < 0,

σ0

√
γ(a1a2−a23)

a2
> lim

n→∞

R(2)

√
n

= σ0

√
a1a2 − a23

a2
, when a3 > 0 ;

where R(1) and R(2) are the returns for the two cases given in Proposition 1 respectively,

γ =
∫ b

a
1
x
dFy(x) =

1
1−y

> 1, a = (1−√
y)2 and b = (1 +

√
y)2.

REMARK 3 From Proposition 1, the return takes the form R(1) if 1TΣ−1µ <
√
µTΣ−1µ.

When a3 < 0, for all large n, the condition for the first case holds, and hence, we obtain

the limit for the first case. If a3 > 0, the condition 1TΣ−1µ <
√

µTΣ−1µ is eventually

not true for all large n, and hence, the return takes the form R(2). When a3 = 0, the case
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becomes very complicated. The return may attain the value in both cases and, hence,
ˆ̂
Rp√
n

may jump between the two limit points.

The computation of γ will be presented in the Appendix and the proof of Theorem 2 can

be easily derived from the following lemma:

LEMMA 1 Under the assumptions of Theorem 2, we have

(a)
xTS−1x

n

a.s.−→ a1 · γ ,

(b)
1TS−11

n

a.s.−→ a2 · γ , and

(c)
1TS−1x

n

a.s.−→ a3 · γ

where a.s. stands for ‘almost surely.’

Nevertheless, from Theorems 1 and 2, we know that both the plug-in return, R̂p, and

the estimator of the plug-in return,
ˆ̂
Rp, are always bigger than their theoretic optimal

return, R = cTµ, defined in (1) and the difference is so big that both R̂p and
ˆ̂
Rp are

not recommended for use in practice. Nonetheless, from Theorem 1, the estimator,
ˆ̂
Rp,

of the plug-in return is found to be a good estimator of the plug-in return R̂p. Since
ˆ̂
Rp

is observable but not R̂p, we will use only
ˆ̂
Rp in our computation, but we will use the

notation R̂p in this paper to represent both
ˆ̂
Rp and R̂p from now on if no confusion occurs.

We note that the returns being studied in the MV optimization procedure are usually

assumed to be multivariate normally distributed. However, many studies, (for example,

see Fama (1963, 1965), Blattberg and Gonedes (1974), Clark (1973), Fielitz and Rozelle
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(1983)) conclude that the normality assumption in the distribution of a security or port-

folio return is violated. In this paper, we further relax the multivariate normality and

multivariate stable distribution assumption to the existence of only finite fourth moment in

Proposition 4 and Theorem 2 and to the existence of only finite second moment in Propo-

sitions 2 and 3. We also note that Michaud (1989) and others conclude that the estimator

R̂p in the MV optimization procedure generates large estimation error. Nonetheless, if

the poor estimation is attributed to the estimation error, the estimate should be bigger

or smaller than its theoretic value by chance. However, as we proved in Theorem 2, the

estimate R̂p is about
√
γ times larger than the optimal return. Thus, this over-prediction

is a natural phenomenon but not a random error.

The theoretical MV optimization procedure introduced by Markowitz more than half

a century ago is expected to be a powerful tool, since it enables investors to efficiently

allocate their wealth to different investment alternatives and reduce overall portfolio risk.

However, this procedure has almost never been put into practice since its discovery be-

cause, so far, nobody has provided a good solution for overcoming the “Markowitz op-

timization enigma.” Laloux, Cizeau, Bouchaud, and Potters (1999) and others suggest

that the determination of the correlation matrix and its eigenvalues could be the reason

for the poor estimation. But so far, nobody has proved this phenomenon theoretically

nor provided a reasonably efficient estimator for the optimal return. In this connection,

besides providing an explanation and thereafter proving the “Markowitz optimization

enigma” as shown in the earlier part of this paper, this paper also aims to develop a good

estimator of the optimal return to circumvent the over-prediction problem. To achieve

this, we incorporate both the large dimensional random matrix theory and the bootstrap

technique to obtain a bootstrap estimate to correct the over-prediction and to reduce the

estimation error dramatically. We explain this approach in detail in the next sub-section.
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3.2 Bootstrap-Corrected Estimation

There are two main approaches to the bootstrap procedure: the nonparametric and para-

metric methods. Refer to Hall (1992) for more details. The basic idea in the nonpara-

metric bootstrap technique is to use the empirical distribution to replace the unknown

population distribution. Given a sample of n iid random variables x1,x2, ...,xn and a

real-valued estimator θ(x1,x2, ...,xn) (denoted by θ̂) of the unknown parameter θ, the

bootstrap procedure is to construct another estimator θ̂∗ that is similar to the original

estimator θ̂ based on a random sample x∗
1,x

∗
2, ...,x

∗
n drawn from the empirical distribution

function Fn of the original sample.

Another approach is the parametric method of the bootstrap methodology described

as follows: Suppose that χ = {x1, · · · ,xn} is a sample drawn from the population Fθ

where θ is the parameter to be estimated. Let θ̂ = θ(x1, · · · ,xn) be an estimator of θ.

Then, a sample χ∗ = {x∗
1, · · · ,x∗

n} is drawn from the population Fθ̂. Thereafter, another

estimator, θ̂∗ = θ(x∗
1, · · · ,x∗

n), of θ̂ can be constructed from the resample χ∗. If the

dimension of xk is fixed, by the law of large numbers, θ̂ is close to θ, and hence, the Fθ̂

is close to Fθ by the contiguity of distribution. As a result, the distribution of θ̂ − θ will

be similar to that of θ̂∗ − θ̂. Repeating this resampling procedure, we can get as many

iid bootstrap estimators θ̂∗ as desired. As such, we could use the empirical distribution

of θ̂ − θ̂∗ to approximate the unknown distribution of θ − θ̂. Now, suppose that θ̂ is

not a consistent estimator of θ but converges to a constant that is not equal to θ with

probability one. When n is large enough, we expect the relationship:

θ̂∗ − θ̂

θ̂ − θ
≃ α (8)

could still be held where α is a constant. Making use of this relationship, we obtain an

estimate θ̂ − 1
α
(θ̂∗ − θ̂). We expect it to be a consistent estimator for θ.

In this paper we will use the parametric approach of the bootstrap methodology to

avoid possible singularity of the covariance matrix in the bootstrap sample. Now, we
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describe the procedure to construct a parametric bootstrap estimate from the estimate of

the plug-in return, R̂p, defined in (6) as follows: First, draw a resample χ∗ = {x∗
1, · · · ,x∗

n}

from the p-variate normal distribution with mean vector x and covariance matrix S defined

in (2). Then, invoking Markowitz’s optimization procedure again on the resample χ∗, we

obtain the bootstrapped “plug-in” allocation, ĉ∗p, and the bootstrapped “plug-in”

return, R̂∗
p, such that

R̂∗
p = ĉ∗Tp x∗ (9)

where x∗ = 1
n

∑n
1 x

∗
k.

We note that the bootstrapped “plug-in” allocation ĉ∗p will be different from the origi-

nal “plug-in” allocation ĉp and, similarly, the bootstrapped “plug-in” return R̂∗
p is different

from the “plug-in” return R̂p but we expect that the relationship in (8) will still hold for

R̂∗
p and R̂p and for some α. Thus, the bootstrap-corrected return estimate R̂b can

then be obtained such that

R̂b = R̂p +
1

α
(R̂p − R̂∗

p) (10)

where R̂p and R̂∗
p are defined in (7) and (9), respectively.

We expect that this estimate would perform well in that it will be much closer to the

theoretic value of the optimal return, R, when n is large. In this paper it is our goal to

look for the best α in (10). To achieve this, we introduce the following theorem.

THEOREM 3 Under the conditions in Theorem 2 and using the bootstrapped plug-in

procedure as described above, we have

√
γ(R− R̂p) ≃ R̂p − R̂∗

p (11)

where γ is defined in Theorem 2, R is the theoretic optimal return obtained from Proposi-

tion 1, R̂p is the plug-in return estimate defined in (7) and obtained by using the original

sample χ, and R̂∗
p is the bootstrapped plug-in return estimate defined in (10) and obtained

by using the bootstrapped sample χ∗, respectively.
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In Theorem 2, the relationship R̂p ≃ √
γR has been proven. As the relationship R̂∗

p ≃
√
γR̂p is its dual conclusion, the proof of Theorem 3 follows immediately. Now, we are

ready to construct a consistent estimate for the optimal return, R, in accordance with the

value of the ratio of dimension to sample size. From (11), we have:

√
γ(cTµ− ĉTpX) ≃ ĉTpX − ĉ∗Tp X

∗
.

Using this relationship, we construct the bootstrap-corrected allocation, ĉb, and

then construct the bootstrap-corrected return estimate, R̂b, as stated in the following

theorem:

THEOREM 4 Under the conditions in Theorem 2 and using the bootstrap correction

procedure described above, the bootstrap-corrected allocation, ĉb, and bootstrap-

corrected return estimate, R̂b, are given by:

ĉb = ĉp +
1
√
γ
(ĉp − ĉ∗p)

R̂b = R̂p +
1
√
γ
(R̂p − R̂∗

p) (12)

where ĉp and ĉ∗p are the plug-in and bootstrapped plug-in allocations defined in (7) and (9)

respectively, R̂p and R̂∗
p are their corresponding plug-in and bootstrapped plug-in returns

defined in (7) and (9), respectively, and γ is defined in Theorem 2.

We note that Michaud (see, Michaud (1998) and Meucci (2005)) provides a bootstrap

estimation approach to estimate the allocation and thereafter estimate the return. His

resampling estimator of the allocation is equivalent to the ĉ∗p in our paper. We also note

that Michaud’s method is to repeat 3500 times and then take the average as the estimate

of the allocation. Theoretically, we may interpret Michaud’s estimator as the expected

plug-in estimator when the training sample is considered as the population. Applying

the analysis in our paper, we obtain: R̂p/Rp → √
γ (=

√
1/(1− y) ), which implies

R̂∗
p/R̂p →

√
γ. Therefore, R̂∗

p/Rp → γ. We have simulated our proposed estimate, plug-in
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estimate, and the estimate proposed by Michaud. Our result shows that ours is much

better than Michaud’s. The results are available on request.

In our simulation, the desired properties of consistency and efficiency are found for the

bootstrap-corrected return estimate R̂b for any number of assets, regardless of whether

they are small or large. Figure 2 displayed in the next section shows the obvious merit of

our new bootstrap-corrected optimal return estimate R̂b defined in (12) over the plug-in

return estimate R̂ defined in (7). For instance, for n = 500 and p = 200 from the figure,

we observe that R̂b is close to the true optimal return R, but R̂ is far away from the

true optimal return. We will demonstrate the superiority of our estimates by conducting

simulations as presented in the next section.

4 SIMULATION STUDY

In this section, we first demonstrate the over-prediction problem by displaying the quantity

of the over-prediction increases as the dimension increases. Second, we present simula-

tion results on comparisons between the bootstrap-corrected estimates and the plug-in

estimates for the return and allocation by means of both mean square errors and relative

efficiencies.

4.1 Over-Prediction

To illustrate the over-prediction problem, for simplicity we generate p-branch standardized

security returns from a multivariate normal distribution with mean µ = (µ1, ..., µp)
T

and identity covariance matrix Σ = (Ijk) in which Ijk = 1 when j = k and Ijk = 0

otherwise. Given the level of risk with the known population mean vector, µ, and known

population covariance matrix, Σ, we can compute the theoretic optimal allocation, c,

and, thereafter, compute the theoretic optimal return, R, for the portfolios. These values
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will then be used to compare the performance of all the estimators being studied in our

paper. Using this data set, we apply the formula in (2) to compute the sample mean,

x, and sample covariance, S, which, in turn, enables us to obtain the plug-in return,

R̂p, and its corresponding plug-in allocation, ĉp, by substituting x and S into µ and

Σ, respectively, in the formula of R̂p and ĉp shown in Proposition 1. To illustrate the

over-prediction problem, we first plot the theoretic optimal returns, R, and the plug-in

returns, R̂p, for different values of p with the same sample size n = 500 in Figure 1. For

further evaluation, we depict the simulation theoretic optimal returns, R, and the plug-in

returns, R̂p, in Table 1 for two different cases: (A) for different values of p with the same

dimension-to-sample-size ratio p/n (= 0.5), and (B) for the same value of p (= 25215) but

different dimension-to-sample-size ratios p/n.

Place Figure 1 and Table 1 here

From Figure 1 and Table 1, we find the following: (1) both the plug-in return R̂p

defined in (6) and its estimate
ˆ̂
Rp defined in (7) are good estimates of the theoretic optimal

return R when p is small (≤ 30); (2) when p is large (≥ 60), the difference between the

theoretic optimal return R and the plug-in return R̂p (or
ˆ̂
Rp) becomes dramatically large;

(3) the larger the p, the greater the difference; and (4) when p is large, both the plug-in

return R̂p and its estimate
ˆ̂
Rp are always larger than the theoretic optimal return, R,

computed by using the true mean and covariance matrix. These confirm the “Markowitz

optimization enigma” that the plug-in returns R̂p should not be used in practice. In

addition, Figure 1 and Table 1 confirm a fairly high congruence between
ˆ̂
Rp and R̂p for

all values of p. Hence, in this paper we will use R̂p to represent both
ˆ̂
Rp and R̂p if no

confusion occurs.

15We choose this number to ensure n is an integer for the different ratios being chosen.
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4.2 Bootstrap-Correction Method

In this section, our simulation is to show the superiority of both R̂b and ĉb over their

plug-in counterparts R̂p and ĉp. To this end, we first define the bootstrap-corrected

difference, dRb , for the return as the difference between the bootstrap-corrected optimal

return estimate R̂b and the theoretic optimal return R; that is,

dRb = R̂b −R (13)

which will be used to compare the plug-in difference,

dRp = R̂p −R (14)

for the return, where R̂p and R̂b are defined in (7) and (12), respectively.

To compare the bootstrapped allocation with the plug-in allocation, we define the

bootstrap-corrected difference norm, dcb, and the plug-in difference norm, dcp, for

the allocations to be

dcb = ∥ĉb − c∥ and dcp = ∥ĉp − c∥, (15)

where dcb is the difference norm between the bootstrap-corrected allocation ĉb and the

theoretic optimal allocation c, while dcp is the plug-in difference norm between the plug-

in allocation ĉp and the theoretic optimal allocation c. We then simulate 30 times to

compute dRx and dcx for x = p and b, n = 500 and p = 100, 200 and 300. The results are

displayed in Table 2 and depicted in Figure 2.

Place Figure 2 and Table 2 here

From Table 2 and Figure 2, we find the desired property that dRb (dcb) is much smaller

than dRp (dcp) in absolute value for all cases. This infers that the estimate obtained by

utilizing the bootstrap-corrected method is much more accurate in estimating the theoretic

value than that obtained by using the plug-in procedure. Furthermore, as p increases, the
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two lines of dRp and dRb (or dcp and dcb) on each level as shown in Figure 2 separate further,

implying that the magnitude of improvement from dRp (dcp) to dRb (dcb) is remarkable.

To further illustrate the superiority of our estimate over the traditional plug-in es-

timate, we present in Table 3 the mean square errors (MSEs) of the different estimates

for different p and plot these values in Figure 3. In addition, we define their relative

efficiencies (REs) for both allocations and returns to be

REc
p,b =

MSE(dcp)

MSE(dcb)
and RER

p,b =
MSE(dRp )

MSE(dRb )
. (16)

and report their values in Table 3.

Comparing the MSE of dRb (dcb) with that of dRp (dcp) in Table 3 and Figure 3, the MSEs

of both dRb and dcb have been reduced dramatically from those of dRp and dcp, indicating

that our proposed estimates are superior. We find that the MSE of dRb is only 0.04,

improving 6.25 times from that of dRp when p = 50. When the number of assets increases,

the improvement becomes much more substantial. For example, when p = 350, the MSE

of dRb is only 1.59 but the MSE of dRp is 220.43, improving 138.64 times from that of dRp .

This is an unbelievable improvement. We note that when both n and p are bigger, the

relative efficiency of our proposed estimate over the traditional plug-in estimate could be

much larger. On the other hand, the improvement from dcp to dcb is also tremendous.

Place Table 3 and Figure 3 here

5 ILLUSTRATION

We illustrate the superiority of our approach by comparing the estimates of the bootstrap-

corrected return and the plug-in return for daily S&P500 data. To match our simulation

of n = 500 as shown in Table 1 and Figure 1, we choose 500 daily data backward from

December 30, 2005, for all companies listed in the S&P500 as the database for our es-

timation. We then choose the number of assets (p) from 5 to 400, and for each p, we
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select p stocks from the S&P500 database randomly without replacement and compute

the plug-in return and the corresponding bootstrap-corrected return. We plot the plug-in

returns and the corresponding bootstrap-corrected returns in Figure 4 and report these

returns and their ratios in Table 4 for different p. We also repeat the procedure (m =) 10

and 100 times for checking. For each m and for each p, we first compute the bootstrap-

corrected returns and the plug-in returns. Thereafter, we compute their averages for both

the bootstrap-corrected returns and the plug-in returns and plot these values in Panels 2

and 3 of Figure 4, respectively for comparison with the results in Panel 1 for m = 1.

Place Table 4 and Figure 4 here

From Table 4 and Figure 4, we find that as the number of assets increases, (1) the

values of the estimates from both the bootstrap-corrected returns and the plug-in returns

for the S&P500 database increase, and (2) the values of the estimates of the plug-in

returns increase much faster than those of the bootstrap-corrected returns and thus their

differences become wider. These empirical findings are consistent with the theoretical

discovery of the “Markowitz optimization enigma” that the estimated plug-in return is

always larger than its theoretical value and their difference becomes larger when the

number of assets is large.

Comparing Figures 4 and 1 (or Tables 4 and 1), one will find that the shapes of the

graphs of both the bootstrap-corrected returns and the corresponding plug-in returns are

similar to those in Figure 1. This infers that our empirical findings based on the S&P500

are consistent with our theoretical and simulation results, which, in turn, confirms that

our proposed bootstrap-corrected return performs better.

One may doubt the existence of bias in our sampling as we choose only one sample

in the analysis. To circumvent this problem, we, in addition, repeat the procedure m

(=10, 100) times. For each m and for each p, we compute the bootstrap-corrected returns

and the plug-in returns and then compute their averages for both the bootstrap-corrected
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returns and the plug-in returns. Thereafter, we plot the averages of the returns in Figure

4 and report these averages and their ratios in Table 4 for m = 10 and 100. When

comparing the values of the returns for m = 10 and 100 with m = 1, we find that the

plots are basically of the similar values for each p but become smoother, inferring that the

sampling bias has been eliminated by increasing the number of m. The results for m = 10

and 100 are also consistent with the plot in Figure 1 in our simulation, inferring that our

bootstrap-corrected return is a better estimate for the theoretical return in the sense that

its value is much closer to the theoretical return when compared with the corresponding

plug-in return.

6 CONCLUSION

Being of both theoretical and practical interest, the basic problem for MV analysis is

identifying those combinations of assets that constitute attainable efficient portfolios.

Unfortunately, there are problems that accompany any MV analysis. With this in mind,

this paper sets out to solve this dilemma by developing a new optimal return estimate

to capture the essence of portfolio selection. Since our approach is easy to operate and

implement in practice, the whole efficient frontier of our estimates can be constructed

analytically. Thus, our proposed estimator facilitates the Markowitz MV optimization

procedure, making it implementable and practically useful.

Since our model includes the situation in which one of the assets is a riskless asset,

the separation theorem holds and thus our proposed return estimate is the optimal com-

bination of the riskless asset and the optimal risky portfolio. We further note that the

other assets listed in our model could be common stocks, preferred shares, bonds, and

other types of assets so that the optimal return estimate proposed in our paper actually

represents the optimal return for the best combination of riskless rate, bonds, stocks, and

other assets.
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For instance, the optimization problem can be formulated with short-sales restrictions,

trading costs, liquidity constraints, turnover constraints, and budget constraints;16 see,

for example, Detemple and Rindisbacher (2005), Muthuraman and Kumar (2006), and

Lakner and Nygren (2006). Each of these constraints leads back to a different model for

determining the shape, composition, and characteristics of the efficient frontier and, there-

after, makes MV optimization a more flexible tool. For example, Xia (2005) investigates

the problem with a non-negative wealth constraint in a semimartingale model. Another

direction for further research is to adopt the continuous-time multiperiod Markowitz’s

problem (see, for example, Li and Ng (2000), Emmer, Klüppelberg, and Korn (2001)

and Xia and Yan (2006) for details on the issue). Further research could also include

conducting an extensive analysis to compare the performance of our estimators with

other state-of-the-art estimators in the literature, for example, factor models or Bayesian

shrinkage estimators.

We note that the returns being studied in the MV optimization procedure are usually

assumed to be normally distributed. However, many studies (for example, see Fama

(1963, 1965), Blattberg and Gonedes (1974), Clark (1973), and Fielitz and Rozelle (1983))

conclude that the normality assumption in the distribution of a security or portfolio return

is violated. We further note that another contribution of our proposed approach is that

we relax the normality assumption in the underlying distribution for the return being

studied in the MV optimization procedure. In addition, we relax the condition to the

existence of the second moments for some cases and to the fourth moments for some

other cases. The returns could follow any distribution, and furthermore, they are not

necessarily identically-distributed in our proposed approach.

We note that Leung, et al. (2012) provide a close form estimation for Bai et al. (2009a)

while Bai, et al. (2013, 2016) further extend the work by developing the theory of spectral-

corrected estimation. They first establish a theorem to explain why the plug-in return

16We note that after imposing any of these additional constraints, there may not be any explicit
solution. Even if an explicit solution can be found, it could be very complicated and the development of
the theory could be very tedious. We will address this question in our further research.
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greatly overestimates the theoretical optimal return. Thereafter, they prove that under

some situations the plug-in return is
√
γ times bigger than the theoretical optimal return,

while under other situations, the plug-in return is bigger than but may not be
√
γ times

larger than its theoretic counterpart where γ = 1
1−y

with y being the limit of the ratio

p/n. They then develop the spectral-corrected estimation for the Markowitz MV model

which performs much better than both the plug-in estimation and the bootstrap-corrected

estimation not only in terms of the return but also in terms of the allocation and the risk.

They also develop properties for their proposed estimation and conduct a simulation to

examine the performance of their proposed estimation. Their simulation shows that their

proposed estimation not only overcomes the problem of “over-prediction,” but also cir-

cumvents the “under-prediction,” “allocation estimation,” and “risk” problems. Their

simulation also shows that their proposed spectral-corrected estimation is stable for dif-

ferent values of sample size n, dimension p, and their ratio p/n. In addition, they relax

the normality assumption in our proposed estimation so that their proposed spectral-

corrected estimators could be obtained when the returns of the assets being studied could

follow any distribution under the condition of the existence of the fourth moments.

Finally, we note that the approach developed in this paper is useful in empirical stud-

ies, for example, Abid, et al. (2014) apply the approach developed in the paper to examine

preferences for international diversification versus domestic diversification from American

investors’ viewpoints. On the other hand, Hoang, et al. (2015) apply the approach devel-

oped in the paper to study the role of gold quoted on the Shanghai Gold Exchange in the

diversification of Chinese portfolios.
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Figure 1: Empirical and theoretical optimal returns for different numbers of assets
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Solid line — the theoretic optimal return (R);
Dashed line—the plug-in return (R̂p);

Dotted line— the estimate of plug-in return (
ˆ̂
Rp).

Note: The dashed line and dotted line are coincidental in the entire range.
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Table 1: Performance of R̂p and
ˆ̂
Rp over the Optimal Return R for different values of p

and for different values of p/n

p p/n R R̂p
ˆ̂
Rp

100 0.5 9.77 13.89 13.96
200 0.5 13.93 19.67 19.73
300 0.5 17.46 24.63 24.66
400 0.5 19.88 27.83 27.85
500 0.5 22.29 31.54 31.60

p p/n R R̂p
ˆ̂
Rp

252 0.5 14.71 20.95 21.00
252 0.6 14.71 23.42 23.49
252 0.7 14.71 26.80 26.92
252 0.8 14.71 33.88 34.05
252 0.9 14.71 48.62 48.74

Note: The table compares the performance between R̂p and
ˆ̂
Rp for same p/n ratio with

different numbers of assets, p, and for same p with different p/n ratio where n is number of

sample, R is the optimal return defined in (1), R̂p and
ˆ̂
Rp are defined in (6) and (7),

respectively.
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Figure 2: Comparison between the Empirical and Corrected Portfolio Allocations and
Returns
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Solid line —the absolute value of dcp and dRp respectively;

Dashed line— the absolute value of dcb and dRb respectively.

Note : The top, middle, and bottom two sub-figures are the plot for p = 100, 200, and 300,
respectively. The plots on the left are the plots for dRp and dRb , while the plots on the right are

the plots for dcp and dcb, respectively. d
R
b , d

R
p , d

c
b and dcp are defined in (13), (14), and (15),

respectively.
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Table 2: Comparison between the Empirical and Corrected Portfolio Returns and Allo-
cations

p = 100 and n = 500 p = 200 and n = 500 p = 300 and n = 500
k dRp dRb dcp dcb dRp dRb dcp dcb dRp dRb dcp dcb
1 0.95 -0.10 0.51 0.46 4.20 0.10 1.11 0.88 9.00 -0.82 1.95 1.24
2 1.57 0.39 0.59 0.53 4.93 0.37 1.11 0.84 7.16 -1.98 1.71 1.15
3 1.75 0.49 0.54 0.47 4.17 0.17 1.09 0.84 11.81 0.54 2.17 1.34
4 1.39 0.19 0.55 0.49 4.21 0.22 1.08 0.85 9.23 -0.52 1.85 1.14
5 0.61 -0.47 0.46 0.42 4.14 0.03 1.00 0.77 7.57 -1.35 1.77 1.16
6 1.59 0.47 0.56 0.50 4.09 -0.06 1.02 0.80 9.06 -0.23 1.92 1.18
7 1.04 -0.27 0.56 0.50 3.05 -0.95 1.11 0.85 10.15 -0.14 2.06 1.30
8 1.06 -0.05 0.60 0.53 2.29 -1.24 0.99 0.79 10.31 -0.67 1.93 1.18
9 1.38 0.21 0.55 0.50 4.33 0.40 0.96 0.74 11.76 1.37 2.43 1.44
10 0.93 -0.10 0.51 0.46 4.34 0.12 1.06 0.78 9.01 -0.32 1.97 1.22
11 0.83 -0.30 0.46 0.42 4.26 0.30 1.07 0.84 10.16 -0.39 1.93 1.26
12 0.46 -0.79 0.54 0.50 4.34 -0.21 1.07 0.79 11.60 0.83 1.95 1.20
13 1.16 0.00 0.49 0.45 4.05 -0.14 1.04 0.84 10.52 0.39 2.11 1.29
14 1.04 -0.14 0.52 0.45 4.73 0.51 1.16 0.92 10.30 0.00 1.96 1.16
15 1.51 0.44 0.60 0.54 4.24 0.05 1.16 0.88 10.71 0.75 2.14 1.35
16 1.38 0.27 0.62 0.57 5.47 0.77 1.24 0.95 10.81 0.08 1.97 1.23
17 1.30 0.16 0.55 0.51 4.11 0.14 1.13 0.86 12.18 1.40 2.27 1.41
18 0.87 -0.38 0.51 0.46 3.50 -0.54 1.10 0.85 10.07 -0.46 2.00 1.26
19 1.32 0.31 0.56 0.50 4.33 0.34 1.13 0.84 13.30 2.07 2.29 1.43
20 0.64 -0.47 0.49 0.46 4.55 -0.10 1.06 0.79 10.24 0.16 1.97 1.25
21 2.35 0.87 0.63 0.54 5.38 0.77 1.13 0.85 12.93 1.58 2.26 1.44
22 0.59 -0.57 0.48 0.43 4.88 0.58 1.17 0.93 9.71 0.13 2.00 1.24
23 1.33 0.11 0.56 0.51 4.84 0.74 1.13 0.87 13.84 2.67 2.53 1.58
24 1.25 0.17 0.58 0.51 4.24 0.25 1.01 0.78 8.85 -1.40 1.69 1.10
25 0.61 -0.60 0.57 0.52 3.39 -0.17 1.11 0.82 12.07 0.97 2.08 1.31
26 0.99 -0.06 0.56 0.50 4.25 0.04 1.01 0.78 10.08 -0.28 1.91 1.25
27 1.25 0.01 0.60 0.56 3.17 -0.41 1.00 0.75 11.11 0.66 2.14 1.36
28 1.65 0.42 0.52 0.45 4.86 0.66 1.09 0.83 10.29 -0.12 2.31 1.46
29 1.80 0.51 0.62 0.56 4.02 0.18 1.14 0.89 11.20 0.39 2.29 1.42
30 1.53 0.22 0.56 0.50 4.54 -0.05 1.13 0.87 11.43 1.02 2.34 1.50

Note: dRb , d
R
p , d

c
b, and dcp are defined in (13), (14), and (15), respectively. k is the number of

simulations.
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Table 3: MSE and Relative Efficiency Comparison
p MSE(dRp ) MSE(dRb ) MSE(dcp) MSE(dcb) RER

p,b REc
p,b

p = 50 0.25 0.04 0.13 0.12 6.25 1.08
p = 100 1.79 0.12 0.32 0.26 14.92 1.23
p = 150 5.76 0.29 0.65 0.45 19.86 1.44
p = 200 16.55 0.36 1.16 0.68 45.97 1.71
p = 250 44.38 0.58 2.17 1.06 76.52 2.05
p = 300 97.30 0.82 4.14 1.63 118.66 2.54
p = 350 220.43 1.59 8.03 2.52 138.64 3.19

Note: p is number of assets. dRp , d
R
b , RER

p,b and REc
p,b are defined in (13), (14), and (16),

respectively.
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Figure 3: MSE Comparison between the Empirical and Corrected Portfolio Alloca-
tions/Returns
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Solid Line — the MSE of dRp and dcp, respectively;

Dashed line — the MSE of dRb and dcb, respectively.

Note: The plots on the left are the plots of the MSEs for dRp and dRb , while the plots on the

right are the plots of the MSEs for dcp and dcb, respectively. d
R
b , d

R
p , d

c
b and dcp are defined in

(13), (14), and (16), respectively.
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Figure 4: Comparison between the Plug-in Returns and Bootstrap-Corrected Returns
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Solid line —Plug-in Return;
Dashed line— Bootstrap-Corrected Return.

Note : The left, middle, and right figures are the plots for m = 1, 10 and 100, respectively.
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Table 4: Plug-in Returns and Bootstrap-Corrected Returns
p m=1 m=10 m=100

R̂p R̂b R̂b/R̂p R̂p R̂b R̂b/R̂p R̂p R̂b R̂b/R̂p

5 0.142 0.116 0.820 0.106 0.074 0.670 0.109 0.072 0.632
10 0.152 0.092 0.607 0.155 0.103 0.650 0.152 0.097 0.616
20 0.179 0.09 0.503 0.204 0.120 0.576 0.206 0.121 0.573
30 0.218 0.097 0.447 0.259 0.154 0.589 0.254 0.148 0.576
50 0.341 0.203 0.597 0.317 0.171 0.529 0.319 0.174 0.541
100 0.416 0.177 0.426 0.482 0.256 0.530 0.459 0.230 0.498
150 0.575 0.259 0.450 0.583 0.271 0.463 0.592 0.279 0.469
200 0.712 0.317 0.445 0.698 0.298 0.423 0.717 0.315 0.438
300 1.047 0.387 0.369 1.023 0.391 0.381 1.031 0.390 0.377
400 1.563 0.410 0.262 1.663 0.503 0.302 1.599 0.470 0.293

Note: R̂p and R̂b are defined in (7) and (12), respectively.
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