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Abstract 
Crisis shocks often lead to changes in the interdependence across stock markets, and thus risk assessment and 
management. This paper investigates the extent to which the global financial crisis of 2008-2009, which was 
triggered by the US subprime crisis in 2007, and the European debt crisis started at the end of 2009, affect the 
interdependence of the leading emerging markets of the BRICS countries with those of the United States and   
Europe. Our empirical analysis makes use of the FIAPARCH model combined with the Dynamic Equicorrelation 
(DECO-FIAPARCH), which allows for the estimation of market linkage for a large group of countries as a 
whole, while controlling for asymmetric volatility and long memory. The results reveal the presence of important 
changes in the time-varying linkages of the BRICS stock markets with the US and European ones. In particular, 
the average linkages have significantly been higher between 2007 and the first half of 2012 than the remaining 
part of the sample, and there is also evidence of structural change around the Lehman Brothers collapse. We also 
show the effects of these stylized facts on portfolio risk assessment and forecasting.  
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1. Introduction 

Understanding the characteristics of financial market returns, volatility and interdependence 

provides important information for investors interested in portfolio diversification and risk 

management, particularly during times of financial distress and crises. Past studies have 

extensively examined changes in financial market behaviors such as sudden changes which 

also have important implications for the analysis of crisis transmission and systematic risk 

(see, among others, Forbes and Rigobon, 2002; Bekaert et al., 2005; Bekaert et al., 2014; 

Pragidis et al., 2015; Dungey et al., 2015). A common result from this strand of the literature 

shows that the transmission of shocks as measured by return correlations and dependency as 

well as by volatility spillovers from one market to another increases in times of crises, 

providing evidence of contagious effects across financial markets. In particular, Bekaert et al. 

(2014) use an international three-factor asset-pricing model to analyze the transmission of 

crises to country-industry portfolios. 1  The authors define contagion by the presence of 

unexplained increases in factor loadings, and also find evidence of systematic contagion from 

the US market and the global financial factor, although the effects are not large.  

In this paper, we attempt to measure and detect variations in the dynamic linkages of the 

BRICS stock markets (Brazil, Russia, India, China and South Africa) with those of the United 

States and the European region, with emphasis on the global financial crisis (GFC) of 2008-

2009 and the European public debt crisis that dates back to the end of 2009. Our special focus 

on the BRICS stock markets is motivated by the important role these countries plays in the 

world financial landscape and the potential diversification benefits they can offer to global 

investors, promoted by their high potential economic growth. It is also inspired   by the future 

economic aptitudes that can afford from building new institutions such as the benefits from 

the establishment of their common “New Development Bank” to foster economic cooperation 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The factors considered include the US market factor, global financial factor, and domestic market factor. 



3 
!

and to finance infrastructure and sustainable projects. Those who have dealt with the future of 

BRICS show that, for examples, China’s GDP which was around US$8.4 trillion in 2012 is 

expected to rise to about US$16.15 trillion in 2020.2 Over the same period, the total GDP for 

the four BRIC countries without South Africa is expected to grow by 57.53%, rising from 

US$14.276 trillion to US$22.49 trillion. In addition, global investors can design dedicated 

investment strategies for the BRICS markets, given those markets’ common characteristics in 

terms of high average returns, high idiosyncratic volatility, improved market efficiency, 

increased liquidity, enhanced capital mobility, and greater dynamic linkages with developed 

markets. Several past studies note that these favorable features have largely been the result of 

the vast stock market liberalization reforms which have been implemented by almost all 

emerging markets include those of the BRICS since the early 1980s (e.g., DeSantis and 

Imrohoroglu, 1997; Bekaert et al., 2000; Kim and Singal, 2000).  

Another reason that motivates our investigation of the BRICS market linkages with 

markets in the United States and the European region is the occurrence of the recent crises 

(the GFC and the European debt crisis in particular), which may have changed the behavior of 

return and volatility in these markets, and in turn portfolio diversification benefits and risk 

management. In terms of trade, China is the second largest trading partner with the European 

region after the United States, accounting for 14% of total trade in goods compared to 15% 

for the United States in 2014. With respect to the United States, China stands as the third-

largest export market for US goods during the same year. In fact, the United States’ trade in 

goods with China is almost nine times its trade with India. Russia also accounts for 8% of 

total trade with the European countries. In 2013 Brazil was the 7th largest goods export market 

for the United States. However, the trade ties between the U.S. and Russia are weak. The U.S. 

goods exports to Russia represents to less than 0.1% of the U.S. GDP, while the U.S. goods 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 http://www.statista.com/topics/1393/bric-countries/. 
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imports from Russia is below 0.2% of the U.S. GDP. When it comes to India, this country is a 

major trading partner with Germany within the European Union, and has strong trade links 

with the United States (exports) and China (imports). Evidence of increased interdependence 

should be indicative of lower diversification gains but greater potential contagious effects if 

the external shocks are severe. Aside from the trade and market linkages, we show how our 

results affect risk assessment and forecasting of the stock portfolios involving the BRICS 

stock markets based on the Value at Risk (VaR) framework. 

The recent literature has examined some critical issues related to the BRICS stock markets 

at times of crisis, such as the return and volatility behavior, market comovement, volatility 

spillovers, and contagion risk (e.g., Bhar and Nikolova, 2009; Xu et al., Chiang et al., 2013; 

Bianconi et al., 2013; Dimitriou et al., 2013; Cho et al., 2015).3 Using various econometric 

methods, these studies mainly show that: i) the BRICS markets significantly react to the 

shocks caused by the recent GFC and the Eurozone public debt crisis; ii) there is evidence to 

suggest a shift into a regime of increased comovement with the transmission of contagious 

effects to the BRICS markets; and iii) the recent GFC has significant impacts on the behavior 

of emerging markets. For example, the findings of Aloui et al. (2011) based on a copula-

GARCH approach confirm not only the existence of a time-varying dependency between the 

BRIC and the US stock markets, but also the high persistence of this dependence. Ahmad et 

al. (2013) focus on stock markets of Brazil, Russia, India, Indonesia, China, South Korea and 

South Africa (BRIICKS) and base their contagion analysis on a multivariate DCC-GARCH 

model. They show that Ireland, Italy and Spain transmitted the most contagious effects to the 

BRIICKS markets during the Eurozone debt crisis, of which the four BRIC stock markets are 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 See Wang et al. (2003), Bhar and Nikolova (2009), Beirne et al. (2010), and Abbas et al. (2013) for detailed 
discussions of the literature on the volatility and return spillover between emerging and developed markets. For 
example, Beirne et al. (2010) use trivariate VAR-GARCH models to investigate the volatility transmission from 
the regional and global markets to 41 emerging markets in Asia, Europe, Latin America, and the Middle East and 
North Africa, and find evidence of spillover effects for most sample markets. They also document the time-
varying nature of cross-market linkages. Some evidence of the US financial and real news effects on the CDS 
spreads of emerging market sovereign bonds can be found in Dooley and Hutchison (2009). 
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the most affected. For their part, by using a DCC-EGARCH model, Hwang et al. (2013) find 

that the recent GFC has led to different patterns of market comovements among the US and 

emerging stock markets including the BRICS, and also changed their conditional correlations. 

The latter result is also found in Zhang et al. (2013). Using the DCC-FIAPARCH model, 

Dimitriou et al. (2013) also document a change in market linkage between the BRICs and the 

US stock markets following the Lehman Brothers collapse, which can be viewed as a shift in 

investors’ risk appetite. They also uncover a larger dependence in bullish market periods than 

tin bearish ones. 

This paper extends the literature on spillover effects to the emerging stock markets by 

using the bivariate DECO-FIAPARCH model under switching of different regimes. First, it 

examines the dynamic linkages of the BRICS stock markets with the U.S. and European 

markets. Second, to the extent that regime switching and its associated spillover effects may 

directly affect return and volatility structures, we investigate how different market regimes 

such as stable regimes and crisis regimes defined by the GFC of 2008-2009 impacts the 

spillovers among the BRICS and the major markets of the U.S. and European Union. It is 

worth noting that we take the GFC effects into account by first detecting the existence of 

potential different regimes with the use of regime switching in order to differentiate between 

the impacts of the tranquil or stable periods and those of the volatile/crisis periods. Third, we 

use the Dynamic Conditional Equicorrelation Fractionally Integrated Asymmetric Power 

ARCH (DECO-FIAPARCH) model to determine the spillover effects between the BRICS and 

each of the U.S. and European stock markets. This empirical approach accommodates several 

very important stylized facts of stock returns such as the persistence level, the long memory 

and the asymmetry properties of the conditional variance processes during stable and volatile 

periods. We assess the changes in those properties as a result of the onset of the GFC which 

has important implications for market contagion analysis and VaR forecast accuracy of a 
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portfolio. More importantly, the DECO modeling in Engle and Kelly (2012) provides an 

efficient way to assess in depth the variability in correlations during the different market 

regimes. The DECO model is a special case of the DCC model in which the correlations 

across all pairs of markets are equal, but the common equicorrelation is time-varying. Despite 

this seemingly strong restriction, the DECO model provides consistent estimates of DCC 

parameters in large systems and, in this study, it allows us to quantify the linkages of the 

BRICS, the United States and Europe as a common group, for the purpose of portfolio 

diversification to assets issued by these markets. Finally, we analyze the result implications 

for portfolio decision-making and risk forecasting. More precisely, we show how these results 

help improve the portfolios’ VaR forecasting for both short and long positions. 

Our empirical results mainly confirm the existence of a regime shift and show strong 

evidence of dynamic linkages and heightened recoupling of the BRICS stock markets with 

those of the U.S. and Europe, following the occurrence of the GFC. Moreover, among the 

different testing specifications, the skewed Student-t DECO-FIAPARCH model is found to be 

the most suitable for improving the VaR forecasting efficiency.  

The remainder of this paper is structured as follows. Section 2 presents the data used and 

the empirical method. Section 3 reports and discusses the empirical results. Section 4 

concludes the paper. 

 

2. Data and methodology 

2.1 Data 

Our study uses daily MSCI stock market indices (denominated in US dollars) of the BRICS 

stock markets. For their part, stock markets in the United States and the European region are 

represented by the S&P 500 index and the STOXX 600 index, respectively. These two 
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developed markets have been the “epicenter” of the 2008-2009 GFC and the Eurozone debt 

crisis. The sample period ranges from 29 September 1997 to 10 September 2015. All the data 

are sourced from Datastream International database. Figure 1 shows the stock price dynamics 

of the U.S., European and BRICS markets. We particularly observe a significant drop in all 

stock market indices in response to Lehman Brothers collapse in September 2008. 

Table 1 shows the descriptive statistics of the daily log returns for the BRICS, the U.S. 

and the European stock markets. The returns are on average positive for all markets, except 

for China. The Indian stock market achieved the highest return, followed by the U.S. and 

South African stock markets. On the other hand, the unconditional volatility (the standard 

deviation) ranges from 1.25% (South Africa) to 3.2% (Russia). The return series are also 

found to be asymmetric, fat-tailed and high-peaked, in views of the skewness and kurtosis 

values. This departure from normality is confirmed by the Jarque-Bera test. Moreover, the 

results from the Engle (1992) test for conditional heterogeneity and the Ljung-Box test 

applied to residuals and squared residuals, respectively, show evidence of ARCH effects and 

serial correlations, which supports the use of GARCH approach for volatility modeling and 

VaR forecasting. Finally, the hypothesis of stationarity cannot be rejected for return series, as 

indicated by the commonly-used unit root and stationarity tests (ADF, PP and KPSS). 

 

Fig. 1. Time-paths of the daily indices for the U.S., Europe and the five BRICS stock markets 
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Table 1: Stochastic properties of daily returns of the U.S., Europe and BRICS stock markets 
 U.S. Europe Brazil Russia India China South Africa 

Mean  
Max. 
Min. 
Std. dev. 
Skewness 
Kurtosis 
Jarque-Bera 
Q(20) 
Q2(20) 
ADF 
PP 
KPSS 
ARCH-LM (10) 

0.0002 0.0001 0.0001 0.0001 0.0003 -0.0001 0.0002 
0.1104 0.1062 0.1733 0.2422 0.1948 0.1404 0.1235 
-0.0950 -0.1018 -0.1832 -0.2809 -0.1209 -0.1444 -0.1357 
0.0126 0.0139 0.0242 0.0320 0.0178 0.0199 0.0125 
-0.2334 -0.1058 -0.2369 -0.4214 -0.1114 0.0309 -0.3951 
10.668 9.0822 10.366 14.917 9.9630 8.1180 7.7240 

11202*** 7029*** 10339*** 27087*** 9214*** 4972*** 3838*** 
84.00*** 80.36*** 81.32*** 73.31*** 87.96*** 85.24*** 81.82*** 
5564*** 4629 *** 3221*** 3607*** 1036*** 2792*** 2980*** 

-51.53*** -41.94*** -63.06*** -62.94*** -62.89*** -61.36*** -63.84*** 
-73.09*** -67.31*** -62.93*** -62.95*** -63.22*** -61.19*** -63.74*** 

0.097 0.049 0.219 0.122 0.081 0.323 0.0899 
140.44*** 123.97*** 121.72*** 73.76*** 37.52*** 81.07*** 81.82*** 

Notes: Europe is represented by the STOXX 600 index. Q(20) refers to  the Ljung-Box test for autocorrelation, 
respectively. ADF, PP and KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979), and the 
Phillips-Perron (1988) unit root tests, and the Kwiatkowski et al. (1992) stationarity test, respectively. The 
ARCH-LM(10) test of Engle (1982) is to check the presence of the ARCH effects. *** denotes the rejection of the 
null hypotheses of normality, no autocorrelation, unit root, non-stationarity, and conditional homoscedasticity at 
the 1% significance level. 
 
 
2.2 The DECO-FIAPARCH model 

Engle (2002) develops the DCC-GARCH which offers the flexibility to simultaneously model 

the multivariate conditional volatility of stock returns and their time-varying correlations. 

Engle and Kelly (2012) propose the Dynamic Equicorrelation GARCH model (DECO-

GARCH) in which the average of the conditional correlations is set to equal to the average of 

all pair correlations. Accordingly, we are able to measure the time-variations in the linkages 

of all markets under consideration over the study period. By construction, the DECO-GARCH 

model is thus a special case of the Constant Conditional Correlation GARCH (CCC-GARCH) 

and the DCC-GARCH, and has advantages over the latter, particularly when we deal with 

large-scale correlation matrices. Engle and Kelly (2012) use the same structure to construct 

the covariance matrix as in the DCC-GARCH model. To the extent that our paper attempts to 

quantify the linkages of the BRICS markets with two global markets (the United States and 

Europe), the DECO-GARCH model suits our research question best.  

 Consider a vector of ! return series "# = "%,#, … , "(,# . We first estimate the following 

mean equation:   
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"# = ) + +"#,% + -#..                                                                                         (1) 

where µ is a vector of constant terms, +.is the coefficient vector corresponding to autoregres-

sive terms and -# = -%,#, … -(,#
′
is  the  vector of residuals. 

Next, we use the FIAPARCH (1,/,1) model developed by Tse (1998) to estimate the con-

ditional volatilities ℎ1,#
2 3  as specified in (Eq. (2)) below, because this estimation allows us to 

capture not only the volatility leverage, but also long memory in the conditional volatility 

process. 

ℎ#2 3 = 4 1 − 7 8 ,% +. 1 − 1 − 7 8 ,%∅ 8 1 − 8 : -# − ;-# 2,                         (2) 

where.4, 7, ∅, and / are the parameters to be estimated, and 0 ≤ / ≤ 1. Moreover, 8 and > 

denote the lag operator and the power term of returns for the predictable structure in the 

volatility persistence, respectively. It is worth noting that negative shocks have greater effects 

on volatility than positive shocks if.; > 0, underlying the presence of the leverage effects.  

Assume that @#,% -# = 0 and @#,% -#-#A = B#, where @# ∙  is the conditional expectation 

using the information set available at time D. The asset conditional variance-covariance matrix 

B# can be written as  

B# = F#
%/3.H#.F#

%/3,....................................................................................................................... . .(3).

where H# = L1M,# .is the conditional correlation matrix, while the diagonal matrix of the con-

ditional variances is given by F#. =.diag ℎ%,#,⋯ , ℎ(,# ..Engle (2002) models the right-hand 

side of Eq. (3) rather than B# directly by proposing the following dynamic correlation struc-

ture, called DCC: 

H# = O#∗ ,%/3O# O#∗ ,%/3,                                                                                                   (4) 

O#∗ = diag. O# ,                                                                                                                     (5) 
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 O# = [V1M,#] = 1 − X − Y Z + X[#,%[#,%A + YO#,%,                                                         (6) 

where [1,# are the standardized residuals, i.e., [1,# = -1,# ℎ1,#., Z = \1,M = @ [#[#A .is the !×! 

unconditional covariance matrix of [#, and X and Y are non-negative scalars satisfying X ≥

0, Y ≥ 0, X + Y < 1.  

In this context, Aielli (2013) proves that the estimation of the covariance matrix O# by this 

way is inconsistent since @ H# ≠ @ O#  and suggests the following consistent model with the 

correlation-driving process (cDCC):  

O# = 1 − X − Y Z∗ + X O#,%
∗%/3.[#,%.[#,%A .O#,%

∗%/3 + YO#,%,                                              (7) 

 where Z∗ is the unconditional covariance matrix of.O#
∗%/3[#.  

 Engle and Kelly (2012) suggest to model L#  by using the cDCC process to obtain the 

conditional correlation matrix O# and then taking the mean of its off-diagonal elements. This 

approach, which reduces the estimation time, is called the dynamic equicorrelation (DECO) 

model. The scalar equicorrelation is defined as 

L#abcd =
%

( (,% e(A H#facce( − ! = 3
( (,%

ghi,j
ghh,jgii,j

(
Mk1l%

(,%
1k%                                              (8) 

where V1M,# = L#abcd + mabcd [1,#,%[M,#,% − L#abcd + 7abcd V1M,#,% − L#abcd , which is the 

(i,j)th element of the matrix O#. We then use this scalar equicorrelation to estimate the condi-

tional correlation matrix: 

H# = 1 − L# n( + L#e(                                                                                                          (9) 

where e(is the !×! matrix of ones and n( is the !-dimensional identity matrix. This assump-

tion of equicorrelation leads to a much simpler likelihood equation when L# is given by Eq. 

(7): 
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8 = − %
o p! 1 − L# (,%(1 + (! − 1)L#o

#k% + %
%,qj

-1,#3(
1k% − qj

%l((,%)qj
-1,#3(

1k%   (10) 

In the new structure, the DECO modeling is less burdensome and computationally quicker 

to estimate, because we avoid the inversion of matrix H#. Besides, it makes it possible to rep-

resent the comovement of a group of markets with a single dynamic correlation coefficient. 

2.3 Value-at-Risk (VaR) forecasting 

 The Value at Risk (VaR) model has become a popular benchmark for measuring portfolio 

market risks (e.g., Jorian, 2007; Wu and Shieh, 2007, and Christoffersen, 2009). In this paper, 

we estimate the DECO-FIAPARCH model and use the empirical results to compute the one-

day-ahead VaR under three different return distributions including the Normal, Student-D, and 

skewed Student -D distributed innovations.  

 Assuming the normal distribution, the one-day-ahead VaRs for a portfolio containing long 

(buy) and short (sell) trading positions can be specified as 

rXH#,st(u = )# + vwx#                                                                                                           (11) 

rXH#,yzt{# = )# + v%,wx#                                                                                                      (12)  

where.)#.and x# denote respectively the conditional mean and variance at time D, and vw is the 

left quantile at the.m.%.level for the normal distribution, while v%,w is the right quantile at the 

.m%.confidence level. Similarly, we obtain the VaRs under the Student-t and skew Student-t 

distributions by using their respective left and right quantiles at the m% level instead of those 

of the normal distribution (i.e., vw and v%,w).4 

Regarding the out-of-sample VaR forecasting analysis, we follow the procedure proposed 

by Wu and Shieh (2007) to compute the one-day-ahead VaR for each of the considered 

portfolios and to evaluate the performance of competing VaR models. Indeed, we re-estimate 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 For more details, see Wu and Shieh (2007).!
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the empirical models every 100 observations using a rolling regression approach, and retain 

the last 1250 (5-year) observations of the sample as the out-of-sample period. 

We evaluate the accuracy of the VaR forecasting through the calculation of the failure rate 

for the left and right tails of the return distribution. The failure rate } refers to the ratio of the 

number of times the positive (negative) returns go beyond (below) the estimated VaR to the 

sample size. Giot and Laurent (2003) show that the accuracy of an empirical model is then 

examined by testing the hypothesis 
B~:.} = m
H%.} ≠ m . If the VaR model is correctly specified, then 

the failure rate is close to the pre-determined VaR confidence level (m%). The Kupiec (1995) 

LR test statistic is expressed as follows: 

8H = −2p! 1 − m Ç,ÉmÉ + .2p! 1 − } Ç,É}É                                                             (13) 

where.} = É
Ç and  Ñ is the number of observations exceeding the forecasted VaR and Ö is the 

sample size. 

 
 
3. Empirical results 

This section discusses the estimation results for the full sample period, the inclusion of 

structural breaks, and the GFC effects on the relationships among the developed (European 

and U.S.) and the BRICS stock markets, and the VaR analysis. 

3.1 Estimation for the full sample period 

Table 2 presents the estimation results of the DECO-FIAPARCH (1,/,1) model with Student-

t distributed innovations over the full sample period.5 With respect to the mean equation, the 

autoregressive parameter is found to be positive and statistically significant at the 1% level for 

all cases. This finding suggests that past information is rapidly reflected in the current returns 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!The lag order (1,/,1) is chosen by using the Akaike information criteria (AIC) and the Schwarz information cri-
teria (SIC). The estimation results of the DECO-FIAPARCH(1,d,1) model with other return distributions 
(Gaussian and skewed Student-t) are relatively similar and can be made available under request.!
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of the stock markets under consideration. As to the parameters of the conditional variance 

equation, the estimated coefficient of the leverage effects (;) is positive and significant for the 

five BRICS markets, which is evidence of asymmetric volatility phenomenon and implies that 

negative shocks of similar magnitude affecting stock returns have larger impacts on the 

conditional volatility than positive shocks do. The significance of the fractional integrated 

coefficient (/) for all the markets at conventional levels, which ranges from 0.2926 (South 

Africa) to 0.5344 (United States), suggests that stock market volatility has a high level of 

persistence.  

Table 2: Estimation of the AR(1)-DECO-FIAPARCH(1,d,1) model.  
 U.S. Europe Brazil Russia India China S. Africa 
Panel A: Estimates of the conditional mean and variance equations 
Const.(M) 0.0484*** 

(0.0126) 
0.0584*** 
(0.0151) 

-0.0165 
(0.0285) 

0.0103 
(0.0309) 

0.0600** 

(0.0248) 
0.0121 
(0.0249) 

0.0261 
(0.0243) 

AR(1) -0.0435*** 
(0.0142) 

-0.0017*** 
(0.0154) 

0.0993*** 
(0.0162) 

0.0662*** 
(0.0159) 

0.0869*** 
(0.0177) 

0.0871*** 

(0.0153) 
0.0546*** 
(0.0157) 

Const. (V) 0.3790 
(0.2283) 

0.!2031*** 
(0.7415) 

0.4442 
(0.1306) 

0.1793** 
(0.0883) 

0.4262*** 

(0.1066) 
0.7918*** 

(0.2669) 
0.3001*** 
(0.0733) 

d-FIGARCH 0.5344*** 
(0.0678) 

0.4779*** 
(0.0443) 

0.3080*** 
(0.0365) 

0.4631*** 

(0.0593) 
0.3522*** 
(0.0468) 

0.4517*** 
(0.0462) 

0.2926*** 
(0.0379) 

ARCH  0.0320 
(0.0697) 

0.1477*** 
(0.0493) 

0.1080 
(0.0751) 

0.1344 
(0.0813) 

0.1728*** 
(0.0480) 

0.2407*** 
(0.0495) 

0.2740*** 
(0.0650) 

GARCH 0.5272*** 
(0.0527) 

0.5436*** 
(0.0622) 

0.3477*** 

(0.0833) 
0.4927*** 
(0.1134) 

0.4420*** 

(0.0531) 
0.5958*** 
(0.0632) 

0.4905*** 
(0.0773) 

APARCH 
(;) 

0.9891*** 
(0.0331) 

0.9999*** 
(0.0341) 

0.6810*** 
(0.1614) 

0.3353*** 
(0.0777) 

0.5066*** 
(0.1363) 

0.2864*** 
(0.0634) 

0.7922*** 
(0.1675) 

APARCH 
(>) 

1.5927*** 
(0.1740) 

1.2523*** 
(0.1520) 

1.3664*** 
(0.1124) 

1.5139*** 
(0.1606) 

1.4444*** 
(0.1410) 

1.6577*** 
(0.1158) 

1.2799*** 
(0.1040) 

Panel B: Estimates of the DECO process 
Average 
CORij 

0.3489*** 
(0.0822) 

      

mabcd  0.0117*** 
(0.0021) 

      

7abcd  0.9882*** 
(0.0026) 

      

Panel C: Diagnostic tests 
Q(20) 29.081 

[0.0647] 
55.053 
[0.0000] 

21.000 
[0.3367] 

26.076 
[0.1280] 

34.474 
[0.0161] 

37.503 
[0.0068] 

19.144 
[0.4475] 

Q2(20) 17.964 
[0.4580] 

14.401 
[0.8095] 

18.179 
[0.4439] 

9.3878 
[0.9500] 

12.647 
[0.8120] 

12.629 
[0.8131] 

19.109 
[0.3851] 

Notes: Europe is represented by the STOXX index. Q(20) and Q2(20) are the Ljung-Box test statistics applied to 
the standard residuals and the squared standardized residuals, respectively. The asterisks ** and *** indicate 
significance at the 5% and 1% levels, respectively. The standard errors are in parentheses and the p-values are in 
brackets. 
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 Turning out to the estimates of the DECO process (mabcd and 7abcd), they are positive 

and highly significant, thus underlying the fact that the cross-market linkages of our markets 

at the group level vary over time, under the effects of both past return innovations and past 

correlation persistence. While the average dynamic equicorrelation is positive (0.348), it still 

remains low. Potential diversification benefits could thus be achieved for portfolios involving 

the BRICS, the US and the European stock markets. A close look at the diagnostic tests in 

Table 2 provided by the Ljung-Box test statistics for the standardized and the squared 

standardized residuals shows that our empirical model is correctly specified, since the null 

hypothesis of no serial correlation cannot be rejected for most cases. 

 Fig. 2 displays the dynamic equicorrelation for the group of the BRICS, U.S. and European 

markets. We observe time-varying correlations over the sample period, meaning that investors 

should frequently change their portfolio structure. Moreover, the correlation level increases 

significantly during 2008-2012, which corresponds to the most severe periods of the GFC and 

the European sovereign debt crisis periods. This result also supports the recoupling hypothesis 

(contagion effects). 

 
Fig. 2. Dynamic equicorrelation  

 

3.2 Regime switching analysis 

The presence of potential structural breaks may imply that the linkages among sample mar-

kets experience different phases of dynamics. For this purpose, we use a Markov-switching 
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dynamic regression (MS-DR) model to identify the potential of regime shifts in the data-

generating processes of our return series. The MS-DR model is advantageous in that it allows 

the data to determine the beginning and end of each phase of the crisis, and distinguish be-

tween a regime zero (‘stable’ regime) and a regime one (‘volatile/crisis’ regime).6 Here, re-

gimes zero and one indicate lower and higher values of conditional volatility, respectively.  

Table 3: Results of the multiple regime test for the US and European stock markets 
Regime change dates Possible corresponding events  
04/28/2003  
07/09/2007  
09/15/2008 
12/01/2008 
05/18/2009 
03/14/2011  

Gulf war 
U.S. subprime crisis 
Lehman Brothers collapse 
Global financial crisis of 2008-2009 
Sign of economic recovery  
European debt crisis  

Notes: The structural break tests are conducted by the MS-DR model. 
 

Fig. 3 displays the smoothed regime probabilities of conditional volatility including the 

volatile regime (the grey shading). We show, in Table 3, the common multiple regime shifts in 

the unconditional variance for two developed markets, the U.S. and Europe, which seem to 

coincide with major economic and political events (Gulf war, U.S. subprime crisis of 2007, 

the global financial crisis of 2007-2009, and the European public debt crisis since the end of 

2009).7 When the regime shifts between the developed and the BRICS markets are compared, 

we see that they share a common breakpoint on the 15th of September 2008 which corre-

sponded to the bankruptcy of Lehman Brothers and marked a sharp decline in stock prices in 

sample markets. Next, this break date is chosen to examine the crisis effects on the interac-

tions among the sample markets. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Several structural break tests can be used to examine the sudden changes in financial time series. The Bai and 
Perron (2003), the CUSUM and the Inclán and Tiao (1994) tests are among the most popular tests. For example, 
the Bai and Perron (2003) test discloses the exact number of breaks and their corresponding dates of occurrence. 
This test however has a size distortion problem when heteroscedasticity is present in the time series data (Arouri 
et al., 2012). The CUSUM test is unable to provide the full information on the exact number of break points and 
their corresponding dates. The Inclán and Tiao (1994) ICSS test is unable to recognize difference between un-
conditional and conditional volatility. Here, our model is an extension of the Markov-switching autoregressive 
models (MS-AR) and the Markov switching regression model of the type considered by Hamilton (1989).  
7 Ten regime changes are also found for Brazil, eleven for Russia and thirteen for the remaining markets of the 
BRICS group. These results can be made entirely available upon request to the corresponding author. 
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Fig. 3: Regimes of the U.S., European and BRICS market conditional volatilities 
 
Notes: The shaded areas highlight regimes of excess volatility according to the Markov switching dynamic 
regression (MS-DR) model. 
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3.3 The interactions among the developed and BRICS markets under regime switching 

The estimation results of the DECO-FIAPARCH (1,/,1) for sample markets before and after 

the 2008-2009 GFC are reported in Table 4 and Table 5, respectively. An overall comparison 

indicates that the onset of the GFC has significant effects on the behavior of conditional 

volatility, which confirms the findings of some related studies such as Dimitriou et al. (2013) 

and Hwang et al. (2013). More precisely, while both tables commonly show evidence of long 

memory effects on volatility (i.e., the parameter d is highly significant at the 1% level), the 

volatility dependence patterns are more apparent after the collapse of Lehman Brothers, with 

the exception of the Russian and Chinese markets. Therefore, the GFC has made the future 

volatility more predictable from its past values, which can be explained by the long-lasting 

reaction of market participants to the crisis shocks.  

Another important difference is the increase in the degree of volatility persistence in the 

crisis period. Indeed, the estimates of the coefficients associated with the GARCH terms are 

highly significant for all markets in Table 5, but are not significant in the case of Brazil and 

South Africa before the crisis. We also find a difference in terms of leverage effects (; 

parameters) which increased for all stock markets following the crisis, except for the case of 

the European, Brazilian and Indian markets. What is finally interesting to note is the harmful 

effect of the GFC on asset allocation and benefits from diversifying portfolios internationally. 

Our results show a significant increase in the correlation between sample markets at the group 

level since the average equicorrelation almost doubled after the crisis, shifting from 0.3151 

(Table 4) to 0.6326 (Table 5). This evidence confirms the rising comovement during periods 

of crisis found in past studies (Ahmad et al., 2013; Dimitriou et al., 2013) provide a similar 

result since the BRICS markets are found to be strongly hit by the contagion shock during the 

Eurozone crisis) and the resulting reduction in the diversification potential for portfolios 

containing stocks of the sample markets. 
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Table 4: Estimation of the AR(1)-FIAPARCH(1,d,1)-DECO model in the pre-crisis period 
 U.S. Europe Brazil Russia India China S. Africa 
Panel A: Estimates of the conditional mean and variance equations 
Const. (M) -0.0147 

(0.0192) 
0.0204 
(0.0189) 

0.0415 
(0.0434) 

0.0752 
(0.0446) 

0.1038*** 

(0.0337) 
0.0327 
(0.0363) 

0.0635 
(0.0337) 

AR(1) -0.0322 
(0.0177) 

0.0156 
(0.0206) 

0.1194*** 
(0.0198) 

0.0656*** 
(0.0211) 

0.0926*** 
(0.0224) 

0.1178*** 

(0.0203) 
0.0823*** 
(0.0207) 

Const. (V) 0.1551*** 
(0.0520) 

0.1643 
(0.0324) 

0.3146** 
(0.1495) 

0.1951 
(0.1156) 

0.3295*** 

(0.0904) 
0.6334*** 

(0.2694) 
0.2538*** 
(0.0818) 

d-FIGARCH 0.2894*** 
(0.0492) 

0.3351*** 

(0.0432) 
0.2126*** 
(0.0619) 

0.4548*** 

(0.0711) 
0.2850*** 
(0.0623) 

0.4236*** 
(0.0630) 

0.2395*** 
(0.0495) 

ARCH  0.0926 
(0.1840) 

0.2529*** 
(0.0716) 

0.0066 
(0.1313) 

0.0907 
(0.0894) 

0.1041 
(0.0644) 

0.3127*** 
(0.0689) 

0.1244 
(0.1554) 

GARCH 0.3392*** 
(0.0218) 

0.4916*** 
(0.0845) 

0.1275 

(0.1255) 
0.4056*** 
(0.1203) 

0.4420*** 

(0.0761) 
0.6032*** 
(0.0916) 

0.2796 
(0.1728) 

APARCH 
(;) 

0.9878*** 
(0.0545) 

0.7035*** 
(0.1548) 

0.9480*** 
(0.0559) 

0.2389*** 
(0.0764) 

0.5388*** 
(0.1964) 

0.2662*** 
(0.0672) 

0.6794*** 
(0.2296) 

APARCH 
(>) 

1.2578*** 
(0.1117) 

1.3789*** 
(0.1204) 

1.2660*** 
(0.2000) 

1.5888*** 
(0.2249) 

1.4397*** 
(0.1751) 

1.7701*** 
(0.1530) 

1.3539*** 
(0.1957) 

Panel B: Estimates of the DECO process 
Average 
CORij 

0.3151*** 
(0.0260) 

      

mabcd  0.0138*** 
(0.0043) 

      

7abcd  0.9782*** 
(0.0068) 

      

Panel C: Diagnostic tests 
Q(20) 61.218 

[0.0000] 
61.163 
[0.0000] 

43.825 
[0.002] 

17.664 
[0.6094] 

18.595 
[0.5482] 

33.485 
[0.0298] 

27.320 
[0.1264] 

Q2(20) 21.809 
[0.3509] 

8.5859 
[0.9872] 

13.907 
[0.8351] 

10.499 
[0.9581] 

8.0650 
[0.9914] 

9.7560 
[0.9723] 

15.571 
[0.7428] 

Notes: See notes of Table 2. 
 

Table 5: Estimation of the AR(1)-FIAPARCH(1,d,1)-DECO model in the post-crisis period 
 U.S. Europe Brazil Russia India China S. Africa 
Panel A: Estimates of the conditional mean and variance equations. 
Const. (M) 0.0260 

(0.0140) 
0.0399 
(0.0260) 

-0.0659 
(0.0403) 

-0.0556 
(0.0412) 

0.0092 
(0.0338) 

-0.0098 
(0.0324) 

-0.0352 
(0.0257) 

AR(1) -0.0437*** 
(0.0126) 

-0.0140 
(0.0229) 

0.0452** 
(0.0224) 

0.0575** 
(0.0244) 

0.0737*** 
(0.0281) 

0.0393 

(0.0225) 
-0.0043*** 
(0.0224) 

Const. (V) 0.0478 
(0.1283) 

0.1383 
(0.1698) 

0.0836 
(0.0499) 

0.1216 
(0.1234) 

0.0807** 

(0.0324) 
0.1124** 

(0.0513) 
0.0806*** 
(0.0733) 

d-FIGARCH 0.4052*** 
(0.0678) 

0.6750*** 
(0.1555) 

0.4173*** 
(0.0964) 

0.3353*** 

(0.0980) 
0.5340*** 
(0.1597) 

0.4142*** 
(0.1303) 

0.3477*** 
(0.0904) 

ARCH  0.1958** 
(0.0697) 

0.0718 
(0.0590) 

0.1509*** 
(0.0751) 

0.1253 
(0.1758) 

0.1935** 
(0.0950) 

0.0895 
(0.0727) 

0.3313*** 
(0.0630) 

GARCH 0.5229*** 
(0.0632) 

0.7148*** 
(0.1397) 

0.5459*** 

(0.0970) 
0.4179** 
(0.2078) 

0.6772*** 

(0.0858) 
0.4746*** 
(0.1572) 

0.6135*** 
(0.0773) 

APARCH 
(;) 

0.9999*** 
(0.0777) 

0.4703** 
(0.1341) 

0.5244*** 
(0.1620) 

0.6080** 
(0.2539) 

0.4646** 
(0.2206) 

0.2705** 
(0.1341) 

0.9999*** 
(0.0764) 

APARCH 
(>) 

1.2806*** 
(0.1040) 

1.6345*** 
(0.1439) 

1.6406*** 
(0.1535) 

1.6597*** 
(0.1946) 

1.4907*** 
(0.2162) 

1.7914*** 
(0.1439) 

1.3306*** 
(0.1751) 

Panel B: Estimates of the DECO process 
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Average 
CORij 

0.6326*** 
(0.0392) 

      

mabcd  0.0121** 
(0.0053) 

      

7abcd  0.9871*** 
(0.0073) 

      

Panel C: Diagnostic tests 
Q(20) 65.969 

[0.0000] 
36.072 
[0.0150] 

43.879 
[0.0015] 

21.305 
[0.3793] 

34.736 
[0.0215] 

76.104 
[0.0000] 

33.311 
[0.0311] 

Q2(20) 27.299 
[0.1270] 

22.366 
[0.3209] 

29.571 
[0.0771] 

5.8901  
[0.9990] 

11.647 
[0.9276] 

11.745 
[0.9245] 

21.288 
[0.3803] 

Notes: See notes of Table 2. 
 

3.4 VaR forecasting analysis 

We now evaluate the performance of the normal, Student-t and skewed Student-t DECO-

FIAPARCH (1,/,1) models for estimating the one-day-ahead VaRs over both the in-sample 

and out-of-sample periods. Different significance levels (α) ranging from 0.05 to 0.0025 are 

considered and the Kupiec test is used to test the accuracy of the VaR models in use. 

Tables 6-7 report the in-sample VaR analysis for the short and long trading positions, 

respectively. The results for the short trading positions show that the DECO-FIAPARCH 

models with normal and Student-t distributions provide poor performance for the estimation 

of VaRs as the null hypothesis that the empirical failure rate is equal to the pre-determined 

VaR confidence level is rejected in 19 out of 35 cases (for the DECO-FIAPARCH with 

normal distribution) and in 16 out of 35 cases (for the DECO-FIAPARCH with Student-t 

distribution) at the 5% level. On the other hand, the accuracy of the DECO-FIAPARCH with 

the skewed Student-t distribution is rejected in only four out of 35 cases at the 5% level. Very 

similar results are obtained for the long trading positions. Altogether, the in-sample results 

suggest that the VaR models are misspecified with the normal and Student-t distributions. By 

contrast, investors and portfolio managers can build a more accurate risk management 

strategy for portfolios involving the developed and BRICS stock markets by using the skewed 

Student-t DECO-FIAPARCH (1,/,1) model to compute the in-sample VaR. This superior 
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performance is fully supported by the leptokurtic behavior of stock market returns, volatility 

persistence and long memory. 

 Tables 8-9 report the out-of-sample one-day ahead VaR results as well as their associated 

failure rates and corresponding Kupiec LR tests for the both short and long trading positions. 

Similar to the in-sample analysis, we generally find that the DECO-FIAPARCH model with 

the skewed Student-t distribution performs better than the ones with normal and Student-t 

distributions in generating the VaRs for long and short trading positions, regardless of the 

market under consideration.  
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Table 6: In-sample VaR analysis (the short trading positions case) 
 U.S.  Europe  Brazil  Russia  India  China  S.Africa  
Quantile Failure 

rate 
Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate Kupiec LRT Failure 

rate 
Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

FIAPARCH model – normal distribution 

0.9500 0.9637 20.046 
[0.000] 0.9618 14.486 

[0.000] 0.9582 6.9631 
[0.008] 0.9613 13.383 

[0.000] 0.9624 16.229 
[0.000] 0.9560 3.7051 

[0.054] 0.9585 7.3484 
[0.007] 

0.9750 0.9837 16.314 
[0.000] 0.9784 2.3804 

[0.122] 0.9804 6.0183 
[0.014] 0.9776 1.3155 

[0.251] 0.9809 7.0727 
[0.007] 0.9751 0.0069 

[0.933] 0.9791 3.3975 
[0.065] 

0.9900 0.9934 6.0968 
[0.013] 0.9921 2.1792 

[0.139] 0.9912 0.7123 
[0.398] 0.9881 1.4946 

[0.221] 0.9894 0.1308 
[0.717] 0.9850 9.7068 

[0.001] 0.9885 0.8822 
[0.347] 

0.9950 0.9967 3.0349 
[0.081] 0.9953 0.1427 

[0.705] 0.9945 0.2117 
[0.645] 0.9925 4.8252 

[0.028] 0.9925 4.8252 
[0.028] 0.9901 16.949 

[0.000] 0.9938 1.1223 
[0.289] 

0.9975  0.9989 4.5532 
[0.032] 0.9973 0.0324 

[0.857] 0.9971 0.2188 
[0.639] 0.9942 13.752 

[0.000] 0.9947 10.596 
[0.001] 0.9934 20.972 

[0.000] 0.9949 9.1417 
[0.002] 

FIAPARCH model – Student-t distribution 

0.9500 0.9593 9.0007 
[0.002] 0.9604 11.320 

[0.001] 0.9574 5.5311 
[0.018] 0.9563 3.9830 

[0.045] 0.9585 7.3484 
[0.006] 0.9519 0.3582 

[0.549] 0.9571 5.2001 
[0.022] 

0.9750 0.9852 23.168 
[0.000] 0.9793 3.7792 

[0.051] 0.9815 8.8307 
[0.002] 0.9798 4.6080 

[0.031] 0.9813 8.2208 
[0.004] 0.9776 1.3155 

[0.251] 0.9811 7.6349 
[0.005] 

0.9900 0.9964 25.814 
[0.000] 0.9942 10.028 

[0.001] 0.9938 7.9183 
[0.004] 0.9925 3.2430 

[0.071] 0.9923 2.6823 
[0.101] 0.9901 0.0067 

[0.934] 0.9931 5.2878 
[0.021] 

0.9950 0.9991 23.713 
[0.000] 0.9975 7.569 

[0.005] 0.9975 7.5697 
[0.005] 0.9962 1.6141 

[0.203] 0.9962 1.6141 
[0.203] 0.9949 0.0022 

[0.962] 0.9956 0.3544 
[0.551] 

0.9975  1.0000 .NaN 0.9986 3.0923 
[0.078] 0.9989 4.5532 

[0.032] 0.9986 3.0923 
[0.078] 0.9982 1.1283 

[0.288] 0.9978 0.1768 
[0.674] 0.9984 1.9667 

[0.160] 
FIAPARCH model – skewed Student-t distribution 

0.9500 0.9512 0.1540 
[0.694] 0.9552 2.6977 

[0.100] 0.9499 0.0002 
[0.986] 0.9525 0.6487 

[0.420] 0.9525 0.6487 
[0.420] 0.9514 0.2125 

[0.644] 0.9492 0.0486 
[0.825] 

0.9750 0.9791 3.3975 
[0.065] 0.9760 0.2170 

[0.641] 0.9767 0.5715 
[0.449] 0.9773 1.0999 

[0.294] 0.9787 2.6983 
[0.100] 0.9771 0.9041 

[0.341] 0.9756 0.0750 
[0.784] 

0.9900 0.9927 3.8629 
[0.049] 0.9929 4.5439 

[0.033] 0.9912 0.7123 
[0.398] 0.9912 0.7123 

[0.398] 0.9916 1.3396 
[0.247] 0.9899 0.0044 

[0.946] 0.9888 0.6341 
[0.425] 

0.9950 0.9980 10.880 
[0.001] 0.9962 1.6141 

[0.203] 0.9958 0.6666 
[0.414] 0.9953 0.1427 

[0.705] 0.9949 0.0022 
[0.962] 0.9950 0.0022 

[0.962] 0.9947 0.0650 
[0.798] 

0.9975  0.9993 8.7870 
[0.003] 0.9982 1.1283 

[0.288] 0.9982 1.1283 
[0.288] 0.9982 1.1283 

[0.288] 0.9982 1.1283 
[0.288] 0.9978 0.1768 

[0.674] 0.9971 0.2188 
[0.639] 

Notes: This table reports the failure rates and the Kupiec LRT statistics for the in-sample VaR. NaN represents the statistics which are not available.  
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Table 7: In-sample VaR analysis (the long trading positions case) 
 U.S.  Europe  Brazil  Russia  India  China  S.Africa  

Quantile Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate Kupiec LRT Failure 

rate 
Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

FIAPARCH model – normal distribution 

0.0500 0.0575 5.1821 
[0.022] 0.0601 9.3101 

[0.002] 0.0518 0.3110 
[0.577] 0.0474 0.6487 

[0.420] 0.0524 0.5760 
[0.447] 0.0504 0.0233 

[0.878] 0.0562 3.5524 
[0.059] 

0.0250 0.0373 24.699 
[0.000] 0.0362 20.719 

[0.000] 0.0298 4.1550 
[0.041] 0.0316 7.5518 

[0.005] 0.0283 1.9770 
[0.159] 0.0298 4.1550 

[0.041] 0.0302 4.9153 
[0.026] 

0.0100 0.0180 23.812 
[0.000] 0.0186 27.499 

[0.000] 0.0169 18.169 
[0.000] 0.0191 30.077 

[0.000] 0.0155 12.273 
[0.000] 0.0153 11.389 

[0.000] 0.0162 15.098 
[0.000] 

0.0050 0.0105 21.262 
[0.000] 0.0105 21.262 

[0.000] 0.0100 18.343 
[0.000] 0.0129 40.161 

[0.000] 0.0096 15.600 
[0.000] 0.0103 19.781 

[0.000] 0.0107 22.785 
[0.000] 

0.0025 0.0085 40.965 
[0.000] 0.0050 9.1417 

[0.000] 0.0079 33.781 
[0.000] 0.0085 40.965 

[0.000] 0.0070 24.995 
[0.000] 0.0054 12.134 

[0.000] 0.0068 22.951 
[0.000] 

FIAPARCH model – Student-t distribution 

0.0500 0.0638 17.063 
[0.000] 0.0625 14.078 

[0.000] 0.0553 2.6311 
[0.104] 0.0537 1.3436 

[0.246] 0.0599 8.9227 
[0.002] 0.0557 3.0751 

[0.079] 0.0605 10.108 
[0.001] 

0.0250 0.0364 21.490 
[0.000] 0.0342 14.354 

[0.000] 0.0289 2.8170 
[0.093] 0.0305 5.3180 

[0.021] 0.0270 0.7311 
[0.392] 0.0274 1.0810 

[0.298] 0.0296 3.7975 
[0.051] 

0.0100 0.0114 0.8822 
[0.347] 0.0133 4.7847 

[0.028] 0.0116 1.1693 
[0.279] 0.0140 6.7049 

[0.009] 0.0105 0.1308 
[0.717] 0.0107 0.2575 

[0.611] 0.0129 3.6699 
[0.055] 

0.0050 0.0070 3.3334 
[0.067] 0.0050 0.0022 

[0.962] 0.0070 3.3334 
[0.067] 0.0054 0.2117 

[0.645] 0.0059 0.7433 
[0.388] 0.0030 3.9420 

[0.047] 0.0063 1.5732 
[0.209] 

0.0025 0.0041 4.2408 
[0.039] 0.0021 0.1768 

[0.674] 0.0026 0.0324 
[0.857] 0.0024 0.0133 

[0.907] 0.0037 2.4056 
[0.120] 0.0006 8.7870 

[0.003] 0.0032 1.0439 
[0.306] 

FIAPARCH model – skewed Student-t distribution 

0.0500 0.0583 6.4309 
[0.011] 0.0555 2.8489 

[0.091] 0.0491 0.0653 
[0.798] 0.0496 0.0141 

[0.905] 0.0535 1.1939 
[0.274] 0.0551 2.4218 

[0.119] 0.0507 0.0486 
[0.825] 

0.0250 0.0298 4.1550 
[0.041] 0.0289 2.8170 

[0.093] 0.0263 0.3321 
[0.564] 0.0281 1.7288 

[0.188] 0.0228 0.9041 
[0.341] 0.0270 0.7311 

[0.392] 0.0245 0.0318 
[0.858] 

0.0100 0.0094 0.1469 
[0.701] 0.0098 0.0067 

[0.934] 0.0094 0.1469 
[0.701] 0.0118 1.4946 

[0.221] 0.0094 0.1469 
[0.701] 0.0105 0.1308 

[0.717] 0.0090 0.4750 
[0.490] 

0.0050 0.0054 0.2117 
[0.645] 0.0037 1.6141 

[0.203] 0.0039 1.0845 
[0.297] 0.0048 0.0268 

[0.869] 0.0050 0.0022 
[0.962] 0.0030 3.9420 

[0.047] 0.0039 1.0845 
[0.297] 

0.0025 0.0030 0.5596 
[0.454] 0.0017 1.1283 

[0.288] 0.0024 0.0133 
[0.907] 0.0021 0.1768 

[0.674] 0.0026 0.0324 
[0.857] 0.0006 8.7870 

[0.003] 0.0030 0.5596 
[0.454] 

Notes: See notes of Table 6. 
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Table 8: Out-of-sample VaR analysis (the short trading positions case) 
  U.S.  Europe  Brazil  Russia  India  China  S.Africa  
Quantile  Failure 

rate 
Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate Kupiec LRT Failure 

rate 
Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

FIAPARCH model – normal distribution 

0.9500  0.9650 6.7128 
[0.009] 0.9674 9.1778 

[0.002] 0.9666 8.3072 
[0.003] 0.9706 13.177 

[0.000] 0.9714 14.312 
[0.000] 0.9714 14.312 

[0.000] 0.9738 18.068 
[0.000] 

0.9750  0.9857 7.0016 
[0.008] 0.9825 3.2797 

[0.070] 0.9857 7.0016 
[0.008] 0.9825 3.2797 

[0.070] 0.9881 10.963 
[0.000] 0.9825 3.2797 

[0.070] 0.9865 8.2002 
[0.004] 

0.9900  0.9952 4.3316 
[0.037] 0.9912 0.2144 

[0.643] 0.9944 2.9961 
[0.083] 0.9873 0.8538 

[0.355] 0.9944 2.9961 
[0.083] 0.9888 0.1516 

[0.696] 0.9928 1.1539 
[0.282] 

0.9950  0.9976 2.1571 
[0.141] 0.9928 1.0260 

[0.311] 0.9960 0.2902 
[0.590] 0.9928 1.0260 

[0.311] 0.9944 0.0754 
[0.783] 0.9928 1.0260 

[0.311] 0.9952 0.0145 
[0.903] 

0.9975   0.9992 2.0089 
[0.156] 0.9960 0.9230 

[0.336] 0.9968 0.2117 
[0.645] 0.9960 0.9230 

[0.336] 0.9976 0.0072 
[0.932] 0.9944 3.4909 

[0.061] 0.9960 0.9230 
[0.336] 

FIAPARCH model – Student-t distribution 

0.9500  0.9603 3.0295 
[0.081] 0.9682 10.099 

[0.001] 0.9658 7.4859 
[0.006] 0.9698 12.097 

[0.000] 0.9674 9.1778 
[0.002] 0.9674 9.1778 

[0.002] 0.9738 13.177 
[0.000] 

0.9750  0.9857 7.0016 
[0.008] 0.9873 9.5180 

[0.002] 0.9888 12.542 
[0.000] 0.9825 3.2797 

[0.070] 0.9888 12.542 
[0.000] 0.9841 4.9371 

[0.026] 0.9888 8.2002 
[0.000] 

0.9900  0.9976 10.663 
[0.001] 0.9928 1.1539 

[0.282] 0.9952 4.3316 
[0.037] 0.9936 1.9489 

[0.162] 0.9944 2.9961 
[0.083] 0.9912 0.2144 

[0.643] 0.9944 2.9961 
[0.083] 

0.9950  0.9992 6.9413 
[0.008] 0.9960 0.2902 

[0.590] 0.9976 2.1571 
[0.141] 0.9976 2.1571 

[0.141] 0.9984 4.0251 
[0.044] 0.9960 0.2902 

[0.590] 0.9960 0.2902 
[0.590] 

0.9975   1.0000 .NaN    
[0.000] 0.9968 0.2117 

[0.645] 0.9984 0.4840 
[0.008] 0.9992 2.0089 

[0.156] 0.9992 2.0089 
[0.156] 0.9984 0.4840 

[0.486] 0.9992 2.0089 
[0.156] 

FIAPARCH model – skewed Student-t distribution 

0.9500  0.9563 1.1152 
[0.290] 0.9619 4.0816 

[0.043] 0.9619 4.0816 
[0.043] 0.9611 3.5343 

[0.060] 0.9634 5.3069 
[0.021] 0.9674 9.1778 

[0.002] 0.9658 7.4859 
[0.006] 

0.9750  0.9793 1.0463 
[0.306] 0.9801 1.4787 

[0.223] 0.9833 4.0600 
[0.043] 0.9825 3.2797 

[0.070] 0.9873 9.5180 
[0.002] 0.9841 4.9371 

[0.026] 0.9849 5.9159 
[0.015] 

0.9900  0.9952 4.3316 
[0.037] 0.9904 0.0293 

[0.864] 0.9944 2.9961 
[0.083] 0.9920 1.9489 

[0.445] 0.9944 2.9961 
[0.083] 0.9912 0.2144 

[0.643] 0.9928 1.1539 
[0.282] 

0.9950  0.9976 2.1571 
[0.141] 0.9928 1.0260 

[0.311] 0.9960 0.2902 
[0.590] 0.9960 0.2902 

[0.590] 0.9984 4.0251 
[0.044] 0.9960 0.2902 

[0.590] 0.9960 0.2902 
[0.590] 

0.9975   0.9992 2.0089 
[0.156] 0.9960 0.9230 

[0.336] 0.9976 0.0072 
[0.932] 0.9992 2.0089 

[0.156] 0.9992 2.0089 
[0.156] 0.9984 0.4840 

[0.486] 0.9968 0.2117 
[0.645] 

Notes: see notes of Table 6. 
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Table 9: Out-of-sample VaR analysis (the long trading positions case) 
 U.S.  Europe  Brazil  Russia  India  China  S.Africa  

Quantile Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate Kupiec LRT Failure 

rate 
Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

Failure 
rate 

Kupiec 
LRT 

FIAPARCH model – normal distribution 

0.0500 0.0587 1.9191 
[0.165] 0.0563 1.0290 

[0.310] 0.0444 0.8491 
[0.356] 0.0468 0.2728 

[0.601] 0.0523 0.1481 
[0.700] 0.0531 0.2621 

[0.608] 0.0555 0.7914 
[0.373] 

0.0250 0.0357 5.2496 
[0.021] 0.0349 4.5374 

[0.033] 0.0301 1.2919 
[0.255] 0.0277 0.3852 

[0.534] 0.0277 0.3852 
[0.534] 0.0309 1.7047 

[0.191] 0.0325 2.6876 
[0.101] 

0.0100 0.0222 14.107 
[0.000] 0.0190 8.2336 

[0.004] 0.0134 1.3991 
[0.236] 0.0174 5.7942 

[0.016] 0.0111 0.1516 
[0.696] 0.0174 5.7942 

[0.016] 0.0142 2.0637 
[0.150] 

0.0050 0.0142 14.503 
[0.000] 0.0095 4.0905 

[0.043] 0.0023 2.1571 
[0.141] 0.0119 8.6855 

[0.003] 0.0071 1.0260 
[0.311] 0.0095 4.0905 

[0.043] 0.0079 1.8516 
[0.173] 

0.0025 0.0111 20.160 
[0.000] 0.0079 9.4411 

[0.002] 0.0015 0.4840 
[0.486] 0.0071 7.2241 

[0.007] 0.0055 3.4909 
[0.061] 0.0055 3.4909 

[0.061] 0.0039 0.9230 
[0.337] 

FIAPARCH model – Student-t distribution 

0.0500 0.0634 4.4653 
[0.034] 0.0531 0.2621 

[0.608] 0.0476 0.1526 
[0.695] 0.0555 0.7914 

[0.373] 0.0603 2.6567 
[0.103] 0.0563 1.0290 

[0.310] 0.0603 2.6567 
[0.103] 

0.0250 0.0380 7.6591 
[0.005] 0.0317 2.1703 

[0.140] 0.0269 0.1984 
[0.655] 0.0285 0.6307 

[0.427] 0.0301 1.2919 
[0.255] 0.0293 0.9335 

[0.333] 0.0317 2.1703 
[0.140] 

0.0100 0.0150 2.8411 
[0.091] 0.0150 2.8411 

[0.091] 0.0031 8.0799 
[0.004] 0.0126 0.8538 

[0.355] 0.0087 0.2144 
[0.643] 0.0111 0.1516 

[0.696] 0.0119 0.4352 
[0.509] 

0.0050 0.0103 5.4703 
[0.019] 0.0079 1.8516 

[0.173] 0.0007 6.9413 
[0.008] 0.0055 0.0754 

[0.783] 0.0031 0.9701 
[0.324] 0.0007 6.9413 

[0.008] 0.0039 0.2902 
[0.590] 

0.0025 0.0071 7.2241 
[0.007] 0.0047 2.0388 

[0.153] 0.0000 .NaN         0.0015 0.4840 
[0.486] 0.0023 0.0072 

[0.932] 0.0000 .NaN          0.0007 2.0089 
[0.156] 

FIAPARCH model – skewed Student-t distribution 

0.0500 0.0595 2.2737 
[0.131] 0.0515 0.0661 

[0.796] 0.0428 1.4192 
[0.233] 0.0484 0.0675 

[0.794] 0.0587 1.9191 
[0.165] 0.0563 1.0290 

[0.310] 0.0515 0.0661 
[0.796] 

0.0250 0.0333 3.2553 
[0.071] 0.0269 0.1984 

[0.655] 0.0222 0.4141 
[0.519] 0.0222 0.4141 

[0.519] 0.0230 0.2089 
[0.647] 0.0293 0.9335 

[0.333] 0.0246 0.0081 
[0.927] 

0.0100 0.0134 1.3991 
[0.236] 0.0111 0.1516 

[0.696] 0.0023 10.663 
[0.001] 0.0079 0.5831 

[0.445] 0.0071 1.1539 
[0.282] 0.0111 0.1516 

[0.696] 0.0055 2.9961 
[0.083] 

0.0050 0.0095 4.0905 
[0.043] 0.0063 0.4245 

[0.514] 0.0000 .NaN         0.0015 4.0251 
[0.045] 0.0031 0.9701 

[0.324] 0.0007 6.9413 
[0.008] 0.0023 2.1571 

[0.141] 

0.0025 0.0039 0.9230 
[0.336] 0.0031 0.2117 

[0.645] 0.0000 .NaN         0.0007 2.0089 
[0.156] 0.0015 0.4840 

[0.486] 0.0000 .NaN         0.0007 2.0089 
[0.156] 

Notes: See notes of Table 6. 
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4.!Conclusions 

We examine dynamic linkages of the BRICS markets with the U.S. and European markets, us-

ing the bivariate DECO-FIAPARCH model. We conduct a portfolio VaR analysis based on the 

obtained results with respect to three distributions and determine the implications of the re-

sults for portfolio managers and investors. Our results show evidence of the presence of lev-

erage effects and fractional integration in conditional volatility for all markets. The market 

linkages at the group level, represented by the equicorrelation coefficient, change over time, 

with an increasing tendency after the onset of the GFC 2008-2009, which confirms certain 

degree of contagious effects across markets. When the Markov-switching dynamic regression 

is used to identify the potential structural change in the time-path of market return series, we 

find the existence of two regimes (stable versus volatile) for all markets, with a common 

break date on the 15th of September 2008 (breakpoint characterizing the entry into the global 

financial crisis) and significant effects of crisis on the estimated parameters of the DECO-

FIAPARCH model. Another important finding is that the DECO-FIAPARCH model with the 

skewed Student-t distribution is the most suitable specification for assessing the portfolio’s 

VaRs, over both the in-sample and out-of-sample periods. Altogether, these results suggest 

that global investors should have interest in holding diversified portfolios of stocks issued by 

the BRICS, the U.S., and Europe in order to improve the portfolio’s risk-adjusted perfor-

mance, while policymakers are able to build decoupling strategies to immunize their markets 

to harmful contagious effects from other markets.  
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