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ABSTRACT: We propose a short review between two alternative ways of modeling
stability and change of longitudinal data when time-fixed and time-varying covariates
referred to the observed individuals are available. They both build on the foundation of
the finite mixture models and are commonly applied in many fields. They look at the
data by a different perspective and in the literature they have not been compared when
the ordinal nature of the response variable is of interest. The latent Markov model is
based on time-varying latent variables to explain the observable behavior of the indi-
viduals. The model is proposed in a semi-parametric formulation as the latent Markov
process has a discrete distribution and it is characterized by a Markov structure. The
growth mixture model is based on a latent categorical variable that accounts for the
unobserved heterogeneity in the observed trajectories and on a mixture of normally
distributed random variable to account for the variability of growth rates. To illustrate
the main differences among them we refer to a real data example on the self reported
health status.

KEYWORDS: Dynamic factor model, Expectation-Maximization algorithm, Forward-
Backward recursions, Latent trajectories, Maximum likelihood, Monte Carlo methods.

1 Introduction

The analysis of longitudinal or panel data by using latent variable models has
a long and rich history mainly in the social sciences. In the past several dec-
ades, the increased availability of large and complex data sets, have witnessed a
sharp increase in interest in this topic. Nowadays, it demands the development
of increasingly rigorous statistical analytic methods which can be proved use-



ful for data reduction as well as for inference. Among different proposals there
are two main broad classes of models: one tailored to consider the transition
over time and the other focused on growth or trajectory analysis. Both models
build on the foundation of finite mixture modeling [1]. Among the former, we
recall the latent Markov (LM) model which is mainly used for the analysis of
categorical data. Among the second, the growth mixture model (GMM) is ori-
ginally employed with observed continuous response variables. We propose a
comparison between them which accounts for the more recent model improve-
ments since, up to our knowledge, it is not available in the literature except for
the reviews made by [2], [3] and some hints provided in the book of [4]. The
innovativeness of the proposed comparison is that it is made for measurements
on an ordinal scale with the aim to illustrate similarities and differences. We
recall the main features of the LM model and the GMM unifying the notation
and the terminology for the common parameters and retaining those of each
specific literature.

The LM models may be classified as observation-driven models tailored
for many types of longitudinal categorical data as showed recently by [5] and
[6]. The evolution of individual characteristics of interest over time is repres-
ented by a latent process with state occupation probabilities which are time-
varying. They are extensions both of the latent class model [7], when there
are multiple occasions of measurements and of the Markov chain models for
stochastic processes in which an error term is included to the observations.
They allow for the unobserved heterogeneity between individuals or within the
latent states. Even if the first basic model formulation due to book of [8]∗ did
not include the covariates, at the present days time-constant and time-varying
covariates can be added in the measurement or in the latent part of the model.
When the model is formulated according to a discrete time dependent latent
process it may be classified as a semi-parametric approach. It allows to model
with different aims data arising in the applications in fields such as medicine,
sociology or biology [see also 9, 10]. Some of its connections with the hidden
Markov model† which is employed to analyze time series data are illustrated
by [12].

∗At Columbia he introduces the model in a research project in the social sci-
ences with Paul Lazarsfeld (http://www.nasonline.org/publications/
biographical-memoirs/memoir-pdfs/lazarsfeld-paul-f.pdf) as prin-
cipal investigator where he wrote in 1955 his Ph.D. dissertation. The application was devoted
to study a single item of human behaviour moving over time in a non-experimental context.

†The hidden Markov model was developed also in the social science field to study sudden
changes in learning processes by [11].



Conventional growth model or growth curve model (GCM) are viewed
either as hierarchical linear models or as structural equation models. Their
use in analyzing continuous response variables has been widely discussed in
the literature [see, among others, 13, 14]. Their use in modeling and analyzing
categorical data has recently received more attention [15, 16].‡

The GCM aims at studying the evolution of a latent individual character-
istic in order to estimate the trajectories by accounting for the individual vari-
ability about a mean population trend. It imposes an homogeneity assumption,
requiring that all individuals follow similar trajectories. The growth mixture
model (GMM) proposed by [22] [see also 23, 24] is a generalization of the
GCM accounting for the heterogeneity in the observed development trajector-
ies by employing a latent categorical variable. The finite mixture of linear and
multinomial regression models allows to disentangle the between-individual
differences and the within-individual pattern of changes through time [see also
25, 26]. It is a parametric approach where the population variability in growth
is modeled by a mixture of different normally distributed subpopulations.

A specific case of the GMM is the latent-class growth curve model (LCGM)
[see, among others, 27, 28, 29], also named as latent class regression model
by [30]. Another terminology employed by [31] is latent class growth ana-
lysis (LCGA). The multinomial model is used to identify the homogeneous
groups of developmental trajectories avoiding the normal distribution assump-
tion on the random effects. The individuals in each class share a common
trajectory [32] whithout considering the between-class heterogeneity. There-
fore within the LCGM the individual heterogeneity is completely captured by
the mean growth trajectories of the latent classes. Whereas GMM allows to
model class-specific variance components (intercept and slope variance). For
a more complete comparison between GMM and LCGM, see also [33].

We illustrate two recent extensions of the LM model and GMM when the
ordinal response variable is made by thresholds imposed on an underlying con-
tinuous latent response variable. We show how the discrete support for the lat-
ent variable used in the LM model framework can be appropriate in this con-
text. The models are compared on how they allow covariates, how they make
inference, on their computational features required to achieve the estimates,
and on their ability to classify units and their predictive power. Our proposal
to compare them in terms of fitting, parsimony, interpretation and prediction
is an attempt to joint the recent literature on these models for panel data. The

‡Latent growth modeling was first proposed independently by [17] and [18] in relation to
the longitudinal factor analysis and later extended and refined by [19, 20] and [21].



results of the model fitting are illustrating through a dataset on longitudinal
study aimed at describing the self perceived health status which appears also
in others published scientific articles [see, among others, 34].

The structure of the paper is as follows. In Section 2 we introduce the
basic notation for both models and we summarize the main features concerning
the estimation issues. In Section 3 we demonstrate the effectiveness of the
models explaining their purposes in relation to the applicative example and
their results. In the last section we draw some concluding remarks.

2 Main notation and illustration of the models

One way to afford the issue of ordinal response variables consists in deriving
a conditional probability model from a linear model for a latent response vari-
able. The observed variables are obtained by categorizing the latent continuous
response which may be related for example to the amount of understanding,
attitude, or wellbeing required to respond in a certain category. Let Yit be the
observed ordinal variable for individual i , for i= 1, . . . ,n at time t, t = 1, . . . ,T .
We assume an underlying continuous latent variable Y ∗it , via a threshold model
given by

Yit = s iff τs−1 < Y ∗it 6 τs

where s = 1,2, . . . ,S and −∞ = τ0 < τ1 < τ2 < .. . < τs−1 < τs = +∞ are the
cut-points by which it is possible to achieve a unique correspondence. With S
response categories, there are S−1 threshold parameters, τs, s= 1,2, . . . ,S−1.

2.1 Latent Markov models for ordinal data

Under the basic model we assume the existence of a discrete latent process
such that

Y ∗it = αit + εit ,

where αi1, . . . ,αiT follows an hidden Markov chain with state space ξ1, . . . ,ξk,
initial probabilities πu = p(αi1 = ξu) and transition probabilities πu|ū = p(αit =
ξu|αi,t−1 = ξū), ū,u = 1, . . . ,k. Moreover, εit is a random error with normal or
logistic distribution.

In the case of time-varying or time-fixed covariates collected in the column
vectors xxxit , the model is extended as

Y ∗it = αit + xxx′itβββ+ εit ,



including these covariates in the measurement model concerning the condi-
tional distribution of the response variables given the latent process. The co-
variates are allowed also in the latent part of the model, however the model
is better identified when they are stored or in the latent or in the measurement
part of the model and the choice is related to the research question and the aims
of the analysis.

We assume that the discrete latent process follows a first-order homogen-
eous Markov chain. The model has a simple structure when the conditional
independence of an observed response variable Yit on the other responses given
the latent process holds for i = 1, . . . ,n, t = 1, . . . ,T . This assumption is called
the local independence. The conditional distribution of the responses is de-
noted by ft(yyy|u,xxx), u = 1, . . . ,k, whereas the latent process U is discrete with
initial probability function p(u), for u = 1, . . . ,k, and transition probability
function pt(u|ū), where t = 2, . . . ,T, u, ū = 1, . . . ,k, and k denotes the discrete
number of latent states. Therefore a semi-parametric model results. A gen-
eralized linear model parameterization [35] allow us to include properly the
covariates in the measurement model. In such a way, by using suitable link
functions we may allow for specific constraints of interest and we may also
reduce the number of parameters.

An effective way to include the covariates in the measurement model is by
employing a generalized linear model parameterization

ηηηtux =CCC log[MMM fff t(u,xxx)],

where CCC is a suitable matrix of contrasts, MMM is a marginalization matrix with
elements 0 and 1, which sums the probabilities of the appropriate cells and
the operator log is coordinate wise, fff t(u,xxx) is a c-dimensional column vector
with elements ft(yyy|u,xxx) for all possible values of y and ηty|ux, y = 1, . . . ,s−1
denotes each element of ηηηtux. Within this formulation constraints on the model
parameters specific of the application may be conceived.

An interesting formulation for the current context is

ηy|ux = β1y +β2u + xxx′βββ3, y = 1, . . . ,s−1, u = 1, . . . ,k, (1)

where the levels of the β1y are cut-points or threshold parameters, β2u are inter-
cepts specific of the corresponding latent state, and βββ3 is a vector of parameters
for the covariates. The above is possible once we define the global logits [35]
on the conditional response mass function

ηy|ux = log
f (y|u,xxx)+ · · ·+ f (s−1|u,xxx)
f (0|u,xxx)+ · · ·+ f (yyy−1|u,xxx)

, y = 1, . . . ,s−1.



We carried out the estimation of the model parameters in two ways: or
by using maximum likelihood method through the EM algorithm [36] or by
Bayesian methods applying the MCMC algorithm [37]. Within the first choice
the log-likelihood is maximized according to the following steps until conver-
gence:

E: step compute the expected value of the complete data log-likelihood
given the observed data and the current value of θθθ, which denotes all
the model parameters;

M: step maximize this expected value with respect to θθθ and thus update θθθ.

We use the recursions developed in the hidden Markov literature by [38] and by
[39] to compute the quantities of interests. They enable to efficiently compute
the expected values of the random variables involved in the complete data log-
likelihood

`∗(θθθ) = ∑
t

∑
u

∑
x

∑
y

atuxy log ft(yyy|u,xxx)+

+ ∑
u

b1ux log p(u)+∑
t>2

∑
uuu

∑
u

btuū log pt(u|ū)

where atuxy is the number of individuals that are in latent state u and provide
response y, b1u is a frequency of the latent state u at occasion t; btuū is the
number of transitions from state ū to state u.

As for other mixture models [1] there may be many local optima, therefore
the estimation is carried out by considering multiple sets of starting values
for the chosen algorithm. A drawback of the EM algorithm is that it can’t
give a direct quantity to asses the precision of the maximum likelihood estim-
ates. Among other methods, it is possible to consider the missing information
principle. In the case of the regular exponential family [40] the observed in-
formation is equal to the complete information minus the missing information
due to the unobserved components [41, 42]. For an implementation when a
directed acyclic Gaussian graphical model is considered with one hidden vari-
able see [43]. The method is suitable for its low computational burden over
that required by the maximum likelihood estimation.

The model selection may be based on a Likelihood Ratio (LR) test between
the model with k classes and that with k+1 classes for increasing values of k,
until the test is not rejected. However, we need to employ the bootstrap to ob-
tain a p-value for LR test. It is based on a suitable number of samples simulated
from the estimated model with k classes [44]. In [45] the best parsimonious
model is the result of a statistic based on the parametric bootstrap which is



consistent. Their results relay on the assumption that the best model is one
among those with the proposed number of classes.

We select the number of latent states according to the most common in-
formation criteria: the Akaike Information Criterion (AIC) [46] and the Bayesian
Information Criterion (BIC) [47]. We recall that when we select the states ac-
cording to the model with the smallest value of BIC, we decrease the maximum
of the log-likelihood value considering also the number individuals. Their per-
formance has been deeply studied in the literature on mixture models [see,
among others, 1, Chapter 6]. They are also employed in the hidden Markov
literature for time-series, where they are penalized by the number of time oc-
casions [see, among others, 48]. The BIC is usually preferred to AIC, as the
latter tends to overestimate the number of latent states but it may be too strict
in certain cases [see, among others, 49]. The theoretical properties of BIC in
the LM models framework are still not well established. However, BIC is a
commonly accepted model choice criterion even for these models as well as
to choose the number of latent classes for the latent class model [see, among
others, 50]. In [6] this criterion is also used together with other diagnostic stat-
istics measuring the goodness-of-classification. In a more recent study [51]
compare the performance of some likelihood and classification based criteria,
such as an entropy measure, for selecting the number of latent states when a
multivariate LM model is fitted to the data.

An interesting feature of the LM model concerns prediction. As showed in
[6] the local decoding allows prediction of the latent state for each individual
at each time occasion by maximizing the estimated posterior function of the
latent process. The global decoding employing the [52] algorithm, [see also
53] allows to get the most a posteriori likely predicted sequence of states for
each individual. The joint conditional probability of the latent states given the
responses and the covariates f̂U |X ,Y (uuu|xxx,yyy) is computed by using a forward
recursion according to the maximum likelihood estimates of the model para-
meters, where uuu denotes a configuration of the latent states. The optimal state

û∗t = argmax
u

r̂t(u)p̂t+1(u|û∗(t−1)).

is found by considering r̂1(u) = p̂(u|xxx)∏t f̂1(y1|u1,x), for u = 1, . . . ,k; and
computing in a similar way r̂t(v) , for t = 2, . . . ,T and v = 2, . . . ,k; then max-
imizing such that û∗T = argmaxu r̂T (u).



2.2 Growth mixture models

The GCMs provide the estimated shapes of the individual trajectories account-
ing for within and between individual differences. The measurement model
concerning the observed responses deals with individual growth factors. The
latent model is related to the means, to the variances and covariances of the
growth factors to explain between individuals differences. First we recall the
LGCM and then the GMM. The LGCM without covariates is defined by the
following equations

Y ∗it = αi +λtβi +λ
2
t qi + εit ,

αi = µα +ζαi, (2)
βi = µβ +ζβi,

where αi and βi are the intercept and the slope of the growth factor for i =
1, . . . ,n and t = 1, . . . ,T , respectively. To allow identifiability the intercept
growth factor is fixed to 1. Therefore, it equally influences all the repeated
measures across the waves and it remains constant across time for each indi-
vidual. Different values can be assigned to the time indicator λt , to produce
growth curves of different shapes that are linearly or not linearly dependent
on time. In order to define a linear growth model with equidistant time points
the time scores for the slope growth factor are fixed at 0,1,2, . . . ,T − 1, and
the quadratic growth factor qi is fixed at 0 [see, among others, 14]. The first
time score is fixed at zero and the intercept growth factor can be interpreted as
the expected response at the first time point. The time scores for the quadratic
growth factor are fixed at 0,1,4, . . . ,(T −1)2 to allow for a quadratic shape of
the trajectory.

The measurement errors εit in Equation (2) are not correlated across time,
they are i.i.d. disturbances. Because there is no intercept term in the measure-
ment model, the mean structure of the repeated measures is determined entirely
by the means of the latent trajectory factors. In the structural model, the para-
meters µα and µβ are the population means of the intercept and of the slope,
respectively; ζαi is the deviation of αi from the population mean intercept and
ζβi is the deviation of βi from the population mean slope. The are assumed
with a multivariate normal distribution with zero means and variances denoted
by ψαα and ψββ, respectively and they are uncorrelated with εit . The covari-
ance of the intercept and of the slope is denoted by ψαβ. When the response
is ordinal or categorical the thresholds are assumed to be equal for each meas-
urement occasion by imposing the constraint τst = τs for t = 1, . . . ,T and also
the constraint µα = 0 is required.



In the conditional growth model the time-fixed covariates are included as
predictors of the growth factors or as direct predictors of the response variable.
Time-varying covariates can only be included as predictors in the measurement
model according to the following equations

Y ∗it = αi +λtβi +λ
2
t qi +ωωωitγγγt + εit ,

αi = µα + xxx′iγγγα +ζαi, (3)
βi = µβ + xxx′iγγγβ +ζβi,

for i = 1, . . . ,T and t = 1, . . . ,T , where γγγα and γγγβ are vectors of parameters for
the time-fixed covariates xxxi on αi and βi, respectively, and γγγt is the vector of
parameters for the time-varying covariates ωωωit on the measurement model.

The unconditional GMM is defined by a latent categorical variable U ac-
counting for the unobserved heterogeneity in the development among individu-
als. It represents a mixture of subpopulations whose membership is inferred
by the data [for a review, see, among others, 14, 54]. It is characterized by the
following equations

Y ∗t =
k

∑
u=1

pu(αu +λtuβu + εtu),

αu = µαu + xxx′γγγαu +ζαu,

βu = µβu + xxx′γγγβu +ζβu,

for i = 1, . . . ,n and t = 1, . . .T , where pu is the probability of belonging to
latent class u, for u = 1, . . . ,k which defines the latent trajectory, with the con-
straints pu > 0 and ∑

k
u=1 pu = 1, where k is equal to the number of mixture

components. The thresholds τs are unknown and they are estimated and con-
strained to be equal across time and latent classes. The intercepts of the growth
factors may vary across latent classes. With categorical response variables the
growth factor referred to the last class is constrained to zero for identifiab-
ility issues and the others are estimated from the model. The variances and
covariance of the growth factors can be allowed to be class-specific or con-
strained to be equal. Residuals of the growth factors and of the measurement
model are assumed normally distributed within each latent class. As in Equa-
tion (3) only time-fixed covariates may be included to infer the latent class
through a multinomial logistic regression model since the latent variable is
typically viewed as time invariant. Therefore, the GMM reduces to the GCM
when k = 1 and to the LCGM when the within-class growth factor variance
and covariances ψαu,ψβu,ψαβu are set to zero for all u, u = 1, . . . ,k. In the lat-
ter case, the between-individual variability is captured only by the latent class



membership. The thresholds are estimated with the mean cumulative response
probabilities for a specific response category at each measurement occasion by
the estimated distribution of the latent growth factors.

The maximum likelihood estimation of the model parameters when there
are categorical response variables and continuous latent variables requires nu-
merical methods. The computation is carried out by using Monte Carlo in-
tegration [14, 55]. As in the standard normal mixture models, imposing con-
straints on the covariance matrices of the latent classes ensures the absence
of singularities and potentially reduces the number of local solutions [22, 26].
The model selection concerns the choice of the number of the latent classes
and the order of the polynomial of the group’s trajectories. The most common
applied empirical procedure is the following: first the order of the polynomial
is assessed by estimating both linear and not linear unconditional GCM, or
GMM with k = 1, GMM(k) in the following. Then, the number of groups is
determined according to the unconditional model in order to avoid an over-
extraction of the latent classes [see also 56]. Finally, the covariates are added
in the model as predictors of the latent classes.

The LR test is employed for the model selection also by considering the
bootstrap [see, among others, 57] as illustrated in the previous section. The
number of latent classes is selected according to the AIC or BIC illustrated in
Section 2.1. The relative entropy measure [58] is commonly employed to state
the goodness of classification

Ek = 1− ∑
n
i=1 ∑

k
u=1−p̂iu log(p̂iu)

n log(k)
, (4)

where p̂iu is the estimated posterior probability of belonging to the u-th latent
class, k is the number of latent classes and n is the sample size. The values
approach one when the latent classes are well separated. However, we notice
that it differs from the normalized entropy criterion (NEC) defined by [59]
which instead divides the entropy index EN(p̂iu) by the difference between the
log-likelihood of the model with k classes and the one with just one class. The
above criteria may lead to a model lacking of interpretability in terms of latent
classes or in which only few individuals are allocated in a class. As suggested
by many authors such a choice needs also to be guided by the research question
as well as by theoretical justification and interpretability [60, 61, 62]. The
optimal number of classes derived from the LCGM is always bigger than the
optimal number of classes derived from GMM. Within the LCGM, individuals
with slightly different growth parameters are sooner defined to a different class
compared with the GMM [see, among others, 63].



3 Real data example: the health and retirement study

In order to show the main differences among the models illustrated in the pre-
vious section we consider a longitudinal study aimed at describing the self-
perceived health status. The latter is a frequently used way to establish health
policy and care as the repeated subjective health assessment reflects the own
perception of health and how it is going to evolve over time. It is recorded
by one item with response categories defined so that an ordinal variable res-
ults. The data is taken from version I of the RAND HRS data, collected by the
University of Michigan§. The 30,406 respondents, were asked to express opin-
ions on their health status at T = 8 approximately equally spaced occasions,
from 1992 to 2006. After considering only individuals with no missing data
on the variables, we ended up with a sample of n = 7,074 individuals. The
response variable SRHS is measured on a scale based on five ordered categor-
ies: “poor”, “fair”, “good”, “very good” and “excellent”. For every individual
some covariates are also available: gender, race, education and age (at each
time occasion). The study relies on the investigation of the population het-
erogeneity in the health status perception as well as on prediction of features
needs especially tailored for those elders which are identified to share the most
difficult health conditions.

First of all, we summarize the estimation process for both models presented
in Section 2 and then we make some comparisons on the estimated quantities.
The estimation of the LM models is undertaken on the R [64] package LMest
V2.2 that is available on Comprehensive R Archive Repository (CRAN). This
version accounts also for covariates on the latent part of the model and it
handles also missing values on the responses. The estimation of the growth
models is undertaken under the commercial software MPLUS V7.2.

For the LM model parameterized as in Equation (1) we applied the model
search procedure as illustrated in Section 2.1 to find the best model among
those with a number of latent states from 1 to 11. The search strategy which
is implemented to account for the multimodality of the likelihood function is
based on estimating the same model with the same number of states by using
deterministic and random starting values for the EM algorithm. The number of
different random starting values sis proportional to the number of latent states.
The relative log-likelihood difference is evaluated by considering a tolerance
level equal to 1e-10. The model is estimated for an increasing number of latent

§See also http://www.cpc.unc.edu/projects/rlms-hse and http://www.
hse.ru/org/hse/rlms



states while checking for the replication of likelihood values. The best model
is that with 9 latent states. It is selected according to the BIC values showed in
Table 1 that also show the number of free parameters.

Table 1. Fit statistics for an increasing number of latent states from 1 to 11 of the LM
model with covariates.

log-likelihood AIC BIC #par
LM(1) -80,623.52 161,267.0 161,335.7 10
LM(2) -69,789.21 139,604.4 139,693.6 13
LM(3) -65,707.82 131,451.6 131,575.2 18
LM(4) -63,968.06 127,986.1 128,157.7 25
LM(5) -63,293.98 126,656.0 126,889.3 34
LM(6) -63,062.23 126,214.5 126,523.4 45
LM(7) -62,894.29 125,904.6 126,302.7 58
LM(8) -62,739.12 125,624.2 126,125.3 73
LM(9) -62,645.69 125,471.4 126,089.1 90

LM(10) -62,615.99 125,450.0 126,198.2 109
LM(11) -62,650.58 125,561.2 126,453.5 130

Table 2. Estimated support points and parameters referred to the initial probabilities
of the chain of the LM(9) model.

Latent state Support points Initial probabilities
1 -8.657 0.047
2 -4.941 0.117
3 -2.456 0.192
4 -1.147 0.028
5 -0.224 0.213
6 2.062 0.189
7 4.303 0.121
8 5.159 0.213
9 7.357 0.067



Table 3. Estimates of the vector of the regression parameters of the LM(9) model.

Coefficient Female Non-
white

Some
college

College
and

above

Age Age2

βββ -0.185 -1.341 1.37 2.461 -0.125 -0.001
s.e. 0.075 0.109 0.092 0.104 0.007 0.026

Table 4. Estimates of the transition probabilities under the LM(9) model, (probabilit-
ies out of the diagonal greater than 0.1 are in bold).

π̂u|ū

1 2 3 4 5 6 7 8 9
1 0.796 0.182 0.000 0.001 0.006 0.001 0.002 0.012 0.000
2 0.053 0.822 0.106 0.001 0.000 0.000 0.000 0.017 0.000
3 0.008 0.020 0.868 0.004 0.061 0.001 0.000 0.038 0.000
4 0.026 0.013 0.001 0.336 0.006 0.039 0.155 0.292 0.132
5 0.002 0.024 0.015 0.000 0.887 0.066 0.005 0.000 0.000
6 0.000 0.004 0.024 0.003 0.024 0.896 0.044 0.001 0.003
7 0.001 0.004 0.001 0.052 0.025 0.009 0.845 0.001 0.062
8 0.018 0.061 0.189 0.301 0.153 0.000 0.000 0.278 0.000
9 0.000 0.000 0.000 0.050 0.006 0.051 0.072 0.000 0.821

The estimated cut-points of the LM(9) are τ̂1 = 8.261 τ̂2 = 4.559, τ̂3 =
0.800, τ̂4 =−3.470. The estimated initial probabilities are reported in Table 2
together with the support points. The categories of response variables have
been reversed from excellent to poor and the estimated support points are ar-
ranged in increasing order to interpret the resulting latent states from the best
(latent state 1) to the worst (latent state 9). We notice that the 11% and 19%
of individuals are in second and in the third latent state which are better states
with respect to latent states 6 and 8. The matrix of the estimated transition
probabilities is reported in Table 4. We notice that the only greater probabilit-
ies then 0.10 in the elements adjacent to the diagonal are those of the transition
from the first to the second latent state and from the second to the third. For
the latent states 4 the probability to moving to latent state 7 to 9 are higher then
0.10. For the latent state 8 the probability of moving to latent state 3 to 5 are
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Figure 1. Individual profiles for a selected group of individuals for the LM(9) model.

higher than 0.10, therefore we conclude that the individuals feeling not well
at the beginning of the survey have high probability to improve their health
conditions over time.

Table 3 shows the effect of the covariates on the probability of reporting
a certain level of the health status. In particular, women tend to report worse
health status than men (the odds ratio for females versus males is equal to
(exp(−0.185) = 0.831), whereas white individuals have higher probability of
reporting a good health status with respect to non-white (the odds ratio for
non-white versus white is equal to (exp(−1.341) = 0.261). We also observe
that better educated individuals tend to have a better opinion about their health
status. Finally, the effect of age is decreasing over time and its trend is linear
as the quadratic term of age is not significant. In Figure 1 we compare the in-
dividual response profiles of the LM(9) model obtained by using the estimated
posterior probabilities according to the rules illustrated in Section 2.1. They
refer only to white females over 65 years old at the third wave of interview
which are highly educated. Some profiles are less regular then others: they
detect those females whose health status may strongly decline due to events
that are not observed through the covariates.

For the growth models the best model within the class of GMMs is detected
according the model strategy illustrated at the end of Section 2.2. As first step,



we estimate two GMMs without covariates with just one latent class in which
the respondents’s opinions about their health are specified as a function of lin-
ear and nonlinear growth patterns. The GMM with a quadratic effect shows
a log-likelihood equal to -63,996.8 and a BIC value equal to 128,100 with 12
parameters. This model is to be preferred according to the BIC value as the
GMM without the quadratic effect results in a log-likelihood equal to -63,116.3
and a BIC value equal to 128,303.5 with 8 parameters. The χ2 = 1,761 with
4 degrees of freedom is significant. However, we notice that the numerical
integration becomes more computationally demanding as it reaches three di-
mension of integration and we could not reach the convergence when we in-
creased the number of latent classes. Therefore, we choose to retain the linear
form. As second step, the hypothesis of homogeneity within groups has to be
rejected since the log-likelihood of the linear model under this assumption de-
creases to -83,152.7. However, we should note that the numerical integration
becomes increasingly more computationally demanding as the number of lat-
ent factors increases. When we consider only intercept and slope in the model,
we have two dimensions of integration and the computer burden is then mod-
erate. When also the quadratic term is considered we reach three dimensions
of integration and the computer burden increases exponentially. Therefore, we
decide to use a linear GMM as a comparison with the LM model. The es-
timated model parameters denotes that the perception of a good health status
decreases over time. The variances of the intercept and of the slope factor are
significant, indicating the existence of individual differences in growth traject-
ories. As third step, we fit the selected GMM model without covariates by
considering the existence of mixture distributions from to 2 to 5 with varying
patterns of the growth trajectory. Table 5 shows the results for an increasing
number of latent classes 1 up to 5. According to the BIC values we select the

Table 5. Selection of the number of latent classes of the GMM without covariates.

Latent class Log-likelihood BIC #par Entropy
1 -64,116.3 128,303.5 8 1.000
2 -64,092.3 128,282.2 11 0.599
3 -63,982.3 128,088.7 14 0.719
4 -63,982.2 128,115.1 17 0.428
5 -63,977.2 128,131.7 20 0.746

model with three latent classes also because we realized that the models with
a higher number of components did not reach the convergence criteria. The



model with 4 classes have the same log-likelihood of the one with 3 classes.
While, the best log-likelihood value of the model with 5 classes is not replic-
ated with different starting values as that of the model with 3 classes. As last
step, only time-fixed covariates are included in the model of Equation (3), con-
sidered as constants across the latent classes. Their coefficients are significant
with the exception of the quadratic effect of age, which is then excluded and the
resulted model has a log-likelihood equal to -63,421.0 and a BIC value equal
to 127,143.3 with 34 parameters. The entropy value as in Equation (4) is equal
to 0.763. The estimated probabilities of GMM(3) and the average conditional
probability of belonging to each latent class are displayed in Table 6. This
a common employed way to asses the tenability of the selected model as the
average posterior probability of group membership for each trajectory is con-
sidered as an approximation of the reliability of the trajectory. The posterior
probabilities are used to assign each individual membership to the trajectory
that best matches, where the values of 0.70 or 0.80 are reference in the lit-
erature to group individuals in the same latent class with a similar pattern of
change. Table 6 shows the classification probabilities for the selected GMM(3)
by considering the most likely latent class membership (row) by the average
conditional probabilities (column). We notice that contrary to our expectation
the diagonal values referred to the first and third latent class are low meaning
that the classes are not properly identified. In fact the percentage of units be-
longing to those classes is 10.8% and 3.2%, respectively. From Table 7 the
estimated coefficients of the covariates on the growth factor are not high and
differently from the LM model the sign of the female coefficient is reversed,
therefore females tend to report better health status then man. Probably due
to the poor convergence of the selected model. The high education shows the
highest positive estimated coefficient on the intercept factor.

As shown in Table 8 the estimated covariance is negative meaning that
the individuals with the highest values of the intercepts at the first occasion
(e.g. with better perceived health) change more rapidly into a worse percep-
tion. Figure 2 illustrates the estimated trajectories where the first latent class
identifies the individuals with an initial poor health status and a slow decline
in their health, the second latent class those with a better initial health status
and a slightly faster decline compared to the first class and the third latent class
individuals perceiving a strong worsening of their health status over time.



Table 6. Classification probabilities for the GMM(3) with covariates according to the
most likely latent class membership (row) by the average conditional probabilities
(column).

1 2 3
Class 1 0.436 0.556 0.008
Class 2 0.022 0.973 0.005
Class 3 0.028 0.436 0.537

Table 7. Estimates of the vector of the regression parameters of the intercept and slope
growth factor of the GMM(3) with covariates.

Coefficient Female Non-
white

Some
college

College
and above

Age

γγγα 0.265 -1.506 1.037 1.876 -0.044
s.e. (0.103) (0.170) (0.136) (0.148) (0.009)
γγγβ 0.005 0.032 -0.040 -0.071 0.000
s.e. (0.012) (0.015) (0.016) (0.018) (0.001)

Table 8. Estimates of the structural parameters of GMM(3) with covariates.

Coefficient Estimates s.e. Coefficient Estimates s.e.
µα(1) -6.734 0.498 µβ(1) -0.105 0.090
µα(2) -2.302 0.443 µβ(2) -0.193 0.069
µα(3) 0.000 0.000 µβ(3) -1.292 0.118

ψα 6.501 0.422 ψβ 0.065 0.005
ψαβ -0.272 0.039

4 Concluding remarks

We propose a comparison between the latent Markov (LM) models and the
Growth Mixture Models (GMMs) when the interest lies in modelling longit-
udinal ordinal responses and time-fixed and time-varying individual covariates.
The interest on this topic is relevant since in many different contexts the ordinal
data are a way to account for the importance given by an item or measure some-
thing do not directly observable. The LM model is a data-driven model which
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Figure 2. Response profile plot for the GMM(3) with covariates.

relays on a latent stochastic process following a first-order Markov chain with
the fundamental principle to estimate transitions between latent states and to
capture the influence of time-varying and time-fixed covariates on the observed
transitions. GMM exploits a latent categorical variable to allows the unob-
served heterogeneity in observed development trajectories. The latent variable
is time invariant and it describes the trend through a polynomial function al-
lowing for time-fixed covariates. We illustrate the main features of the models
and their performance by referring to a specific application based on real data
in which the ordinal response variable of interest describes the self-perceived
health status. The aim is also to estimate a life expectancy for longevity. We
can summarize the main differences between the LM and the GMM according
to the following characteristics: i) the model estimation and selection proced-
ure leading to the choice of the number of the latent states or classes; ii) the
way they relate the conditional probabilities of the responses to the available
individual covariates. iii) the model capability to use the posterior probabilities
for creating profiles of group membership.

We show that the LM model outperforms the GMM mainly because it is
more rigorous on each of the above points. With reference to i) the model
choice is more complex for the GMM and it starts with the model without
covariates. We found that the Monte Carlo integration for the GMM with a



number of latent classes up to three leads to improper solutions. The selection
of the best model is more straight for the LM model, however it requires a
search strategy to properly initialize the EM algorithm and therefore it is com-
putational demanding when the number of latent states of the model is high.
With reference to ii) the covariates are better handled by the LM model since
they are allowed according to suitable parametrization for categorical data such
as global logits. While in the LM model the covariates may affect the meas-
urement part of the model or may influence the latent process, in the GMM
they can affect both but in the measurement model only time-fixed covariates
are allowed. Then, when the interest is on detecting subpopulations in which
individuals may be arranged according to their perceived health status the LM
is more appropriate. The GMM can be useful when just a mean trend is of in-
terest and the expected subpopulations are not many. With reference to iii) the
predictions of the LM model are based on local and global decoding. The first
is based on the maximization of the estimated posterior probability of the lat-
ent process and the second on a well known algorithm developed in the hidden
Markov model literature to get the most aposteriori likely predictive sequence.
In the GMM the prediction is based on the maximum posterior probability and
as showed in the example it may be not precise when the internal reliability of
the model is poor.

We conclude that, due to the asymptotic properties of the algorithm used
to estimate the posterior probabilities, the LM model should be recommended
especially when the prediction of the latent states is one of the main interest in
the data analysis. The GMM leads to select a lower number of subpopulations
compared to the LM. However, this is not always a desirable property since
when the data are rich, as in the applicative example, it may not be of interest
to compress extremely their information. Within the LM model it is possible to
detect also a reversible transition between the latent states. The consideration
of the time dimension in the structural form made by the GMM is inadequate
to explain the latter feature of the data. The results proposed by the applicative
example may be useful when the interest is to evaluate the needs of group of
elders to prevent the fast decrease of their health, or to investigate better the
reasons why the health conditions are improved when the age is increasing and
therefore plan specific interventions for the group of interest.
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in Hidden Markov Models, pages 565–602. Springer, 2007.

[49] D. Rusakov and D. Geiger. Asymptotic model selection for naive
Bayesian networks. In Proceedings of the eighteenth conference on un-
certainty in artificial intelligence, pages 438–455. Morgan Kaufmann
Publishers Inc., 2002.

[50] J. Magidson and J. K. Vermunt. Latent class factor and cluster models,
bi-plots and related graphical displays. Sociological Methodology, 31:
223–264, 2001.

[51] S. Bacci, S. Pandolfi, and F. Pennoni. A comparison of some criteria for
states selection in the latent Markov model for longitudinal data. Ad-
vances in Data Analysis and Classification, 8:125–145, 2014.

[52] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory,
13:260–269, 1967.

[53] B. H. Juang and L. R. Rabiner. Hidden Markov models for speech recog-
nition. Technometrics, 33:251–272, 1991.

[54] K. E. Masyn, H. Petras, and W. Liu. Growth curve models with categor-
ical outcomes. In Encyclopedia of Criminology and Criminal Justice,
pages 2013–2025. Springer, 2014.

[55] M. Wang and T. E. Bodner. Growth mixture modeling identifying and
predicting unobserved subpopulations with longitudinal data. Organiza-
tional Research Methods, 10:635–656, 2007.

[56] K. L. Nylund and K. E. Masyn. Covariates and latent class analysis:
Results of a simulation study. In society for prevention research annual
meeting, 2008.

[57] K. L. Nylund, T. Asparouhov, and B. O. Muthén. Deciding on the num-
ber of classes in latent class analysis and growth mixture modeling: a
monte carlo simulation study. Structural Equation Modeling, 14:535–
569, 2007.



[58] V. Ramaswamy, W. S. DeSarbo, D. J. Reibstein, and W T Robinson. An
empirical pooling approach for estimating marketing mix elasticities with
pims data. Marketing Science, 12:103–124, 1993.

[59] G. Celeux and G. Soromenho. An entropy criterion for assessing the
number of clusters in a mixture model. Journal of classification, 13:
195–212, 1996.

[60] D. J. Bauer and P. J. Curran. Distributional assumptions of growth mix-
ture models: implications for overextraction of latent trajectory classes.
Psychological methods, 8:338, 2003.

[61] D. J. Bauer and P. J. Curran. Overextraction of latent trajectory classes:
much ado about nothing? reply to rindskopf (2003), muthén (2003), and
cudeck and henly (2003). Psychological Methods, 8:384–393, 2003.

[62] B. O. Muthén. Statistical and substantive checking in growth mixture
modeling: comment on bauer and curran (2003). Psychological Methods,
8:369–377, 2003.

[63] J. Twisk and T. Hoekstra. Classifying developmental trajectories over
time should be done with great caution: a comparison between methods.
Journal of clinical epidemiology, 65:1078–1087, 2012.

[64] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2015. URL
http://www.R-project.org/.


