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Abstract

We propose a simple and generalizable decomposition method to evaluate intergenerational economic
mobility. The method decomposes the difference between the empirical parent-offspring joint distribution
of incomes and a hypothetical independent parent-offspring joint distribution of incomes. The difference
is attributed to (1) a portion due to a link between parental income and offspring characteristics (a com-
position effect) and (2) a portion due to a link between parental income and the returns to characteristics
(a structure effect). The method is based on the estimation of counterfactual joint distributions consis-
tent with (actual and counterfactual) conditional distributions estimated via distributional regression and
(actual and counterfactual) distributions of covariates. The counterfactual joint distributions are then
caste into common measures of mobility found in the literature: intergenerational elasticities of incomes
and their quantile regression counterparts, transition matrices, summary indices of transition matrices,
and upward mobility probabilities. These counterfactual measures are used to assign portions of mea-
sured (im)mobility to composition and structure effects. We apply the method to U.S. intergenerational
economic mobility of white males born between 1957 and 1964. Across multiple mobility measures and
using two different counterfactuals, we find that the composition effect (i.e., differences in the distribution
of characteristics) generally accounts for about 60-70% of the measured mobility gap. Further, we find
evidence of a safety-net effect of parental income which appears to be primarily compositional in nature.
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1 Introduction

Kindled by the seminal papers of Becker and Tomes (1979, 1986), a large body of economics literature has sought to

understand the persistence of incomes across generations.1 Great strides have been made in understanding measure-

ment issues and how they may bias results, and as a result, our understanding and empirical estimates of mobility

are much improved (Böhlmark and Lindquist, 2006; Haider and Solon, 2006; Nybom and Stuhler, 2015; Mazumder,

2005; Solon, 1999). The literature that seeks to understand this intergenerational link has focused primarily on

simple mean effects, such as the intergenerational elasticity of income (IGE) (Björklund et al, 2006; Blanden et al.,

2007; Bowles and Gintis, 2002; Cardaket al., 2013; Lefgren et al., 2012; Liu and Zeng, 2009; Mayer and Lopoo, 2008;

Richey and Rosburg, 2016; Shea, 2000); mean effects are informative but provide a relatively limited view of mobility.

Two exceptions are Bhattacharya and Mazumder (2011), who estimate conditional directional mobility measures and

transition matrices, and Richey and Rosburg (2016), who decompose transition matrices and related indices. While

both studies are revealing and provide important additions to the literature, they have limitations that restrict their

generalizability.2 We propose a simple, generalizable estimation method that ‘decomposes’ the joint distribution of

parental and offspring incomes into the portion due to a link between parental income and offspring characteristics

(a composition effect) and the portion due to a link between parental income and the returns to characteristics (a

structure effect).3 The decomposition is achieved by estimating a counterfactual joint distribution based on the

removal of one of these effects. This counterfactual joint distribution can then be used to analyze any measure of

(im)mobility and identify what portion is compositional or structural in nature.

The proposed method builds on the large body of decomposition literature which seeks to understand differences in

some outcome between groups. A prime example in labor economics is wage differences between men and women. The

method often used to investigate such differences is some variation of the Oaxaca-Blinder (OB) decomposition (Oaxaca

1974, Blinder 1973). While the traditional OB decomposition focuses on understanding simple mean differences, recent

literature has extended the traditional OB decomposition beyond simple mean comparisons to evaluate differences

between two groups across the full distribution and functions thereof (Chernozhukov et al., 2013; DiNardo et al.,

1996; Firpo et al., 2007; Machado and Mata, 2005; Roth, 2016). In some instances, however, the relevant question

pertains to an outcome that varies along a continuous group membership rather than binary group membership. In

particular, the literature on economic mobility seeks to understand to what degree and why offspring incomes vary

with parental incomes. In this case, the outcome (offspring income) varies along a continuous group membership

1Of course, interest in intergenerational income persistence predates these papers, especially in the field of sociology (see
Blau and Duncan 1967).

2Notably, the non-parametric procedure proposed by Bhattacharya and Mazumder (2011) is limited by the curse of di-
mensionality, and as a result, their application is limited to conditioning on a single covariate at a time. The decomposition
approach by Richey and Rosburg (2016) relies on arbitrary segmentations of the population (e.g., parental income quartiles).

3The method proposed here can be characterized as a generalization of the Richey and Rosburg (2016) method. Richey
and Rosburg provide a decomposition approach when the distribution is segmented into discrete groups (e.g., parental income
quartiles); we provide a method that does not require the distribution to be discritized into group membership. However, while
their approach is restrictive in that it requires discretization into groups, it also allows for a detailed decomposition of the
composition effect, something not taken up in the method proposed here.
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(parental income). While there is a large body of decomposition literature on binary groups, there is relatively less

work on ‘continuous group’ decompositions.4 Two notable exceptions are Ulrick (2012) and Nopo (2008) who evaluate

mean differences but allow ‘group membership’ to be continuous and compare means between ‘levels’ of this group

assignment; the procedure suggested here, which provides an aggregate decomposition of the full distribution of the

outcome of interest while allowing group membership to vary continuously, is a natural extension of their work.

The proposed method differs from traditional decompositions in that we do not ask what explains differences in

observed outcomes between two groups; rather, we ask what explains differences in the observed joint distribution

and a counterfactual joint distribution where offspring incomes are independent of parental income. To estimate

the counterfactual joint distribution that facilitates the decomposition, we begin by expressing the joint distribution

of parental and offspring incomes as a function of two components: (1) the distribution of offspring incomes condi-

tional on covariates and (2) the joint distribution of parental income and offspring covariates. These two components

incorporate the structure and composition effects. Our method simulates a hypothetical parental-offspring joint dis-

tribution that is a function of a counterfactual conditional distribution (of offspring incomes conditional on covariates)

and/or a counterfactual joint distribution (of parental income and offspring covariates). These components are easily

estimated, and with appropriately chosen components, we can identify which part of the mobility gap is compositional

or structural in nature.

To better understand the driving forces behind (im)mobility in the US, we apply the method to intergenerational

economic mobility of white males surveyed in the 1979 National Longitudinal Survey of Youth (NLSY). We base

our conditional CDF of incomes on an extended Mincer equation that includes education, experience, and cognitive

and non-cognitive measures. We decompose multiple mobility measures including standard IGEs, quantile regression

counterparts to the IGE, transition matrices, summary indices of transition matrices, and upward mobility probabili-

ties. Across the different mobility measures and evaluating two different counterfactuals, we find that the composition

effect (i.e., differences in the distribution of characteristics) generally accounts for about 60-70% of the mobility gap.

Further, we find the observed ‘safety-net’ effect of parental income is primarily compositional in nature.

4Richey and Rosburg (2016) circumvent this issue by discretizing the population along the transition matrix parental income
subgroups. Du et al. (2014) take a slightly more restrictive approach and simply decompose the difference in offspring incomes
between rich parents (top 20%) and poor parents (bottom 20%).
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2 Method

2.1 Set-Up

Our goal is to understand the relationship between two variables - parental and offspring incomes. If yc is the

offspring’s (adult) income and yp is parental income, we are interested in why f(yc, yp) 6= f(yc)f(yp) ≡ g(yc, yp).

That is, why do we not see an independent joint density, and if not, what are the mechanisms through which parental

income contribute to offspring income? Specifically, we wish to identify what part of the relationship is due to children

from different households having different characteristics (composition effect) and what part is due to similar children

from different households receiving different returns for those characteristics (structure effect).5

Mobility measures of interest are typically some function of the joint distribution, ν(f(yc, yp)), such as a correla-

tion, directional mobility measure or a summary index of a transition matrix. Therefore, we want to understand

ν(f(yc, yp))− ν(g(yc, yp)), which we define as the overall mobility gap:

∆ν
O = ν(f(yc, yp))− ν(g(yc, yp)) = νf − νg. (1)

Let us denote the actual joint density of (yc, yp) as fa|a, which can be expressed as:

fa|a = f(yc, yp) =

∫
f(yc|x : yp)f(yp, x)dx (2)

where f(yc|x : yp) is implicitly defined by a continuous set of wage structures yc = wyp(x, ε) with ε representing

the set of unobserved characteristics. The x : yp notation in equation (2) denotes that parental income affects the

conditional distribution of offspring incomes through varying returns on x and also possibly through ε; see Fortin et

al. (2010) for a comprehensive discussion of identification in composition methods.6

In a similar manner, denote the independent joint density g(yc, yp) as fi|i, which can be expressed as:

fi|i = g(yc, yp) =

∫
g(yc|x)g(yp, x)dx. (3)

The joint density g(yp, x) ≡ f(yp)f(x) represents the hypothetical where the distribution of offspring characteristics

are independent of parental income. In addition, the conditional CDF g(yc|x) no longer allows for returns to depend

on parental income.

5This is the same goal as traditional decompositions on binary groups but with slightly different terminology due to our
focus on the continuous distribution.

6This aspect, in the traditional decomposition literature, is made explicit by defining separate conditional distributions
(wage structures) for each group, e.g., fg(y|x) = mg(x, ε) for g = {1, 2, 3...}. Given the continuous nature of parental income,
we model this by including parental incomes in the conditional notation.
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To conduct an aggregate decomposition of the mobility gap in equation (1), we need the counterfactual outcome that

would occur if one of the structure or composition connections were removed. As with decompositions in general, there

are two possible counterfactuals. In the gender wage gap literature, for example, one can choose the counterfactual

to be the outcomes of women if they were paid like men (but retained their characteristics) or the outcomes of men if

they were paid like women (but retained their characteristics). Equivalently, one could use the outcome of one group

if they had characteristics of the other group but retained their respective wage structures. In the context of parental

and offspring incomes, we do not have two (or even finite) distinct groups. Thus, while the general intuition remains,

our treatment will differ slightly.

First, consider a ‘structure’ counterfactual joint density denoted as fi|a:

fi|a =

∫
g(yc|x)f(yp, x)dx. (4)

This is the counterfactual density that would prevail if all children, regardless of parental incomes, received the

same returns for their productive characteristics (i.e., independent returns, actual characteristics). If we choose this

counterfactual and let ν(fi|a) = νi|a, we can derive the structure effect (∆ν
S,s) and composition effect (∆ν

X,s) as

follows:

∆ν
S,s = νf − νi|a (5)

∆ν
X,s = νi|a − νg, (6)

which, together, represent a decomposition of the mobility gap:

∆ν
O = ∆ν

S,s + ∆ν
X,s. (7)

Alternatively, consider a ‘composition’ counterfactual joint density denoted as fa|i:

fa|i =

∫
f(yc|x : yp)g(yp, x)dx (8)

This is the counterfactual that would prevail if all children, regardless of parental incomes, had the same distribution of

characteristics (i.e., actual returns, independent characteristics). If we choose this counterfactual and let ν(fa|i) = νa|i,

the composition and structural effects can be expressed as:

∆ν
X,c = νf − νa|i (9)

∆ν
S,c = νa|i − νg, (10)
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which also represent a decomposition of the mobility gap:

∆ν
O = ∆ν

S,c + ∆ν
X,c. (11)

The decomposition results will be well identified as long as ignorability holds (Fortin et al., 2011).

Identifying Assumption - Ignorability : Let (yp, x, ε) have a joint distribution. For all x in X : ε is independent

of yp given X = x.

The ignorability assumption assures that, conditional on observables, the distribution of unobservables are not de-

pendent on parental income.7 For example, if wealthier families had more ‘motivated’ or ‘unmotivated’ children

(unobserved), the decomposition will still be identified as along as the distribution of motivation is identical across

parental income when conditioned on observables.

2.2 Choice of g(·) and Choice of Counterfactual

To estimate either counterfactual, we must choose an appropriate g(yc|x) or g(yp, x) (specifically f(x) for the latter).

In the traditional decomposition literature, this is usually the returns to, and the distribution of, characteristics

for one of the groups. An appealing choice for g(yp|x) is to extend the set up described in Neumark (1988) where

the ‘base’ returns to characteristics are assumed to be the returns that would exist if there where no differing

returns to characteristics across yp (i.e., the ‘non-discrimination world’). A simple choice would assume that the

returns in the ‘non-discriminatory’ world would be the unconditional set of returns actually observed in the market

(Neumark, 1988). Similarly, a simple choice for f(x) would be to assume the observed unconditional distribution

of characteristics would still prevail if the connection between yp and x were removed. Choosing the unconditional

distribution of characteristics would align with Nopo’s (2008) definition of the composition effect - the part due to

differences in characteristics between individuals and the ‘average’ individual.8

In standard (binary group) decompositions, the ‘choice of g(·)’ is synonymous with ‘the choice of counterfactual’.

With the added complexity of decomposing the (continuous) joint distribution, these two choices are no longer

equivalent and we must choose both. Thus, we must also select which counterfactual (i.e., structural or composition)

to entertain. In general, they will lead to different results because the composition effect is ‘priced’ differently in the

7Ignorability is a less restrictive assumption than independence, which would require the unobservables to be independent
of the covariates. Only ignorability is needed for identification of the structure-composition decomposition.

8For most functions ν(·) of interest, however, the actual choice of f(x) for fi|i, and thus for the decomposition based on
the structure counterfactual, is a moot point; incorporating this effect simply moves us to the outcome where yc and yp are
independent; many measures of interest such as correlations, transition matrices, summaries of these matrices, or transition
probabilities are not affected by this choice. A similar argument holds for the choice of g(yc|x) in fi|i, and thus for the
decomposition based on the composition counterfactual.
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two counterfactuals and the structure effect is ‘sized’ differently. For example, if we use the ‘structure counterfactual’

(fi|a), we first equate returns to characteristics across children regardless of parental income; this identifies and closes

the structure effect. The remaining gap - the composition effect - represents the portion explained by differences in

characteristics after returns for characteristics have been equated. As a result, differences in characteristics in the

composition effect are ‘priced’ at the equalized (non-discrimination) rate while differences in returns in the structure

effect are ‘sized’ by the actual (divergent) distributions of characteristics. Alternatively, if we take the ‘composition

counterfactual’ (fa|i), we first remove differences in characteristics between children from different parental income

levels; this identifies and closes the composition effect. The remaining gap - the structure effect - represents the

portion explained by children from different homes receiving different returns for characteristics after removing any

differences in characteristics. As a result, differences in characteristics in the composition effect are priced at the

actual (divergent) returns, while differences in returns in the structure effect are sized at the equalized distribution

of characteristics.

Thus, which counterfactual is more appropriate will depend on the research question of interest. For example, if

one is most interested in identifying the role of ‘privilege’ in a mobility gap, the structure counterfactual would

likely be more appropriate. However, if one is interested in how a policy aimed at equalizing education across all

households might shrink the mobility gap, then the composition decomposition would likely be more appropriate.

Not all questions or contexts will yield a clear counterfactual choice; in our empirical application, we choose to report

both and discuss why results differ if and when they do.

2.3 Estimation and Simulation

The decomposition rests on estimating the relevant counterfactual joint distribution. Estimation involves estimating

the conditional distribution (either f(yc|yp, x) or g(yc|x)) and the joint distribution (either f(yp, x) or g(yp, x)). Once

these components are estimated, the counterfactual density can be numerically approximated using the estimated

components for population components.

Conditional CDFs are easily estimated using the distributional regression approach suggested by Foresi and Peracchi

(1995); the foundation for this approach is a Probit model.9 The conditional CDF is estimated using multiple standard

binary choice models where we vary the cut-off across a grid along the outcome space. Specifically, we repeatedly

estimate Pr(yci ≤ ỹc|x) = Φ(xβỹc) for ỹc ∈ Yc where X is a vector of covariates (e.g., education, experience, cognitive,

and non-cognitive measures) and yc is log offspring income. For f(yc|x : yp) parental income would be included in

the regressions and fully interacted with all covariates; in this aspect, this method can be seen as a direct extension

9Koenker and Bassett (1978) propose an alternative approach based on quantile regression. We refer readers interested in
the relationship between the alternative approaches to Koenker et al. (2013).
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of Ulrick’s (2012) method.10

For the joint distribution f(yp, x), we simply use the empirical distribution observed in the data. And for g(yp, x),

using the choice described in Section 2.2, we simply use the empirical distributions f(yp) and f(x) and construct

g(yp, x) as f(yp)f(x).11

Consider simulating the counterfactual joint density fi|a. Once all of the above have been estimated, data simulation

follows a three step procedure that is very much in spirit with the procedure of Machado and Mata (2005):

1. Each observation is passed through the estimated conditional CDF - f(yc|x) - yielding a x-specific CDF of

incomes.

2. A set of random uniform variables (u ∈ [0, 1]) are drawn, and a set of yc’s are selected in accordance with the

estimated inverse CDF and u’s.12

3. The yc’s are merged with our original (yp, x).

This yields the necessary data that would be generated by the conditional CDF and joint distribution f(yp, x). With

this, and similarly simulated counterfactual data sets, we can investigate any measure of mobility and ask what

explains the observed mobility gap.

3 Measuring Mobility

Alternative measures of mobility found in the literature represent different ways to summarize or capture some aspect

of the joint parent-offspring distribution of incomes. Thus, once the counterfactual joint densities have been estimated,

we can investigate the role of structural and compositional effects for any mobility measure of interest. Here, we

provide a brief overview of several commonly used measures: IGE, quantile counterparts to the IGE, transition

matrices, summary indices of transition matrices, and upward mobility probabilities.

10In particular, see equation (12) in Ulrick (2012).
11This is achieved by randomizing yp across our X data.
12The size of the set u will depend on the actual data at hand. For our application with sample size n ∼= 1, 400, we use 200

draws. Sensitivity checks revealed slight precision improvements from an increase of 100 to 200. The number of draws needed
is likely to decrease for larger data sets.

8



3.1 Intergenerational Elasticity of Income

Much of the economic mobility literature models intergenerational mobility by regressing log earnings of a child

[ln(yc)] onto log parental earnings [ln(yp)], or:

ln(yc) = α+ βln(yp) + ε. (12)

The value β is the IGE and (1 − β) is a measure of intergenerational economic mobility. This simple relationship

is the workhorse of much of the existing literature on economic mobility. By comparing the observed (actual) IGE

with the IGE for our counterfactual joint density, we can ascertain what portion of the observed IGE is structural or

compositional in nature.

While the standard IGE approach (equation 12) tells us how the conditional mean of offspring income varies with

parental income, it is often informative to look beyond the simple mean. Therefore, a natural extension to the basic

IGE is through quantile regression. The goal of quantile regression, first introduced by Koenker and Bassatt (1979),

is to identify the effect of an explanatory variable on different points of the conditional distribution of the independent

variable. For example, previous results for the U.S. have shown larger IGE effects at the lower end of the income

distribution, which may reflect parental income acting as a safety net (Eide and Showalter, 1999). Our method allows

us to investigate not only how the relationship varies across the distribution but also what mechanism (compositional

or structural) drives the relationship across the distribution. Specifically, we model the conditional (τ) quantile of

offspring log income as:

Qln(yc)|ln(yp)(τ) = ατ + βτ ln(yp) (13)

where τ is the quantile of interest such as the median, 25th percentile, or 75th percentile. The coefficient vector βτ

will, in general, differ for each quantile. For example, the effect of parental earnings on the 25th percentile of the

conditional distribution of children’s earnings will likely differ from its effect on the median or on the 75th percentile.

Our decomposition method will identify the portion of each βτ that is structural or compositional in nature.

As noted, the main shortcoming of the basic IGE is that it focuses on simple mean effects, and therefore, it may mask

interesting details in economic mobility across the distribution (Black and Devereux, 2011). Quantile regressions can

partially overcome this shortcoming by evaluating different quantiles of interest. An alternative and common way to

express the relationship between parental and offspring income across the distribution is through transition matrices.
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3.2 Transition Matrices and Related Indices

A transition matrix depicts the probability a child will have adult earnings (yc) in a specific income bracket given

parental income (yp) was in a certain income bracket. More specifically, let there be m income brackets (defined

as equal percentile groups) with boundaries 0 < ζ1 < ζ2 < ... < ζm−1 < ∞ for the parental distribution and

0 < ξ1 < ξ2 < ... < ξm−1 < ∞ for the children’s distribution. A transition matrix (P ) is a m × m matrix with

elements pij that represent the conditional probability that a child is in income bracket j given his/her parents were

in income bracket i or

pij =
Pr(ζi−1 ≤ yp < ζi and ξj−1 ≤ yc < ξj)

Pr(ζi−1 ≤ yp < ζi)
.

Transition matrix can also be summarized through mobility indices, M(P ), which map the transition matrix P

into a scalar value (Formby et al., 2004). Because there is not a consensus on how mobility should be measured, a

number of mobility indices have been proposed.13 Each summary index reflects a different way to measure mobility,

and therefore, researchers have a degree of discretion in how they summarize the transition matrix. While our

decomposition approach extends to any of these proposed summary indices, we consider three indices commonly used

in the literature: M1 measures the average probability individuals leave their parent’s income bracket, M2 is based on

the second largest eigenvalue (λ2) of the mobility matrix and can be interpreted as a correlation between parental and

offspring’s income group, and M3 is based on the average number of income groups crossed by individuals (Formby

et al., 2004).

M1 =
(m−

∑m
i=1 pii)

m
; M2 = 1− |λ2|; M3 =

m∑
i=1

m∑
j=1

πipij |i− j|. (14)

Richey and Rosburg (2016) propose a method to decompose transition matrices and related indices. Their procedure

discretizes the distribution of parental incomes into income brackets, performs multiple decompositions on these

groups, and then recasts them into transition matrices. The procedure proposed here avoids multiple decompositions

by groups and thus allows greater flexibility. Bhattacharya and Mazumder (2011) also investigate transition matrices,

but their work is confined to conditional transition probabilities rather than decomposing the transition matrix.

Moreover, their method is hindered by the curse of dimensionality which limits their investigation to conditioning on

one covariate at a time.

While transition matrices provide added information over IGE measures, their main drawback is dependence on arbi-

trary cut-offs in the distribution (Bhattacharya and Mazumder, 2011). To overcome this shortcoming, Bhattacharya

and Mazumder suggest directional mobility measures based on relative income positions rather than arbitrary thresh-

old bounds.

13See Maasoumi (1998) or Checchi et al. (1999) for relatively comprehensive overviews of summary mobility measures and
Formby et al. (2004) for a discussion of their asymptotic properties.
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3.3 Directional Mobility

Let F c(yc) and F p(yp) be child’s and parent’s marginal CDF of income and define an upward mobility measure based

on some ‘distance’ τ (i.e., the degree to which the child moves above their parents rank) and some parental rank s

to be14:

ν(τ, s) = Pr[F c(yc)− F p(yp) > τ |F (yp) ≤ s]. (15)

A key advantage of upward mobility measures over transition matrices is that ν(τ, s) captures the effect of children

moving beyond their parental ranks (or whatever τ is chosen) even if they do not cross some arbitrary quantile

threshold. For example, consider a quartile transition matrix and a son who moves up 10 percentile points relative

to his parents. If the son’s parents were in the 10th percentile of the income distribution and the son is in the

20th percentile, his movement would not contribute to ‘mobility’ as measured by the transition matrix because he is

still in the bottom quartile. But, if instead, the son’s parent were in the 20th percentile and the son is in the 30th

percentile, the transition matrix would capture this ‘mobility’ since the son crossed the 25% threshold. The benefit

of the upward mobility measure is that it captures both of these movements as a 10% increase in relative income

positions.

4 Data

The data for our analysis is the 1979 National Longitudinal Survey of Youth (NLSY79). The NLSY79 is a panel

survey of youths aged 14-22 in 1979. It includes a cross-sectional representative survey (n = 6,111), an over sample

of minorities and poor whites (n = 5,295), and a sample of military respondents (n = 1,280).15 We use only the

cross-sectional representative survey.

We limit the sample to white males who reported living with a parent for at least two of the first three years of the

survey and with reported parental income for those years.16 A key variable of interest is parental status based on

the parents’ (average) income.17 The outcome of interest is the individual’s economic status based on their average

reported wage and salary income between 1996 and 1998. All incomes are deflated to 1982-1984 dollars using the

CPI.

14A downward mobility measure can be defined in an analogous fashion.
15The over sample of military and poor whites were discontinued in 1984 and 1990, respectively
16Parental income is identified through a comparison of total household income and respondent’s income. We exclude

individuals who lived with a spouse or child during these years.
17Measurement error in parental income is a common concern in the mobility literature. While recent research indicates that

some mobility measures are less susceptible to such errors relative to others (Nybom and Stuhler, 2015), the concern is still
valid.
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The sample is further limited to individuals not enrolled in school over the period of interest and with available

Armed Forces Qualifying Test (AFQT) scores. The final sample includes 1,405 individuals with a mean age of 33.6

during our outcome years of interest (1996-1998).18 Table 1 provides summary statistics.

[Table 1 about here]

The variables we include in our decomposition are based on an extended Mincer equation. The traditional Mincer

equation includes education, experience, and experience squared (Mincer, 1974). We extend this basic model to

include other variables that have been related to income determination. In particular, we include a measure of

cognitive ability (AFQT ) and three measures of non-cognitive ability (Esteem, Rotter, and Perlin).

The NLSY79 does not provide a direct measure of experience. Therefore, we construct a measure of ‘full time

equivalent’ (FTE) years of experience using the weekly array of hours worked.19 One FTE year of experience is

assumed to equal 52 weeks times 40 hours (hours worked are top coded to 40). A few older individuals in our sample

completed their education prior to the beginning of the survey and therefore were already working during the first

round of interviews in 1979. Without information on previous work experience for these individuals, we construct the

following ‘pre-survey’ estimate of FTE years (FTE<79) based on age, years of schooling, and FTE years of experience

earned in the initial survey year: FTE<79 = (Age79−Years of Schooling79−6) ·FTE79. We then add the pre-survey

FTE years to the (observed) survey FTE years.

The measure of ability used in our analysis is Armed Forces Qualifying Test scores (AFQT). Since different individuals

took the test at different ages, the measure used is from an equi-percentile mapping used across age groups to create

age-consistent scores (Altonji et al., 2012). The use of AFQT scores as a measure of ability warrants a brief discussion.

Some argue AFQT scores are proxies for IQ scores while others draw serious doubts to this interpretation (Ashenfelter

and Rouse, 2000). Others question what it is exactly IQ scores measure noting large changes in IQ scores over time

(Flynn, 2004). Therefore, we simply interpret AFQT scores as some combination of innate ability and accumulated

human capital as a youth that is valued in the labor market. However, for ease of expression, we will refer to AFQT

scores as our measure of ‘cognitive ability.’

We use three measures for non-cognitive ability. First, we use information from the Rosenberg Self-Esteem Scale

(1965). The Rosenberg Self-Esteem Scale contains 10 statements on self-approval and disapproval; we use a summary

measure of the individual’s responses to these 10 statements (Esteem). Second, we use a summary measure from the

Rotter-Locus of Control Scale (Rotter) which measures the “extent to which individuals believe they have control

18The literature on intergenerational mobility has identified the possibility of life-cycle biases is estimates depending on age
at which children are surveyed (Böhlmark and Lindquist, 2006; Haider and Solon, 2006; Nybom and Stuhler, 2015). However,
this literature seems to indicate such biases are minimized or eliminated when youths reach their mid-30s.

19Our measure of experience is very similar to, but slightly different from, the measure used by Regan and Oaxaca (2009).
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over their lives through self-motivation or self-determination (internal control) as opposed to the extent that the

environment (that is, chance, fate, luck) controls their lives (external control)” (BLS, 2015). Rotter and Esteem

were measured in the first two rounds of the survey (1979 and 1980, respectively). Therefore, the third measure we

include is the Perlin Mastery Scale measured in 1992 when respondents were in their late 20s or early 30s. The Perlin

Mastery Scale measures the extent to which individuals “perceive themselves in control of forces that significantly

impact their lives” (BLS, 2015).

Educational attainment is measured as years of schooling and the endogenous nature of education in explaining

incomes is well documented. However, as long as the appropriate conditions hold (ignorability), this is not a concern

for the aggregate decomposition.

5 Results

First, we consider the standard IGE results reported in column 1 of Table 2. The total mobility gap is 32.35.

Using the structure counterfactual, the structure effect accounts for a little over one-third of the gap (35%) while

the composition effect accounts for the other two-thirds (top panel, column 1). These results remain essentially

unchanged when we use the composition counterfactual instead (bottom panel). Together, these results suggest that

approximately 65% of the estimated IGE mobility gap is due to differences in characteristics between children from

different households, while the remaining gap is due to differences in returns to these characteristics. While the

structure effect is commonly interpreted as a measure of discrimination in traditional decomposition settings, Richey

and Rosburg (2016) argue that a more fitting interpretation in this context is some form of (loosely-termed) ‘privilege’

such as parental connections, parental knowledge/awareness of job market and education opportunities or perhaps

greater financial flexibility to facilitate job search. All of these would appear to the econometrician as higher returns

to similar productive characteristics.

The quantile IGE results in Table 2 reveal larger effects in the lower quantiles than upper quantiles, consistent with

the pattern reported by Eide and Showalter (1999). In particular, the total effect in the 10th quantile (52.42; column

2) is nearly double the effect in the 75th and 90th quantiles (27.23 and 27.34; columns 5 and 6). These results suggest

that parental income has a strong safety-net effect. Further, decomposition results suggest that this safety-net effect is

primarily compositional in nature. The composition effect explains about 50% of the total gap in the upper quantiles

but around 70% in the lower quantiles.

Tables 3 and 4 provide decomposed transition matrices using the structure and composition counterfactuals, respec-

tively. Some interesting results appear in the corners of the matrix. In particular, consider the probability that a son
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whose parent’s were in the bottom income quartile also ends up in the bottom quartile of his generation’s income

distribution. The total mobility gap of 14.49 (row 1, column 1) indicates that this probability is 14.49 percent higher

for sons in our sample compared to a transition matrix where offspring incomes are independent of parental income.

The decompositions indicate that the composition effect accounts for about 65% of this difference, with the structure

effect accounting for only about 35%. Similarly, when looking at what explains the relative absence of children from

the wealthiest homes from the bottom quartile of their income distribution (-12.22 in row 4, column 1), the com-

position effect accounts for about 70% and the structure effect accounting for the remaining 30%, regardless of the

counterfactual used. These results align with the quantile IGE results in that the composition effect is the primary

driver of the safety-net effect of parental income. However, when looking at what explains children from the poorest

homes being relatively absent from the top quartile of their income distribution (-9.66 in row 1, column 4), the results

diverge for the two decompositions. The composition effect explains 61% of this gap using the structure counterfac-

tual but only 29% of the gap using the composition counterfactual. Similarly, when looking at what explains the

over-representation of children from top quartile income households in the top quartile of their income distribution

(17.33 in row 4, column 4), we get different results using the two counterfactuals. Using the structure counterfactual

assigns a 50-50 split between the composition and structure effect, while using the composition counterfactual assigns

a majority of the gap (62%) to the composition effect.

The transition matrix decomposition provides interesting detail regarding differences in mobility at different points

across the distribution, but it can be cumbersome to evaluate. Summary indices are a common and convenient way

to summarize a transition matrix through a single value. Table 5 provides decompositions of the three summary

indices defined in section 2.1. Looking at M1, a measure associated with the trace of the transition matrix, the

decomposition using the structure counterfactual weights the structure and composition effects almost evenly (46%

and 54%) whereas the decomposition using the composition counterfactual puts more weight (63%) on the composition

effect. Conversely, for M2, the composition effect is slightly larger (61%) with the structure counterfactual relative

to the decomposition using the composition counterfactual (55%). The third summary index, M3, yields very similar

splits between the composition and structure effect - the composition effect accounts for a little less than 60% of the

mobility gap and the structure effect a little over 40%. One shortcoming of transition matrices and related summary

indices is that they depend on arbitrary segmentation of the population (e.g., results in Tables 3-5 are based on a

4-by-4 quartile transition matrix). Nonetheless, the M2 and M3 measures appear fairly consistent to the size of the

transition matrix. Varying the matrix from 4-by-4 to 20-by-20, the structure effect for both M2 and M3 remains

fairly consistent at 35-40% of the measured mobility gap. The M1 decomposition is more dependent on the size of

the matrix; the structure effect ranges between 35 and 60% of the total gap depending on matrix size. However, M1

is based only on the trace of the matrix, and therefore is the most limited of the three summary measures considered.

Given the concerns regarding arbitrary segmentation in the transition matrix, our final set of decompositions evaluates

upward mobility measures. Table 6 provides upward mobility decompositions using the structure counterfactual. The
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decomposition is fairly consistent across all probabilities with the composition effect accounting for about two-thirds

of the mobility gap. The composition-structure split is less consistent with the composition counterfactual (Table 7).

In the third panel (τ = 0.2), the composition-structure split hovers around 2/3−1/3, which is similar to the structure

counterfactual results. However, as we lower τ to 0.1 in the second panel and to 0 in the first panel, the structure effect

shrinks such that the composition effect explains most of the measured mobility gap (especially at the lower levels of

s). These results suggest that the reason we see less upward mobility of any size in our observed sample relative to

the hypothetical case where offspring incomes are independent of parental income is primarily due to children from

different households having different characteristics. But, as we start to ask about larger upward movements, the

structure effect (i.e., differences in returns to these characteristics) begins to be part of the explanation.

6 Conclusion

A wealth of research over the past few decades has improved our understanding and empirical estimation of intergen-

erational mobility. Much of the recent empirical literature aims at identifying the potential driving forces behind this

intergenerational link and has focused primarily on mean effects. While understanding mean effects is important, it

is also somewhat limiting. A few studies have evaluated driving forces beyond mean effects but are hindered by a

lack of generalizability. In this paper, we proposed a simple, generalizable decomposition method that circumvents

these previous limitations. The method we propose directly decomposes the joint parent-offspring distribution of

incomes. In particular, we decompose the difference between the empirical joint distribution and a hypothetical

independent joint distribution. Our decomposition is built on a simulation of counterfactual joint distributions that

remove the link between parental incomes and offsprings’ characteristics (a composition effect) and/or the link be-

tween parental incomes and returns to these characteristics (a structure effect). These counterfactuals are recast

into multiple common measures of mobility and used to identify the portion of the measured mobility gap that is

structural or compositional in nature. To better understand intergenerational mobility in the U.S., we applied this

method to a cohort of white males surveyed in the 1979 NLSY. Across multiple mobility measures and two different

counterfactuals, we find a fairly consistent pattern where the composition effect explains about 60-70% of the mea-

sured mobility gap. We also find evidence that parental income may have a safety net effect - with the effect being

largest on the lowest quantiles - and this effect seems primarily driven by the composition effect being much larger

at the lower end of the distribution.

15



References

Altonji J, Bharadwaj P, Lange F. 2012. Changes in the characteristics of american youth: implications for adult
outcomes. Journal of Labor Economics 4: 783-828. DOI: 10.1086/666536

Ashenfelter O, Rouse C. 2000. Schooling, intelligence, and income in America. Chapter 5 in D. Arrow D, S.
Bowles, and S. Durlauf (eds.), Meritocracy and Economic Inequality. Princeton: Princeton University Press.

Becker G, Tomes N. 1979. An equilibrium theory of the distribution of income and intergenerational mobility.
Journal of Political Economy 87: 1153-1189.

Becker G, Tomes N. 1986. Human capital and the rise and fall of families. Journal of Labor Economics 4(3):S1-
S39. DOI: 10.1086/298118

Bhattacharya D, Mazumder B. 2011. A nonparametric analysis of black-white differences in intergenerational
income mobility in the United States. Quantitative Economics 43(1): 139-172. DOI: 10.3982/QE69

Björklund A, Lindahl M, Plug E. 2006. The origins of intergenerational associations: lessons from Swedish
adoption data. Quarterly Journal of Economics 121(3): 999-1028. DOI: 10.1162/qjec.121.3.999

Black S, Devereux P. 2011. Recent developments in integenerational mobility. Chapter 16 in D. Card and O.
Ashenfelter (eds.), Handbook of Labor Economics. Volume 4(B):1487-1541. Elsevier: Amsterdam.

Blanden J, Gregg P, Macmillan L. 2007. Accounting for intergenerational income persistance: noncognitive skills,
ability and education. The Economic Journal 117:C43-C60. DOI: 10.1111/j.1468-0297.2007.02034.x

Blinder A. 1973. Wage discrimination: reduced form and structural estimates. Journal of Human Resources
8:436-455. DOI: 10.2307/144855
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Table 1: Summary Statistics - NLSY79 White Males

Variable Mean St. Dev

Parental income 32,893 18,471
Offspring income 16,202 11,216
Experience 12.8 3.5
Education 13.7 2.6
AFQT 0.49 0.93
Age 33.6 2.2
Rotter 8.5 2.3
Esteem 22.5 4
Perlin 22.6 3.1

Notes: Incomes are constant
1982-84 dollars. AFQT score is
a standardized measurement.
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Table 2: IGE Measures for While Males in NLSY79

Quantiles
Counterfactual Effect IGE 10th 25th 50th 75th 90th

Total 32.35*** 52.42*** 37.64*** 29.17*** 27.23*** 27.34***
(3.82) (12.63) (4.31) (3.23) (3.8) (6.46)

Structure (fi|a) Structure 11.26*** 14.94* 14.51*** 12.75*** 13.78*** 12.99***
(2.21) (8.73) (3.23) (2.51) (3.17) (4.62)

Composition 21.08*** 37.49*** 23.12*** 16.42*** 13.46*** 14.35***
(2.92) (6.3) (3.16) (2.21) (2.22) (3.23)

Total 32.35*** 52.42*** 37.64*** 29.17*** 27.23*** 27.34***
(3.82) (12.63) (4.31) (3.23) (3.8) (6.46)

Composition (fa|i) Structure 12.77*** 15.93** 11.28*** 11.19*** 12.02*** 14.08***
(3.24) (6.69) (3.59) (2.64) (3.28) (4.54)

Composition 19.58*** 36.5*** 26.36*** 17.98*** 15.21*** 13.26**
(3.49) (12.37) (4.48) (2.88) (3.08) (5.6)

Notes: Standard errors, based on 200 bootstraps, are in parentheses. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 3: Decomposition of Transition Matrix for White Males in NLSY79
Structure Counterfactual

Parental Child’s Quartiles
Quartile Effect 1st 2nd 3rd 4th

Total 14.49*** (2.28) 4.55** (2.25) -9.38*** (1.83) -9.66*** (1.96)
1st Structural 5.35*** (1.79) 4.05* (2.25) -5.62*** (1.72) -3.78** (1.73)

Composition 9.14*** (1.36) 0.49 (0.78) -3.76*** (0.74) -5.88*** (1)

Total 1.42 (2.14) 2.27 (2.36) 2.56 (2.19) -5.97*** (2.27)
2nd Structural -1.51 (1.89) 0.42 (2.16) 2.75 (2.03) -1.38 (1.9)

Composition 2.93** (1.19) 1.85*** (0.69) -0.19 (0.72) -4.59*** (1.08)

Total -3.41* (2.06) 1.14 (2.11) 4.55** (2.21) -1.7 (2.06)
3rd Structural 0.12 (1.78) 0.93 (2.06) 3.07 (2.05) -3.55* (1.86)

Composition -3.53*** (1.17) 0.21 (0.66) 1.47** (0.7) 1.85* (1.09)

Total -12.22*** (1.91) -7.67*** (2.01) 2.56 (2.09) 17.33*** (2.23)
4th Structural -3.84*** (1.44) -5.15*** (1.88) 0.1 (1.93) 8.89*** (1.95)

Composition -8.38*** (1.09) -2.52*** (0.81) 2.45*** (0.76) 8.44*** (1.22)

Notes: Standard errors, based on 200 bootstraps, are in parentheses. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 4: Decomposition of Transition Matrix for White Males in NLSY79
Composition Counterfactual

Parental Child’s Quintiles
Quintile Effect 1st 2nd 3rd 4th

Total 14.49*** (2.28) 4.55** (2.25) -9.38*** (1.83) -9.66*** (1.96)
1st Structural 4.9** (2.02) 5.02*** (1.76) -3.04** (1.47) -6.88*** (1.62)

Composition 9.59*** (2.24) -0.47 (1.85) -6.34*** (1.65) -2.78 (1.79)

Total 1.42 (2.14) 2.27 (2.36) 2.56 (2.19) -5.97*** (2.27)
2nd Structural 0.84 (1.05) 1.53*** (0.56) -0.05 (0.67) -2.32** (1.02)

Composition 0.59 (2.26) 0.75 (2.46) 2.6 (2.23) -3.65 (2.48)

Total -3.41* (2.06) 1.14 (2.11) 4.55** (2.21) -1.7 (2.06)
3rd Structural -2.35* (1.2) -1.65** (0.75) 1.5** (0.68) 2.51** (1.02)

Composition -1.06 (2.25) 2.79 (2.04) 3.05 (2.23) -4.21* (2.29)

Total -12.22*** (1.91) -7.67*** (2.01) 2.56 (2.09) 17.33*** (2.23)
4th Structural -3.32** (1.54) -4.92*** (1.34) 1.67 (1.31) 6.57*** (1.68)

Composition -8.9*** (1.83) -2.75 (1.92) 0.88 (1.86) 10.76*** (2.03)

Notes: Standard errors, based on 200 bootstraps, are in parentheses. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 5: Summary Indices for While Males in NLSY79

Summary Measure
Counterfactual Effect M1 M2 M3

Total -9.66*** (1.38) -28.85*** (2.91) -26.99*** (2.63)
Structure (fi|a) Structure -4.43*** (1.14) -11.32*** (2.44) -11.04*** (2.06)

Composition -5.23*** (0.62) -17.54*** (1.85) -15.95*** (1.61)

Total -9.66*** (1.38) -28.85*** (2.91) -26.99*** (2.63)
Composition (fa|i) Structure -3.62*** (0.82) -12.96*** (2.99) -11.88*** (2.41)

Composition -6.04*** (1.37) -15.9*** (2.83) -15.11*** (2.51)

Notes: Standard errors, based on 200 bootstraps, are in parentheses. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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