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Abstract 

Determining the least distance to the efficient frontier for estimating technical 

inefficiency, with the consequent determination of closest targets, has been one of the 

relevant issues in recent Data Envelopment Analysis literature. This new paradigm 

contrasts with traditional approaches, which yield furthest targets. In this respect, some 

techniques have been proposed in order to implement the new paradigm. A group of 

these techniques is based on identifying all the efficient faces of the polyhedral 

production possibility set and, therefore, is associated with the resolution of a NP-hard 

problem. In contrast, a second group proposes different models and particular 

algorithms to solve the problem avoiding the explicit identification of all these faces. 

These techniques have been applied more or less successfully. Nonetheless, the new 

paradigm is still unsatisfactory and incomplete to a certain extent. One of these 

challenges is that related to measuring technical inefficiency in the context of oriented 

models, i.e., models that aim at changing inputs or outputs but not both. In this paper, 

we show that existing specific techniques for determining the least distance without 

identifying explicitly the frontier structure for graph measures, which change inputs and 

outputs at the same time, do not work for oriented models. Consequently, a new 

methodology for satisfactorily implementing these situations is proposed. Finally, the 

new approach is empirically checked by using a recent PISA database consisting of 

902 schools. 
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1. Introduction 
Data Envelopment Analysis (DEA) is a non-parametric methodology for 

estimating technical efficiency of a set of Decision Making Units (DMUs) from a dataset 

of inputs and outputs. This methodology is fundamentally based on Mathematical 

Programming and allows a piece-wise linear production frontier enveloping the input-

output observations to be determined. Moreover, and as a byproduct of the estimation 

process, a projection on the frontier and a value of technical inefficiency for each DMU 

are determined through the calculation of a measure with sense of distance from each 

unit to the frontier. 

A DMU is considered to be technically inefficient if it is possible to expand its 

output bundle without requiring any increase in its inputs and/or to contract its input 

bundle without requiring a reduction in its outputs. The potential for augmenting the 

output bundle reflects output-oriented inefficiency, while potential reduction in inputs 

means input-oriented inefficiency. In most empirical applications, technical efficiency is 

measured either in input- or in output-orientation. The selection between one of the two 

depends on the situation being considered. Additionally, when there is no particular 

reason to select either the input or output orientation, it is desirable to resort to a 

technical efficiency measure that includes both input-saving and output-expanding 

components. These last measures are usually known as graph or non-oriented in 

contrast to the oriented ones. 

Measures in DEA may also be categorized into two groups. The first one yields 

projection points on the frontier of the technology without considering whether these 

are dominated in the sense of Pareto or not. In contrast, the second group ensures that 

the projection points will be non-dominated, following Koopmans’ definition of technical 

efficiency (Koopmans, 1951). While for measures belonging to the first category we 

deal with the concept of weakly efficient frontier, in the second case, the main 

character is the strongly efficient frontier, which represents a subset of the weakly 

efficient frontier.  

In the case of the graph measures, we note that nowadays there are two clearly 

different paradigms for estimating technical inefficiency in DEA. On the one hand, we 

have the traditional measures, which are associated with the determination of 

demanding targets. The targets are in particular the coordinates of the projection point 

on the frontier and thus represent levels of operation of inputs and outputs that would 

make the corresponding inefficient DMU perform efficiently. This first philosophy is 

followed by, for example, the Weighted Additive Models (Lovell and Pastor, 1995), the 

Range-Adjusted Measure (Cooper et al., 1999) and the Enhanced Russell 
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Graph/Slacks-Based Measure (Pastor et al., 1999, Tone, 2001), where the total 

technical effort required by a DMU to become technically efficient is maximized instead 

of minimized, thereby generating the furthest projection points on the frontier. On the 

other hand, other proposals have suggested determining the closest efficient targets 

instead, minimizing in some sense the slacks in the corresponding mathematical 

programming model. The argument behind this idea is that closer targets suggest 

directions of improvement for the inputs and outputs of the inefficient DMUs that can 

lead them to efficiency with less technical effort. Regarding this second and more 

recent approach, all began with Briec´s (1998) paper, where the Hölder distance 

functions were defined in order to determine the least distance from each DMU to the 

frontier of the production possibility set. This paper gives the go-ahead for the 

publication of a sequel of related works: Briec and Lemaire (1999), Briec and Lesourd 

(1999) and Briec and Leleu (2003). In the same line, Frei and Harker (1999) suggested 

determining projection points by minimizing the Euclidean distance to the strongly 

efficient frontier. Later, Portela et al. (2003) introduced the notion of similarity in DEA as 

closeness between the values of inputs and outputs of the evaluated DMU and the 

targets, and proposed determining projection points as similar as possible to the 

assessed DMU. Additionally, Lozano and Villa (2005) introduced a method that 

determines a sequence of targets to be achieved in successive steps, which converge 

on the strongly efficient frontier. Aparicio et al. (2007) determined closest targets for a 

set of international airlines applying a new version of the Enhanced Russell 

Graph/Slacks-Based Measure. More recently, Baek and Lee (2009), Amirteimoori and 

Kordrostami (2010) and Aparicio and Pastor (2014a) have focused on the 

determination of a weighted Euclidean distance to the strongly efficient frontier, 

whereas Pastor and Aparicio (2010), Ando et al. (2012), Aparicio and Pastor (2013), 

Aparicio and Pastor (2014b), Fukuyama et al. (2014a, 2014b) and Fukuyama et al. 

(2016) are methodological papers focused on checking the fulfillment of suitable 

properties by the measures based on the new paradigm. 

We need to highlight that, in practice, implementing the approach based on the 

determination of closest targets is not so easy from a computational point of view. This 

difficulty is consequence of the complexity of determining the least distance to the 

frontier of a DEA technology from an interior point (inefficient DMU). This problem is 

reduced by minimizing a convex function on the complement of a convex set (also 

called reverse convex set) and it is computationally hard (see, for example, Briec, 

1997). Hence, nowadays there are mainly two paths for dealing with this problem in the 

literature. The first one is based on identifying in a first stage all the efficient faces of 
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the efficient frontier in order to determine the minimum distance to the frontier as the 

minimum of the distances to each of the faces in a multi-stage process. Obviously, this 

path is related to the resolution of a combinatorial NP-hard (Non-deterministic 

Polynomial-time hard) problem. The second path corresponds to the approach 

proposed by Aparicio et al. (2007), where Mixed Integer Linear Programming (MILP) is 

used to determine closest targets without calculating explicitly all the efficient faces. As 

additional advantages, the Aparicio et al. method allows the least distance to be 

calculated in one step and the code of standard optimizers to be utilized. The Aparicio 

et al. method has already been used in the literature for estimating technical 

inefficiency under carbon emissions for a sample of 20 APEC (Asia-Pacific Economic 

Cooperation) economies in Wu et al. (2015), for benchmarking units in the evaluation 

of the educational performance of Spanish universities (Ruiz et al., 2015), for ranking 

units through a common set of weights in Ruiz and Sirvent (2015) and for determining 

overall inefficiency and its decomposition in Ruiz and Sirvent (2010), avoiding in these 

all cases determining explicitly all the efficient faces of the piece-wise linear frontier of 

DEA. 

Although the new paradigm has already matured as a trend in the DEA literature, 

it is still unsatisfactory and incomplete to a certain extent. One of the principle 

challenges is that related to measure technical inefficiency in the context of oriented 

models, i.e., models that aim at changing inputs or outputs but not both. Most 

methodological and empirical papers dealing with least distance and closest targets 

implement graph measures, seeking potential changes in inputs and outputs at the 

same time. However, sometimes practitioners work with contexts where only oriented 

models make sense. The empirical application that we will use at the end of the paper 

to illustrate the new methodology can serve as example. In this empirical application, 

the objective is to analyse the efficiency of a set of schools with inputs like the average 

of the socio-economic status of students in the school, the availability of material 

resources, the human resources employed by schools, and outputs like the averaged 

test scores achieved by students belonging to the same school in reading and maths. 

In this framework, the usual approach assumes that it is not possible or not desirable to 

change the inputs, at least in the short run, and that the model utilized must be always 

output-oriented (see Agasisti and Zoido, 2015 and De Witte and Lopez-Torres, 2015, to 

name just a few).  

Unfortunately, there are very few contributions that mix oriented measures and 

least distance. As far as we are aware, only three papers have dealt with this issue. 

The first one was Coelli (1998) who, in the context of radial measures, suggested a 
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multi-stage method for determining closest targets instead of furthest targets in the 

well-known second phase of radial models. Later, Cherchye and Van Puyenbroeck 

(2001) defined the deviation between mixes in an input-oriented setting as the angle 

between the input vector of the assessed DMU and its projection, maximizing the 

corresponding cosine in order to find the closest targets on the strongly efficient 

frontier. In the same year, Gonzalez and Alvarez (2001) defined a new version of the 

traditional Russell input efficiency measure (Färe et al., 1985) based on the 

minimization of the sum of input contractions required to reach the efficient subset of 

the production frontier instead of the usual maximization criterion.  

Regarding limitations of these three last mentioned papers, it is worth mentioning 

that Coelli (1998) was only created for dealing with the second stage of the radial 

model and, therefore, the corresponding projection conserves the (input or output) mix 

in the movements towards the boundary of the production possibility set. However, a 

well-known drawback of radial measures is the arbitrariness in imposing targets 

preserving the mix within inputs or within outputs, when the firm’s very reason to 

change its input/output levels might often be the desire to change that mix (Chambers 

and Mitchell, 2001). As for the contribution of Cherchye and Van Puyenbroeck (2001), 

these authors resorted to the ‘combinatorial’ methodology associated with the 

determination of all the faces of the polyhedral DEA technology, which is linked to a 

NP-hard problem. Finally, the approach by Gonzalez and Alvarez (2001) applies an ad-

hoc method, defined for a new version of the Russell input efficiency measure, which 

should generate the closest targets on the strongly efficient frontier. However, we will 

show in this paper that it is not always true. Consequently, regarding oriented models 

in the new paradigm, no existing method is sufficiently flexible or interesting from a 

computational point of view when it comes to tackling the implementation of the 

problem. 

Apart from these methods in the oriented setting, the approach introduced by 

Aparicio et al. (2007), originally defined for graph-type measures, could a priori be 

utilized for oriented models, at least that is what it may seem. However, we will also 

show that this technique, which works correctly in the case of non-oriented measures, 

cannot be successfully applied in the case of input or output oriented models. 

In view of the preceding discussion, it seems necessary to propose a new and 

valid solution for determining least distance and closest targets in the context of 

oriented models. In particular, we will focus our contribution on the identification of the 

Pareto-efficient projection point that dominates the evaluated unit and, at the same 

time, produces the least corresponding distance. All these analyses will be carried out 
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in an oriented setting. To do that, we will introduce a Bilevel Linear Programming (BLP) 

model that will allow us to calculate both the desired closest targets and the minimum 

distance to the strongly efficient frontier. 

The remainder of the paper is organized as follows: In Section 2, we introduce 

the necessary notation and background. Moreover, we particularly show that neither 

the approach by Gonzalez and Alvarez (2001) performs correctly nor does the 

methodology proposed for non-oriented contexts by Aparicio et al. (2007) work in the 

oriented setting except for limited cases. Subsequently, in Section 3, we introduce a 

new methodology, based on Bilevel Linear Programming, in order to be able to 

determine the Pareto-efficient closest targets and least distance for oriented models in 

DEA. An empirical illustration of the introduced methodology based on recent PISA 

data is carried out in Section 4. In Section 5, we present the conclusions. 

2. Notation, background and analysis of the literature 

In this section, we review the literature on least distance and closest targets in 

Data Envelopment Analysis, showing some unknown results and limitations of existing 

approaches in the oriented framework. Nevertheless, before doing that we need to 

introduce some notation and notions. 

Working in the usual DEA context, let us consider n decision making units 

(DMUs) to be evaluated. DMUj consumes  1 ,..., m
j j mjx x x R   amounts of inputs for 

the production of  1 ,..., s
j j sjy y y R   amounts of outputs. The relative efficiency of 

each DMU in the sample is assessed with reference to the so-called production 

possibility set, which can be non-parametrically constructed from the observations by 

assuming certain postulates (see Banker et al., 1984). In this way, the production 

possibility set in DEA, T, can then be mathematically characterized under Constant 

Returns to Scale (CRS) and Variable Returns to Scale (VRS) as follows: 

 
1 1

, : , , 0, 1,..., .
n n

m s
CRS j j j j j

j j
T x y R R x λ x y λ y λ j n 

 

 
       
 

   
1) 

 
1 1 1

, : , , 1, 0, 1,..., .
n n n

m s
VRS j j j j j j

j j j
T x y R R x λ x y λ y λ λ j n 

  

 
        
 

    
2) 

Below we introduce additional notions related to the production possibility set 

regardless of the assumed returns to scale, using T  instead of CRST  or VRST . 
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Nevertheless, these notions are also applicable to CRST  or VRST  simply by incorporating 

the corresponding subscript. 

In the production literature, we can find the concept of frontier linked to the notion 

of technology. Specifically, the weakly efficient frontier of T is defined as 

      ˆ ˆ ˆ ˆ: , : , ,w T x y T x x y y x y T       . Following Koopmans (1951), in order 

to measure technical efficiency in the Pareto sense, isolating a certain subset of 

 w T  is necessary. We are referring to the strongly efficient frontier of T, defined as 

          ˆ ˆ ˆ ˆ ˆ ˆ: , : , , , , ,s T x y T x x y y x y x y x y T        . In   words,  s T  is 

the set of all the Pareto-Koopmans efficient points of T. Additionally, let CRSE  and VRSE  

denote the set of extreme efficient DMUs in the case of assuming CRS and VRS, 

respectively1. 

Regarding the oriented framework, the two usual approaches are linked to the 

input and output orientations. Seeking simplicity, hereafter, we will focus our analysis 

on the output-oriented approach. Nevertheless, a similar analysis could be performed 

in the case of input orientation. In this way, output-oriented models assume that each 

DMU is interested in maximizing outputs while using no more than the observed 

amount of any input. In order to implement this approach, it is useful to introduce the 

output production set. In this sense, for each input vector, x , let  P x  be the set of 

feasible (producible) outputs. Formally,     : ,P x y x y T  . Regarding the strongly 

efficient frontier of  P x , it is defined as the set of all the Pareto-Koopmans points of 

 P x , i.e.        ˆ ˆ ˆ: : ,s P x y P x y y y y y P x       , and it is a subset of the 

weakly efficient frontier of  P x , denoted and defined as 

       ˆ ˆ: :w P x y P x y y y P x      . 

As in the graph case, and since the definition of  P x  depends on T , we 

consider two returns to scale for the oriented framework throughout the paper, CRS 

and VRS and, consequently, we will utilize the following notation where appropriate: 

 CRSP x ,  VRSP x ,   s
CRSP x ,   s

VRSP x ,   w
CRSP x  and   w

VRSP x . 

                                                             
1 The extreme efficient units are the DMUs spanning the efficient faces of the frontier that 
cannot be expressed as a linear combination of the other DMUs. For a formal definition, see 
Charnes et al. (1991). 
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In order to measure technical inefficiency, there are a lot of models in DEA (see 

Cooper et al., 2007). One of them is the well-known weighted additive model (Lovell 

and Pastor, 1995), which in the context of determining the graph inefficiency of DMU0 

with data  0 0,x y  can be formulated under Variable Returns to Scale as follows: 

 max
0 0 0 0

1 1

0 0 0

0 0 0

0

0

0

0

, ; , :

. .

, 1,..., (3.1)

, 1,..., (3.2)

1, (3.3)

0, 1,..., (3.4)
0, 1,..., (3.5)
0, (3.6

VRS

VRS

VRS

m s

i i r r
i r

j ij i i
j E

j rj r r
j E

j
j E

i

r

j VRS

WA x y w w Max w s w s

s t

x x s i m

y y s r s

s i m
s r s

j E









     

 















 

  

  



 
 
 

 







,

)

 
3) 

where  1 ,..., m
mw w w R  

   and  1 ,..., s
sw w w R  

   are weights representing 

the relative importance of unit inputs and unit outputs. 

The linear dual of model (3) can be written as follows: 

 max
0 0 0 0 0 0

1 1

0 0
1 1

0

0

, ; ,

. . 0, (4.1)

, 1,..., (4.2)
, 1,..., (4.3)

m s

i i r r
i r

m s

i ij r rj VRS
i r

i i

r r

WA x y w w Min v x u y

s t v x u y j E

v w i m
u w r s





 

 

 




  

    

 
 

 

   
4) 

Model (3) ‘maximizes’ a weighted 1  distance from the DMU0 to the frontier of the 

production possibility set, thereby increasing outputs and reducing inputs at the same 

time. Let  * * *
0 0 0, ,s s    be an optimal solution of model (3), then  * *

0 0,x y , defined as 

* *
0 0

VRS

i j ij
j E

x x


  , i , and * *
0 0

VRS

r j rj
j E

y y


  , r , denotes the projection point 

associated with the assessed DMU  0 0,x y . In this way, the targets are the 

coordinates of the projection point  * *
0 0,x y  and represent levels of operation of inputs 

and outputs which would make the evaluated unit, if it were technically inefficient, 
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perform efficiently. In the case of the traditional weighted additive model, it yields 

targets that are determined by the ‘furthest’ efficient projection to the assessed DMU. 

Additionally, it is well-known that the projection points generated by the weighted 

additive model are always located onto the strongly efficient frontier  s T . 

In contrast to models that determine the furthest targets, there is a stream of the 

literature in DEA that defends the opposite, i.e. the projected points on the efficient 

frontier obtained as such are not a suitable representative projection for the assessed 

DMU. The research line devoted to determining the closest efficient targets and the 

least distance to the efficient frontier arose from this philosophy, which was briefly 

revised in the Introduction. However, the implementation of this approach is not as 

easy as replacing ‘Max’ by ‘Min’ in model (3). As we mentioned in the Introduction, the 

determination of the least distance and closest targets is a hard task from a 

computational point of view. This difficulty is consequence of the complexity of 

determining the least distance to the frontier of a DEA technology from an interior point, 

since this problem is equivalent to minimizing a convex function on the complement of 

a convex set. 

Nowadays, there are principally two paths for determining closest targets in the 

DEA literature. The first one is based on identifying all the faces of the efficient frontier 

of the polyhedral DEA technology in a first stage, determining the minimum distance as 

the minimum of the distances to each of the faces in a multi-stage process. In this way, 

this first path is related to a combinatorial NP-hard problem and will not be explored in 

this paper. The second path corresponds to the approach proposed by Aparicio et al. 

(2007), where the strongly efficient frontier is characterized by linear constraints and 

binary variables, which consequently allows the closest targets to be determined 

without calculating explicitly all the efficient faces by resorting to Mixed Integer Linear 

Programming. Next, we show the main result of Aparicio et al. (2007)2. 

Theorem 1 (Aparicio et al., 2007). 

Let       0 0 0 0, ; : , : , , ,s m s
VRS VRS i i r rD x y T T x y R R x x i y y r           be 

the set of strongly efficient points in VRST  dominating  0 0,x y  in the sense of Pareto. 

Then,    0 0, , ; VRSx y D x y T  if and only if , , , , , , ,s s v u d b    such that 

VRS

i j ij
j E

x x


  , i , 
VRS

r j rj
j E

y y


  , r  and 

                                                             
2 In Aparicio et al. (2007) 1,iw i   and 1,rw r    and the assumed returns to scale was CRS. 
Nevertheless, the adaptation of their result to our context is trivial. 
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0

0

1 1

, 1,..., (5.1)

, 1,..., (5.2)

1, (5.3)

0, (5.4)

, 1,..., (5.5)
, 1,..., (5.6)

0, 1,..., (5.7)
0, 1,

VRS

VRS

VRS

j ij i i
j E

j rj r r
j E

j
j E

m s

i ij r rj j VRS
i r

i i

r r

i

r

x x s i m

y y s r s

v x u y d j E

v w i m
u w r s
s i m
s r



















 








  

  



     

 
 
 
 







 

 

..., (5.8)
0, (5.9)

, (5.10)
1 , (5.11)
0, (5.12)
0,1 , (5.13)

j VRS

j j VRS

j j VRS

j VRS

j VRS

s
j E

d Mb j E
b j E

d j E
b j E





 
 
  
 
 

 

(5) 

where M  is a sufficiently big positive number. 

Note that their result combines the constraints of programs (3) and (4) in (5). 

Indeed, (5.1)-(5.9) coincide with (3.1)-(3.6) and (4.1)-(4.3). Whereas the new 

constraints, (5.10)-(5.13), are the key to suitably mixing all the aforementioned 

restrictions, resorting to a set of  VRScard E  binary variables jb . 

Invoking Theorem 1, we may formulate a new version of the weighted additive 

model, which seeks to determine the least distance and closest targets, based on 

Mixed Integer Linear Programming. In its compact format, it would be expressed as: 

 

   

min
0 0

0 0 0 0 0 0 0 0
1 1

, ; , :

: , , ;

VRS

m s

i i r r VRS
i r

WA x y w w

Min w s w s x s y s D x y T

 

     

 



 
    

 
 

 (6) 

We now turn to the output-oriented framework and try to show what happens 

when Aparicio et al.’s result is applied. In this sense, the first approach to the problem 

is to adapt (6) for working in the oriented context through the following model: 
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 

  

min
, 0 0

0 0 0 0 0
1

, ; :

: ;

VRS O

s

r r VRS
r

WA x y w

Min w s y s D y P x



  





 
  

 


, (7) 

where        0 0 0 0; : ,s s
VRS VRS r rD y P x P x y R y y r      . In words, 

  0 0; VRSD y P x  denotes the set of strongly efficient points in  0VRSP x  dominating 

0y  in the sense of Pareto. 

The first question that arises when one wants to apply Theorem 1 in the oriented 

context is:        0 0 0 0 0; : , , ;s
VRS VRSD y P x y R x y D x y T   ? If the answer were 

yes, then (7) could be easily expressed as a MILP model through the theorem. 

Unfortunately, the answer to the question is negative in general as we next illustrate by 

means of a simple counterexample.  

Counterexample 1. Let A=(1,1) and B=(2,0.5) be two DMUs that consume one 

input to produce one output under Variable Returns to Scale. For this example, 

   s
VRS VRST E A   . We now want to evaluate the performance of DMU B through 

the output-oriented approach. This means that    0 0, 2,0.5x y  . In this way, we have 

that   1 0.5; 2VRSy D P   since, in this example,     2 1s
VRSP  . However, 

   2,1 s
VRST  and, therefore,    2,1 2,0.5; VRSD T . 

Our second approach to the problem is to derive a result similar to Theorem 1 for 

the oriented case by analogy with the steps followed for the graph framework. The idea 

is to introduce both the primal and dual of the output-oriented weighted additive model 

(see, for example, Grifell-Tatjé et al., 1998, or Prieto and Zofio, 2001) and to combine 

the corresponding constraints. Under Variable Returns to Scale, these models are the 

following: 
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 max
, 0 0 0

1

0 0

0 0 0

0

0

0

, ; :

. .

, 1,..., (8.1)

, 1,..., (8.2),

1, (8.3)

0, 1,..., (8.4)
0, (8.5)

VRS

VRS

VRS

s

VRS O r r
r

j ij i
j E

j rj r r
j E

j
j E

r

j VRS

WA x y w Max w s

s t

x x i m

y y s r s

s r s
j E









  















 

  



 
 









 (8) 

 

 max
, 0 0 0 0 0 0

1 1

0 0
1 1

0

0

, ;

. . 0, (9.1)

0, 1,..., (9.2)
, 1,..., (9.3)

m s

VRS O i i r r
i r

m s

i ij r rj VRS
i r

i

r r

WA x y w Min v x u y

s t v x u y j E

v i m
u w r s







 

 



  

    

 
 

 

   
9) 

 

If the non-oriented and the oriented models are compared, then we observe that 

the input slacks of model (3) are missing in model (8), the equality constraint (3.1) has 

been transformed into an inequality and, finally, (4.2) has been converted into 0 0,iv   

i . 

Now, by mixing the constraints of (8) and (9) and adding (5.10)-(5.13), we get the 

definition of the following set: 
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  

0

0

1 10 0

, 1,..., (10.1)

, 1,..., (10.2)

, 1,..., (10.3)

1, (10.4)

0, (10.5)ˆ ; :
0, 1,..., (10.6)

VRS

VRS

VRS

VRS

r j rj
j E

j ij i
j E

j rj r r
j E

j
j E

m s

i ij r rj j VRSs
i rVRS

i

r

y y r s

x x i m

y y s r s

v x u y d j E
D y P x y R

v i m
u





















 

 

 

  



     
 

 










 

 

, 1,..., (10.7)
0, 1,..., (10.8)
0, (10.9)

, (10.10)
1 , (10.11)
0, (10.12)
0,1 , (10.13)

r

r

j VRS

j j VRS

j j VRS

j VRS

j VRS

w r s
s r s

j E
d Mb j E

b j E
d j E
b j E









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   

  
   
   
   
  
 
 

 

(10) 

Then the question is:      0 0 0 0
ˆ; ;VRS VRSD y P x D y P x ? Unfortunately, as we 

show below through a counterexample, the answer is once again negative in general. 

Counterexample 2. Let A=(5;1,7), B=(1;5,1), C=(4;4,5) and D=(4;3,4) be four 

DMUs that consume one input to produce two outputs under Variable Returns to Scale. 

For this example,  , ,VRSE A B C . Let 1 2A B   , 1 2 0s s   , 5v  , 1 1u  , 

2 4u  , 4  , 0A B Cd d d    and 0A B Cb b b   . Then, 

        1 2
ˆ, , , 3,4 3,4 ; 4

VRS VRS

j rj j rj VRS
j E j E

y y y y D P 
 

 
   
 
  . However, since 

C=(4;4,5) has been observed,      1 2, 4,5 4VRSy y P  . In this way,  4,5  dominates 

 3,4  in the sense of Pareto. Therefore,       3,4 3,4 ; 4VRSD P  and 

         ˆ3,4 ; 4 3,4 ; 4VRS VRSD P D P  in this example.  

 

In the case of assuming Constant Returns to Scale, numerical examples on 

  0 0; CRSD y P x        0 0 0: , , ;s
CRSy R x y D x y T   and   0 0; CRSD y P x    
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  0 0
ˆ ; CRSD y P x  can be also provided. Nevertheless, seeking simplicity, we do not 

show them explicitly in this paper. Anyway, it is worth mentioning that the conical 

nature of the frontier of the CRS technology allows to prove that   0 0; CRSD y P x  

coincides with a similar set to   0 0
ˆ ; CRSD y P x  in a very restrictive context: when the 

production possibility set is generated from an only input, i.e. m = 1. The next 

proposition establishes this result. Nonetheless, we need first to introduce three related 

lemmas. 

Lemma 1 (Cooper et al., 1999).   0
s

CRSy P x  if and only if 

 max
, 0, ; 0CRS OWA x y w   . 

Lemma 2 (Cooper et al., 1999). Let  * *,s   be an optimal solution of (8) under 

CRS3. Then,   * * *
0 1 0: ,...,

CRS CRS

s
j j j sj CRS

j E j E
y y y P x 

 

 
  
 
  . 

Lemma 3. Let 1m   and  * *,s   be an optimal solution of (8) under CRS. 

Then, *
0 0

CRS

j j
j E

x x


 . 

Proof. See Appendix.  

In order to prove the desired result, we need to adapt expression (10) to Constant 

Returns to Scale, deleting (10.4) and  , adding M  to (10.10) and considering 1m  . 

Additionally, it is necessary to slightly modify (10.2), transforming the inequality into an 

equality: 

                                                             
3 This means that in (8) the constraint (8.3) is omitted.  
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  

0

0

1

0 0

, 1,..., (11.1)

, (11.2)

, 1,..., (11.3)

0, (11.4)

ˆ ; : : 0, (11.5)
, 1,..., (11.6)

0, 1,..., (11.7)
0,

CRS

CRS

CRS

r j rj
j E

j j
j E

j rj r r
j E

s

j r rj j CRS
r

s
CRS

r r

r

j

y y r s

x x

y y s r s

vx u y d j E

D y P x y R v
u w r s
s r s

j


























 



  

    

  
 
 










 

 

(11.8)
, (11.9)

1 , (11.10)

0, (11.11)
0,1 , (11.12)

CRS

j j CRS

j j CRS

j CRS

j CRS

E
d Mb j E

M b j E

d j E
b j E



 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
   
   
 

  
   
  

 

(11) 

Proposition 1. Let 1m  . Then      0 0 0 0
ˆ; ;CRS CRSD y P x D y P x . 

Proof. See Appendix.  

From all the above discussion, we conclude that the approach based on the 

Aparicio et al. theorem does not work in general terms for the oriented framework, 

except for the restrictive case of assuming Constant Returns to Scale and the 

existence of a unique input. 

In the context of measuring technical efficiency through an input-oriented model, 

Gonzalez and Alvarez (2001) suggested minimizing the sum of all the input-specific 

contractions in order to reach the strongly efficient frontier, a proposal that is 

mathematically equivalent to maximizing the well-known Russell input measure, 

instead of minimizing it as usual. This approach is, therefore, related to the 

determination of closest targets under the Pareto-Koopmans criterion of technical 

efficiency. To implement their new model, Gonzalez and Alvarez introduced a 

multistage process based on the solution, in the first stage, of m  linear models, each 

of them providing the k th input-specific contraction. In the second stage, the desired 

value of the new version of the Russell input measure is obtained as the minimum of all 

the input-specific contraction determined previously (see Gonzalez and Alvarez, 2001, 
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Proposition 1, p. 517). Unfortunately, this algorithm does not always lead to the correct 

solution. 

To illustrate the above claim, we first need to introduce the linear model that is 

solved for each input k in the first stage of the Gonzalez and Alvarez process: 

0
1

0
1

1

. .

, 1,...,

, 1,...,

1,

0, 1,...,
1,

m

k i
i k

n

j ij i i
j

n

j rj r
j

n

j
j

j

i

Min M

s t

x x i m

y y r s

j n
i k

 

 


















 

 



 
 









, (12) 

where M  is a sufficiently big positive number. 

Then, from an optimal solution of (12),  * * *
1, ,..., m   , the input-specific 

contraction for input k can be computed as    *
0 0

1
, 1

m

ik
i

C x y 


  . Finally, the input-

oriented Russell measure associated with the least distance and closest targets is 

determined following the Gonzalez and Alvarez approach as 

    0 0 0 0, min , : 1,...,
k

C x y C x y k m  . Next we show that this is not always true 

through a numerical example. 

Counterexample 3. Let us assume that we have observed five DMUs that 

produce one output from the consumption of three inputs (see Table 1). Considering 

100,000M  , and the evaluation of the performance of unit E, we obtain, applying 

(12), that  1, 2 3E EC x y  ,  2
, 2 3E EC x y   and  3

, 0.43E EC x y  . In this way, we 

conclude that  , 0.43E EC x y  . However, unit C produces the same quantity of 

output and dominates unit E in the sense of Pareto. If we use the inputs of unit C for 

evaluating unit E, we get 2.8
1 3  , 2.2

2 3   and 4.6
3 5  . This leads to the following 

sum of input contractions:  
3

1
1 0.41 0.43i

i




    . Consequently, the smallest 
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contraction to the strongly efficient frontier does not always coincide with the smallest 

 0 0,
k

C x y , 1,...,k m .  

<Insert Table 1 approximately here> 

In summary, as we are aware, none of the existing approaches allows the 

determination of the closest Pareto-efficient targets in the oriented framework to be 

dealt with in a suitable way. In the next section, we will propose a solution to this 

problem. In particular, we will introduce a new methodology based on Bilevel Linear 

Programming. 

3. A solution based on Bilevel Linear Programming 

In this section, we first briefly review the mainly notions related to Bilevel 

Programming in order to introduce, in the second part of the section, an approach on 

these grounds to determine the closest targets and the least distance through oriented 

models in DEA. 

A Bilevel Programming model refers to a mathematical programming problem 

where one of the constraints is an optimization problem. This theory has been 

successfully applied to model different real situations with a common feature: the 

existence of a hierarchical structure (see Wu, 2010). A Bilevel Programming problem 

where both the objective functions and the constraints are linear is called a Bilevel 

Linear Programming problem. Denote by pz Z R  and qt T R   the decision 

variables corresponding to the first and second level, respectively. The general 

formulation of a Bilevel Linear Programming (BLP) problem is as follows: 

1 1,

1 1 1

2 2

2 2 2

. .
,

. .
,

0, 0

z t

t

Min c z d t

s t
A z B t b
Min c z d t

s t
A z B t b

z t



 


 
 

 (13) 

Program (13) consists of two subproblems. On the one hand, the higher level 

decision problem and, the other hand, the lower level decision problem, which appears 

as a constraint in (13). Both problems are connected in a way that the higher problem 

sets parameters influencing the lower level problem and the higher problem, in turn, is 

affected by the outcome of the lower level problem. 
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Regarding the solutions of a BLP problem,  * *, 0z t   is a feasible solution of 

(13) if *t  is an optimal solution of the lower level program with *z z  and, at the same 

time, * *
1 1 1A z B t b  . In this way,  * *,z t  is an optimal solution if additionally

* *
1 1 1 1c z d t c z d t    for all feasible solution  ,z t  of (13), being * *

1 1c z d t  the 

corresponding optimal value of the BLP problem. 

Now we are ready to introduce the model that permits the closest Pareto-efficient 

targets in the output-oriented case to be determined. The input-oriented case could be 

derived by analogy. The key idea is to exploit the hierarchical structure of the BLP 

problems, using the measure that needs to be determined as the higher level problem 

and the lower level problem being the output-oriented weighted additive model that, by 

Lemma 1, is able to characterize the belonging to the strongly efficient frontier in the 

oriented case by its optimal value. Let us assume that we are interested in determining 

the Russell output measure under the least distance criterion. In this case, the model to 

be solved is the following: 

1

0

0

1

1

0

0

1 (14.1)

. .

, 1,..., (14.2)

, 1,..., (14.3)

1, (14.4)

0, (14.5)

(14.6)

. .

, 1,..., (14.7)

VRS

VRS

VRS

VRS

VRS

s

r
r

j ij i
j E

j rj r r
j E

j
j E

s

r r
r

s

r r
r

j ij i
j E

j rj r r
j E

Min
s

s t

x x i m

y y r s

w s

Max w s

s t

x x i m

y y





 





 









 



 







 

 





 

















 , 1,..., (14.8)

1, (14.9)

1, , , 0, , (14.10)
VRS

r

j
j E

r j r j

s r s

s r j



  







 



  



 

(14) 
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In (14) the higher level problem coincides with the Russell output measure except 

for the fact that the objective function is minimized instead of maximized as happens 

with the traditional definition of the Russell output measure (Färe et al., 1985, p. 149), 

while the lower level problem matches (8) when the evaluated output vector is 

 1 10 0,..., .s sy y   

The next proposition states that the optimal value of (14) equals the Russell 

output measure under the philosophy of seeking the least distance to the strongly 

efficient frontier of the production possibility set. 

Proposition 2. Let  * * * *, , ,s    be an optimal solution of (14). Then, 

    *
1 10 0 0 0

1 1

1 1 : ,..., ;
s s

r r s s VRS
r r

Min y y D y P x
s s

   
 

   
 

  . 

Proof. See Appendix.  

Regarding the weights rw  in (14), we will assume from now on that 1rw  , 

 

As for the implementation of the BLP problem, even in the case of all functions 

being linear in (14), the problem is not trivial from a computational point of view (Shi et 

al., 2006). Solution techniques for BLP may be classified into two major groups. A 

possibility is to transform the original problem into a single optimization problem by 

applying the well-known Karush-Kuhn-Tucker (KKT) optimality conditions of the lower 

level problem. The other group uses enumeration techniques. In this paper, we will 

particularly use the KKT optimality conditions in order to solve (14). Accordingly, (14.6)-

(14.9) must be substituted by (15.1)-(15.9). 

1,..., .r m
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0

0

1 1

, 1,..., (15.1)

, 1,..., (15.2)

1, (15.3)

0, (15.4)

0, 1,..., (15.5)
1, 1,..., (15.6)

0, (15.7)

VRS

VRS

VRS

j ij i i
j E

j rj r r r
j E

j
j E

m s

i ij r rj j j VRS
i r

i i

r

j j VRS

i

x l x i m

y y s r s

x y j E

e i m
r s
j E

l e



 



   



 









 

  

  



     

   
 
 







 

0, 1,..., (15.8)
, , , , 0, , (15.9)

i

i i r j i

i m
l e i j  

 
 

 (15) 

Constraints (15.7)-(15.8) are not linear. Nevertheless, restrictions of this nature 

are not difficult to be implemented by means of a Special Ordered Set (SOS)4 (Beale 

and Tomlin, 1970).  

4. Empirical illustration: Efficiency of schools using PISA data 

This section includes an empirical illustration with real data applying the 

methodology proposed in this paper. In particular, we use Spanish data from the PISA 

(Programme for International Student Assessment) 2012 survey, where data from 

student and school questionnaires (with students and school level information, 

respectively) were merged. This dataset provides results on the performance of 15 

year-old students in different competences as well as other factors potentially related to 

those results such as variables representing student background, school environment 

or educational provision. 

Following the well-established literature on school efficiency (e.g. Agasisti and 

Zoido, 2015; De Witte and Lopez-Torres, 2015; Santin and Sicilia, 2015; Crespo-

Cebada et al., 2014), we select the results from a standardized test as educational 

outputs and three usual inputs in education production functions such as the students 

(raw material), infrastructures (school resources) and teachers (human capital). Table 2 

reports the descriptive statistics for these five variables considering the total number of 

                                                             
4 SOS is a way to specify that a pair of variables cannot take strictly positive values at the same 
time and is a technique related to using special branching strategies. Traditionally, SOS was 
used with discrete and integer variables, but modern optimizers, like for example CPLEX, use 
also SOS with continuous variables. 
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schools (902) included in the sample. A detailed explanation of the specific indicators 

considered in the empirical analysis is provided below.  

- As a proxy for the quality of students in the school, we use the average of the socio-

economic status of students in the school, represented by the ESCS index, which 

provides a measure of family background that includes the highest levels of parents´ 

occupation, educational resources and cultural possessions at home. Since the original 

values of this variable presented positive and negative values, all of them were 

rescaled to show positive values. 

- As a proxy for the availability of material resources, we use an index created by 

PISA analysts (SCMATEDU) from the responses given by school principals regarding 

several educational resources such as computers, educational software, calculators, 

books, audio visual resources or laboratory equipment. In this case, we have also 

rescaled the original values to assure that all values are positive. 

- The inverse of the student-teacher ratio, i.e., the number of teachers per (hundred) 

students (TEACHERS), as a proxy for human resources employed by schools. 

- The output variables are represented by the averaged test scores achieved by 

students belonging to the same school in reading and maths. Regarding this point, it is 

worth noting that PISA reports five plausible values randomly drawn from the estimated 

distribution of results for each student according to their answers to the questions in the 

test (see OECD, 2012 for details). Those plausible values can be interpreted as a 

measure of their performance in order to approximate the real distribution of the latent 

variable being measured (cognitive skills) (Mislevy et al., 1992; Wu, 2005). 

<Insert Table 2 approximately here> 

Table 3 shows a summary of the results obtained with the approach proposed in 

this paper, model (14). The mean of the technical efficiency of the Spanish sample is 

1.122 (1.135 in reading and 1.109 in maths), which means that, on average, the 

schools could increase their outputs levels by 12%, needing a greater effort in the 

reading dimension, without changing their resources. With regard to the resolution of 

the 902 optimization programs, we used CPLEX to solve the different problems and 

code in C on a CPU AMD Phenom II X6 1075T (hexa-core) with 3 GHz and 16 RAM 

GB. In this respect, the average time of execution was 10.782 seconds, i.e., a total 

amount of around 3 hours. 

<Insert Table 3 approximately here> 

 



22 
 

5. Conclusions 

In this paper, we have shown that all the existing approaches to determine the 

closest Pareto-efficient targets in DEA present some weaknesses when they are 

applied or adapted to the oriented framework, when the interest of the firm/organization 

is to expand its output bundle without requiring any increase in its inputs or to contract 

its input bundle without requiring a reduction in its outputs. 

To deal with this problem in a suitable way, a new methodology based upon 

Bilevel Linear Programming was introduced to determine the desired targets in the 

case of using a new version of the Russell oriented measure. Its implementation is 

grounded on the application of the Karush-Kuhn-Tucker (KKT) optimality conditions to 

the lower level problem and Special Ordered Sets (SOS). 

Finally, the new approach was illustrated through an empirical analysis using 

data on the 902 Spanish schools participating in PISA 2012. The results show that 

there is room for improvement, especially in reading (one of the outputs selected). 

Likewise, the computation time is relatively low considering the size of the available 

sample. 
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Appendix 

Proof of Lemma 3: Let us assume that *
0 0
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j j
j E

x x

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 * *
0 0 .
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j j
j E

x x  In this way, by (1),  * *
0 0, CRSx y T . Moreover, note that CRSj E   

such that *
0 0j  , since otherwise constraint (8.2) would be violated for 0

sy R  

[really it is sufficient if  0 \ 0s
sy R ]. Consequently, *
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0 0 *

0

1xx x
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0
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x y y
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0
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and 0
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0 0
s

CRSy P x , which is a contradiction to Lemma 2. So, by 
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0 0
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x x
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 . ■ 

Proof of Proposition 1: (i) Let  , , , , ,s v u d b   be a vector that satisfies constraints 

11.2-11.12. From this solution, it is possible to generate   0 0
ˆ ; CRSy D y P x  as 

CRS

r j rj
j E

y y
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CRS

j j
j E

d
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5 In model (9) the decision variable   disappears. 



29 
 

CRSj E , constraints (11.9), (11.10) and (11.12) hold. Therefore, all the constraints in 

(11) are satisfied, which means that   0 0
ˆ ; CRSy D y P x . ■ 

Proof of Proposition 2: On the one hand, by (14.10), 
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Tables 

 

DMU Input 1 Input 2 Input 3 Output 

A 3 1 5 1 

B 1 3 5 1 

C 2.8 2.2 4.6 1 

D 2.2 2.8 4.5 1 

E 3 3 5 1 

Table 1. Data for Counterexample 3 

 

Variables Type of variable Mean SD Min Max 

ESCS Input 4.396 0.538 2.190 5.970 

SCMATEDU Input 3.683 0.891 0.008 5.576 

TEACHERS Input 10.14 6.309 0.719 90.01 

PVMATH Output 490.9 46.17 130.1 609.6 

PVREAD Output 490.4 46.66 297.7 626.6 

Table 2. Descriptive statistics 

 

Model (14) Mean SD Min Max 

Score of efficiency 1.122 0.084 1.000 1.672 

Time of execution (sec) 10.782 4.854 1 42 

Table 3. Results of model (14) for 902 schools 

 


