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Abstract

The assumption that the social preference relation is complete is demand-

ing. We distinguish between “hard” and “soft” incompleteness, and explore

the social choice implications of the latter. Under soft incompleteness, so-

cial preferences can take values in the unit interval. We motivate interest in

soft incompleteness by presenting a version of the strong Pareto rule that

is suited to the context of a [0, 1]-valued social preference relation. Using a

novel approach to the quasi-transitivity of this relation we prove a general

oligarchy theorem. Our framework allows us to make a distinction between

a “strong” and a “weak” oligarchy, and our theorem identifies when the oli-

garchy must be strong and when it can be weak. Weak oligarchy need not be

undesirable.
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1 Introduction

A social welfare function is a mapping from profiles of individual preference order-

ings (reflexive, transitive and complete binary relations) into a social ordering of

the alternatives. Arrow’s (1951, 1963) impossibility theorem demonstrates that the

only social welfare functions that satisfy unrestricted domain, independence of ir-

relevant alternatives, and the weak Pareto principle are dictatorial.1 One approach

that has been taken to circumvent this negative result is to weaken the requirement

that the social preference relation is an ordering. For example, research has fo-

cussed on weakening the transitivity requirement on the social preference relation

to quasi-transitivity, acyclicity or Suzumura consistency.2 Other work has retained

Arrow’s original transitivity assumption, but dropped the requirement that the so-

cial preference relation is complete. Pioneering contributions have come from Sen

(1969, 1970a), Mas-Colell and Sonnenschein (1972), Plott (1973), Brown (1975),

Blair and Pollak (1982), Weymark (1984), Banks (1995), Bossert and Suzumura

(2008, 2010) and Gibbard (2014).3

1A thorough survey of impossibility results in the Arrovian framework is Campbell and Kelly
(2002).

2Formal definitions of these concepts can be found in Bossert and Suzumura (2010, chapter
2). Intuitively, a quasi-transitive relation is one where the strict preference relation is transitive,
whereas the indifference relation need not be. An acyclic relation is one with no cycles in the
strict preference relation. A Suzumura consistent relation rules out not only strict preference
cycles, but all cycles that involve at least one strict preference. Acyclicity is the weakest concept
of the three. Suzumura consistency and quasi-transitivity are logically independent.

3Gibbard’s paper was written in the 1969-70 academic year but remained unpublished until
Gibbard (2014). A historical introduction to the paper is given by Weymark (2014).

2



One of the earliest contributions to this literature was provided by Allan Gib-

bard, who proved a celebrated theorem in a paper that remained unpublished

until recently. Gibbard was motivated by what Sen called the Pareto-extension

rule (Sen 1969, 1970a). To explain this rule, consider the profile in Table 1.

x vs. y y vs. z x vs. z
Individual 1 xP1y yP1z xP1z
Individual 2 yP2x yP2z xP2z
Individual 3 xP3y zP3y xP3z

Pareto extension rule xIy yIz xPz
Strong Pareto rule xNy yNz xPz
Proportional rule p(x, y) = 2/3 p(y, z) = 2/3 p(x, z) = 1

Table 1: A profile.

The notation used is standard.4 In Table 1 and throughout this paper, indi-

vidual preferences are taken to be orderings, i.e. reflexive, complete and transitive

binary relations (Sen 1970a, p.8).5

Under both the Pareto extension rule and the strong Pareto rule (Weymark,

1984), whenever everyone strictly prefers one social state to another then so does

society (hence, xPz in the example). The two rules differ whenever there are

two individuals with opposing strict preferences. Under the Pareto extension rule,

these disagreements result in social indifference. A consequence of this is that the

weak social preference relation R can be intransitive, i.e. in the example we have

yRx and zRy but not zRx. R is, however, complete. Since individual preferences
4The primitive concept, R ⊆ X ×X, is a binary relation on a set of social states X. Writing

xRy means that x is at least as good as y. Strict preference, P , is defined as ∀x, y ∈ X : xPy ↔
[xRy ∧ ¬yRx] while indifference, I, is defined as ∀x, y ∈ X : xIy ↔ [xRy ∧ yRx]. The relation
of non-comparability, N , is defined as ∀x, y ∈ X : xNy ↔ [¬xRy ∧ ¬yRx]. Writing xNy means
that x and y are not ranked. Subscripts are used to denote individual preference relations. The
absence of a subscript denotes a social preference relation.

5Given a binary relationR, reflexivity is defined as: ∀x ∈ X : xRx. Completeness is defined as:
∀x, y ∈ X : (x 6= y)→ (xRy∨yRx). Transitivity is defined as: ∀x, y, z ∈ X : (xRy∧yRz)→ xRz.
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are assumed to be transitive, under this rule the strict social preference relation

P must be transitive as well.6 In contrast, under the strong Pareto rule, opposing

strict preferences result in social non-comparability. This means that R need

not be complete under this rule, but it is transitive nonetheless (again, because

individual preferences are assumed to be).

These rules are interesting because they can be placed on a defensible norma-

tive footing. For example, assuming that the social preference relation is reflexive,

quasi-transitive and complete, the Pareto extension rule can be shown to be the

only collective choice rule that satisfies Arrow’s conditions of unrestricted domain,

independence of irrelevant alternatives, a strengthening of Arrow’s Pareto prin-

ciple, and a reasonable anonymity requirement.7 Weymark (1984, Theorem 3)

proves something similar for the strong Pareto rule under the assumption that the

social preference relation is reflexive and transitive, but not necessarily complete

(i.e. it is a quasi-ordering). There is an intuitive sense in which these rules repre-

sent the “closest” Arrovian rules, i.e. they come as near as possible to satisfying

Arrow’s requirements without resulting in a dictatorship.

Of these two complementary approaches to Arrow’s theorem (Sen’s and Wey-

mark’s), Weymark’s is arguably more attractive. Transitivity seems a more com-

pelling assumption about R than completeness. Aumann (1962, p.446) is often

quoted in discussions of completeness: “Of all the axioms of utility theory, the

completeness axiom is perhaps the most questionable. Like others of the axioms,
6In other words, R is quasi-transitive. Quasi-transitivity is defined as: ∀x, y, z ∈ X : (xPy ∧

yPz)→ xPz. This formal definition plays a role in the argument that follows.
7This is Theorem 5*3 in Sen (1970a) and Theorem 2 in Weymark (1984). A collective choice

rule is a function that takes a profile of orderings as its input (one ordering for each individual)
and produces a social preference relation as its output. As we have seen, this social preference
relation need not be an ordering.
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it is inaccurate as a description of real life; but unlike them, we find it hard to

accept even from the normative viewpoint”. Aumann is referring to individual

preferences in this quote, but the argument that social preferences are incomplete

is, if anything, even stronger.8

If the social preference relation is incomplete then there exists a pair of al-

ternatives, x, y ∈ X, such that xNy. As noted in footnote 4, xNy is defined as

¬xRy ∧ ¬yRx which is equivalent to ¬xPy ∧ ¬yPx ∧ ¬xIy. In this paper, we

call this social non-comparability, “hard” incompleteness. The strong Pareto rule,

characterized by Weymark, is a collective choice rule with hard incompleteness.

Our objective is to present an alternative approach to the social preference rela-

tion that lies in between completeness and hard incompleteness. We call it “soft”

incompleteness and we explore the logical space for collective choice rules opened

up by the possibility of soft incompleteness.9

In order to motivate the idea of soft incompleteness, let us return to the col-

lective choice rules in Table 1. Although the Pareto extension rule and the strong

Pareto rule can be given a normative justification by appealing to a certain social

choice framework, there is something unsatisfactory about them. If just one per-

son holds an opposing strict preference (i.e. there is “virtual” but not “complete”

unanimity on the ranking of a particular pair), then the result is either social

indifference or social non-comparability. Contrast this with what we call the pro-
8Sen (1970b) himself developed a model involving “partial” comparability of welfare units.

This gives rise to an aggregate quasi-ordering that may be incomplete. In philosophy, incom-
pleteness is often taken to be a consequence of the “small improvement argument”. For an
introduction to this literature, see Chang (1997) and Espinoza (2008).

9The words “hard” and “soft” (referring to incompleteness) are taken from a paper by Broome
(1997) in which he makes the same distinction that we are making. See also Piggins and Salles
(2007).

5



portional rule.10 Let p(x, y) denote the degree to which it is true that x is socially

preferred to y. Loosely speaking, under the proportional rule, p(x, y) is determined

by the proportion of people who prefer x to y. In this way, we can think of the

underlying social preference relation as taking numerical values weakly between 0

and 1.11 Interestingly, the proportional rule is still like the strong Pareto rule; if

everyone prefers x to y then p(x, y) = 1. However, unlike the standard version of

this rule, social non-comparability does not follow when there is virtual unanim-

ity. As we see in Table 1, p(x, y) = 2/3 when individual 2 holds an opposing strict

preference. Moving from unanimity (if individual 2 reverses her x vs. y prefer-

ence then p(x, y) = 1) to virtual unanimity still induces a transition in the social

preference, but it is intuitively “softer”. In our language, the proportional rule is

a collective choice rule with soft incompleteness. We say that the incompleteness

is “soft” because while it is not true that x is socially preferred to y (p(x, y) < 1),

it is not false either (p(x, y) > 0).12

Despite their differences, the Pareto extension rule, the strong Pareto rule and

the proportional rule share one thing in common. All of them are “oligarchic”

rules (a term that was first used, we believe, in Gibbard’s seminal paper). Under

an oligarchic rule, (i) social preferences respect the unanimous strict preferences
10A formal definition of the proportional rule appears in section 4.
11The idea that preferences can be numerically valued (or “fuzzy”) has, of course, been con-

sidered before. A sample of the literature is Orlovsky (1978), Ovchinnikov (1981), Basu (1984),
Billot (1995), Dutta, Panda, Pattanaik (1986), Dutta (1987), Ponsard (1990), Dasgupta and
Deb (1991, 1996, 2001), Ovchinnikov and Roubens (1991, 1992) and Banerjee (1993, 1994).
Salles (1998) surveys the field. Throughout this paper, we use the words “valued” and “fuzzy”
interchangeably.

12Hard incompleteness is inescapable if we accept the principle of bivalence, that for every
proposition “P”, either “P” is true or “P” is false. However, many philosophers do not believe
in the principle of bivalence. These philosophers appeal to the existence of vagueness. If Jim is
borderline thin then it seems that the proposition “Jim is thin” is neither true nor false, violating
the principle of bivalence. Keefe and Smith (1997, pp.1-57) is an excellent introduction to the
philosophical literature on vagueness. Williamson (1994) and Keefe (2000) are also recommended.
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of the oligarchs, and (ii) if any two oligarchs hold opposing strict preferences over

a pair of alternatives then neither can be overruled. Part (i) means that when

the oligarchs act in concert with one another (in terms of their strict preferences)

they can determine the social ranking irrespective of the wishes of everyone else.

In other words, they act as a collective like an Arrovian dictator. Part (ii) means

that each oligarch possesses a “veto” in that xPy is not true when an oligarch

prefers y to x. Under the Pareto extension rule, the strong Pareto rule and the

proportional rule, the entire society is the oligarchy.

Gibbard writes (2014, p.5), “A liberum veto oligarchy is a terrible way to govern

a large group. If the set of oligarchs is small, the system is as undemocratic as my

name for it suggests, for a small group can get its way whatever anyone outside

the group wants. If the set of oligarchs is large, the system is more democratic

but likely to be paralyzed. Numerous oligarchs will rarely be unanimous, and

when they are not, society will have no preference. In the egalitarian case when

everyone is an “oligarch”, no one’s preference can ever be over-ridden in forming

the social preference, and social decision is paralyzed by the slightest controversy.

Thus, however large or small the set of oligarchs, a liberum veto oligarchy is a

poor system”.

Despite the fact that the proportional rule is oligarchic, each person exercises

only a weak form of veto power, i.e. anyone who prefers x to y can ensure that

p(y, x) < 1. However, no one can unilaterally ensure that p(y, x) = 0. The latter

can be thought of as reflecting a stronger form of veto power (and this kind of

power is in the hands of all individuals under both the strong Pareto rule and

the Pareto extension rule). The proportional rule is a weakly oligarchic rule, with

each individual possessing weak veto power. This distinction between a weak and
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a strong oligarchy is central to this paper. The example of the proportional rule

suggests that a large, weak oligarchy is not necessarily undesirable. Intuitively, it

is a less troubling kind of oligarchy than Gibbard’s quote would appear to suggest.

Gibbard’s original oligarchy theorem says that any collective choice rule that

satisfies Arrow’s conditions together with the weaker requirement of a quasi-

transitive social preference relation (in addition to it being reflexive and complete),

must be an oligarchic rule in which the opposing strict preferences of any two oli-

garchs over a pair of alternatives results in social indifference between that pair.13

Weymark (1984) calls this an α-oligarchy. Sen’s Pareto extension rule is then

characterized by strengthening Arrow’s Pareto condition and introducing a natu-

ral anonymity requirement.14 Complementing Gibbard’s result, Weymark proves

that any collective choice rule that satisfies Arrow’s conditions together with the

weaker requirement that the social preference relation is a quasi-ordering must be

an oligarchic rule in which the opposing strict preferences of any two oligarchs over

a pair of alternatives results in social non-comparability between that pair.15 He

calls this a β-oligarchy. Weymark’s characterization of the strong Pareto rule then

follows from a strengthening of Arrow’s Pareto condition and the introduction of

a natural anonymity requirement.16

As a foundation for these results, Weymark first proves a general oligarchy the-

orem.17 For any collective choice rule that satisfies Arrow’s conditions along with

the requirement that the social preference relation is reflexive and quasi-transitive,
13The Pareto extension rule is one oligarchic rule that satisfies Arrow’s axioms when transitivity

is weakened to quasi-transitivity. Gibbard’s theorem tells us that all such rules must be oligarchic.
14This is Theorem 2 in Weymark (1984).
15This is Corollary 2 in Weymark (1984).
16This is Theorem 3 in Weymark (1984).
17This is Theorem 1 in Weymark (1984).
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there exists a unique oligarchy. The veto power exercised by each oligarch takes

the following form: when an oligarch prefers x to y then it is false that y is socially

preferred to x (i.e. p(y, x) = 0). Strengthening the social rationality requirement in

this theorem leads either to α-oligarchy (when we add completeness), β-oligarchy

(when we add full transitivity), or dictatorship (when we add both).

The objective of this paper is to prove a counterpart to Weymark’s general

oligarchy theorem in the framework of a [0, 1]-valued social preference relation.

In fact, Weymark’s original result is a special case, obtained by requiring the

social preference relation to take values in {0, 1} only. At a technical level, this

paper can be viewed as a contribution to the literature on social choice with fuzzy

preferences.18 However, as we will see, there are important differences (both formal

and philosophical) between the approach taken in this paper and other approaches

considered in this literature. We explain some of these differences later in this

section.

Our central result says the following. For any collective choice rule that sat-

isfies Arrow’s conditions along with the requirement that the [0, 1]-valued social

preference relation is reflexive and quasi-transitive, there exists an oligarchy. For

[0, 1]-valued relations, our definition of reflexivity is standard but our definition

of quasi-transitivity is new, and we argue in favor of it below. In our theorem,

just like in the classical case, whenever the oligarchs all strictly prefer x to y then

p(x, y) > 0. Further, the veto power exercised by each oligarch in our theorem

takes the following form: when an oligarch prefers x to y then it is not true that y
18Barrett and Salles (2011) survey the field. A sample of the literature is Barrett, Pattanaik

and Salles (1986), Dutta (1987), Ovchinnikov (1991), Banerjee (1994), Billot (1995), Richard-
son (1998), Dasgupta and Deb (1999), García-Lapresta and Llamazares (2000), Fono and And-
jiga (2005), Perote-Peña and Piggins (2007), Duddy, Perote-Peña and Piggins (2010, 2011) and
Gibilisco et.al (2014). See also Leclerc (1984, 1991) and Leclerc and Monjardet (1995).
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is socially preferred to x (i.e. p(y, x) < 1). On the surface, our theorem looks very

similar to Weymark’s. However, our framework permits subtle differences. First,

we show that if a certain technical property (called “no zero divisor”) is satisfied

by our quasi-transitivity condition, then each oligarch in fact exercises strong veto

power (i.e. p(y, x) = 0). This is identical to the veto power exercised by oligarchs

in Weymark’s theorem. This part of our theorem has a negative interpretation;

the oligarchy must be strong. A consequence of this is that the proportional rule

(which is weakly oligarchic) must fail to generate quasi-transitive social preferences

when the no zero divisor condition is in place.19

This oligarchy result is essentially what Barrett, Pattanaik and Salles (1986)

prove in their landmark paper on fuzzy social choice.20 Although they do not

mention the concept of a zero divisor in their paper, something very similar to

the no zero divisor condition holds under their formulation of quasi-transitivity.21

This seminal result by Barrett, Pattanaik and Salles has typically been given a

negative interpretation; that admitting a [0, 1]-valued social preference relation still

leads to an “undesirable distribution of ‘veto’ power” (page 2 of their paper) in

the Arrovian framework. Our initial result reinforces this message for Weymark’s

framework; fuzziness does not help us escape from strong oligarchy.

Despite this, our central theorem also shows that if the no zero divisor condition

does not hold (in which case there exists a zero divisor), then an oligarchy can

exist that is not strong. In this case, each oligarch can exercise weak veto power
19The proportional rule satisfies unrestricted domain, independence of irrelevant alternatives

and the weak Pareto principle.
20This is Theorem 3.5 in that paper.
21Note that Barrett, Pattanaik and Salles (1986) use a fuzzy strict social preference relation

as their primitive concept, not a weak one. The distinction between transitivity and quasi-
transitivity does not, therefore, apply. The transitivity condition they use is Condition 2.3 in
their paper.
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(like under the proportional rule). This part of our theorem has a more positive

interpretation; the oligarchy can be weak and weak oligarchy is less objectionable

than strong oligarchy. The proportional rule demonstrates that weak veto power

need not be troubling, and the fact that everyone can exercise it can be viewed

(arguably) as a requirement of fairness.

Our theorem also allows us to establish two corollaries, which are generaliza-

tions of Weymark’s Corollary 1 and Corollary 2.22 First, if we add the requirement

that the [0, 1]-valued social preference relation is connected, then Arrow’s condi-

tions jointly imply a counterpart of Weymark’s α-oligarchy.23 The opposing strict

preferences of any two oligarchs over a pair of alternatives results in a social pref-

erence over the pair that cannot be “hard” incomplete, nor can there be a strict

preference for one alternative over the other (Gibbard’s original “indifference” over

the pair is a special case). Second, if we assume that the [0, 1]-valued social prefer-

ence relation is fully transitive (in addition to reflexive), then Arrow’s conditions

jointly imply a counterpart of Weymark’s β-oligarchy. The opposing strict prefer-

ences of any two oligarchs over a pair of alternatives results in a social preference

over the pair that cannot correspond to indifference, nor can it correspond to a

strict preference for one alternative over the other. Hard incompleteness is possi-

ble in this case (and so Weymark’s original “non-comparability” is a special case).

Our final result says that if the [0, 1]-valued social preference relation is reflexive,

fully transitive and connected (and the no zero divisor condition is satisfied), then

Arrow’s conditions jointly imply a dictator in the sense of Arrow. Therefore, all

of our results are consistent with (and generalize) the classical theory of Arrow,
22Weymark (1984, pp.240-241).
23We use the term connected here, as we reserve “complete” for relations where, for all x, y ∈

X,xPy ∨ yPx ∨ xIy. A [0, 1]-valued relation can be connected without being complete.
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Gibbard and Weymark. Interestingly, for this last result, if we dispense with the

assumption of no zero divisor, then anonymous rules are possible that satisfy all

of the remaining assumptions.

1.1 Literature

In terms of interpretation, we contend that fuzziness gives us a way of thinking

about the logic of “softly incomplete” relations. Although this interpretation is

new, it is compatible with other justifications for the fuzzy approach that have

appeared in the literature. The typical justification refers to the presence of un-

resolved conflict, i.e. that x can be preferred to y to some extent, with y being

preferred to x to some extent.24 We contend that this reflects a kind of incomplete-

ness; it is not true that one of these alternatives is preferred to the other, nor is it

true that they are equally good. However, this incompleteness is not necessarily

“hard”.

Next, a formal difference. It is common in the literature to assume that both

individual and social preferences are fuzzy. However, we take individual preferences

to be “crisp” orderings of the set of alternatives, and allow only the social preference

relation to be fuzzy. Although an argument can be made for treating individual

preferences as fuzzy, we wish to remain as close as possible to the literature on

revising Arrow’s collective rationality requirement. This literature makes the same

assumption about individual preferences as we do. Moreover, we would intuitively

expect a fuzzy social preference relation to “smooth” the aggregation of preferences

somewhat. One objective of this paper is to explore the extent to which this is

possible.
24Barrett, Pattanaik and Salles (1986, p.1).
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We consider next definitional differences. Let the social weak preference rela-

tion be a function r : X×X → [0, 1], where X is a set of three or more social states

(we will retain this assumption about the cardinality of X throughout). The value

r(x, y) can be interpreted as the degree to which it is true that x is (socially) at

least as good as y. The function r is called a fuzzy weak social preference relation

(FWSPR). Considerable debate has taken place as to the appropriate properties

to impose on this function if it is to be a coherent preference relation. One reason-

able requirement is that r(x, x) = 1 for all x ∈ X. This is the natural counterpart

to the standard reflexivity condition and we adopt it in this paper. Well-known

difficulties arise when we try to determine a counterpart to the transitivity condi-

tion. These difficulties are compounded by the various ways in which it is possible

to factor out of an FWSPR an asymmetric component (corresponding to strict

preference) and a symmetric component (corresponding to indifference). Each of

these approaches is valid in the sense that the definitions adopted will collapse

into the classical ones when the range of the function r is {0, 1}.

We highlight some of these differences in Table 3 by focusing on Dutta (1987),

Banerjee (1994), Richardson (1998) and Dasgupta and Deb (1999). We exclude

Barrett, Pattanaik and Salles (1986) from this list since, as noted earlier, they

work with an asymmetric relation as a primitive and so the issue of factorization

does not arise. That said, we will discuss their transitivity condition in the next

section. In Table 3, p is the asymmetric component of r.

13



Assumption Dutta Banerjee Richardson Dasgupta & Deb

Transitivity Max-min Max-δ Minimal Weak max-min

p(x, y) =
r(x, y) if r(x, y) > r(y, x),

1− r(y, x) Max(r(x, y)− r(y, x), 0) Same as Richardson
0 otherwise.

Connectedness r(x, y) + r(y, x) ≥ 1 Same as Dutta Max(r(x, y), r(y, x)) = 1 Same as Dutta

Table 2: Approaches adopted in the literature.

The names of various transitivity conditions appear in Table 3 and they are
defined as follows.

Max-min transitivity: for all x, y, z ∈ X, r(x, z) ≥ min(r(x, y), r(y, z)).

Max-δ transitivity: for all x, y, z ∈ X, r(x, z) ≥ r(x, y) + r(y, z)− 1.

Minimal transitivity: for all x, y, z ∈ X, if r(x, y) = 1 and r(y, z) = 1 then

r(x, z) = 1.

Weak max-min transitivity: for all x, y, z ∈ X, if r(x, y) ≥ r(y, x) and r(y, z) ≥

r(z, y), then r(x, z) ≥ min(r(x, y), r(y, z)).

Much has been written about the appropriateness of these various formulations.

In addition to the papers themselves, Barrett and Salles (2011) and Dasgupta and

Deb (1996, 2001) contain important comments.

For our central theorem, in addition to reflexivity, we assume that r is quasi-

transitive and so the asymmetric component p is transitive. The form of transi-

tivity we adopt is discussed thoroughly in the next section, where we provide an

argument in support of it. We should emphasize as well that our central theorem

does not require us to commit to a particular method of factoring p from r, nor

does it require that r is connected. Instead, in section 2, we propose a set of

criteria that we assume any reasonable method of factorization will satisfy. It is

14



straightforward to verify that all of the methods of factorization described in Table

2 satisfy these criteria. This approach makes our results more general than they

otherwise would have been.

1.2 Quasi-transitivity

Our central assumption about r is that it is quasi-transitive. Just as in the crisp

case, this means that p is transitive (not necessarily r). However, this raises the

question of how we should model the transitivity of p. One possibility is to adopt

a form of max-min transitivity: for all x, y, z ∈ X, p(x, z) ≥ min(p(x, y), p(y, z)).

This formulation has the advantage of insisting that p(x, z) = 1 whenever p(x, y) =

1 and p(y, z) = 1. This accords with intuition.

Notice that we can generalize max-min transitivity by requiring p to be max-

star transitive. That is, for all x, y, z ∈ X,

p(x, z) ≥ p(x, y) ? p(y, z) (1)

where the ? operator is a triangular norm,25 i.e. a function T from [0, 1]2 to [0, 1]

such that for all a, b, c ∈ [0, 1] the following conditions are satisfied,

(i) T (a, b) = T (b, a),

(ii) T (a, T (b, c)) = T (T (a, b), c),

(iii) T (a, b) ≤ T (a, c) if b ≤ c,

(iv) T (a, 1) = a.

It is easy to see that max-min transitivity is a special case of a max-star

transitive relation, as the function TM(a, b) = min (a, b) for a, b ∈ [0, 1] satis-
25Klement, Mesiar and Pap (2000) is a comprehensive account of triangular norms.
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fies criteria (i) to (iv). Another special case is Lukasiewicz transitivity: for all

x, y, z ∈ X, p(x, z) ≥ max(p(x, y) + p(y, z) − 1, 0). It is easy to verify that the

function TL(a, b) = max(a + b − 1, 0) for a, b ∈ [0, 1] also satisfies criteria (i) to

(iv).

In order to justify our approach, it is worth recalling the definition of quasi-

transitivity in the crisp case:

for all x, y, z ∈ X, (xPy ∧ yPz)→ xPz. (2)

We argue that (1) is the natural “fuzzification” of (2). Under (1) it must be

the case via property (iv) of a triangular norm that we have p(x, z) = 1 whenever

p(x, y) = 1 and p(y, z) = 1. From an intuitive point of view, the fuzzy strict social

preference relation ought to satisfy this; if it is true that x is socially preferred to

y, and true that y is socially preferred to z, then it should also be true that x is

socially preferred to z.

Other approaches to the transitivity of p do not share this property. For ex-

ample, Barrett, Pattanaik and Salles (1986) take the fuzzy strict relation pBP S

as a primitive, and do not derive it from a weak relation. They require, for all

x, y, z ∈ X,

pBP S(x, y) > 0 and pBP S(y, z) > 0 implies pBP S(x, z) > 0. (3)

However, pBP S(x, y) = 1, pBP S(y, z) = 1 and pBP S(x, z) = 0.01 is transitive

under this definition, and this is arguably problematic. It also demonstrates that

(3) does not imply (1). To see that (1) does not imply (3) consider Lukasiewicz
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transitivity. We have p(x, y) = 0.5, p(y, z) = 0.5 and p(x, z) = 0. However, this

violates (3). The same is true under Tang’s (1994) formulation of the transitivity

of p. Tang requires, for all x, y, z ∈ X,

if pT A(x, y) > pT A(y, x) and pT A(y, z) > pT A(z, y) then pT A(x, z) > pT A(z, x).

(4)

Formulation (4) suffers from exactly the same intuitive difficulty as (3) and,

like (3), is logically independent of (1). Similarly, (4) and (3) are independent.

Given that these three conditions are logically independent, the choice of an

appropriate condition must be determined by a priori reasoning. We have already

noted an intuitive difficulty with (3) and (4), not shared by (1). We now give our

main argument in favor of (1). It is based on the logical form of (2).

First, note that we can take p(x, y) to be the degree of truth of the proposition

“x is socially preferred to y”. The set of truth degrees is, therefore, [0, 1]. Trian-

gular norms (t-norms) are regarded as the natural way of modeling conjunction in

infinitely-many valued (i.e. fuzzy) logic (Hájek (1998)). In this logic, if a propo-

sition P is true to degree 0.8 and proposition Q is true to degree 0.2, then the

conjunction P ∧Q is true to degree T (0.8, 0.2).

Property (i) of a t-norm is a natural commutativity property, expressing the

idea that the order of propositions is immaterial in conjunction. Property (ii) is

a natural associativity property, expressing the idea that the order of performing

conjunction is immaterial. Property (iii) is a monotonicity property, expressing

the idea that increasing the truth degree of a conjunct should not decrease the

truth degree of the conjunction. Finally, property (iv) corresponds to regarding

the truth degree 1 as full truth, conjunction with which should equal the truth
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value of the other conjunct. The conditions imply that T (0, a) = 0 for all a ∈ [0, 1],

which corresponds to regarding the truth degree 0 as full falsity, conjunction with

which is always fully false.

Notice that T provides a generalization of classical (2-valued) conjunction,

i.e. when P and Q take values in {0, 1} then T (P,Q) will always be equal to

the classical valuation. All of these attractive properties justify modeling the

antecedent in (2) as a triangular norm in the fuzzy context, and this seems to be

widely accepted in the literature on fuzzy logic.

An equally attractive way of modeling the consequent in (2) is provided by

the following principle: if (P ∧ Q) → R then R is at least as true as (P ∧ Q).

Again, if we require P,Q and R to be 2-valued then this principle holds in classical

logic. Combining this and the argument above about conjunction leads us to (1).

Therefore, we hold that (1) is the natural fuzzification of (2).

Note that it is possible to partition the set of max-star transitive relations into

two parts, and this partitioning is critical to the results that we present in this

paper. This partitioning is possible because it is also the case that the set of t-

norms can be partitioned into two parts. To identify this partitioning property of

t-norms, note that the Lukasiewicz t-norm possesses a technical property that is

not shared by the min t-norm. It contains a zero divisor.

A triangular norm T contains a zero divisor if there exists an element a ∈]0, 1[

such that for some b ∈]0, 1[ we have T (a, b) = 0. The element a is called a zero

divisor of T . For example, 0.4 is a zero divisor of the Lukasiewicz t-norm, TL. In

fact, for TL, the set of zero divisors is ]0, 1[. If there is no a ∈]0, 1[ and no b ∈]0, 1[

such that T (a, b) = 0 then we say that the t-norm T contains no zero divisor.

Unlike the Lukasiewicz t-norm, the min t-norm, TM , contains no zero divisor
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because TM(a, b) = 0 only if a = 0 or b = 0. Two further examples of t-norms will

reinforce this partitioning property. The product t-norm is defined by TP (a, b) =

a × b and so has no zero divisor. The “drastic” t-norm is defined by TD(a, b) =

b (if a = 1), a (if b = 1), and 0 otherwise. TD has a zero divisor. Like TL, the set

of zero divisors for TD is ]0, 1[.26 Note that all t-norms are equal, i.e. T (a, b) =

T ′(a, b), when a, b ∈ {0, 1}. This paper can be viewed as an examination of the

social choice consequences of the zero divisor/no zero divisor distinction.27 As a

consequence of this partitioning of t-norms, we can also partition the set of max-

star transitive relations into two parts; those whose t-norm contains a zero divisor

and those whose t-norm does not.

Note that the formulation of transitivity adopted by Barrett, Pattanaik and

Salles (condition (3) above) can be interpreted (in the framework of this paper)

as a “no zero divisor” requirement. We cannot say that their formulation of tran-

sitivity is a special case of ours, as they do not assume that pBP S is max-star

transitive. However, it would be natural for them to do so on foot of the ar-

guments given above. An appropriate reformulation would yield pBP S(x, z) ≥

pBP S(x, y) ? pBP S(y, z) with the requirement that ? is a t-norm with no zero divi-

sor. Their condition (3) then follows from this.

In a series of important papers, Dasgupta and Deb (1996, 1999, 2001) raise

an objection to max-min transitivity, which is a special case of the transitivity
26The drastic t-norm is the smallest t-norm in that, for all a, b ∈ [0, 1], TD(a, b) ≤ TO(a, b)

where TO is any other t-norm.
27The role of these concepts in judgment aggregation is explored in Duddy and Piggins (2013).

In Duddy, Perote-Peña and Piggins (2011) we considered these concepts with respect to a fuzzy
version of Arrow’s theorem. However, in this paper, we are concerned with Weymark’s theorem,
not Arrow’s. Additionally, in our earlier paper we used a strong version of the independence
condition. The version we use here is weaker than that one, and is closer to the standard version
employed in the social choice literature.
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condition presented here. First, we should emphasize that none of our results

require us to assume max-min transitivity. Second, even if we did assume max-

min transitivity (as opposed to the more general max-star transitivity) Dasgupta

and Deb’s objection would still not apply to the setting of this paper. We briefly

elaborate on this point.

Dasgupta and Deb raise the following concern.28 Suppose that r is max-min

transitive and connected. Assume that r(y, z) = 1 and r(z, y) = 0 and so, in-

tuitively, it is true that society prefers y to z. If r(x, y) > 0 then r(z, y) ≥

min(r(z, x), r(x, y)) and so r(z, x) = 0. Connectedness implies that r(x, z) = 1.

As Dasgupta and Deb observe, if it is true that y is preferred to z then we should

not be able to deduce from this that x is preferred to z simply because r(x, y) > 0.

The value of r(x, y) may be close to zero, for instance.

Note that Dasgupta and Deb state their objection to max-min transitivity

when that condition is applied to r, and not to p. For most of our results we make

no assumption about the transitivity of r itself (only that the p derived from r is

max-star transitive).29 Moreover, when stating their objection, they assume that

r is connected. If we construct a counterpart to their example for p, then we can

show that p(x, y) > 0, p(y, z) = 1 and p(z, y) = 0 implies p(z, x) = 0. However, it

does not follow from this that p(x, z) = 1 as we do not assume that p is connected

(nor do we assume that r is connected). This objection to max-min transitivity

does not hold in our framework.

To outline the paper, section 2 contains the model and the description of the
28This is Proposition 3 in Dasgupta and Deb (1996).
29Further, note that the max-star transitivity of r does not follow from the max-star transitivity

of p. Consider the FWSPR defined as r(x, y) = 1, r(y, x) = 0.5, r(y, z) = 1, r(z, y) = 0.5, r(x, z) =
0.7, r(z, x) = 0.2. The max-star transitivity of r is violated in this example (since r(x, z) < 1).
However, p is max-star transitive if we use Richardson’s factorization and the minimum t-norm.
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central axioms. Section 3 contains our results. Section 4 discusses other aggrega-

tion rules (including the proportional rule). Section 5 concludes.

2 Model

Let X denote a finite set of at least three social alternatives. Let N = {1, ..., n}

denote the finite set of individuals with n ≥ 2. The individuals in N are ordered

(and “labeled”) from 1 to n. Let R denote the set of all binary relations over X

that are reflexive, transitive and complete. A profile is an n-tuple (R1, . . . , Rn) in

Rn. We write Pi for the asymmetric part of individual i’s weak preference relation

Ri.

A collective choice rule (a rule) φ is a function from the set of admissible

profiles D, a subset of Rn, to a set CT,F . CT,F is the set of all FWSPRs on X

which are reflexive and quasi-transitive with respect to some specified t-norm (T )

and some specified method of factorization (F ). The quasi-transitivity requirement

means that the p relation derived from the method of factorization F is max-star

transitive with respect to the t-norm T .

A function from D to CTM ,Richardson is an example of a collective choice rule.

Another example is a function from D to CTL,Banerjee. In what follows, we denote

φ((R1, . . . , Rn)) by r and φ((R′1, . . . , R′n)) by r′ and so on.

For some of our results, properties of collective choice rules are derived that

are independent of the particular co-domain (e.g. they would hold for both

CTM ,Richardson and CTL,Banerjee). Other results hold for particular co-domains (e.g.

when the t-norm used contains no zero divisor).

The analysis is simplified by the fact that we do not need to commit to any
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particular method of factoring p from r for our results. However, we assume that

whichever method is used satisfies the following requirements:

(A) r(x, y) = 1 and r(y, x) = 0 implies p(x, y) = 1 and p(y, x) = 0,

(B) r(x, y) > 0 and r(y, x) = 0 implies p(x, y) > 0,

(C) p(x, y) = 0 implies r(x, y) ≤ r(y, x),

(D) r(x, y) ≥ p(x, y) and

(E) r(x, y) ≥ r(z, w) and r(y, x) ≤ r(w, z) implies p(x, y) ≥ p(z, w).

It is straightforward to verify that all of the methods of factorization listed in

Table 3 satisfy these properties.30 This means that, when stating our results, the

co-domain of φ can be simply written CT where only the t-norm is specified. It

should be understood, however, that some method of factorization is being used

to derive p from r. That method satisfies conditions (A) to (E).

The assumptions we impose on φ are:

Unrestricted domain. D = Rn.

This condition says that all logically possible orderings of the elements in X are

permissible as inputs into the aggregation exercise.

Weak Pareto principle. For all x, y ∈ X and all (R1, ..., Rn) ∈ D, xPiy for all

i ∈ N implies r(x, y) = 1 and r(y, x) = 0.

This condition says that if everyone strictly prefers x to y, then it is definitely true

that society does as well (by virtue of factorization requirement (A)).

Independence of irrelevant alternatives. For all x, y ∈ X and all (R1, ..., Rn),(R′1, ..., R′n) ∈

D, [xRiy ↔ xR′iy] and [yRix↔ yR′ix] for all i ∈ N implies r(x, y) = r′(x, y)

and r(y, x) = r′(y, x).
30Note that Banerjee’s method of factorization satisfies (D) only if connectedness is assumed.
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Given that p(x, y) is factored out of r(x, y) and r(y, x), this condition says that the

degree to which it is true that x is (socially) preferred to y depends on (and only

on) the orderings of the individuals over x and y.31 Unrestricted domain, the weak

Pareto principle and independence of irrelevant alternatives are our basic axioms.

The following definitions play a role in what follows. These are definitions, not

axioms.

Veto power. An individual i has veto power if, for all x, y ∈ X and all (R1, ..., Rn) ∈

D, xPiy implies p(y, x) < 1.

Strong veto power. An individual i has strong veto power if, for all x, y ∈ X

and all (R1, ..., Rn) ∈ D, xPiy implies p(y, x) = 0.

Decisive. A group of individuals V is decisive if, for all x, y ∈ X and all (R1, ..., Rn) ∈

D, xPiy for all i ∈ V implies p(x, y) > 0.

Oligarchy. A set of individuals V is an oligarchy if V is decisive and every indi-

vidual in V has veto power.

Strong oligarchy. A set of individuals V is a strong oligarchy if V is decisive

and every individual in V has strong veto power.

α-oligarchy. A set of individuals V is an α-oligarchy if V is an oligarchy and, for

all i ∈ V , all x, y ∈ X and all (R1, ..., Rn) ∈ D, xPiy implies r(x, y) > 0.

Strong α-oligarchy. A set of individuals V is a strong α-oligarchy if V is an

oligarchy and, for all i ∈ V , all x, y ∈ X and all (R1, ..., Rn) ∈ D, xPiy

implies r(x, y) ≥ 1
2 .

31Translating the independence condition of Duddy, Perote-Peña and Piggins (2011) into the
setting of this paper yields: For all x, y ∈ X and all (R1, ..., Rn), (R′1, ..., R′n) ∈ D,

[xRiy ↔ xR′iy] for all i ∈ N implies r(x, y) = r′(x, y).
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β-oligarchy. A set of individuals V is a β-oligarchy if V is an oligarchy and, for

all i ∈ V , all x, y ∈ X and all (R1, ..., Rn) ∈ D, xPiy implies r(y, x) < 1.

Strong β-oligarchy. A set of individuals V is a strong β-oligarchy if V is an

oligarchy and, for all i ∈ V , all x, y ∈ X and all (R1, ..., Rn) ∈ D, xPiy

implies r(y, x) = 0.

3 Theorems

We note the following condition that a rule φ may satisfy.

Strict-ranking neutrality. For all w, x, y, z ∈ X, and all (R1, ..., Rn),(R′1, ..., R′n) ∈

D, if [wPix or xPiw] and [wPix↔ yP ′iz] for all i ∈ N then p(w, x) = p′(y, z).

This condition says that if everyone ranks w and x at profile (R1, ..., Rn) in the

same way as they rank y and z, respectively, at profile (R′1, ..., R′n), and no one is

indifferent between w and x at (R1, ..., Rn), then p(w, x) equals p′(y, z). We can

now state the following proposition.

Lemma 1. Irrespective of the t-norm, any rule φ that satisfies unrestricted do-

main, the weak Pareto principle and independence of irrelevant alternatives satis-

fies strict-ranking neutrality.

Proof. Let φ be a collective choice rule. Case 1: If w = y and x = z then the

result follows immediately from the fact that φ satisfies independence of irrelevant

alternatives.

Case 2: Assume that w = y and x 6= z. Consider (R∗1, ..., R∗n) ∈ D. At this

profile, each individual’s ranking of w and x is the same as in (R1, ..., Rn), each
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individual’s ranking of w and z is the same as in (R′1, ..., R′n), and all individ-

uals strictly prefer x to z. By weak Pareto and factorization requirement (A),

p∗(x, z) = 1. Since r is quasi-transitive, we have p∗(w, z) ≥ p∗(w, x). Indepen-

dence of irrelevant alternatives implies that p′(w, z) ≥ p(w, x). Repeating this

argument with everyone strictly preferring z to x leads to p(w, x) ≥ p′(w, z) and

so p(w, x) = p′(w, z).

Case 3: The case where w 6= y and x = z is similar to case 2.

Case 4: Assume that w, x, y and z are distinct. Consider (R∗1, ..., R∗n) ∈ D.

At this profile, each individual’s ranking of w and x is the same as in (R1, ..., Rn)

and each individual’s ranking of y and z is the same as in (R′1, ..., R′n). Further,

each individual’s ranking of y and x is identical to their ranking of w and x

at (R1, ..., Rn). Finally, all individuals strictly prefer w to y, and x to z. A

similar argument to that in case 1 shows that p∗(w, x) ≥ p∗(y, x) and p∗(y, z) ≥

p∗(y, x). Independence of irrelevant alternatives implies that p(w, x) ≥ p∗(y, x)

and p′(y, z) ≥ p∗(y, x). Simply repeating this argument with everyone strictly

preferring y to w, and z to x (instead of w to y, and x to z) leads to p(w, x) ≤

p∗(y, x) and p′(y, z) ≤ p∗(y, x), and so p(w, x) = p′(y, z).

Case 5: Assume that w = z and x 6= y. Consider (R∗1, ..., R∗n) ∈ D. At this

profile, each individual’s ranking of w and x is the same as in (R1, ..., Rn), and

each individual’s ranking of y and x is the same as their ranking of w and x. From

case 3 we know that p∗(w, x) = p∗(y, x). Similarly, we know from case 2 that a

profile (R′′1, ..., R′′n) in which each individual’s ranking of y and x is the same as

their ranking of y and w leads to p′′(y, x) = p′′(y, w). Independence of irrelevant

alternatives leads to p(w, x) = p′(y, w).

Case 6: The case where w 6= z and x = y is similar to case 5.
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Case 7: Assume that w = z and x = y. Let e be an alternative distinct from

w and x. We know that such an alternative exists since #X ≥ 3. Repeatedly

combining cases 2 and 3 yields the desired result that p(w, x) = p′(x,w).

Lemma 2. Irrespective of the t-norm, if a rule φ satisfies unrestricted domain,

the weak Pareto principle and independence of irrelevant alternatives then there

is an oligarchy. Moreover, if the t-norm has no zero divisor then it is a strong

oligarchy.

Proof. Take any two alternatives x and y and let (R1, . . . , Rn) be a profile where

everyone strictly prefers x to y and let (R′1, . . . , R′n) be a profile where everyone

strictly prefers y to x. The weak Pareto principle and factorization requirement

(A) implies that p(y, x) = 0 and p′(y, x) = 1. If we move from (R1, . . . , Rn)

to (R′1, . . . , R′n) in n steps, changing the preference of one individual i from Ri

to R′i at each step, there must be a step at which the value of the strict social

preference relation over (y, x) rises above zero. We say that the individual whose

switch of preference causes that value to rise above zero is “pivotal”.32 There are

n! possible ways to sequence the set of n individuals and so there are n! paths from

(R1, . . . , Rn) to (R′1, . . . , R′n). For each path there must be a pivotal individual.

We will show that if an individual is pivotal for any path then that individual has

veto power. If the t-norm has no zero divisor then that individual has strong veto

power.

Without loss of generality, suppose that individual 2 is pivotal in one of the

paths from (R1, . . . , Rn) to (R′1, . . . , R′n). There are two adjacent profiles in that
32The idea of a pivotal voter originates with Barberá (1980). This technique has been used in

various proofs of Arrow’s theorem, e.g. Geanakoplos (2005). We use the same technique here to
prove the existence of an oligarchy.
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sequence where individual 2 is the only one whose preference has changed. Let

R(1) denote the earlier of these two profiles, where individual 2 still strictly prefers

x to y, and let R(2) denote the other, where individual 2 has switched to strictly

preferring y to x. Let Nxy denote those individuals who strictly prefer x to y

at both R(1) and R(2) (they have yet to switch), and let Nyx denote the set of

individuals who strictly prefer y to x at both of those profiles (they have already

switched).

Take any two alternatives a and b and construct a profile (R∗1, . . . , R∗n) where

every individual in Nxy strictly prefers z to both a and b while every individual in

Nyx strictly prefers both a and b to z. Individual 2 strictly prefers a to z and z

to b. The individuals in N − {2} are free to hold any preference over a and b (i.e.

they can prefer one of these alternatives to the other, or be indifferent between

them). Each individual’s preference over z and b at this profile is the same as

his or her preference over x and y, respectively, at profile R(1). Hence, by strict-

ranking neutrality, we have p∗(b, z) = 0. Each individual’s preference over z and

a at (R∗1, . . . , R∗n) is the same as his or her preference over x and y, respectively,

at profile R(2). By strict-ranking neutrality, we have p∗(a, z) > 0.

Since r is quasi-transitive, we have p∗(b, z) ≥ p∗(b, a) ? p∗(a, z). This means

that 0 ≥ p∗(b, a) ? p∗(a, z) with p∗(a, z) > 0. Recall that for any t-norm, we have

α ? 1 = α for any α ∈ [0, 1]. So if it were the case that p∗(b, a) = 1 then we would

have 0 ≥ p∗(a, z). Since this is not true it follows that p∗(b, a) < 1. Here we see

individual 2 exerting veto power; we have p∗(b, a) < 1 regardless of the preferences

all other individuals have over a and b. Independence of irrelevant alternatives

implies that individual 2 can ensure p(b, a) < 1 at any profile at which he or she

strictly prefers a to b. Since a and b are just arbitrary alternatives, individual 2
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has veto power in general.

What if the t-norm has no zero divisor? This means that for any numbers α

and β in ]0, 1] we have α ? β > 0. Hence, it follows from 0 ≥ p∗(b, a) ? p∗(a, z)

and p∗(a, z) > 0 that we have p∗(b, a) = 0. Individual 2 is exerting strong veto

power. Simply repeating the argument above shows that individual 2 has strong

veto power in general.

We have seen that if an individual is pivotal in a path from (R1, . . . , Rn) to

(R′1, . . . , R′n) then that individual has veto power, with that veto power being

strong if the t-norm has no zero divisor. Let V be the set of all such individuals.

We will prove that V is an oligarchy. To do this, we need to show that these

individuals are jointly decisive. Consider the profile “between” (R1, . . . , Rn) and

(R′1, . . . , R′n) with R′i for each i in V and Ri for each i in N − {V }. That is, the

profile where just the individuals in V have switched to preferring y to x. Let

us denote this profile by R(3). We will prove that the value of the strict social

preference relation over (y, x) at this profile is greater than zero.

By way of contradiction, assume that p(3)(y, x) = 0. Just as in the argument

above, assume that the individuals in N −{V } switch one at a time, from strictly

preferring x to y, to strictly preferring y to x. At some point the value of the

strict social preference relation over (y, x) must rise above zero. From our earlier

argument, the person whose switch causes this value to rise must be pivotal. How-

ever, this contradicts the assumption that all such individuals are in V . Therefore,

p(3)(y, x) > 0.

To see that V is decisive in general, construct a profile (R′′1, . . . , R′′n) where

everyone in V strictly prefers a to z and z to b, and the individuals in N − {V }

strictly prefer z to both a and b. The individuals in N −{V } are free to have any
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preference over a and b (i.e. they can strictly prefer one of these alternatives to the

other, or be indifferent between them). Each individual’s preference over z and a at

this profile is the same as his or her preference over x and y, respectively, at profile

R(3). Hence, strict-ranking neutrality implies that p′′(a, z) > 0. By the weak

Pareto principle and factorization requirement (A) we have p′′(z, b) = 1. Since r

is quasi-transitive, we have p′′(a, b) > 0. Independence of irrelevant alternatives

implies that at any profile where every individual in V strictly prefers a to b

the value of the strict social preference relation over (a, b) is greater than zero.

Since a and b are just arbitrary alternatives, this argument holds for all pairs of

alternatives.

The following result is useful in establishing an important property of strong

oligarchies.

Lemma 3. If an individual exists with strong veto power then every oligarchy must

contain this individual.

Proof. Assume i has strong veto power. Therefore, xPiy implies p(y, x) = 0.

Assume that there exists some oligarchy V not containing i. Assume that yPjx

for all j ∈ V . By definition, p(y, x) > 0. This is a contradiction.

An implication of this result is that if a strong oligarchy exists then it must be

the unique oligarchy. As we will see, a weak oligarchy (i.e. one that is not strong)

need not be unique.

An interpretation of our results thus far: all rules satisfying unrestricted do-

main, independence of irrelevant alternatives, and the weak Pareto principle are

oligarchical. Moreover, if the rule maps to CT where the t-norm T contains no
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zero divisor (for example, CTM
or CTP

) then it must be strongly oligarchical, with

a unique strong oligarchy.33 Our next result establishes that if the collective choice

rule maps to CT ′ where T ′ is a t-norm containing a zero divisor, then strong oli-

garchy can be avoided (i.e. it does not logically follow from the other assumptions).

Note that in Lemma 4 we assume that there are at least three individuals.

Lemma 4. Assume that there are at least three individuals. For any t-norm with

a zero divisor T ′ there exists a rule φ that maps into CT ′ that is without a strong

oligarchy, and which also satisfies unrestricted domain, the weak Pareto principle

and independence of irrelevant alternatives.

Proof. We construct a particular rule as follows. For every pair (x, y), let π(x, y)

denote the number of individuals at the profile who strictly prefer x to y divided

by the number of individuals who are not indifferent between x and y. If every

individual is indifferent between x and y then let π(x, y) be one. Also, let δ be a

number in the open interval ]0, 1[ such that δ ? δ = 0. Such a number exists since

the t-norm T ′ has a zero divisor. Define

r(x, y) =



1 if π(x, y) = 1

δ if 1
2 ≤ π(x, y) < 1

0 if π(x, y) < 1
2 .

It is obvious that this rule satisfies unrestricted domain, the weak Pareto princi-

ple and independence of irrelevant alternatives. Moreover, no individual has strong

veto power and so there is no strong oligarchy. To see this, take any individual
33Recall that TM refers to the minimum t-norm and TP refers to the product t-norm.
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i and suppose that i strictly prefers x to y while every other individual strictly

prefers y to x. It follows that r(x, y) = 0 and r(y, x) = δ (assuming that there are

at least three individuals). By property (B) of our factorization requirements it

follows that p(y, x) > 0. It remains for us to prove that r is quasi-transitive.

Assume, by way of contradiction, that the rule generates a relation r with

asymmetric part p such that p(x, z) < p(x, y) ? p(y, z). In order for this to hold, it

must be the case that p(x, y) ? p(y, z) > 0. Given that ? is monotone (condition

(iii) of a t-norm) and δ ? δ = 0, it follows that p(x, y) > δ or p(y, z) > δ (or both).

Let us assume, without loss of generality, that p(x, y) > δ. Since r(x, y) ≥ p(x, y)

(property (D) of our factorization requirements), it follows that r(x, y) > δ. From

the definition of the rule we can see that this implies r(x, y) = 1. It follows,

again from that definition, that every individual weakly prefers x to y (i.e. xRiy

for all i ∈ N). Since individual preferences are transitive, this implies that every

individual who weakly prefers y to z must also weakly prefer x to z. Similarly,

everyone who weakly prefers z to x must also weakly prefer z to y. So we have

π(x, z) ≥ π(y, z) and π(z, x) ≤ π(z, y). It follows from the definition of the rule

that r(x, z) ≥ r(y, z) and r(z, x) ≤ r(z, y). This implies that p(x, z) ≥ p(y, z) (by

property (E) of our factorization requirements). But we know, by the properties

of a t-norm, that p(x, y) ? p(y, z) cannot be greater than p(y, z).34 Hence p(x, z) ≥

p(x, y) ? p(y, z). This is a contradiction.

Of course, the rule described in Lemma 4 is actually a class of rules, as δ can

vary from t-norm to t-norm (and even within a t-norm). For example, under CTD

δ could be equal to 0.8, whereas this value would not be suitable for CTL
.35 Each

34The proof of this is straightforward.
35Recall that TD refers to the drastic t-norm and TL refers to the Lukasiewicz t-norm.
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rule in this class is a weakly oligarchic rule. Every subset of N containing at least

half of the individuals is a weak oligarchy. Clearly, if all members of such a subset

strictly prefer x to y then r(x, y) > 0 and r(y, x) = 0. Factorization requirement

(B) implies p(x, y) > 0. If anyone in the subset reverses their x vs. y preference

(and so now strictly prefers y to x) then r(x, y) < 1. It follows that p(x, y) < 1 by

requirement (D).

This class of rules is “universal” in the sense that whichever zero divisor t-norm

we use, there exists a value of δ that allows the collective choice rule described

in the lemma to work. As we will see in the next section, some rules, like the

proportional rule, work with some zero divisor t-norms, but not with others. That

rule is not, therefore, universal.

To explore the rule in Lemma 4 some more, consider the Condorcet triplet. Sup-

pose that there are three individuals, i, j and k, with preferences xPiyPiz, yPjzPjx

and zPkxPky. Applying the rule yields r(x, z) = 0 and so p(x, z) = 0 by factor-

ization requirement (D). Similarly, δ ≥ p(x, y) > 0 and δ ≥ p(y, z) > 0 by require-

ments (B) and (D). Note, however, that the inequality 0 ≥ p(x, y) ? p(y, z) still

holds and so the derived p is max-star transitive. Suppose instead that the t-norm

does not contain a zero divisor. In this case the triplet does generate a p that

violates max-star transitivity. What lesson are we to draw from this? If there is

no zero divisor then p(x, y) > 0 and p(y, z) > 0 imply that p(x, z) > 0. However,

under the requirement of independence of irrelevant alternatives, the profile condi-

tion required to raise p(x, z) above zero may not be satisfied. When there is a zero

divisor, then p(x, z) > 0 does not logically follow from p(x, y) > 0 and p(y, z) > 0

and so it is not necessary for that profile condition to be satisfied. Of course,

p(x, y) and p(y, z) could take values that require p(x, z) > 0 even when there is
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zero divisor (if p(x, y) = 1 and δ ≥ p(y, z) > 0, for example). However, in this

case, the profile condition required for p(x, z) = p(y, z) > 0 must be satisfied. For

example, xPiyPiz, xPjyPjz and zPkxPky is a profile that supports this outcome.

Note that at this profile strict-ranking neutrality implies that p(x, z) = p(y, z).

Lemmas 1 to 4 allow us to state our central theorem.

Theorem 5. Let φ be a collective choice rule that satisfies unrestricted domain,

the weak Pareto principle and independence of irrelevant alternatives. If φ maps

into CT where T is any t-norm with no zero divisor, then there exists a unique,

strong oligarchy. However, for any t-norm T ′ with a zero divisor, there exists a

rule φ that maps into CT ′, and this φ is weakly oligarchical, provided that there are

at least three individuals.

It is worth emphasizing that we regard Theorem 5 as a characterization theo-

rem. As explained earlier, the “zero divisor” property partitions the set of max-star

transitive relations into two parts. Therefore, we have characterized the set of re-

flexive and quasi-transitive FWSPRs under which strong oligarchies are logically

inevitable (under the assumptions of unrestricted domain, the weak Pareto princi-

ple and independence of irrelevant alternatives). We have also characterized the set

of reflexive and quasi-transitive FWSPRs under which weak oligarchy is possible

(given those same assumptions).

We prove three additional results in this section. For Corollary 6 we require

the FWSPR r to be connected. An FWSPR r is connected if r(x, y) + r(y, x) ≥ 1

for all x, y ∈ X. Corollary 6 generalizes Weymark’s Corollary 1 (his α-oligarchy

result).

Corollary 6. Assume that φ maps into a set CT of FWSPRs that are connected in
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addition to being reflexive and quasi-transitive. If φ satisfies unrestricted domain,

the weak Pareto principle and independence of irrelevant alternatives then there

exists an α-oligarchy. Moreover, if the t-norm T has no zero divisor then it must

be a strong α-oligarchy.

Proof. Take any rule φ that maps into a set CT of FWSPRs that are reflexive,

quasi-transitive and connected. If φ satisfies unrestricted domain, the weak Pareto

principle and independence of irrelevant alternatives then we know by Lemma 2

that there exists an oligarchy. Take any two alternatives x and y and an oligarch

i. We know that xPiy implies p(y, x) < 1. Note that p(y, x) < 1 implies that

r(x, y) > 0 or r(y, x) < 1. This follows from factorization requirement (A). Since

r is connected, r(y, x) < 1 implies r(x, y) > 0. Hence xPiy implies r(x, y) > 0.

Therefore, the oligarchy is an α-oligarchy.

Now let us assume that the t-norm T has no zero divisor. By Lemma 2 we

know that there is a strong oligarchy. That is, xPiy implies that p(y, x) = 0.

This implies r(x, y) ≥ r(y, x) from factorization requirement (C). Connectedness

requires that r(y, x) ≥ 1−r(x, y), and substituting this into the previous inequality

yields r(x, y) ≥ 1
2 . Therefore, the strong oligarchy is a strong α-oligarchy.

For Corollary 7 we require the FWSPR to be a quasi-ordering. In the crisp

case, this means that both the weak social preference relation and the strict are

transitive (i.e. we have full transitivity), in addition to the weak relation being

reflexive. Therefore, we say that an FWSPR r is a quasi-ordering if both r and

p are max-star transitive, and r is reflexive. Corollary 7 generalizes Weymark’s

Corollary 2 (his β-oligarchy result).

Corollary 7. Assume that φ maps into a set CT of FWSPRs that are quasi-
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orderings. If φ satisfies unrestricted domain, the weak Pareto principle and inde-

pendence of irrelevant alternatives then there exists a β-oligarchy. Moreover, if the

t-norm T has no zero divisor then it must be a strong β-oligarchy.

Proof. Take any rule φ that maps into a set CT of FWSPRs that are quasi-

orderings. If φ satisfies unrestricted domain, the weak Pareto principle and in-

dependence of irrelevant alternatives then we know by Lemma 2 that there exists

an oligarchy. Let i be an oligarch. Assume, by way of contradiction, that there

is a profile (R1, . . . , Rn) such that r(y, x) = 1 even though xPiy. Let us construct

another profile (R′1, . . . , R′n), leaving every individual’s preference over x and y

unchanged so that independence of irrelevant alternatives implies r′(y, x) = 1. At

(R′1, . . . , R′n) every individual strictly prefers x to z, and i strictly prefers z to y.

The weak Pareto principle implies r′(z, x) = 0 and r′(x, z) = 1.

Since r′(y, x) = 1 and r′(x, z) = 1, max-star transitivity of r implies r′(y, z) =

1. Also, since r′(y, x) = 1 and r′(z, x) = 0, max-star transitivity of r implies

r′(z, y) = 0. Hence p′(y, z) = 1 from factorization requirement (A). However, i is

an oligarch and we have zP ′iy so we must have p′(y, z) < 1. This is a contradiction.

So there cannot exist a profile (R1, . . . , Rn) such that r(y, x) = 1 when xPiy.

Now let us assume that the t-norm T has no zero divisor. We know by Lemma

2 that there is a strong oligarchy. Let i be a strong oligarch. Assume, by way

of contradiction, that there is a profile (R∗1, . . . , R∗n) such that r∗(y, x) > 0 even

though xP ∗i y. Let us construct another profile (R′′1, . . . , R′′n), leaving every indi-

vidual’s preference over x and y unchanged so that independence of irrelevant

alternatives implies r′′(y, x) > 0. At (R′′1, . . . , R′′n) every individual strictly prefers

x to z so that the weak Pareto principle implies r′′(z, x) = 0 and r′′(x, z) = 1. Let
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us also have zP ′′i y.

Since r′′(y, x) > 0 and r′′(x, z) = 1, max-star transitivity of r implies r′′(y, z) >

0. Also, since r′′(y, x) > 0 and r′′(z, x) = 0, max-star transitivity of r (with no

zero divisor) implies r′′(z, y) = 0. Given that r′′(y, z) > 0 and r′′(z, y) = 0 we

have p′′(y, z) > 0. This follows from factorization requirement (B). However, i

has strong veto power and we have zP ′′i y so we must have p′′(y, z) = 0. This is a

contradiction. So there cannot exist a profile (R∗1, . . . , R∗n) such that r∗(y, x) > 0

with xP ∗i y.

We complete our analysis in this section by showing how strengthening our

social rationality requirements further leads to dictatorship in the sense of Arrow.

Arrow dictator. An individual i is an Arrow dictator if, for all x, y ∈ X and all

(R1, ..., Rn) ∈ D, xPiy implies p(x, y) = 1 and p(y, x) = 0.

We say that an FWSPR r is an ordering if it is a connected quasi-ordering. Again,

this is just like in the crisp case. We can now state the following result.

Corollary 8. Assume that φ maps into a set CT of FWSPRs that are orderings.

Further, assume that the t-norm T has no zero divisor. If φ satisfies unrestricted

domain, the weak Pareto principle and independence of irrelevant alternatives then

there exists a unique Arrow dictator.

Proof. Take any rule φ that maps into a set CT of FWSPRs that are orderings,

and where T is a t-norm with no zero divisor. If φ satisfies unrestricted domain,

the weak Pareto principle and independence of irrelevant alternatives, then we

know by Lemma 2 that there exists a unique, strong oligarchy. Corollary 6 and

Corollary 7 imply that it is both a strong α and a strong β-oligarchy. Assume that
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the oligarchy contains more than one individual, i and j, for example. Assume

xPiy and yPjx. Given that i has strong veto power, this implies that p(y, x) = 0.

Given that i is both a strong α and a strong β-oligarch implies that r(x, y) ≥ 0.5

and r(y, x) = 0. However, r(y, x) = 0 contradicts the fact that j is an α-oligarch.

Therefore, there cannot be more than one oligarch. Call this oligarch i and so

xPiy implies r(x, y) ≥ 0.5 and r(y, x) = 0. Connectedness implies r(x, y) = 1.

Therefore, by factorization requirement (A) we have p(x, y) = 1 and p(y, x) = 0.

This proves that i is an Arrow dictator.

As we will see in the next section, when the co-domain of φ is CTL
, then

the proportional rule generates an FWSPR that is an ordering and yet is also

anonymous (i.e. the names of the individuals do not matter). This rule satisfies

unrestricted domain, the weak Pareto principle and independence of irrelevant

alternatives. Therefore, the t-norm used in the specification of the transitivity

condition can have a dramatic effect on the character of the aggregation rule.

4 Other rules

In this section we describe some particular aggregation rules of interest. The class

of rules identified in Lemma 4 are fully transitive, in that both r and p are max-

star transitive. Under the first rule we describe, which we call the “square-root”

rule, r fails to be transitive, but p is transitive. However, p would be intransitive

if we were to use a t-norm with no zero divisor (the rule is weakly oligarchical

and satisfies unrestricted domain, the weak Pareto principle and independence of

irrelevant alternatives).

Suppose we use the Lukasiewicz t-norm and Banerjee’s method of factorization
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(p(x, y) = 1−r(y, x)). Let w(x, y) denote the proportion of individuals who weakly

prefer x to y. The square-root rule says that, for all x and y, r(x, y) =
√
w(x, y).

This rule is not fully transitive. Suppose that we have only two people, i and j,

and that xPiyPiz and zPjxPjy. We have r(y, z) =
√

1/2 = 1/
√

2. Similarly, we

have r(z, x) = 1/
√

2 and r(y, x) = 0. Max-star transitivity implies that r(y, x) ≥

max (0, r(y, z) + r(z, x)− 1). Therefore, r(y, x) > 0 which is a contradiction.

However, p is transitive under this rule. By contradiction, assume that there

is a profile such that p(x, y) + p(y, z)− 1 > p(x, z). Since we are using Banerjee’s

method of factorisation, this implies that 1− r(y, x) + 1− r(z, y)− 1 > 1− r(z, x).

Rearranging this, we have r(z, x) > r(z, y) + r(y, x). In other words,
√
w(z, x) >√

w(z, y) +
√
w(y, x). However, since individual preferences are transitive, we

know that w(z, x) ≤ w(z, y) +w(y, x). Therefore,
√
w(z, x) ≤

√
w(z, y) + w(y, x).

Since
√
w(z, y) + w(y, x) ≤

√
w(z, y) +

√
w(y, x) we have

√
w(z, x) ≤

√
w(z, y) +√

w(y, x). This is a contradiction. This proves that the square-root rule is quasi-

transitive. Note that this rule satisfies all of the conditions of Corollary 6, and so

is an α−oligarchical rule with each individual an oligarch.

We now define the proportional rule. The proportional rule is a natural rule,

well-suited to the framework of this paper. We highlight the relationship that

exists between this rule and the Lukasiewicz t-norm. First, we give a definition

of the rule. As in Lemma 4, let π(x, y) denote the number of individuals at the

profile who strictly prefer x to y divided by the number of individuals who are

not indifferent between x and y. If every individual is indifferent between x and y

then let π(x, y) equal one.

Proportional rule. Define rpro(x, y) = π(x, y) and ppro(x, y) = 1− rpro(y, x).
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Under this definition, rpro is connected (in fact, for all distinct x, y ∈ X, rpro(x, y)+

rpro(y, x) = 1) and rpro(x, y) = ppro(x, y). It is easy to verify that the values

in Tables 1 are consistent with this definition. The proportional rule satisfies

unrestricted domain, the weak Pareto principle and independence of irrelevant

alternatives. Given that it is a weakly oligarchical rule, Theorem 5 implies that

it must violate the max-star transitivity of p when we use a t-norm with no zero

divisor (such as the min t-norm). In fact, this is easily seen from the Condorcet

triplet.

We prove that ppro = rpro is transitive under the Lukasiewicz t-norm. By

way of contradiction, assume that there is a profile (R1, ..., Rn) ∈ D such that

rpro(x, z) < max(rpro(x, y)+rpro(y, z)−1, 0). Since 1 ≥ rpro(x, z) ≥ 0 it must be the

case that for the profile to exist we have rpro(x, z) < rpro(x, y)+rpro(y, z)−1. Given

that rpro(x, y) + rpro(y, x) = 1 for all distinct x, y ∈ X, we have 1 − rpro(z, x) <

1−rpro(y, x)+1−rpro(z, y)−1. Rearranging yields rpro(z, y)+rpro(y, x) < rpro(z, x).

However, since individual preferences are orderings, zPix implies zPiy or yPix (or

both). Therefore, it is impossible for the right hand side of the inequality to be

greater than the left. This is the contradiction.

To show that the proportional rule is not universal (in the sense of section

3), consider the following zero divisor t-norm. It is known as the nilpotent min-

imum. Let TNM(a, b) = min(a, b) if a+ b > 1, and TNM(a, b) = 0 otherwise. The

proportional rule fails to be transitive under this norm, as is easily seen from the

Condorcet triplet.

Further, the proportional rule satisfies the strong Pareto principle, not just

weak Pareto. The strong Pareto principle says (i) that if everyone weakly prefers

x to y then r(x, y) = 1, and (ii) that if at least one person strictly prefers x
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to y and everyone weakly prefers x to y then r(x, y) = 1 and r(y, x) = 0. A

rule proposed by Ovchinnikov (1991) which, on the surface, looks similar to the

proportional rule does not satisfy strong Pareto. As before, w(x, y) denotes the

proportion of individuals who weakly prefer x to y. Ovchinnikov’s rule is defined

by rOv(x, y) = w(x, y).36 If there are just two people, and one prefers x to y while

the other is indifferent, we have rOv(x, y) = 1 and rOv(y, x) = 1/2 which violates

strong Pareto.

5 Conclusion

In this paper we have established some general results on the aggregation of indi-

vidual preferences into a [0, 1]-valued social preference relation. We have operated

with a standard domain of individual preferences, and focussed on the properties

of the social relation. It is possible to conduct our analysis with fuzzy individual as

well as fuzzy social preferences, but little of extra value would be obtained. More-

over, our approach keeps us closer to the literature on revising Arrow’s collective

rationality requirement.

Essential to our argument is the max-star formulation of transitivity. We ar-

gued in section 1.2 that this is the natural fuzzification of the standard transitivity

condition. If this argument is accepted, then it is possible to partition the set of

max-star transitive relations into two parts; those whose t-norm contains a zero

divisor and those whose t-norm does not. Our central theorem (Theorem 5) shows

that in the latter case, the Arrow conditions imply strong oligarchy under the as-
36Ovchinnikov’s actual rule is more general than this in that he allows rOv(x, y) = ψ(w(x, y))

where ψ is an automorphism of the unit interval. We are treating this as the identity automor-
phism.
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sumption that the social preference relation is reflexive and quasi-transitive (where

these conditions are adapted to the [0, 1] context). However, in the former case,

strong oligarchy need not follow as a matter of logic and weak oligarchy is possi-

ble. This opens up the possibility, for example, of using the proportional rule as

an attractive collective choice rule.

The first half of Theorem 5 has, therefore, the flavor of an impossibility result,

whereas the second half has the flavor of a possibility result. We hope that this sec-

ond half tempers somewhat the negative interpretation given to results that have

been derived when applying fuzzy set theory to social choice. If our argument for

max-star transitivity is accepted then everything else is relatively uncontroversial.

For example, our results do not require us to commit to any particular method of

factorization. Note, as well, that in the non-fuzzy case, Theorem 5 would collapse

into Weymark’s general oligarchy theorem (his Theorem 1). Similarly, Corollaries

6 and 8 collapse into Gibbard’s and Arrow’s theorems respectively.

In concluding his classic paper on Arrow’s theorem with social quasi-orderings,

Weymark observes (1984, p. 245) that “very few of the implications of letting

social preferences be incomplete have yet been determined”. By re-interpreting a

fuzzy social preference relation as reflecting a kind of incompleteness (which we

term soft incompleteness), we hope to have made a contribution in this regard. We

have focussed on quasi-transitivity as our basic coherence condition. Future work

would explore the social choice implications of fuzzy counterparts of acyclicity and

Suzumura consistency.
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