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On the optimal investment.

José Manuel Corcuera∗, José Fajardo†, Olivier Menouken Pamen.‡

June 8, 2016

Abstract

In 1988 Dybvig introduced the payo� distribution pricing model (PDPM) as an alternative to the

capital asset pricing model (CAPM). Under this new paradigm agents preferences depend on the proba-

bility distribution of the payo� and for the same distribution agents prefer the payo� that requires less

investment. In this context he gave the notion of e�cient payo�. Both approaches run parallel to the

theory of choice of von Neumann-Morgenstern (1947), known as the Expected Utility Theory and pos-

terior axiomatic alternatives. In this paper we consider the notion of optimal payo� as that maximizing

the terminal position for a chosen preference functional and we investigate the relationship between both

concepts, optimal and e�cient payo�s, as well as the behavior of the e�cient payo�s under di�erent

market dynamics. We also show that path-dependent options can be e�cient in some simple models.

Key words: Expected Utility, Prospect Theory, Risk Aversion, Law invariant preferences, Growth

Optimal Portfolio, Portfolio Numeraire.

JEL-Classi�cation G11, D03, D11, G02

1 Introduction

The capital asset pricing model (CAPM) can be seeing as an approach to investment analysis based on the

following simple assumptions:

Agents preferences depend only on the mean and variance of the payo�.
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Between two payo�s with equal variance an agent will choose the one with higher return.

In 1988 Dybvig introduced the payo� distribution pricing model (PDPM) as an alternative to CAPM. His

goal was to �nd another alternative to evaluate investment performance. He assumed that agents preferences

depend on the probability distribution of the payo� and for the same distribution agents prefer the payo�

that requires less investment.

Both approaches run parallel to the axiomatic theory of choice of von Neumann-Morgenstern (1947) and the

posterior axiomatic alternatives; see for example Föllmer and Schied (2011).

The von Neumann-Morgenstern (1947) axiomatic theory together with the inclusion of risk aversion lead us

to the expected utility theory (EUT).

The optimal payo� consists in choosing a payo� in such a way that we obtain the largest expected utility of

the payo� for a �xed investment.

Alternatives to EUT are based on modi�cations or elimination of the independence axiom. The independence

axiom of the EUT says the following:

A preference relation � on a set of probability distributions X satis�es the independence axiom if for all

µ, ν ∈ X , µ � ν implies

αµ+ (1− α)τ � αν + (1− α)τ

for all τ ∈ X and α ∈ (0, 1].

Many examples or paradoxes show that this axiom or principle is not followed by real agents. The following

example is a well known paradox where the independence axiom is violated.

Example 1 (Allais' paradox) You have to choose between:

µ1 = 0.33δ2500 + 0.66δ2400 + 0.01δ0,

µ2 = δ2400

and later between

ν1 = 0.33δ2500 + 0.67δ0,

ν2 = 0.34δ2400 + 0.66δ0.

Allais showed that for 66% of people µ2 � µ1 and ν1 � ν2. However
1
2 (µ2 + ν1) = 1

2 (µ1 + ν2) and this
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violates the independence axiom. In fact if the independence is true and µ2 � µ1 and ν1 � ν2 we have

αµ2 + (1− α)ν1 � αµ1 + (1− α)ν1 � αµ1 + (1− α)ν2,

and taking α = 1/2 we obtain

µ2 + ν1

2
� µ1 + ν2

2
.

The Dual Theory of Choice (DTC) (Yaari (1987)) or the Cumulative Prospect Theory (CPT) (see Kahneman-

Tverski (1979) and Tverski-Kahneman (1992)) are some of the alternatives to EUT. Both propose that the

optimality of a payo� is a functional of its law. For instance Yaari proposed a preference functional of the

form

V (X) =

∫ 1

0

h(1− t)F−1
X (t)dt,

where h : [0, 1] 7−→ R+ (distortion function). In the CPT

V (X) =

∫ 1

0

h1(1− t)u1

((
F−1
X (t)− x0

)
+

)
dt

−
∫ 1

0

h2(t)u2

((
F−1
X (t)− x0

)
−

)
dt,

with h1, h2 distortion functions and u1 concave and u2 convex, x0 ∈ R is a reference level where consumers

pass from being risk adverse to being risk takers. These functionals are particular cases of

V (X) =

∫ 1

0

L(t, F−1
X (t))dt.

The EUT is included in the previous framework with

V (X) = E (u(X)) =

∫ 1

0

u(F−1
X (t))dt.

In this work we investigate the relationship between the concepts of e�cient and optimal payo�s. In addition

we study the behavior of the e�cient portfolio for various derivatives and di�erent assets' price dynamics.

The paper is organised as follows: Section 2 contains preliminary results on expected utility theory and

payo� distribution pricing model. Section 3 studies e�cient payo�s and law invariant preferences. Section 4

is devoted to e�cient payo�s in a dynamic setting while Section 5 investigates conditional e�cient payo�s.
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2 EUT and PDPM

We start this section by recalling the de�nition of a utility function.

De�nition 1 A utility function is map u : R → R ∪ {−∞}, which is strictly increasing and continuous on

{u > −∞}, of class C2 and strictly concave in the interior of {u > −∞}, and such that marginal utility

tends to zero when wealth tends to in�nity, i.e.,

u′(∞) := lim
x→∞

u′(x) = 0.

Let us denote the interior of {u > −∞} by dom(u). We will only consider the two following cases:

Case 1 dom(u) = (0,∞) and u satis�es

u′(0) := lim
x→0+

u′(x) =∞.

Case 2 dom(u) = R and u satis�es

u′(−∞) := lim
x→−∞

u′(x) =∞.

The HARA utility functions u(x) = x1−p

1−p for p ∈ R+\{0, 1} and the logarithmic utility u(x) = log(x) are

important examples of Case 1 and the exponential utility function u(x) = − 1
αe
−αx is a typical example of

Case 2.

Let us �x a pricing measure Q. Given w0 > 0 and a utility function u, we want to �nd a payo� X, with

initial value w0, that maximizes E(u(X)) that is we consider the following optimization problem

max {E(u(X)) : EQ (X) = w0} . (1)

Such X if it exists is said to be an optimal payo�. For the sake of simplicity we consider that interest rates

are zero.

Proposition 1 The optimal payo� is a decreasing function of dQ
dP .

Proof. The corresponding Lagrangian for (1) is

E(u(X))− λEQ (X − w0) = E
(
u(X)− λ

(
X

dQ
dP
− w0

))
.
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Then, the obvious candidate to be the optimal terminal wealth is

X∗ := (u′)
−1
(
λ

dQ
dP

)
, (2)

where λ is the solution of the equation EQ

[
(u′)

−1 (
λdQ

dP
)]

= w0. The existence of X
∗ follows from the fact

that u is strictly concave, so (u′)
−1

(·) is a strictly decreasing, and λ is positive and u′ takes values on R+

(in both cases 1 and 2). To see the optimality of X∗ we can consider another payo� X and we obtain that

E(u(X))− λEQ (X − w0)− (E(u(X∗))− λEQ (X∗ − w0))

= E
(
u(X)− u(X∗))− λ (X −X∗) dQ

dP

)
=

1

2
E
(
u′′(X̃) (X −X∗)2

)
≤ 0,

where X̃ is in between X and X∗. Since u is strictly concave, (a.s.) uniqueness follows.

Suppose that Y = (u′)
−1 (

λdQ
dP
)
is the payo� of certain contract, then this payo� is better than any other

payo� X with the same law as Y if the risk neutral measure used to price derivatives is Q and the utility

function that we choose is u. Then a fortiori

EQ (X) ≥ EQ (Y ) .

In fact we have that

E (u(Y )) = E (u(X)) ,

so if EQ (Y )−EQ (X) = h > 0, we will have that EQ (X + h) = w0 and E (u(X + h)) > E (u(Y )) contradicting

the optimality of Y . So among the payo�s with the same law as Y , Y is the payo� with the lowest price.

This is the idea of e�cient payo� introduced by Dybvig (1988a) and further developed in Dybvig (1988b).

Recently a systematic study of e�cient payo�s in di�erent contexts has been done by Bernard et al. (2014)

and Von Hammerstein et al. (2014) under the name of cost-e�cient payo�s. Here we shall use the term

e�cient payo� for brevity.

De�nition 2 A payo� Y is said to be an e�cient payo� if any other payo� X with the same law is more

expensive.

Therefore, we have proved, in the previous paragraph, the following proposition.

Proposition 2 The optimal payo� w.r.t. the utility function u is an e�cient payo�.
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Suppose Y = (u′)
−1 (

λdQ
dP
)
, and that u is as in Case 1 (a similar discussion can be done for Case 2), let

h : R+→R be a non decreasing C1 function with h(0) = 0 and de�ne Z := h
(

(u′)
−1 (

λdQ
dP
))
. Then we

wonder if Z is an optimal payo� w.r.t. another utility function. Let V be such utility function, that is, it

must satisfy

(V ′)
−1
(
λ

dQ
dP

)
= h

(
(u′)

−1
(
λ

dQ
dP

))
.

Therefore it is su�cient to have that V (·) is a primitive function of u′(h−1(·)). Hence h(Y ) is an e�cient

payo� by the argument in the paragraph before De�nition 2. As a consequence, if we want to create e�cient

payo�s with a �xed distribution function F : R+→[0, 1) and we assume that dQ
dP is a continuous random

variable, then this e�cient payo� is given by

F−1

(
1− F dQ

dP

(
1

λ
u′(Y )

))
= F−1

(
1− F dQ

dP

(
dQ
dP

))
,

where it is assumed that F−1 ∈ C1, and F dQ
dP

(·) denotes the distribution function of dQ
dP . This e�cient payo�

is also an optimal payo� w.r.t. a utility function V (·) (belonging to Case 1) which is a primitive function

of λF−1
dQ
dP

(1− F (·)). The factor λ can obviously be omitted. We have derived the following result:

Proposition 3 Assume that dQ
dP has a continuous distribution and that F is a smooth distribution function,

such that F−1 ∈ C1.Then

X := F−1

(
1− F dQ

dP

(
dQ
dP

))
is an e�cient payo�. X is also an optimal payo� w.r.t. a utility function (belonging to Case 1 or Case 2)

V (·) which is a primitive function of F−1
dQ
dP

(1− F (·)).

Example 2 It is easy to see that when F and Flog dQ
dP

are Gaussian the corresponding utility funcion is

the exponential utility. In fact, if Flog dQ
dP

(z) = Φ
(
z−µ
σ

)
and F (u) = Φ

(
u−α
γ

)
, where Φ (·) cumulative

distribution function of the standard normal distribution, then

F−1
dQ
dP

(1− F (u)) = exp

{
µ− σ

γ
(u− α)

}
,

and a primitive function, up to multiplicative constants, is given by

V (u) := −γ
σ

exp

{
−σ
γ
u

}
, u ∈ R.
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As we shall see later this smoothness condition on F can be relaxed. The relationship between e�cient and

optimal payo�s has also been studied in a recent paper by Bernard et al. (2015b)

2.1 Ine�ciency of path dependent options

In 1988 Dybvig wrote a paper entitled: Ine�cient Dynamic Portfolio or How to Throw Away a Million Dollars

in the Stock Market (Dybvig (1988b)). The title suggests a general or universal result about investment

in stock markets. His claim is that path dependent options are ine�cient in the sense that we can have

a payo� depending only of the �nal price of the stock, say ST , with higher terminal utility and the same

initial price. Vandu�el et al. (2009) obtained the same inne�ciency result in a Lévy market model and

Kassberger-Liebmann (2012) explained when this phenomenon happens. The following simple lemma and

theorem clarify the situation.

Lemma 1 Let X ≥ 0 be a payo�. Consider a model in which the risk neutral probability Q satis�es

dQ
dP
∈ σ(ST ).

Then

EQ(X|ST ) = E(X|ST ).

Proof. First, set Z := EQ(X|ST ), by de�nition of the conditional expectation:

EQ(Y Z) = EQ(Y X) for all Y ≥ 0, Y ∈ σ(ST ),

then

EQ(Y Z) =

∫
Ω

Y ZdQ =

∫
Ω

Y
dQ
dP

ZdP =

∫
Ω

Ȳ ZdP =

∫
Ω

Ȳ XdP,

with Ȳ ≥ 0 and Ȳ ∈ σ(ST ) arbitrary, so Z = E(X|ST ).

Theorem 1 If the risk neutral probability satis�es dQ
dP ∈ σ(ST ), and the savings account is deterministic,

path-dependent payo�s are dominated, in the sense that there is another payo� with the same initial price

and more terminal utility.
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Proof. Given a payo� X, de�ne X̄ by X̄ := EQ(X|ST ). Then, the price is the same, since the savings

account (Bt)t≥0 is deterministic,

EQ

(
X

BT

)
= EQ

(
1

BT
EQ(X|ST )

)
.

Now, by Lemma 1

X̄ = EQ(X|ST ) = E(X|ST ),

and given a utility function u

E(u(X̄)) = E(u(E(X|ST ))) ≥ E(E(u (X) |ST )) = E(u (X)),

where the inequality follows from Jensen's inequality since u is concave.

However, as shown in Example 4, the condition dQ
dP ∈ σ(ST ) is not satis�ed in some simple models and the

claim of Dybvig is not true in such cases. In the next section we consider a more general frame that includes

EUT.

3 E�cient payo�s and law invariant preferences

De�nition 3 A preference functional V (X) : L∞ → R is called

1. monotone if X ≥ Y a.s. implies V (X) ≥ V (Y ),

2. law invariant if V (X) = V (Y ) whenever X
d∼ Y.

EUT, DTC and CPT use monotone and law invariant functionals and this law invariance is in agreement

with the Dybvig approach.

Here we follow Carlier-Dana (2011). Choose an agent with preference functional V (strictly monotone and

law invariant) and initial wealth w0. Consider the optimization problem

sup
{
V (X),EQ(X) = w0, X ∈ L∞+

}
, (3)

where Q is the pricing measure and let the interest rate be zero. Further, assume that ψ := dQ
dP has continuous

distribution function Fψ.
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Set

A := {x : (0, 1)→ R+, x is increasing and right continuous} ,

and de�ne v(x) := V (x(U)) where U is a uniform distribution on (0, 1). Note that V (X) = v(F−1
X ). Consider

now X of the form

X = F−1
X (1− Fψ(ψ)) = x(1− Fψ(ψ)), x ∈ A. (4)

Then the optimisation problem (3) is equivalent to

sup

{
v(x), x ∈ A, x bounded,

∫ 1

0

F−1
ψ (1− t)x(t)dt = w0

}
. (5)

The condition (4) is not a restriction. In fact the solution to the optimal investment has to be in the set of

e�cient payo�s.

Theorem 2 Given two random variables X,Y we have

E(F−1
X (1− U)F−1

Y (U)) ≤ E(XY ) ≤ E(F−1
X (U)F−1

Y (U)),

where U is a uniform distribution on (0, 1).

So

EQ(X) = E
(

dQ
dP

X

)
= E (ψX) = E(F−1

ψ (1− U)F−1
X (U)).

Proof. By the formula of Hoe�ding (see Lemma 2 in Lehman (1966))

Cov (X,Y ) = E (XY )− E (X)E(Y )

=

∫
R

∫
R

(FX,Y (x, y)− FX(x)FY (y)) dxdy.

So, the minimum of E (XY ), for �xed FX and FY , is obtained when FX,Y is minimum and this minimum is

given by the Fréchet (1935) lower bound for FX,Y �xed FX and FY :

min
FX(·)=g(·),FY (·)=h(·)

FX,Y (x, y) = max(g(x) + h(y)− 1, 0),

and this bound is reached if we take

(X,Y ) = (F−1
X (1− U), F−1

Y (U)).
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This is the approach in Bernard et al. (2014a) to prove the result. Another way of proving it is by using the

Hardy-Littlewood inequalities directly (see for instance Theorem A.24 in Föllmer and Schied (2011)).

Note that if Y is continuous, we can choose U = FY (Y ) and we can write the random variable

X̄ := F−1
X (1− U) = F−1

X (1− FY (Y )) = x̄(1− FY (Y )), x̄ ∈ A.

Note that we have solved the problem

min {EQ (X) : X ∼ F} ,

and its solution is given by X = F−1(1 − Fψ(ψ)) = F−1
(

1− F dQ
dP

(
dQ
dP
))
. Hence we have the following

proposition.

Proposition 4 The optimal payo� w.r.t. a law invariant and monotone functional V (X) and initial wealth

w0, is the e�cient payo� with distribution function F that satis�es

F−1 = arg max
x∈I

V (x(U)),

where I =
{
x : (0, 1)→ R+, x increasing, right continuous and bounded,

∫ 1

0
F−1
ψ (1− t)x(t)dt = w0

}
and U

is a uniform distribution on (0, 1).

It is interesting to notice that we have not assumed any additional condition on the preference functional

except the monotonicity and the law invariance. Then we cannot in general guarantee the existence of the

solution to the problem (3). In the case that

v(x) =

∫ 1

0

h(1− t)u(x(t))dt,

where u is a utility function. We also have the following theorem:

Theorem 3 (Carlier-Dana 2011) The optimal payo� is an e�cient payo� with an inverse distribution

function F−1 that is strictly decreasing i� F−1
ψ /h is strictly increasing. If F−1

ψ /h is not increasing there

are ranges of values of the pricing density for which F−1 is constant. If F−1
ψ /h is decreasing then F−1 is

constant.

Let us stress that the problem

min {EQ (X) : X ∼ F} ,
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is exactly what Dybvig considered. That is, for a given distribution of the payo�s; what is the cheapest one?

This payo� is the e�cient payo� that we de�ned in the previous section. We have seen that they have the

form

X = F−1

(
1− F dQ

dP

(
dQ
dP

))
.

Theorem 4 A payo� X is e�cient i� it is a decreasing function of dQ
dP .

Proof. If X is e�cient then X = h
(

dQ
dP
)
with h = F−1

(
1− F dQ

dP
(·)
)
that is decreasing, on the other hand

if X = h
(

dQ
dP
)
with h decreasing then

FX(x) = 1− P (X > x) = 1− P
(
h

(
dQ
dP

)
> x

)
= 1− P

(
dQ
dP

< h−1(x)

)
= 1− F dQ

dP

(
h−1(x)

)
,

so

FX(h(y)) = 1− F dQ
dP

(
h−1(h(y))

)
= 1− F dQ

dP
(y)

and

X = F−1
X

(
1− F dQ

dP

(
dQ
dP

))
.

In the following examples, that can be found in Bernard et al. (2014a), we illustrate the e�ciency or not of

the payo� of certain derivatives and the case they are not, we �nd their corresponding e�cient payo�.

Example 3 Consider the Black-Scholes market model, dSt = St (µdt+ σdWt) and

dBt = rBtdt.

Then

dQ
dP

= exp

{
r − µ
σ

WT −
1

2

(
r − µ
σ

)2

T

}
,

and

ST = S0 exp

{(
µ− 1

2
σ2

)
T + σWT

}
.

Hence

dQ
dP

= CS
r−µ
σ2

T ,
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where C is a constant that depends on T. Then if we assume a bullish market: µ > r, dQ
dP is a decreasing

function of ST . So, any e�cient payo� has to be an increasing function of ST . In this context, the payo�s

X1 = (K − ST )+, X2 = K − ST

are not e�cient since they are decreasing functions of ST . Now

log
1

ST

d
= − logS0 −

(
µ− 1

2
σ2

)
T + σWT

= logST − 2 logS0 − 2

(
µ− 1

2
σ2

)
T .

That is

ST
d
=

c

ST

with c = S2
0e

(2µ−σ2)T . As a consequence the corresponding e�cient payo�s of a put option and a short

forward are respectively,

X̄1 =

(
K − c

ST

)
+

=
K

ST

(
ST −

c

K

)
+
, X̄2 = K − c

ST
.

and the corresponding prices of the original and e�cient payo�s are:

Short forward contract: Ke−rT − S0; e�cient: Ke−rT − S0e
(µ−r)T

Put option : Ke−rTΦ(d−)− S0Φ(d+);

E�cient:

Ke−rTΦ

(
d− −

2(µ− r)
√
T

σ

)
− S0e

(µ−r)TΦ

(
d+ −

2(µ− r)
√
T

σ

)
,

with d± :=
log K

S0
− (r ± 1

2σ
2)T

σ
√
T

.

Note that e�cient prices depend on µ, so their estimation can be di�cult.

Example 4 Consider the path-dependent payo�

X3 =
(
e

1
T

∫ T
0

log(St)dt −K
)

+
.
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It can be shown that, under a Black-Scholes model, the e�cient payo� is

X̄3 = c

(
S

1/
√

3
T − K

c

)
+

, c = S
1− 1√

3

0 e

(
1
2−

1√
3

)
(µ− 1

2σ
2)T

.

This is in agreement with Theorem 1: path dependent options have ine�cient payo�s if dQ
dP = CS

r−µ
σ2

T .

However if we a assume that the stock S evolves as

dSt = St (µtdt+ σtdWt) ,

and the savings bank account as

dBt = rtBtdt,

with µt, σt, rt deterministic and càdlàg, then

dQ
dP

= exp

{∫ T

0

rt − µt
σt

dWt −
1

2

∫ T

0

(
rt − µt
σt

)2

dt

}
,

so

dQ
dP

= exp

{∫ T

0

rt − µt
σt

dWt −
1

2

∫ T

0

(
rt − µt
σt

)2

dt

}

= exp

{∫ T

0

rt − µt
σ2
t

dSt
St
− 1

2

∫ T

0

r2
t − µ2

t

σ2
t

dt

}

= CT exp

{∫ T

0

rt − µt
σ2
t

dSt
St

}
.

Then, any payo� that is a decreasing function of

VT = exp

{∫ T

0

rt − µt
σ2
t

dSt
St

}

will be e�cient. Consider for instance a put option

(K − ST )+

logST ∼ N

(∫ T

0

(
µt −

1

2
σ2
t

)
dt,

∫ T

0

σ2
t dt

)
:= N

(
mT , v

2
T

)
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and

log VT ∼ N

(∫ T

0

µt (rt − µt)
σ2
t

dt,

∫ T

0

(
rt − µt
σt

)2

dt

)
:= N

(
aT , b

2
T

)
,

in such a way that an optimal payo� is

(
K − V

vT
bT

T e
vT
bT

(mT−aT )

)
+

,

since

V
vT
bT

T e
vT
bT

(mT−aT ) d
= ST

and K − V
vT
bT

T e
vT
bT

(mT−aT )
is a decreasing function of VT . In this situation a path dependent option is better

than a vanilla option! contrarily to what the title of Dybvig (1988b) suggests, as explained in Section 2.1.

4 E�cient payo�s in a dynamic setting

Here we follow Becherer (2001). Consider the set of strictly positive self-�nancing portfolios with initial

value one:

N :=

{
N > 0 : Nt = 1 +

∫ t

0

ϕudSu

}
.

N ∈ N is said to be the numeraire portfolio (NP) if, for all V ∈ N , V/N is a supermartingale (w.r.t. the

probability measure P). We say that an element of N is the growth-optimal portfolio (GOP) if it solves the

maximization problem

u := sup
V ∈N

E (log VT ) .

We have the following important results.

Theorem 5 Assume u <∞. Then the numeraire portfolio and the growth-optimal portfolio are the same.

Proof. See Proposition 4.3 in Becherer (2001) .

Theorem 6 If the market is complete the numeraire portfolio is given by

Nt = E
(

dP
dQ

∣∣∣∣Ft) , 0 ≤ t ≤ T,
with Ft := σ(Su, 0 ≤ u ≤ t).
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Proof. See Example 1 in Becherer (2001).

In the Black-Scholes model

Nt = exp

{
−r − µ

σ
Wt +

1

2

(
r − µ
σ

)2

t

}

= exp

{
−r − µ

σ
W̃t −

1

2

(
r − µ
σ

)2

t

}
,

where W̃ is Q-Brownian motion. We have seen that any e�cient payo� can be written as a decreasing

function of dQ
dP and consequently as an increasing function of the �nal value of the numeraire portfolio NT ,

say X̃ = h(NT ).

Then the (discounted) value of the replicating portfolio is given by

Ṽt = E
(
X̃|Ft

)
= E (h(NT )|Ft) = E

(
h

(
NT
Nt

x

))∣∣∣∣
x=Nt

=: g(t,Nt),

from which (under smoothness assumptions on g), we get

dṼt = ∂2g(t,Nt)dNt.

Hence V is a locally optimal portfolio in the sense that it has the largest discounted drift given a di�usion

coe�cient (Platten (2002)) and

∂2g(t,Nt)Nt

Ṽt

can be interpreted as a risk aversion coe�cient (Platten (2002)).

If the market is incomplete, one uses the numeraire portfolio to get arbitrage free prices of a payo� X by

E
(
X

NT

)
.

The latter is referred as the benchmark approach where the numeraire is chosen in such a way that the

corresponding risk-neutral measure coincides with the historical one (see Platen and Heath (2006)). In this

case a payo� X is e�cient i� X is an increasing function of NT as above, but if we use a pricing measure

Q a payo� X will be e�cient i� it is a decreasing function of dQ
dP . In the continuous case both approaches

coincide if we use the minimal martingale measure (see Schweizer (1999)).
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If we consider an exponential Lévy model for S :

dSt = St−dZt, S0 > 0,

where Z is a Lévy process with characteristics (d, c2, ν) (with jumps strictly greater than −1) and the pricing

measure Q is such that Z is a Q-Lévy process it can be seen (see Corcuera et al. (2006)) that

dQ
dP

= aSbT e
VT , a > 0, b ∈ R (that depends on Q),

and

VT =

∫ ∞
−∞

(logH(x)− b log(1 + x)) M̃((0, t],dx).

with H(x) = dν̃
dν (x) and where M̃((0, t],dx) is the compensated Poisson random measure associated with Z.

Tilde indicates the characteristics w.r.t. Q (see Corcuera et al. (2006) for more details).

In such cases an e�cient payo� is an increasing function of SbT e
VT and only in the case that VT ≡ 0 e�cient

payo�s are a monotone function of ST . It corresponds to the case that Q is the Esscher measure, see Von

Hammerstein et al. (2014).

The benchmark approach coincides with the pricing measure approach when

H(x) =
1

1− bx
, and

c2b+ d− r + b

∫ ∞
−∞

x2

1− bx
dν(x) = 0,

since in this case the optimal terminal wealth corresponding to the log-utility can be replicated by using

stocks and bonds (see Corcuera et al. (2006), Example 4.1).

It will be also interesting to include optimal consumption problem in this context, as for example it is done

in Fajardo (2003).

5 Conditional e�cient payo�s

Reducing the importance of a payo� to its law is quite controversial. For instance when one buys a Call

option he/she is buying a right to buy a stock at a certain price and this is lost if he/she takes another payo�

with the same law but with di�erent values. There are many other examples that suggest that, if there is

no perfect correlation, the investor would like a �xed dependency w.r.t. some special payo�.
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This approach was introduced by Takahashi-Yamamoto (2013). See also Bernard et al. (2014b) and Bernard

et al. (2015a).

Suppose a benchmark payo� Y is given, and that the investor wishes to invest in another payo� X with a

joint distribution (X,Y ) �xed. In other words two payo�s X and Γ are equivalent if (X,Y ) ∼ (Γ, Y ) , or,

equivalently, if X|Y = y ∼ Γ|Y = y for all y. So, one wants to solve the problem

min
(X,Y )∼FX,Y

EQ (X) . (6)

Firstly, given Z, we can �nd a function g(Z, Y ) such that (X,Y ) ∼ (g(Z, Y ), Y ). In fact, if we assume that

FZ|Y (z|y) is continuous, then, conditionally on Y = y, FZ|Y (Z|y) ∼ U(0, 1) (note that the random variable

FZ|Y (Z|Y ) is, therefore, independent of Y ) and F−1
X|Y (FZ|Y (Z|y)|y) (where F−1

X|Y (·|y) is the pseudo-inverse

of FX|Y (·|y)) will be a random variable such that conditionally on Y = y has the same law as X, then

(F−1
X|Y (FZ|Y (Z|Y )|Y ), Y ) ∼ (X,Y )

and the function we are looking for is g(z, y) = F−1
X|Y (FZ|Y (z|y)|y).

Now we can solve the optimization problem (6). We know that

EQ (X) = E
(

dQ
dP

X

)
,

so, since the law of X and dQ
dP are �xed, if X ∼ h

(
dQ
dP
)
for some decreasing function h, we reach the lower

bound for E
(

dQ
dPX

)
. But we have to �x the conditional law, that is, we need that (X,Y ) ∼

(
h
(

dQ
dP
)
, Y
)
.

Then, according to the previous step, we can take h
(

dQ
dP
)

= g
(

dQ
dP , Y

)
.

In fact we are solving the conditional problem: in the set of random variables X such that X|Y = y is �xed,

we solve the problem

min
X|Y=y∼FX|Y

E
(

dQ
dP

X

∣∣∣∣Y = y

)

and the solution is F−1
X|Y

(
F dQ

dP |Y
(

dQ
dP
∣∣ y)∣∣∣ y) = g

(
dQ
dP , y

)
. Consequently

min
X|Y=y∼FX|Y

E
(

dQ
dP

X

)
= E

(
dQ
dP

Γ

)
,

with Γ = g
(

dQ
dP , Y

)
. Three elements interact in the expression: the conditional law of X given Y , the price

state density dQ
dP and Y.
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An additional reason to consider conditional e�cient payo�s could be the existence of privileged information

about a certain payo� Y . This might be object for future research.
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