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Abstract: This paper explores possible causal determinants of changing wage and salary informality over 

the period 2000–2010 in Brazil. We utilize demographic census and other institutional data sources from 

the opening and closing years of the decade, informality regressions in both years that exploit variation 

across workers and municipalities in informality rates and their causal determinants, and a Blinder-Oaxaca 

decomposition of changing mean informality rates over the decade. Among the determinants considered 

are: changes in labor law enforcement, a near doubling of the real value of the minimum wage, the 

emergence and growth of conditional cash transfer programs, and changing industry composition and labor 

force demographics. We find that two of the most important policy changes over this period – the increase 

in the real value of the minimum wage and the dramatic expansion of conditional cash transfer programs – 

contribute positively, not negatively to informality. Among the factors accounting for the decline in mean 

informality rates over this time are rising rates of labor law enforcement, rising education levels, increased 

numbers of workers with spouses in the formal sector, and changes in industry composition, which explain 

between 16% and 57% of the mean decline in informality over the period. However, most of the decline is 

accounted for by the changing estimated coefficients on the industry categorical variables – that is, by the 

changing way in which industrial composition translates into informality.  
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1. Introduction 

Brazil witnessed a rather significant decline in labor informality over the first decade of the 21st century – 

a decline that brought informality from roughly 50% to 40% of the urban labor force. Economic growth 

was rapid over much of the period; enforcement of labor law violations was made more efficient; the real 

value of the minimum wage more than doubled; and the largest conditional cash transfer program in the 

world – Bolsa Família – was begun. In addition, industrial composition changed over the period, as did 

several demographic features of the labor force, including average education levels and age. How have 

these factors contributed to changing informality over the period?  

 

Using Demographic Census data and other institutional data sources over the period 2000 to 2010, we 

explore the determinants of informality by exploiting variation in informal employment across workers and 

municipalities and estimating cross-sectional informality regressions in both years. The change in mean 

informality rates over the period are decomposed using a Blinder-Oaxaca decomposition. We employ an 

instrumental variables analysis to identify the causal impact of enforcement efforts, conditional cash 

transfers, and the minimum wage. Various robustness analyses are also presented, including a municipal 

fixed effects estimation that controls for time-invariant features of municipalities over the period.  

 

The first insight from analysis of the data is that while informality fell by about 10 percentage points over 

this period, over 80% of the decline took place among wage and salary workers as opposed to the self-

employed. We tailor our model to capture the determinants of informality in this particular segment of the 

informal economy and focus our empirical analysis on this segment only. We begin with a review of the 

literature on the determinants of informality.  

 

2. Determinants of Wage and Salary Informality in Brazil  

Two major policy changes during the first decade of the 2000s in Brazil, with potentially major 

consequences for the extent of informality in the country, were the emergence and growth of the conditional 

cash transfer program Bolsa Família and the near doubling of the real value of the minimum wage.  

 

Bolsa Família originated in 2003 with the new Lula administration in Brazil. It brought together under one 

umbrella existing municipal and federal cash transfer programs1 and expanded the federal conditional cash 

transfer (CCT) component significantly, growing within a brief period of time to become the single largest 

CCT program in the world. By decade’s end, Bolsa Família was serving roughly one-quarter of the poorest 

households in the country, sending cash to many families conditional on their achieving targeted goals for 

the health, nutrition, and education of their children, but also granting unconditional cash transfers to the 

very poorest households.  

 

Evidence is clear that the program had a significant impact on rising school attendance and ultimately 

educational levels in Brazil (Cardoso and Souza, 2003; Glewwe and Kassouf, 2012). Empirical research on 

informality suggests most strongly that rising education levels tend to depress informal sector employment. 

However, there is an additional channel through which Bolsa Família may affect informality. Program rules 

                                                           
1 Bolsa Escola was one such program. It became a federal conditional cash transfer program in 2001, following experimentation 

with conditional cash transfers in several municipalities dating back to the early 1990s (Soares 2012).  
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establish clear per capita family income maxima for eligibility, but income is self-reported and verification 

is possible only when workers’ income is independently reported to federal authorities – that is, only for 

workers in the formal sector of the economy. Hall (2008) argues that this feature of the program might 

cause some workers to shun formal sector employment and to choose, instead, work in the informal sector, 

where they would be more likely to qualify for benefits, possibly through fraudulent reporting of income. 

He cites anecdotal evidence from a Brazilian study (2008, p. 815) showing precisely this sort of incentive 

operating among temporary rural workers. De Brauw, Gilligan, Hoddinott, and Roy (2014) employ 

household panel data and a difference-in-differences identification strategy to establish credible evidence 

that urban area recipients of the program reduce labor hours in the formal sector and increase hours in the 

informal sector in comparison to a control group of nonparticipants.  

 

The real value of the minimum wage doubled in the first decade of the 21st century in Brazil, as policy 

increasingly focused on reducing poverty, including among the working population. In a conventional two-

sector model, with a covered and uncovered sector, theory predicts that an increase in the minimum wage 

should raise wages and reduce employment in the covered (formal) sector, and, as workers gravitate to the 

uncovered (informal) sector, wages should fall and employment should rise therein. However, in Brazil – 

as is true of several other Latin American economies – the impact of the minimum wage on wages in the 

formal and informal sectors is more complex.  

 

There is significant evidence to suggest that the minimum wage has so-called “lighthouse” and “numeraire” 

effects on wages in both sectors (Maloney and Nuñez 2004). That is, the minimum wage appears to be 

viewed as a (lighthouse) signal of fairness in wage setting and as a useful (numeraire) index for wage 

increases over time, for workers both above and below the actual statutory minimum in the formal and 

informal sectors alike. Evidence of wage clustering around multiples of the minimum wage can be found 

in both the formal and informal sectors in several Latin American economies (Neri et al. 2001; Amadeo et 

al. 2000; Fairris et al. 2008).  

 

Several empirical investigations into the minimum wage in Brazil confirm the existence of wage increases 

above and below the minimum, in both the formal and informal sectors, following a minimum wage hike 

(e.g., Fajnzylber 2001 and Lemos 2009). Moreover, there is some evidence to suggest that the impact on 

wages is greatest in the informal sector (Maloney and Nuñez 2004). This obviously complicates the story 

of the likely employment impact of the minimum wage. Is the conventional prediction still correct – in this 

case, implying that informal employment growth due to spillover effects is offset by rising informal sector 

wages due to lighthouse and numeraire effects? Evidence to date seems to suggest that indeed minimum 

wages decrease formal sector employment and increase informal sector employment, consistent with the 

dominance of the spillover effect (Fajnzylber 2001, Carneiro 2004), but the estimated impacts are not 

always statistically significantly different from zero (Lemos 2009).  

 

The extent of informality in a society is ultimately the result of the individual choices of employers and 

workers. On the employer side, businesses must decide whether to operate legally or under the radar, for 

all or some subset of their workforce. This decision hinges on the relative costs and benefits of operating 

formally versus informally. One possible cost of informality is the risk of being caught and fined by the 

authorities for violating labor law.  
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The issue of labor law enforcement in Brazil is a complicated one. Until the late 1980s, there appears to 

have been little enforcement of laws affecting work and workers. This changed when a new set of labor 

standards was included in the 1988 Constitution, and by the early 1990s there existed a staff of roughly 

3,000 highly-paid and professional inspectors – a number that would remain largely unchanged in the two 

decades to follow (Berg 2010). Compliance with labor regulations is the responsibility of the Ministry of 

Labor in Brazil, and enforcement is delegated to ministry offices which are sprinkled throughout the 

country.  

 

Despite relative stasis in the number of inspectors the effectiveness of inspections was enhanced 

enormously in the period from the late 1990s to the late 2000s through two developments. First, a system 

of incentive pay was introduced which linked inspector income to the achievement of specific performance 

targets. Second, teams of inspectors were given increased freedom to work with non-compliant firms to 

explore ways of bringing firms into compliance that would prove beneficial to both workers and firms – an 

approach that moved away from repeated inspections and enforcement to one focusing on making 

compliance “sustainable” in the long run (Pires 2008). Labor Ministry data reveal that between 1996 and 

2008 the number of workers brought into formal sector status through labor inspections more than doubled 

(Berg 2010, p. 15).  

 

Experts on labor standards compliance in Brazil are clear that much of the progress in enhancing formality 

during this period was accomplished through the formalization of informal workers in large, formal sector 

firms, since inspectors focused their energies during this period almost exclusively on such firms (Cardoso 

and Lage 2007). There may be an unintended, positive impact on formality stemming from stepped-up 

compliance with constitutionally-mandated benefits such as severance pay or health and safety standards 

as well. If improvements in these areas attract informal workers to formal sector jobs, and if wages fall as 

a consequence, formal sector firms might be encouraged to expand their workforces (Ameida and Carneiro 

2012).  

 

The empirical evidence linking inspections to formality is relatively sparse. Simulations with Brazilian data, 

employing a two-sector matching model with formal and informal sectors, suggest that increased 

enforcement reduces informality (Ulyssea 2010). Almeida and Carneiro (2009) use a rich data set on the 

intensity of inspections across Brazilian cities and data on formal-sector firms to show that enforcement 

reduces firm size, which, because small firm size is a major identifier of likely informal sector status, 

suggests that costly compliance may push firms into informality. Finally, Almeida and Carneiro (2012) 

utilize the same Brazilian inspections data and the 2000 Brazilian Census to explore directly the link 

between inspections and informality, and find evidence of increased formality in cities with high levels of 

enforcement.  

 

Changes in the demographic composition of the labor force during this period might also have contributed 

to declining informality. Education, age, and gender, among other features of the workforce, are clearly 

correlated with informal sector status.2 The explanations for this observed correlation are varied and 

controversial. We take no strong view on whether the correlation reflects labor market segmentation, and 

thus the forced relegation of a subset of workers to informal sector status, or instead competitive labor 

                                                           
2 Mello and Santos (2011) offer evidence suggesting that increased educational attainment accounts for part of the decline in 

informality over the period of our investigation. 
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markets, and thus a setting in which workers freely choose to locate among the informal wage labor force. 

While the empirical evidence is clear that the typically dispossessed – the young and old, women, and the 

uneducated – are disproportionately to be found in the informal sector workforce (e.g., Perry et al. 2007), 

whether this is by force or by choice is less clear.  

 

Maloney (2004) reports that roughly 30% of surveyed informal salary workers in Brazil would not wish to 

work in the formal sector. Work time flexibility in the informal sector may be attractive to women with 

children and to older workers who have retired with pension benefits from the formal sector. Almost 20% 

of those women who prefer working in the informal sector in Brazil cite household chores or needing time 

for other activities as the reason for choosing to work informally (Maloney 2004). The young may not find 

value in the pension and health benefits common to formal-sector status. And those who have spouses 

working in the formal sector, and thus qualifying for family benefits by virtue, may be free to locate in the 

informal sector without significant loss. On the other hand, the less educated are almost assuredly there by 

force and not choice. Perry et al. (2007, p. 62) state: “….graduation to formal salaried work is unlikely for 

youth who drop out of school before completing at least a full course of secondary education.” Arguably, 

a portion of the women, elderly, and younger workers in the informal sector are also likely to be there not 

by choice.  

 

Leaving aside the labor market segmentation debate, what has happened to these demographic features of 

the population and labor force over the course of the decade 2000–2010? Well before the first decade of 

the current century, Brazil was undergoing a rather significant demographic shift in the age of the 

population. Declining fertility rates and rising life expectancy were leading to an aging of the population. 

By the 2000s, the declining fertility rates were impacting the working age population. Berg (2010) reports 

that household data in Brazil reveal a fall in the percentage of the population ages 15–24 from 18.6% to 

17.7% over just the few years 2005–2008 (p. 12). We find an increase in the average age of the labor force 

in our data, consistent with the trends observed on fertility and life expectancy rates. 

 

Another factor limiting the youth population in the labor force is increased school enrollments, making 

young people less available for work. The percentage of youth ages 15–17 enrolled in school has climbed 

steadily since the early 1990s. As noted above, the Bolsa Família program of the 2000s had a marked 

impact on this trend; Berg (2010) reports that the percentage of youth in this age category economically 

inactive increased from 57% in 1999 to 65% in 2008. This shows up in our data not just on the aging of the 

labor force, but also in rising education levels of those engaged in active employment. We find an increased 

percentage of women in the labor force, as well as an increased percentage of individuals with spouses 

working in the formal sector. The aggregate effect of these changes, as well as those discussed above, awaits 

statistical analysis.  

 

We are unable to directly capture several features of the Brazilian economy that have been linked to 

declining informality during this period. The first is trade liberalization and rapid economic growth. Annual 

growth in GDP was 4.2% during the period 1999–2008, and exports grew by almost 80% over the period 

(Paz, 2012). Export-led growth expansions are known to be particularly conducive to employment growth 

in the formal sector (Corseuil and Foguel 2012). A second factor is increased availability of credit for small, 

formal sector firms. Catão et al. (2009) show that credit to firms expanded dramatically over the period 

2003–2008 in Brazil, from roughly 15% of GDP to around 22%, and then use Brazilian data covering the 
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period 2002–2006 to show that this credit deepening contributed to declining informality. Finally, the 

Simples Law, enacted in 1996, created a system of tax simplification for small and micro enterprises and 

various tax exemptions as well. Berg (2010, p. 17) cites two studies exploring the link between the Simples 

Law and declining informality in Brazil in ensuing years, one of which covers the 10-month period 

following the law’s onset and showing evidence of a 13 percentage-point increase in formal licensing 

among retail firms who were eligible for the benefits of the law compared to a control of similar firms that 

were ineligible.  

 

We believe that changes in industry composition over the period may allow us to pick up some of these 

otherwise uncaptured factors contributing to declining informality over the period. All three are plausibly 

related to changing industry composition, or to the changing ways in which a given industry composition 

relates to informality. To cite just one example, Catão et al. (2009) suggest that informality should vary 

across municipalities, business credit held constant, depending on industrial composition and therefore the 

varying need for external funding. Moreover, as business credit expands over the decade, the way in which 

industrial structure translates into formality should also change, with formality growing most in those 

industries which are most in need of external funding. We control for municipal-level industry composition 

in our regressions, and for its changes over time in our decomposition analysis, but are obviously unable to 

parse out the various causal mechanisms that are at work behind the scenes of these changes in industrial 

structure and composition. We turn, now, to the specifics of our empirical methodology and data.  

 

3. Empirical Methodology and Data  

 

3.1. Empirical methodology 

 

To analyze the drivers of changing informal wage and salary employment over the first decade of the 21st 

century in Brazil, we estimate probability models using worker- and municipal-level data, one for 2000 and 

one for 2010, based on data drawn from the Demographic Census of these two years, and from various 

institutional data sources to be discussed below. Using the probability regression results from the two 

periods, we decompose the change in mean informality rates over the period into changes in the means of 

explanatory variables and changes in the estimated regression coefficients. We use a linear probability 

model specified as follows; 

 

𝑃𝑟𝑜𝑏(𝑖𝑠𝑖𝑚 = 1) = 𝑿𝒊𝒎𝜷+ 𝒁𝒎𝜸 + 𝜀𝑖𝑚       (1) 

 

Prob(isim = 1) denotes the probability that worker i in municipality m is employed in the informal sector 

(employment in the formal sector = 0). X denotes a vector of worker characteristics, including education, 

age, and gender – many of which are hypothesized to be related to likelihood of informal employment – 

and Z is a vector of municipal characteristics, including variables capturing labor law enforcement, 

conditional cash transfers, minimum wage effects, and industrial composition, each of which are 

hypothesized to affect the likelihood of municipal-level informal employment. β and γ are vectors of 

coefficients to be estimated and ε is an error term, assumed to follow a normal distribution with zero mean 

and variance σ.  
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We use a linear probability model since this allows the most straightforward interpretation of the 

decomposition findings.3 The model gives the following relationship between the independent variables 

and the dependent variable: 

 

𝑖𝑠̅ = 𝑿̅𝜷̂ + 𝒁̅𝜸̂          (2) 

 

Upper bars indicate means and hats indicate estimated coefficients. Let subscripts 0 and 1 denote year 2000 

and year 2010, respectively. Using a Blinder-Oaxaca decomposition, the change in the mean informality 

rate over the period is given by: 

 

𝑖𝑠̅1 − 𝑖𝑠̅0 = (𝑿̅𝟏𝜷̂𝟏 + 𝒁̅𝟏𝜸̂𝟏) − (𝑿̅𝟎𝜷̂𝟎 + 𝒁̅𝟎𝜸̂𝟎)      (3) 

 

By adding and subtracting terms, expression (3) can be re-stated as:   

 

𝑖𝑠̅1 − 𝑖𝑠̅0 = [(𝑿̅𝟏 − 𝑿̅𝟎)𝜷̂𝟎 + (𝒁̅𝟏 − 𝒁̅𝟎)𝜸̂𝟎] + [(𝜷̂𝟏 − 𝜷̂𝟎)𝑿̅𝟏 + (𝜸̂𝟏 − 𝜸̂𝟎)𝒁̅𝟏]  (3’) 

 

The first term in square brackets is the change in mean informality accounted for by changes in elements 

of the X and Z vectors, and the second term is the change accounted for by changes in the structural 

parameters.4 These two terms are commonly referred to as the explained and the unexplained parts, 

respectively, of the change in the dependent variable. The second term is ‘unexplained’ in the event that 

the changes over time in the estimated coefficients have no straightforward explanation.  

 

Some of the independent variables are unlikely to be exogenous to the variation in informality rates, and so 

we utilize instrumental variables techniques to render them causally determinative. This is clearly the case 

for labor law enforcement and conditional cash transfers. Labor law enforcement may be successful in 

reducing informal employment, but, to the extent enforcement is targeted accordingly, municipalities with 

high degrees of informality will also contain inordinately high enforcement efforts. Our discussion above 

suggests that conditional cash transfers influence informality rates through their impact on the 

informal/formal relative wage, which is clearly endogenous in the informality regression. The expansion of 

conditional cash transfers might be expected to shift relative labor supply to the informal sector, thereby 

lowering the informal/formal relative wage.  

 

3.2. Worker-level variables 

 

Variable definitions appear in Table 1. We relegate to a “data appendix” more specificity regarding variable 

measurement and sources. The dependent variable in the analysis is a binary variable, taking the value of 1 

if the worker is employed in the informal sector and 0 if the worker is employed in the formal sector. As 

explanatory worker characteristics (X) we include gender (female=1), age, education, a vector of race and 

ethnicity categories, and disability. The first three are discussed in some detail in the literature review, and 

                                                           
3 We estimated probability models with probit and logit specifications and obtained qualitatively very similar results. 
4 The choice of weights in the decomposition is arbitrary. β0 and γ0 can be replaced by β1 and γ1, with the corresponding changes 

in the second term, so that expression (3’) becomes 𝑖𝑠̅1 − 𝑖𝑠̅0 = [(𝑿̅𝟏 − 𝑿̅𝟎)𝜷̂𝟏 + (𝒁̅𝟏 − 𝒁̅𝟎)𝜸̂𝟏] + [(𝜷̂𝟏 − 𝜷̂𝟎)𝑿̅𝟎 + (𝜸̂𝟏 −

𝜸̂𝟎)𝒁̅𝟎]. 
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are hypothesized to affect informality in precisely the ways discussed therein. Race and disability may 

relate to informality status based on discriminatory placement practices as hypothesized in dual or 

segmented labor market models.  

 

We include two additional explanatory variables related to worker characteristics. The first indicates 

whether the worker has a spouse working in the formal sector. Some have hypothesized that formal sector 

employment for one household member may encourage informal employment for other household members 

(e.g., Perry et al., 2007). This is especially possible if some benefits of formal employment cover the entire 

family or household, if the expected after-tax income in the formal sector is close to the (untaxed) income 

from informal employment, and if other household members value the flexible hours or other aspects of 

informality. Search theory, and especially the importance of worker referrals in employer search, offers an 

alternative hypothesis – namely, those with spouses in the formal sector are more likely to be offered, and 

perhaps to take employment in the formal sector. 

 

The second variable is an interaction term that equals 1 if there are young children present in the household 

and the worker is the only adult woman in the household. This variable is included based on the hypothesis 

that women with young children, who do not have other (adult female) household members assisting them 

with childcare, are those most in need of the working time flexibility associated with an informal job.  

 

All worker-level variables included in the empirical analysis are derived from the Brazilian Demographic 

Census from years 2000 and 2010. The micro data from the Census are based on the long-form 

questionnaire and consist of 20.4 million observations for 2000 and 20.6 million observations for 2010. The 

large number of observation makes the data representative at the municipal level, which is an advantage 

over other data sources. There were 5507 municipalities in Brazil in year 2000 and 5565 in 2010. The 

National Household Sample Survey (PNAD), which has been used in previous analyses of informality, is 

an annual survey covering the entire country of Brazil but is only representative at the state level. The 

Monthly Employment Survey (PME), which has also been used to document and analyze informality, 

covers only six major metropolitan areas and hence is unable to reveal developments outside the major 

metropolitan areas of Brazil.  

 

In our analysis we restrict the sample in several ways. We include only urban wage employees of age 15 to 

65 years who report a monthly income and work in the private sector of the economy. Hence we exclude 

all people residing in rural areas according to the Census definition. Regions are defined as rural and urban 

on an administrative basis, not on population density or the size of cities, towns or villages. According to 

the Census data, 81 percent of the Brazilian population lived in urban places in 2000 and 84 percent in 

2010. Rural areas are generally dominated by agriculture and the majority of the rural labor force is engaged 

in family farming. The rural labor market therefore deserves a different analytical framework and the notion 

of formal and informal work has limited applicability. 
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Table 1. Variable definitions 

Variable Description 

Worker-level variables  

 

Informal employment d 

 

Worker is employed in the informal sector (=1, 0 otherwise). 

Age Worker’s year of age. 

Primary education or less d Worker has primary education or less (base variable in 

regressions). 

Secondary education d Worker has completed secondary education. 

College education d Worker has completed college education. 

Female d Worker is female. 

Female with child d Worker is female with young children (10 years or younger) in 

the household. No other adult female in the household. 

Formal-sector spouse d Worker has spouse working in the formal sector. 

Race d Indicator variables for black, Asian, white, mixed, and indigenous 

(white is base variable in regressions). 

Disabled d Worker has reduced working ability (eyesight disability, hearing 

disability, permanent mental disability, or other disability). 

  

Municipal-level variables  

 

CCT coverage 

 

Conditional cash transfer payments per capita in municipality (R$ 

per month x10). 

Labor law enforcement Number of workers inspected by labor inspections as share of 

total number of wage workers in municipality. 

Minimum-wage bindingness Share of formal workers paid multiples of the minimum wage 

minus the share of informal workers paid multiples of the 

minimum wage. 

CCT take-up rate  Instrumental variable for CCT coverage. Share of eligible 

households receiving Bolsa Familia payments (in 2010) or 

payments from any cash transfer program excluding 

unemployment benefits and pensions (in 2000). 

Drive time to labor office Instrumental variable for Labor law enforcement. Traveling time 

from municipal seat to responsible labor inspection office. 

Urbanization Share of households in municipality residing in an urban area. 

Industry categories 16 fractional (share) variables giving the share of workers in the 

municipality employed in agriculture, fishing, extraction, 

manufacturing, utilities, construction, retail trade, housing, 

transportation, finance, real-estate services, public administration, 

education, health services, other public services, and domestic 

services. Domestic services is the base sector in regressions. 
Note: Dichotomous variables are indicated by superscript d.  
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When restricting the sample to the urban labor force, informality was 40 percent in 2010, compared to 50 

percent ten years earlier. In Table 2, the informal sector is decomposed into wage workers, self-employed, 

and domestic workers. The biggest share of the decline in informality has taken place among wage workers; 

the drop from 26.4 to 18.3 percent corresponds to about 80 percent of the overall decline in informality. 

Thus, in this study we exclude self-employed workers and focus solely on wage employees. 

 

 

 

3.3. Municipal variables 

 

The vector of municipal characteristics (Z) consists of a set of institutional, policy-related variables and 

another set of variables capturing the industrial composition of the local economy. The variables accounting 

for industrial composition are constructed from the Census data and defined as the share of workers in 

different industries, 16 categories in all. We also include as a control variable the share of households in 

the municipality that are urban. The degree of urbanization is meant to control for differences in quality of 

and access to infrastructure, agglomeration economies, and other aspects of urbanization that may have an 

effect on the formalization of the labor market.  

 

The main policy-related variables constitute municipal level measures of the reach of conditional cash 

transfers, the enforcement of labor regulations, and the impact of the minimum wage. For two of these, 

there are legitimate concerns with endogeneity bias if direct measures of these municipal-level features are 

employed, and so we turn to instrumental variables procedures to rid the estimated impacts of such bias.  

 

a) Conditional cash transfers (CCTs) 

 

The Census data contain information on the receipt of conditional cash transfer benefits. However, 

exploring the relationship between CCTs and informality with direct measures of CCT coverage is fraught 

with problems of endogeneity; informality rates across municipalities might well be affected by such 

transfers, but transfers are also likely to be a function of the municipal level of informality, which is a likely 

marker for low family income and thus eligibility for CCTs. Thus, we utilize an instrumental variable (IV) 

procedure to capture the impact of CCTs on informal employment. The instrument we employ is the CCT 

take-up rate among the population that is eligible for the program. One can think of this measure as 

capturing, across municipalities, both the awareness of the program among the eligible population and the 

efficiency of processing applications for social transfers by municipal authorities. We expect the IV 

estimate of the CCT coverage impact on informality to be positive. On the one hand, the program is likely 

to decrease informality by raising levels of education. However, on the other hand, CCTs might cause 

Table 2. Formal and informal employment, 2010 and 2000 

 2010 2000 

Formal employment 59.1% 49.9% 

Informal employment 40.1% 50.1% 

of which:   

Wage employees 18.3% 26.4% 

Self-employed 16.1% 17.6% 

Domestic employees 5.6% 6.0% 
Note: Urban labor force, 15-65 years of age, excluding unpaid workers. 

Sources: Demographic Census, 2000 and 2010. 
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workers to opt for informal employment as a way of hiding labor earnings, the extent of which can only be 

verified by federal authorities when income is generated from formal employment. Having controlled for 

education elsewhere in the regression, it is this latter aspect of CCT programs that we expect to capture.  

 

b) Labor law enforcement 

Regarding labor law enforcement, we were provided, by the Brazilian Labor Ministry, with data on “the 

number of workers affected” by inspections (i.e., the sum total of workers in all inspected firms) in both 

2000 and 2010, measured at the level of the municipality.5 To create the labor law enforcement variable, 

we divide the numbers on workers affected by the total number of employees in the municipality, which is 

derived from the Census data. Of course, labor law enforcement may well be endogenous in the informality 

equation, so long as enforcement is targeted to those areas of high informality, and so we instrument this 

intensity measure with drive time to labor office – the time it takes to drive from each municipal seat to the 

local Labor Ministry office responsible for labor law enforcement, based on the procedure adopted by 

Almeida and Carneiro (2009, 2012). The identifying assumption is that the closer an employer is to a local 

labor office, the stricter is the enforcement of labor regulations. Almeida and Carneiro argue that the drive 

time measure serves as an ideal instrument for an “intensity of enforcement” variable in that the former is 

likely to be directly (negatively) related to enforcement intensity and yet affect informality only through its 

impact on the intensity of enforcement. 

Almeida and Carneiro utilize drive time between each municipality and the nearest Labor Ministry office 

delegated with labor law inspections. We utilize their data from 2002 on drive time and match this to the 

municipalities in which individuals are located in our 2000 Census data. For the later period, we rely on 

information received directly from the Brazilian Labor Ministry indicating which specific Labor Ministry 

office is in fact directly responsible for enforcement in each municipality in 2010. We access drive time in 

this case using a google-maps based search engine in 2014. It turns out that the nearest Labor Ministry 

office to a particular municipality is not always the one directly responsible for local labor law enforcement; 

thus, Almeida and Carneiro employ a faulty measure of drive time in their analysis. While there is 

significant overlap in the two approaches – the labor ministry office that is directly responsible for labor 

law enforcement in a given municipality is also typically the nearest – there are nonetheless also some 

discrepancies. We have no option but to use their data for 2002, but as a robustness check, we make some 

attempts later in the paper to render the two approaches similar, creating two samples in which the office 

that is directly responsible is in fact also the nearest office. 

Drive times may differ over two time periods for several reasons, holding aside the issue of measurement 

inconsistencies. We know, for example, that the number of local labor ministry offices has changed; three 

offices closed and six new offices opened during the decade 2000–2010.6 This is likely to alter the drive 

time for labor inspectors as they make their way to municipalities to inspect firms. Moreover, new roads 

may have been built, thereby reducing drive time, or congestion may have worsened, thereby increasing 

                                                           
5 The numbers reflect each inspection, even if a given firm is inspected more than once, and even if the repeated inspection 

regards the same, initial violation. 
6 There were 143 labor ministry offices in 2010.  
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drive time. It is these differences we hope to exploit in the decomposition analysis to discern the changing 

contribution of enforcement efforts to changing informality over time.7 

 

c) Minimum wage effects 

 

Our last policy-related variable is aimed at capturing the impact of the near doubling, in real terms, of the 

minimum wage in Brazil over the course of the decade 2000-2010. While the minimum wage is the same 

throughout Brazil, and thus does not vary across municipalities, its impact on municipal labor markets is 

nonetheless likely to vary depending on the relation between the minimum wage and the average wage or 

average relative (formal/informal) wage in the municipality.  

 

We try to capture the impact of the minimum wage on municipal labor markets, based on the now well-

established finding that minimum wages have both “lighthouse” and “numeraire” effects in many Latin 

American countries, including Brazil. The literature has captured these normative features of minimum 

wages by exploring the existence of spikes or clusters around multiples or even fractions of the minimum 

wage in both formal and informal wage distributions. These effects are largely normative (as opposed to 

statutory) and we hypothesize (and show evidence to support the claim) that they vary across municipalities. 

In particular, we hypothesize that strong lighthouse or numeraire effects in the wage-setting process in the 

formal sector have a positive impact on the formal/informal relative wage. Thus, ceteris paribus, the 

stronger the lighthouse effect in the formal sector of a municipality, the higher is the formal/informal 

relative wage in the municipality, and the higher is the rate of informality, as employers on the margin opt 

for informal sector status or employ informal sector workers in outsourcing arrangements instead of 

employing formal sector workers directly. 

 

We try to capture this lighthouse effect in the following manner. We first account for the share of formal 

workers in a municipality receiving exactly 1 to 4 multiples of the minimum wage, and then account for 

the share of workers paid one-half and 1 to 4 multiples of the minimum wage in the informal sector as well.8 

The difference between these two shares – the formal and informal – gives us a measure of the ‘relative 

strength’ of the normative role of the minimum wage in the wage-setting process in the two sectors. We 

define minimum wage bindingness as the share of workers paid in multiples of the minimum wage in the 

formal sector subtracted by the share of workers paid in multiples of the minimum wage in the informal 

sector. The rationale of the variable is the following. If the lighthouse effect is more evident in the formal 

sector than in the informal sector we suggest that the minimum wage has a larger effect – stronger “bite” – 

in the formal than in the informal sector. As a consequence, an increase in the (national) minimum wage 

will affect wages more in the formal sector than in the informal sector, which increases the formal/informal 

sector relative wage.9 A higher formal/informal sector relative wage, in turn, is likely to increase 

informality. We specify the informality regression by including minimum wage bindingness as an 

                                                           
7 We note that drive time is not some constant multiple of distance, based for example on an average speed measure for the 

country or region, and thus represents expected elapsed time in driving between two distances.  
8 As shown in the appendix figures there are spikes in the wage distribution at multiples of R$151 in 2000 and R$510 in 2010, 

which were the levels of the minimum wage in those two respective years. 
9 In cross-municipal regressions not reported here, the minimum wage bindingness variable was associated positively with the 

municipal formal/informal sector relative wage, controlling for a series of other municipal characteristics. 
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independent variable directly, confident that it captures, in an exogenous fashion, the impact of minimum 

wages on worker and employer incentives to locate in the informal sector.  

 

Thus, going forward we create instrumental variables for enforcement and conditional cash transfers, with 

two instruments, and the minimum wages bindingness itself appears as an independent variable in the 

informality regression. Tests for weak instruments are soundly rejected,10 but because the model is just 

identified we are unable to test formally that the instruments satisfy the conditional moment restriction – 

i.e., that they are valid.  

 

d) Descriptive statistics  

Descriptive statistics of the variables included in the empirical analysis are provided in Table 3. Information 

for some of the institutional variables is not available for all municipalities. The regression samples, 

therefore, only include 5284 municipalities for 2000 and 5481 for 2010. A consequence of this is that the 

rates of informality in the wage labor force (24 and 30 percent for 2010 and 2000, respectively) are not 

fully consistent with the rates implied by those given in Table 2. We return to a discussion of changes in 

means in the decomposition analysis below, focusing here on a few important observations regarding the 

data. 

 

Evident among the worker characteristics is the increased level of education. In year 2000, about 47 percent 

of the workforce had secondary education or more. Ten years later this share had increased to 57 percent. 

The female percentage of wage and salary workers increased by almost three percentage points and the mix 

of race and ethnicity categories changed slightly. Among the institutional variables, the most striking 

development over time is the increased coverage of social transfers to poor households. Between 2000 and 

2010 per capita conditional cash transfer payments increased 50 fold. This, of course, is a development 

largely driven by the emergence and growth of the Bolsa Família program. 

  

The intensity of labor inspections increased only slightly over the period – by less than two percentage 

points. We note that the raw numbers include multiple counting of workers, depending on the number of 

times a workplace is inspected. Even taking this into account, that inspections touch such a high percentage 

of the workforce is rather impressive. Finally, while the normative commitment to paying multiples (or 

fractions) of the minimum wage is greater in the informal sector in both periods (which is consistent with 

findings in the literature more generally), the difference declines over the period, portending an increase in 

the formal/informal relative wage.  

 

As for changes in the composition of the labor market, sectors such as manufacturing, construction, and 

retail trade have increased somewhat in relative importance, whereas a smaller share of the labor force 

works in public administration and education. Thus informality has decreased considerably over the past 

decade despite the fact that the public sector – in which employment is most certainly formal – has 

decreased its importance as an employer. 

                                                           
10 The F-tests for joint significance of the three instruments in each of the first-stage runs are well over 10 – the rule of thumb 

proposed by Staiger and Stock (1997). 
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Table 3. Descriptive statistics 

  2010  2000 

Variable Mean Std. dev  Mean Std. dev 

Worker characteristics      

Informal employment d 0.244 0.43  0.297 0.46 

Age 35.0 11.2  33.8 10.7 

Primary education or less d 0.43 0.49  0.53 0.50 

Secondary education d 0.42 0.49  0.35 0.48 

College education d 0.15 0.36  0.12 0.32 

Female d 0.37 0.48  0.34 0.48 

Female with child d 0.09 0.29  0.10 0.30 

Formal-sector spouse d 0.23 0.42  0.18 0.39 

Race - black d 0.08 0.27  0.07 0.25 

Race - white d 0.52 0.50  0.60 0.49 

Race - Asian d 0.01 0.10  0.00 0.07 

Race - mixed d 0.39 0.49  0.32 0.47 

Race - indigenous d 0.00 0.04  0.00 0.05 

Disabled d 0.03 0.18  0.02 0.13 

Institutional characteristics      

CCT coverage 5.43 7.57  0.10 0.29 

Labor enforcement 0.52 0.63  0.50 0.66 

Minimum-wage bindingness 0.00 0.12  -0.03 0.08 

CCT take-up rate (IV) 0.28 0.17  0.02 0.04 

Distance to labor office (IV) 1.15 1.64  0.74 1.22 

Urbanization 0.87 0.17  0.88 0.16 

Industry categories      

Agriculture 0.07 0.09  0.06 0.09 

Fishing 0.00 0.02  0.00 0.01 

Extraction 0.01 0.02  0.00 0.01 

Manufacturing 0.16 0.11  0.16 0.09 

Utilities 0.01 0.01  0.01 0.00 

Construction 0.09 0.03  0.08 0.03 

Retail trade 0.21 0.05  0.19 0.04 

Housing 0.04 0.02  0.05 0.02 

Transportation 0.05 0.02  0.06 0.02 

Financial services 0.01 0.01  0.02 0.01 

Real-estate services 0.09 0.05  0.07 0.04 

Public administration 0.04 0.03  0.06 0.04 

Education 0.05 0.02  0.07 0.02 

Health services 0.04 0.02  0.04 0.02 

Other public services 0.04 0.01  0.04 0.01 

Domestic and other services 0.09 0.03  0.09 0.03 

Number of observations 3,482,077  2,574,077 

Number of municipalities 5481  5284 
Note: Categorial (dummy) variables are indicated by superscript d. Institutional variables are defined at 

municipal level. Variables for industry categories are defined as share of the municipal labor force in the 

respective sector.  

Sources: Demographic Census 2000 and 2010; Base Estatcart de Informações Municipais 2000 and 2009; 

Ministry of Labor. 

 



 
 

15 

 

 

4. Empirical Results 

Table 4 gives the results of the estimated informality regressions for 2000 and 2010. By way of overview, 

we note that all of the estimated coefficients on the institutional and demographic variables are of the 

predicted signs, when clear predictions were made, and all are statistically significantly different from zero. 

Tables 3 and 4 provide all of the relevant information required for the decomposition analysis, which can 

be found in Table 5.  

 

The decomposition analysis in Table 5 allows us to explore separately the impact of changing estimated 

coefficients and changing means of determinative variables on the overall changing mean rate of 

informality over the period. This is done for two different sets of weights to insure consistency in the 

findings (see the discussion in footnote 4 above). For each right-hand side, determinative variable, we 

calculate the weighted impacts of the changing coefficients and the changing means on the change in mean 

informality over the period. This is done for weight 1 in columns 1 and 2 of Table 5, respectively. The 

percentage of the overall change in mean informality (0.053) accounted for by these respective changes is 

given in columns 3 and 4 of the table. Columns 5–8 give the same information, but using the second set of 

weights. For any given determinative variable, we can add the percentages in columns 3 and 4 (or 7 and 8 

for the second set of weights) to give the summative change in mean informality accounted for by changes 

in both estimated coefficients and means over the period. This is the approach we take in the discussion 

below, but we also direct the readers’ attention to the separate contributions of coefficients and means when 

the results are interesting.  

 

It is common in decomposition exercises to attribute the change in means over a period to something 

“known” or “explained,” and to refer to the change in estimated coefficients as representing “unknown” or 

“unexplained” forces. In some respects this makes sense, but a strong institutional understanding of the 

background features that structure the relationship between a given independent variable and a dependent 

variable, and how these structural features have changed over time, may allow the researcher to offer 

speculative explanations for the changing coefficients themselves. In several instances, we offer such 

speculative explanations. 

 

Finally, the decomposition analysis is derived from a straightforward exercise focusing on the magnitude 

of estimated coefficients and means; it does not discriminate between variables that are statistically 

significant or insignificant in accounting for variation in informality rates across municipalities. We focus 

our attention in a discussion of the decomposition results largely on those variables that are significant from 

a statistical perspective.  

 

Looking first at municipal level measures of the policy variables and their changes over time, we can begin 

with the minimum wage effects. The results in columns 1 and 2 of Table 5 suggest that the more important 

is the minimum wage as a wage-setting norm in the formal sector, the larger is informal employment. This 

is consistent with the hypothesis that the stronger the relative impact of the minimum wage norm in the 

formal sector, the larger is the formal/informal relative wage and thus the higher is the rate of informality, 

as employers on the margin opt for informal sector status or employ informal sector workers in outsourcing 

arrangements instead of employing formal sector workers directly. 
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Table 4. Regression Results  

 2010 2000 

 Coefficient Std error Coefficient Std error 

CCT coverage 0.016*** 0.001 0.068* 0.035 

Labor enforcement –0.165*** 0.045 –0.583*** 0.210 

Minimum-wage bindingness 0.137*** 0.026 0.152*** 0.058 

Age –0.020*** 0.000 –0.029*** 0.000 

Age squared 0.025*** 0.000 0.035*** 0.001 

Secondary education d –0.095*** 0.002 –0.109*** 0.004 

College education d –0.096*** 0.003 –0.108*** 0.005 

Female d 0.022*** 0.002 –0.002 0.002 

Female with child d 0.021*** 0.001 0.031*** 0.002 

Formal-sector spouse d –0.079*** 0.001 –0.070*** 0.003 

Race - black d 0.019*** 0.003 0.032*** 0.009 

Race - mixed d 0.025*** 0.003 0.048*** 0.010 

Race - Asian d 0.033*** 0.004 0.045** 0.018 

Race - indigenous d 0.057*** 0.012 0.077*** 0.015 

Disabled d 0.033*** 0.002 0.049*** 0.004 

Urbanization 0.020 0.028 0.104 0.094 

Agriculture –0.067 0.145 1.338** 0.598 

Fishing 0.306* 0.181 1.673** 0.704 

Extraction 0.161 0.235 0.998 0.647 

Manufacturing –0.137 0.153 1.142* 0.669 

Utilities –0.515 0.446 2.375 1.817 

Construction –0.671*** 0.175 0.967 0.691 

Retail trade 0.415*** 0.132 1.350** 0.576 

Housing 0.139 0.233 1.462*** 0.554 

Transportation –0.581*** 0.190 –0.292 0.668 

Financial services 0.734 0.897 3.406 2.085 

Real-estate services 0.464 0.318 2.336 1.708 

Public administration –0.557*** 0.205 1.734* 0.943 

Education 0.206 0.193 2.369*** 0.784 

Health services –0.481 0.345 1.520 1.872 

Other public services 0.890** 0.393 2.777 1.760 

Constant 0.600*** 0.142 –0.268 0.619 

Sample size 3,482,077 2,574,077 
Note: The dependent variable is the categorical variable Informal, which equals 1 if the worker is employed 

informally and zero if employed formally. Levels of statistical significance of the estimated coefficients are 

indicated by asterisks: 10 % (*), 5% (**), and 1% (***). 
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Table 5. Decomposition of change in mean informality rates, 2000–2010. 

 Weight 1  Weight 2 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

 

( β1–β0) 

× X1 

( X1– X0) 

× β0 

Change in 

β 

Change in 

X 

 ( β1–β0) 

× X0 

( X1– X0) 

× β1 

Change 

in β 

Change 

in X 

CCT coverage –0.279 0.360 –525.1% 677.1%  –0.005 0.086 –9.8% 161.7% 

Labor enforcement 0.216 –0.007 405.8% –13.0%  0.211 –0.002 396.5% –3.7% 

Min wage 

bindingness 
0.000 0.004 0.1% 7.5% 

 
0.000 0.004 0.8% 6.7% 

Age 0.329 –0.033 618.9% –62.4%  0.319 –0.022 598.6% –42.1% 

Age squared –0.144 0.032 –270.7% 59.3%  –0.134 0.022 –252.7% 41.4% 

Secondary educ d 0.006 –0.008 10.8% –14.4%  0.005 –0.007 9.0% –12.6% 

College educ d 0.002 –0.004 3.1% –7.0%  0.001 –0.003 2.4% –6.3% 

Female d 0.009 0.000 16.5% –0.1%  0.008 0.001 15.3% 1.1% 

Female with child d –0.001 0.000 –1.8% –0.4%  –0.001 0.000 –1.9% –0.2% 

Formal-sector 

spouse d 
–0.002 –0.003 –4.1% –6.0% 

 
–0.002 –0.004 –3.3% –6.9% 

Race - black d –0.001 0.000 –2.0% 0.9%  –0.001 0.000 –1.6% 0.5% 

Race - mixed d –0.009 0.003 –17.3% 5.8%  –0.008 0.002 –14.4% 3.0% 

Race - Asian d 0.000 0.000 –0.2% 0.4%  0.000 0.000 –0.1% 0.3% 

Race - indigenous d 0.000 0.000 –0.1% –0.1%  0.000 0.000 –0.1% –0.1% 

Disabled d –0.001 0.001 –1.0% 1.6%  0.000 0.001 –0.5% 1.1% 

Urbanization –0.073 –0.002 –137.4% –3.2%  –0.074 0.000 –139.9% –0.6% 

Agriculture –0.096 0.014 –179.6% 26.4%  –0.081 –0.001 –151.9% –1.3% 

Fishing –0.005 0.002 –8.8% 3.2%  –0.003 0.000 –6.2% 0.6% 

Extraction –0.005 0.003 –9.7% 4.9%  –0.003 0.000 –5.5% 0.8% 

Manufacturing –0.211 0.003 –396.0% 5.7%  –0.207 0.000 –389.6% –0.7% 

Utilities –0.031 0.012 –59.1% 21.6%  –0.017 –0.002 –32.8% –4.7% 

Construction –0.155 0.012 –291.0% 23.3%  –0.134 –0.009 –251.5% –16.2% 

Retail trade –0.197 0.028 –370.4% 52.1%  –0.178 0.009 –334.3% 16.0% 

Housing –0.054 –0.016 –101.8% –30.7%  –0.069 –0.002 –129.6% –2.9% 

Transportation –0.015 0.003 –28.2% 4.8%  –0.017 0.005 –32.9% 9.5% 

Financial services –0.037 –0.007 –70.3% –13.2%  –0.043 –0.002 –80.6% –2.8% 

Real-estate serv. –0.159 0.037 –299.7% 69.9%  –0.130 0.007 –243.7% 13.9% 

Public admin. –0.084 –0.047 –158.2% –87.7%  –0.146 0.015 –274.1% 28.2% 

Education –0.103 –0.045 –193.1% –85.1%  –0.144 –0.004 –270.8% –7.4% 

Health services –0.077 –0.003 –144.1% –5.0%  –0.080 0.001 –150.7% 1.6% 

Other publ. serv. –0.079 –0.004 –147.6% –6.7%  –0.081 –0.001 –152.2% –2.1% 

Constant 0.869 0.000 1632.5% 0.0%  0.869 0.000 1632.5% 0.0% 

Sum –0.388 0.335 –729.5% 629.5%  –0.147 0.093 –275.6% 175.6% 

Note: “Weights 1” refers to a decomposition made according to expression (3’): 𝑖𝑠̅1 − 𝑖𝑠̅0 = [(𝑿̅𝟏 − 𝑿̅𝟎)𝜷̂𝟎 + (𝒁̅𝟏 − 𝒁̅𝟎)𝜸̂𝟎] +

[(𝜷̂𝟏 − 𝜷̂𝟎)𝑿̅𝟏 + (𝜸̂𝟏 − 𝜸̂𝟎)𝒁̅𝟏]. “Weights 2” refers to a decomposition made according to the following expression: 𝑖𝑠̅1 − 𝑖𝑠̅0 =

[(𝑿̅𝟏 − 𝑿̅𝟎)𝜷̂𝟏 + (𝒁̅𝟏 − 𝒁̅𝟎)𝜸̂𝟏] + [(𝜷̂𝟏 − 𝜷̂𝟎)𝑿̅𝟎 + (𝜸̂𝟏 − 𝜸̂𝟎)𝒁̅𝟎]. For brevity, the first term of the expression is referred above to as 

“(β1–β0) × X” and the second term as “(X1– X0) × β”. 
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Note, in comparing columns 1 and 2 of the table, that the quantitative magnitude of the minimum wage 

effect declines over time, suggesting a declining impact on informality, but the two effects are only slightly 

different in magnitude and, from a statistical perspective, not significantly different from one another. A 

comparison of means at the start and end of the decade (Table 3) suggests that the relative commitment to 

the norm in the informal sector declines rather significantly, thereby portending a growth in informality 

over the period. The influence of the minimum wage in wage-setting is purely normative in the informal 

sector, and as the minimum wage rose significantly over the decade, it is perhaps not surprising that its 

relative impact on the wage structure would diminish in the informal sector.  

 

The changing estimated coefficients on the minimum wage variable suggest an increase in informality, as 

do the changing means. Columns 3 and 4 of Table 5 give the two impacts separately as a percentage of the 

absolute mean change in informality (0.053) for the first set of weights and columns 7 and 8, for the second 

set of weights. This offers an alternative measure of the quantitative impact. Here, we see that neither impact 

– changing coefficients or changing means – exceeds more than 10% of the overall change in mean 

informality, with the combined percentage impact being 7.6%.11 The interpretation, then, is that changing 

minimum wages over this period would, all else constant, have portended a rise in informality of 0.4 

percentage points (7.6% of 5.32). 

 

Turning to the role of government conditional cash transfer payments, we hypothesize that their existence 

may encourage formal sector workers to move to informal-sector status in order to hide income and thereby 

qualify for government transfers. The results in Table 4 reveal that increased conditional cash transfers do 

indeed increase informality, as hypothesized. The estimated impact of a change in transfer payments on 

informality declines over the period (although the larger coefficient in 2000 is much less precisely 

estimated), indicating a possible decline in informality for any given amount of such payments. However, 

the very dramatic increase in transfers per capita over this period (by a magnitude of over 50) portends a 

significant rise in informality. The decomposition analysis in Table 5 reveals that the increased coverage 

and magnitude of transfer payments over the period swamps the changing coefficients effect, which 

combined predicts a rise in informality of roughly 8 percentage points, or roughly 152% (677%–525%) of 

(the absolute value of ) the mean change in informality over the period.  

 

Regarding labor law enforcement and its impact on informality, we find, as hypothesized, that increased 

enforcement lowers informal employment. However, comparing the effects over time, while enforcement 

efforts appear to have slightly increased over the period (Table 3), the effectiveness of these enforcement 

efforts (as judged by the changing coefficients in Table 4), at least so far as they concern rooting out and 

reducing informal employment, declined rather dramatically. Combining the magnitude of the change over 

the period in estimated effects with the rather paltry increase in enforcement efforts, the sum suggests an 

increase in informality of nearly 20 percentage points, or roughly 400% of the mean change in informality 

over the period. This is huge, but recall that we are worried about the integrity of the estimated coefficient 

in 2000 due to mismeasurement of the drive time variable, an issue we return to in the section below on 

robustness checks.  

 

                                                           
11 Note that this is true for both columns 3 + 4 as well as columns 7 + 8. The combined impacts – whether expressed as the direct 

contribution to the change in mean informality or as a percentage of the mean change in informality – are, by construction, 

necessarily the same regardless of the weights used.  
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Changing demographics also account for the observed decline in informal employment over this period. 

Two demographic features with strong negative estimated impacts on informality are years of schooling 

and whether or not an individual possesses a spouse working in the formal sector. The demographics also 

change over the period in rather dramatic ways – the percentage of the population having completed 

secondary school rises by 7 percentage points, the percentage having completed college by 3 percentage 

points, and the percentage with a formal-sector spouse by 5 percentage points.  

It is widely known that schooling is one way of increasing the chances of attaining a formal sector wage 

and salary position. Brazil, like many Latin American countries over this period, set in motion policies to 

expand formal education, including increased direct government expenditures on education but also 

conditional cash transfers to encourage parents to keep their children enrolled in school. The regression 

results in Table 4 suggest that having a secondary degree decreases the probability of being in the informal 

sector by roughly 10 percentage points, and having a college degree by roughly a similar amount, with 

minor changes in estimated impact over time. Focusing just on the growth in educational attainment over 

this period, the enhanced numbers of workers with secondary and college degrees combined accounts for 

roughly 20% of the decline in informality. Factoring in the impact of changes in estimated coefficients, 

increased educational attainment accounts for 7.5% of the decline in informality, or 0.4 percentage points. 

 

Having a spouse in the formal sector decreases the probability of informal sector employment by between 

6% and 7% of the mean decline in informality, depending on which weights are used (Table 5), and because 

the changing estimated impacts also portend a decrease in informality, the aggregate impact amounts to 

roughly 10% of the decline, or roughly 0.5 percentage points. We suspect the explanation for this result is 

grounded in job search theory. Spouses who work in the formal sector may earn higher wages, which would 

allow for enhanced time spent in search for a non-working spouse, but they are also able to offer positive 

referrals for their spouses to employers looking to hire. Formal sector employers are keen to hire productive 

employees, and especially so in societies like Brazil where it is costly to fire a worker. The job search 

literature is clear that internal referrals are an inexpensive and efficient way for employers to screen for 

quality in a job search. The observed increase in the percentage of individuals reporting having formal 

sector spouses is probably largely a demand-side story – the growing availability of formal sector positions 

goes to spouses of existing formal sector workers. But, there may be a causal component to this observed 

relationship as well: to the extent formal sector workers increasingly possess spouses, and especially ones 

that desire employment in the formal sector, this reduces job search costs for employers and may nudge 

some firms to opt for formality as a result.  

 

The case of the variable Female is interesting. There was an increase in female representation among the 

wage and salary workforce over the decade – from 35% to 37% – but also a rather dramatic change in how 

being female translates into informality. In 2000, the estimated impact of being female on informal sector 

status was statistically insignificantly different from zero, whereas in 2010 it had become positive and 

statistically significant. Many of the estimated coefficients on the demographic variables change over time, 

and some statistically significantly so, but none change positively and with such magnitude as this estimated 

coefficient. In the aggregate, the impact of this variable in the decomposition analysis portends a rise in 

informality, all else constant, of over 16%, or 0.85 percentage points.  

One way of unpacking this finding is to introduce some interactive terms into the specification. Could this 

result, for example, have something to do with the expansion of transfer programs over the period? Could 
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women, especially, be shifting from formal to informal sector status in order to qualify for the Bolsa Familia 

conditional cash transfer program, thereby rendering the relationship between female and informality 

positive when before, in 2000 when conditional cash transfers were largely absent, it was insignificantly 

different from zero? When we interact Female and CCT coverage in the 2010 specification, the coefficient 

for female becomes insignificantly different from zero, whereas the interaction term is positive and 

statistically significant. Hence, all of the positive estimated impact of gender on informality in 2010 is 

accounted for by women receiving transfer payments. 

 

Turning, finally, to changing industry composition effects, we see that it is the changing way in which 

industry translates into informality (i.e., changes in the estimated coefficients) that accounts for the largest 

portion of the decline in informality over this time period. Between 2000 and 2010, six of the estimated 

coefficients on the industry composition variables switch signs from positive to negative, and all of the 

remainder that were positive in 2000 fall in absolute value. The one estimated coefficient that is negative 

in 2000 becomes more so in 2010. In every industry, the propensity toward informal employment falls and 

does so sizeably and often statistically significantly. Collectively, the changing employment mix itself 

accounts for roughly 17% (0.9 percentage points) of the decline in informality. However, it is the changing 

way in which this mix translates into informality that carries the day. If the employment mix had remained 

unchanged over the period, the changing estimated coefficients would nonetheless portend a decline in 

informality that accounts for well over 100% of the actual decline. 

 

By way of summary, our empirical analysis sheds only a dim light on the causal determinants of declining 

informality over the decade 2000-2010. In the aggregate, and focusing only on changes in composition 

effects – the “explained” components in the decomposition analysis – rising rates of labor law enforcement, 

rising education levels, increased numbers of workers with spouses in the formal sector, and changes in 

industry composition explain between 57% or roughly 3 percentage points (weight 1) and 16% or roughly 

0.85 percentage points (weight 2) of the decline in informality over the period. However, if all the other 

changes in composition effects are factored in, informality rates are predicted to rise, not fall, and far and 

away the biggest contributor in this predicted increase in informality is the increased coverage of 

conditional cash transfer payments, which alone portend a rise in informality of between 36 percentage 

points (weight 1) and 9 percentage points (weight 2)! 

 

5. Robustness Checks and Extensions 

Several robustness checks or extension exercises are presented in this section. The first accounts for 

inconsistencies in drive time differences across the period of examination. The second accounts for 

instances in which municipalities changed fundamental character over the period due, for example, to 

mergers or separations between communities. The third explores our primary results with controls for 

municipal fixed effects.  

 

5.1. Drive Time Inconsistencies  

 

There are three reasons why drive times may differ across the two time periods under examination in this 

paper: (1) systematic difference in the programs used to calculate drive times in the two periods; (2) the 

fact that in 2000 Almeida and Carniero calculate drive time between any given municipality and the nearest 
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labor ministry office (instead of the actual labor ministry office in charge of inspections in that 

municipality); and (3) legitimate changes in drive time due, for example, to the construction of new roads, 

altered speed limits, increased congestion, and the closure or opening of labor ministry offices. We would 

like our estimates of the impact of enforcement on informal employment to be identified off of legitimate 

changes in drive times over the period.  

 

We have strong suspicions that the programs used to derive drive times are different over the two periods. 

When drive time in 2010 is regressed on a constant and drive time in 2000, while the correlation is very 

high – indeed the estimated coefficient on drive time in 2000 is virtually equal to 1 – there is a constant of 

0.3, or roughly one-third of an hour, which amounts to about 15% of the average drive time of two hours 

in 2000. One possible explanation for an average increase in drive times is the error cited in (2) above – we 

would expect drive times to be lower in 2000 because they are calculated for the nearest labor ministry 

office rather than the one truly responsible for inspections in a particular municipality. But, when we run 

the same regression on a sub-sample of municipalities for which the nearest labor ministry office is indeed 

the one responsible for labor inspections (to be discussed further below), we find similar results: an 

estimated coefficient equal to 1 and a constant that, in this case, is over two-thirds of an hour. We would 

not expect average drive times to rise so significantly over time, and therefore conclude that the programs 

used to calculate drive times differ across the two time periods. It is important to note, however, that so far 

as this type of programming inconsistency results in a linear transformation of true drive time (as suggested 

by the regression results above), it can be shown that our structural estimates of the impact of enforcement 

on informality are unaffected. We thus leave aside this issue.  

 

In order to shed light on the extent of the error committed by Almeida and Carneiro, and its effect on the 

estimated impact of enforcement on informality, we gathered drive times to the nearest labor ministry office 

for each municipality in those nine states with only two labor ministry offices in 2010. Coupled with drive 

time data to the accurate office, we are able to identify the subset of municipalities in these states for which 

the nearest labor ministry office is indeed the accurate one responsible for labor conditions and inspections. 

Of the 1330 municipalities in the 9 states with only two labor ministry offices, there are 216 instances (or 

roughly 16% of the sample) for which the nearest office is not the one responsible for inspections. It is 

difficult to know to what extent this translates to the larger group of states with more than two labor ministry 

offices, but it gives us a sense of the possible extent of the error committed by Almeida and Carneiro.  

 

To this sample, we add municipalities in the five states with only one labor ministry office, in which case 

the nearest office is, by necessity, the accurate office. This adds over 100 municipalities (including Brasilia) 

to the sample. With these data we can hazard an answer to the question, “How, if at all, would our main 

results change if drive times in 2000 reflected distances to the accurate labor ministry office rather than to 

the nearest?” We should begin by noting that these samples are roughly 15% the size of samples for the 

main results (Table 4). Compared to the main results, the estimated coefficient on the enforcement variable 

is –0.067 in 2010 and –0.55 in 2000. While the estimated coefficients in 2000 are reasonably similar (–0.55 

versus –0.58), the coefficient in 2010 with the new, smaller sample is less than half the size of that in the 

main results (–0.067 versus –0.17). Thus, this is further evidence to suggest that the effectiveness of 

enforcement efforts in reducing informality declined rather significantly over the period 2000 to 2010.  
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A different approach to detecting possible contamination of our main results due to differences in the 

measurement of drive time is to trim the main sample to eliminate outliers that are likely to be the result of 

various measurement inconsistencies. We eliminate any changes in drive times over the period representing 

more than 20% (in absolute value) of the average drive time (of two hours) in 2000. The sample sizes fall 

significantly (but by nowhere as much as in the exercise above) – by roughly 40% for the 2010 sample and 

by roughly 30% for the 2000 sample. The estimated coefficient on enforcement in 2010 for this sub-sample 

is less, by almost half, than the one in Table 4 (–0.09 versus –0.17). For 2000, the estimated coefficients 

for the sub-sample and main set results are virtually identical (–0.58 versus –0.6). The efficiency of labor 

law enforcement in reducing informal employment falls over the period in these results as well. Thus, we 

conclude that, while the precision of the estimates of the decomposition may be compromised, it appears 

to be the case that increased labor law enforcement over the period had a reduced impact on lessening 

informality during these years.  

 

5.2. The Changing Character of Municipalities over the Period 

 

The number of municipalities in Brazil grew from 5507 in year 2000 to 5565 in 2010. These new 

municipalities emerged either as separations from single existing municipalities or as mergers of parts of 

two, or in some cases even three, existing municipalities. In total, 130 of the municipalities existing in 2010 

were “affected” by municipal re-organizations between 2000 and 2010, either as being newly-created or as 

an existing municipality losing part of its original land. A concern here is that this re-organization of 

municipalities might have changed fundamentally the character of some of the original municipalities 

between the two periods. This, in turn, could mislead an analysis explaining the change in informal 

employment in terms of changing observable municipal characteristics. As a robustness check we excluded 

these 130 municipalities affected by re-organizations in our regression analysis. This reduced the sample 

by only about 2.5%. Coefficient estimates did not change notably. 

 

5.3. Municipal Fixed Effects 

 

Could the estimated coefficients above, and especially those for the municipal-level variables, be biased 

due to unobserved time-invariant attributes of municipalities? To control for municipal fixed effects, we 

begin by noting that an equivalent method of obtaining the two sets of regression results for the 2000 and 

2010 samples is to run a single time-interacted regression on the pooled samples from both years. In the 

time-interacted model, all variables (plus the constant) are interacted with a dummy variable Di, which 

equals 1 if the observation belongs to the 2010 sample and equals 0 if it belongs to the 2000 sample: 

𝑝𝑟𝑜𝑏(𝑖𝑠𝑖,𝑡) = 𝑋𝑖,𝑡𝛽0 + (𝐷𝑖,𝑡 ∙ 𝑋𝑖,𝑡)𝛽1 + 𝑢𝑖,𝑡 (4) 

 

In this fully time-interacted model, the vector of coefficients β0 equals the vector of coefficients β2000 and 

to obtain the coefficients β2010 one adds the β1 coefficient to the β0 coefficient for each variable.  

The ultimate reason for specifying a fully time-interacted model is to be able to control for unobservable 

municipal fixed effects. Unobserved municipal characteristics that are fixed over time may affect 

informality and also be correlated with our key explanatory variables. This seems especially possible 
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regarding the variables captured at the municipal level, such as ‘light house effects,’ enforcement, and cash 

transfers per capita. To address this problem, we add municipal dummy variables Mi,m, which equal 1 if 

individual i is a resident of municipality m and equals 0 otherwise, to the time-interacted regression 

equation. We estimate a two-stage least square model and correct for clustering in the estimation of standard 

errors just as was done in the previous analysis.  

The estimated coefficients appear in Appendix Table A1. (Note: The estimated coefficient for 2010 is, in 

each case, the sum of the estimated coefficient for 2000 and the estimated coefficient on its interaction with 

2010.) The estimated coefficients on the individual-level variables are resoundingly robust – with regard to 

both statistical significance and quantitative impact. Moreover, we find a very similar pattern in the fixed 

effects analysis as was found in the original results regarding industrial composition – namely, within 

virtually every industry the tendency toward informality declines significantly over the course of the 

decade. The results for our three institutional variables – all measured at the municipal level – are more 

mixed.  

 

The signs are all in accordance with the earlier, non-fixed effects results: conditional cash transfers and 

minimum wages tend to increase informality, whereas labor law enforcement decreases it. However, the 

statistical significance of the fixed effects results is compromised in these findings; while both of the 

estimated impacts of conditional cash transfers on informality are statistically significant, the minimum 

wage impact is only significant in 2010, and neither of the enforcement impacts is statistically significantly 

different from zero. In terms of quantitative impacts, while all but one (i.e., the conditional cash transfer 

estimates in 2010) of the estimated fixed effects coefficients fall within three standard errors of the non-

fixed effects estimated coefficients, this concordance is due in part to the general lack of precision in the 

fixed effects estimates themselves. Regarding the decomposition effects, the percentage accounted for by 

changes in both estimated coefficients and means is altered quite substantially in the fixed effects analysis. 

Using the first set of weights, for example, the combined percentage of the overall mean change accounted 

for by conditional cash transfers is 25.7% (versus 152% in the non-fixed effects analysis), by labor law 

enforcement is 1.8% (versus almost 400%), and by minimum wages is –0.26% (versus 7.6%). While these 

results do not threaten the general validity of the earlier findings, they do offer cause for some concern 

about their overall integrity.  

6. Conclusion 

This paper explores the significant decline in wage and salary informal employment over the period 2000–

2010 in Brazil. We utilize census data from the beginning and ending years of the decade along with other 

institutional data sources, informality regressions that exploit variation in informality across workers and 

municipalities for these two years, and then decompose the changing mean informality rate over the decade 

into its determinants using a Blinder-Oaxaca decomposition. Among the determinants considered are: 

enhanced labor law enforcement, a near doubling of the real value of the minimum wage, the emergence 

and growth of conditional cash transfer programs (and most importantly Bolsa Família – the largest 

conditional cash transfer program in the world), and changing industry composition and labor force 

demographics.  

 

We find that two of the most important policy changes over this period – the increase in the real value of 

the minimum wage and the dramatic expansion of conditional cash transfer programs – contribute 
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positively, not negatively to informality. Among the various determinants of informality analyzed in this 

paper, four – namely, rising education levels, increased incidence of workers having a spouse in the formal 

sector, increased labor law enforcement, and the changing mix of industries – account, collectively, for 

between 16% and 57% of the decline in the mean informality rate over the period. The single largest factor 

explaining the decline in informality in our results are changes in the set of estimated coefficients on the 

industry categorical variables – that is, by the changing ways in which industry translates into informality. 
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Data Appendix 

 

a) Informal employment 

 

We define workers as part of the formal sector if they possess a signed labor card (carteira de trabalho 

assinada) and as informal otherwise. As discussed by Henley et al. (2009), there are alternative ways of 

defining informal employment in Brazil, based on, for example, employer size or social security 

contributions. Using the PNAD survey from 2004, they show that the correlation between the labor card 

definition and the social-security definition is 0.85, suggesting a large overlap between the two definitions. 

The correlation between the labor card definition and the definition based on employer size (workers in 

firms of less than six employees and self-employed) is 0.65. The Demographic Census provides no 

information on employer size, which prevents us from using a firm-size based measure of informality. Such 

measures, however, are sensitive to substantial miss-classification, since many small employers may hire 

all their employees on an entirely formal basis, and some large employers employ a portion of their 

workforces on an informal basis. As for social-security contributions, the Census data only provide this 

information for the self-employed and for employers. Irrespective of data availability, we prefer the labor-

card definition since a signed labor card is mandated by law for all employees and since this is what entitles 

workers to several social benefits.  

 

b) Conditional cash transfers 

 

Federal conditional cash transfer (CCT) programs grew dramatically during the first decade of the 21st 

century in Brazil. The first CCT program in Brazil emerged in 1991, and throughout the 1990s CCTs spread 

rapidly, but largely at the municipal level.12 The Federal government initiated its first conditional cash 

transfer program in 1996 which was targeted at reducing child labor in especially dangerous industries. 

Municipal-level programs spread rapidly in the later years of the decade, and in 1998 the Federal 

government began subsidizing the transfers in a host of these municipal-level CCTs. The first nationwide 

CCT program targeted to increase children’s education and health status emerged in Brazil in 2001. It was 

referred to as Bolsa Escola, and was a precursor to the Bolsa Família CCT program which began in 2003. 

The growth in both benefit levels and reach during the remainder of the decade was dramatic.  

 

The Census data contain information on households receiving conditional cash transfer payments. In order 

to measure the municipal-level “take-up rate,” our primary task is to capture the eligible population. We 

assume that reported income in the Census is a more accurate reflection of true income than what is reported 

to local authorities in order to qualify for Bolsa Família. Thus, some households who are not eligible for 

CCTs according to Census data may nonetheless report receiving such payments (see et al. 2010, for a 

discussion of targeting issues with Bolsa Família and for estimates of the high percentage of recipients who 

are in fact ineligible for the program). Despite the fact that some recipients are ineligible, our measured 

take-up rate should still reflect both the extent to which the program is well-known and the efficiency of 

processing by local authorities. 

In 2010, we begin by eliminating households from our sample that contain individuals who are not family 

members, since eligibility involves family (not household) income per capita. There is great agreement in 

                                                           
12 Soares (2012) contains an excellent history of CCT programs in Brazil.  
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the literature that “household” and “family” are fairly synonymous in Brazil, and indeed our analysis of 

these exclusion restrictions suggest this is the case; less than 0.5% of households contain members who are 

not related to the household head. This includes households with domestic servants, relatives of domestic 

servants, boarders, and individuals living in collective domiciles. We then turn to the derivation of 

household (i.e., family) income per capita. Pension benefits are excluded from the calculation of household 

earned income, and pensioners are not counted in the “per capita” number for purposes of eligibility. Earned 

income – including earnings from employment as well as rental income, income from investments, and 

interest income – is the primary category here, excluding direct and conditional cash transfer payments. 

This is captured as monthly income in the month of July of the survey year, and household income is the 

aggregation of the monthly income of family members. Household income is then divided by the number 

of family members.  

Eligibility criteria for Bolsa Familia are clearly stated: for the year 2010, very poor families (with a per 

capita household income of 70 Reas or less) are eligible, as are poor households (with per capita household 

income greater than 70 but less than or equal to 140) so long as they have a child present in the household 

who is 17 years of age or less. For each municipality, we calculate, using Census data, the take-up rate 

among the eligible households – that is, the number of eligible families receiving Bolsa Familia benefits 

divided by the number of eligible families in the municipality. We employ this variable to capture 

knowledge of the program by municipal residents and the efficiency of local administrative authorities in 

submitting applications (and also perhaps the lack of scrutiny of these authorities in pursuing those who do 

not meet the “conditions” involving school attendance and health exams of children). We believe this 

variable to be truly exogenous in the informality equation.  

For the year 2000, the information in the Demographic Census data is less precise concerning conditional 

cash transfers received by households. Individuals are asked only for the total monthly amount of social 

transfers received, regardless of transfer program or type of transfer. In deriving the municipal take-up rate 

in 2000 we begin by excluding households with individuals who are disabled or unemployed. By doing so, 

we avoid the inclusion of disability and unemployment benefits in our measure of cash transfers received. 

We then sum all forms of income (labor income, rental income, income from alimony etc.) – except cash 

transfers – in the household and divide by the number of household members.13 If this per-capita household 

income is less than R$90 and if there are children 7–15 years old in the household, we consider the 

household eligible for CCTs. The municipal take-up rate is then defined as the number of eligible 

households receiving cash transfers divided by the total number of eligible households in the municipality, 

in the same way as for 2010.  

c) Minimum wage effects 

Regarding the minimum wage bindingness measure, Figures A1 and A2 in the appendix show selected 

segments of the wage distribution for fulltime workers in the informal sector for 2000 and 2010, 

respectively. In year 2000 the minimum wage was 151 real. Spikes can be observed, in Figure A1, at half 

the minimum wage (75 real) and at the minimum wage. But, there are also spikes in the distribution at 

exactly twice the minimum wage, 302 real. In 2010, the minimum wage was 510 real. Figure A2 reveals a 

certain spike at 255 real – exactly one-half the wage minimum – despite a well-known tendency for 

surveyed workers to round off reported salary measures – in this case, perhaps to 250 real. The spikes 

                                                           
13 We follow Cardoso and Souza (2003) in isolating conditional cash transfer recipients using the 2000 Demographic Census.  
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appear to be real phenomena; they take place at the exact minimum wage and at multiples thereof. This 

provides evidence, at the national level, of “lighthouse” and “numeraire” effects of the minimum wage in 

Brazil, as has been observed in the previous literature. Figure A3 and A4 show the corresponding wage 

distributions in the formal sector, with similar spikes at multiples of the minimum wage, both for year 2000 

and 2010. The strength of the minimum wage as a wage-setting norm in the informal sector does seem to 

vary across municipalities, both in absolute terms and in relative terms (compared to the formal sector). On 

average, 23 percent of the informal work force was paid in multiples of the minimum wage in 2010. This 

share, however, varies from a few percent in some municipalities to over 60 percent in other municipalities. 

The difference between the informal and formal sectors in the strength of this norm also varies across 

municipalities, which is key to our analysis. In some municipalities the share of workers paid multiples of 

the minimum wage in the informal sector is much lower than the corresponding share in the formal sector. 

In other municipalities the reverse is true. 

 

 

Figure A1. Wage distribution in the informal sector, 2000 

 

 

Source: Demographic Census, 2000. 
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Figure A2. Wage distribution in the informal sector, 2010 

 

 

Source: Demographic Census, 2010. 

  

0
.1

.2
.3

D
e
n

s
it
y

230 240 250 260 270
earned income, main job, monthly

kernel = epanechnikov, bandwidth = 0.6370

Kernel density estimate

0
.2

.4
.6

.8

D
e
n

s
it
y

490 500 510 520 530
earned income, main job, monthly

kernel = epanechnikov, bandwidth = 0.3108

Kernel density estimate
0

.1
.2

.3

D
e
n

s
it
y

990 1000 1010 1020 1030 1040
earned income, main job, monthly

kernel = epanechnikov, bandwidth = 0.8648

Kernel density estimate

0

.0
5

.1
.1

5

D
e
n

s
it
y

1500 1510 1520 1530 1540 1550
earned income, main job, monthly

kernel = epanechnikov, bandwidth = 1.7251

Kernel density estimate



 
 

30 

 

Figure A3. Wage distribution in the formal sector, 2000 

 

Source: Demographic Census, 2000. 
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Figure A4. Wage distribution in the formal sector, 2010 

 

Source: Demographic Census, 2010. 
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Table A1. Regression Results: municipal fixed effects 

 2010  2000 

 

Year-

interaction 

coefficient Std error 

 

Coefficient Std error 

CCT coverage 0.000 0.000  0.003*** 0.001 

Labor enforcement 0.002 0.002  –0.005 0.045 

Minimum-wage bindingness 0.067*** 0.019  0.002 0.013 

Age 0.010*** 0.000  –0.029*** 0.000 

Age squared –0.012*** 0.000  0.036*** 0.000 

Secondary education d 0.013*** 0.002  –0.110*** 0.004 

College education d 0.011*** 0.004  –0.115*** 0.004 

Female d 0.026*** 0.003  –0.005** 0.002 

Female with child d –0.009*** 0.002  0.032*** 0.002 

Formal-sector spouse d –0.012*** 0.001  –0.059*** 0.001 

Race - black d –0.002 0.002  0.013*** 0.002 

Race - mixed d –0.003* 0.002  0.011*** 0.002 

Race - Asian d –0.027*** 0.006  0.045*** 0.006 

Race - indigenous d 0.004 0.012  0.045*** 0.008 

Disabled d –0.014*** 0.003  0.044*** 0.003 

Urbanization 0.021 0.014  –0.071*** 0.026 

Agriculture –0.215* 0.112  0.120 0.093 

Fishing –0.113 0.094  0.207 0.138 

Extraction –0.220** 0.094  0.073 0.193 

Manufacturing 0.034 0.109  –0.367*** 0.116 

Utilities 0.311 0.271  –0.281 0.231 

Construction –0.322 0.208  0.000 0.162 

Retail trade –0.137 0.116  0.077 0.086 

Housing –0.150 0.118  0.033 0.110 

Transportation –0.009 0.118  0.007 0.102 

Financial services –0.472 0.366  0.371 0.547 

Real-estate services –0.028 0.104  –0.270* 0.144 

Public administration 0.035 0.143  –0.042 0.101 

Education 0.443*** 0.136  –0.026 0.114 

Health services 0.359 0.242  –0.344 0.235 

Other public services –0.018 0.303  0.338* 0.173 

Constant –0.250** 0.120  1.020*** 0.079 

Sample size 3,841,496 
Note: The dependent variable is the categorical variable Informal, which equals 1 if the worker is employed 

informally and zero if employed formally. Levels of statistical significance of the estimated coefficients are 

indicated by asterisks: 10 % (*), 5% (**), and 1% (***). 

 

 


