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Abstract

A standard assumption in the literature of strategic voting is the independence of signals. Each

juror observes a signal at the interim stage of the game. Then she votes according to her private

information in order to maximize her expected utility. This work introduces a dependency between

signals, re�ecting a more realistic situation, in which evidences can be incontrovertible. We give a

full characterization of the symmetric equilibria in non-weakly dominated strategies and we provide a

benchmark between the classical approach and this new one.

Jel Classification: C72, D72

1 Introduction

The problem of the jury, how jurors vote and when a collective choice is better than an individual one has

been object of study in political science and in statistics for a long time. Starting from Condorcet's famous

Theorem (1785), that can be stated as �under the majority rule, groups of people make better decisions than

single individuals and large electorates adopt the correct decision with very high probability�, many scholars

extended this result using more relaxed statistical assumptions. The main argument is that each juror has a

probability p ∈
(
1
2 , 1
)
of choosing the correct option and she wants to do it. Through a proper aggregation

method of the votes the statement holds. The value of p depends on the qualities of the individuals, i.e.

their knowledge of the debated matter or the understanding of the consequences. The aggregation method

depends on the type of institution considered. Despite the e�orts to enrich the model, i.e. introducing the

dependency of the probabilities (see, among others, Boland, 1989; Berg, 1993; Ladha, 1995, 1997; Berend

and Sapir, 2007) or adding heterogeneity in the chance of making the correct choice (Boland, 1989), all

these approaches consider jurors as if they were committed to vote informatively. There is no room for any

other type of evaluation, rather than the statistical structure. So the implicit assumption is that each juror

behaves as if she was alone. Even if she knows that the �nal outcome does not depend uniquely by her

choice. This contradicts the notion of rationality. For this reason this subject has been analyzed also from

the game theoretic point of view. The basic assumption is that, even if jurors share the same objective,

they vote strategically in order to maximize their expected utility. The probabilities of making the correct

choice, which incorporates information acquisition, competence and understanding of the debated matter

are replaced with the observation of noisy signals. The framework becomes a classical setting of games

with private information. The incentive to look for the maximization of the expected utility comes from

the information-based heterogeneity of individuals at the interim stage of the game. This approach gives

some insights about the jurors' behavior (Austen-Smith and Banks, 1996), explains the participation rate,
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the roll-o� e�ect, the information disclosure in large elections (Feddersen and Pesendorfer, 1996, 1997)

and the robustness of the aggregation methods (Feddersen and Pesendorfer, 1998). Moreover, Myerson

(1998) shows that the Condorcet's Jury Theorem holds also with strategic individuals when the number

of participants and the correct option are uncertain. This article analyzes the strategic behavior of a

jury that must vote to acquit or convict a defendant during a trial. The situation is similar to a group

of experts who must choose through a poll, to approve or reject a project. The main issue is that the

truth is unknown. Before making her choice, each juror observes a signal that gives an indication about

the innocence or the guiltiness of the defendant or the quality of the project. In the statistical approach,

as in the game theoretic one, signals are assumed to be independent. The underlying hypothesis is that

jurors interpret evidences di�erently, because of their di�erent life experiences and competencies. This

assumption is convenient because it makes computation easier. But, if we interpret signals as evidences

or as a technical report, there are at least two possible implications: jurors are allowed to interpret them

in opposite ways or during the trial no decisive evidence is produced at all. For this reason in our analysis

we assume that, with a positive probability α ∈ (0, 1) evidences are so strong to leave no chance to

interpretation. In fact, if we consider the modern investigation techniques, i.e. �ngerprints, DNA or some

particular circumstances, such as digital recordings or being caught in the act, the independence of signals

does not seem reasonable. Following the results in Feddersen and Pesendorfer (1998) we will restrict our

attention to simple majority decision rules with no abstention. The remainder of the chapter is organized

as follows: in section 2.2 we present the model. In section 2.3 we compute the symmetric equilibria. In

section 2.4 we summarize the classical model with independent signals and we compute the corresponding

symmetric equilibria. In section 2.5 we compare the two models trying to �nd a benchmark. Section 2.6

concludes. All the proofs are in the Appendix (Section 2.7).

2 The Model

Let J be the set of jurors with odd cardinality, each j ∈ J must choose to acquit or convict the defendant.

There is no abstention so the action set for each juror is Sj = {a, c}, moreover jurors share the same payo�

function vj = v : Ω1 × S→ R, de�ned as

v , u ◦ f

where Ω1 = {I,G} is the set of states of Nature, innocent or guilty, concerning the defendant. The set

S = Sj ×S−j is the set of all possible action pro�les. The function v is the composition of the aggregation

rule f : Sj × S−j → {a, c} of the action pro�les with the utility function u : {a, c} × Ω1 → R, de�ned as

u(a|ω1 = I) = u(c|ω1 = G) = 0

u(a|ω1 = G) = −(1− q)

u(c|ω1 = I) = −q

with q ∈ (0, 1). The parameter q can be viewed as a threshold of reasonable doubt. The true state in Ω1

is unknown and the jury members share the same prior probability distribution πj = π = Pr(I) ∈ (0, 1).

Before choosing an action in Sj each juror j ∈ J observes a private signal tj that can assume values in

Tj = {i, g} with state dependent distribution. In particular, with probability α ∈ (0, 1) nature reveals the

true state in Ω1 with degenerate independent signals

Pr(tj = i|I,R) = 1 and Pr(tj = g|G,R) = 1

Pr(tj = g|I,R) = 0 and Pr(tj = i|G,R) = 0

2



where R is the event �degenerate signals� and with probability (1 − α) signals are still independent but

not so accurate

Pr(tj = i|I,¬R) = z and Pr(tj = g|G,¬R) = z

Pr(tj = g|I,¬R) = 1− z and Pr(tj = i|G,¬R) = 1− z

with z ∈ ( 1
2 , 1). To summarize the set of states of nature is de�ned as Ω = Ω1 × Ω2 where Ω2 = {R,¬R}

contains the event �degenerate signals� and its complement. The event R is not directly observable and so

Pr(tj = g|G) = α+ (1− α)z

Pr(tj = i|G) = (1− α)(1− z)

Pr(tj = i|I) = α+ (1− α)z

Pr(tj = g|I) = (1− α)(1− z)

After getting her signal, each juror j ∈ J updates her belief using Bayes' rule and then

Pr(I|tj = i) =
απ + (1− α)πz

απ + (1− α)[πz + (1− π)(1− z)]

Pr(I|tj = g) =
(1− α)π(1− z)

α(1− π) + (1− α)[π(1− z) + (1− π)z]

Pr(G|tj = i) =
(1− α)(1− π)(1− z)

απ + (1− α)[πz + (1− π)(1− z)]

Pr(G|tj = g) =
α(1− π) + (1− α)(1− π)z

α(1− π) + (1− α)[π(1− z) + (1− π)z]

the sets (Sj , Tj)j∈J and the values of |J |, α, z, π, q are common knowledge. Each juror votes simultaneously

and before the poll they cannot communicate. This assumption could seem too strong but the analysis

of the deliberation mechanism is beyond the purpose of this work. Let 0 ≤ k(s) ≤ |J | be the number of
acquit votes in an action pro�le s ∈ S and let m̂ be equal to m̂ = (|J | − 1)/21. The aggregating rule f

used is de�ned as

f(s) ,

{
a if k(s) > m̂

c if k(s) ≤ m̂

and it corresponds to simple majority. This type of function has two important properties, it is anonymous

and monotonic: it treats all votes equally and if a decision is taken with n votes, it will not change with

n+ 1 votes. The presence of private signals and the interdependence of the payo� functions, induce each

juror to vote strategically.

De�nition 2.1. A voting strategy for juror j ∈ J is a map

σj : Tj → ∆(Sj)

where ∆(Sj) ⊃ Sj is the set of all possible pure and mixed actions.

Following the terminology in Austen-Smith and Banks (1996) each juror can behave in three di�erent ways

De�nition 2.2. A voting strategy σj : Tj → ∆(Sj) is

i. informative, if σj(sj |tj = i) = a and σj(sj |tj = g) = c.

ii. sincere, if given the observed signal, it maximizes the expected utility of juror j ∈ J .

Let σ = (σ1, σ2, . . . , σ2m̂+1) be the voting strategy pro�le of the jury, then

1Since |J | is assumed to be an odd number, m̂ is always an integer.
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De�nition 2.3. A voting strategy pro�le σ : {i, g}2m̂+1 → {∆(Sj)}2m̂+1
j=1 is rational, if it is a bayesian

Nash equilibrium of the game Γb = 〈J, (Tj , Sj)j∈J , (α, z, π), v〉.

De�nition 2.4. The voting strategy pro�le σ∗ = (σ∗1 , . . . , σ
∗
2m̂+1) is a bayesian Nash equilibrium of the

game Γb = 〈J, (Tj , Sj)j∈J , (α, z, π), v〉 if for all j ∈ J , tj ∈ Tj and σj ∈ ∆(Sj)∑
t−j∈T−j

v(σ∗j |σ∗−j , tj , t−j) Pr(t−j |tj) ≥
∑

t−j∈T−j

v(σj |σ∗−j , tj , t−j) Pr(t−j |tj)

Corollary 2.5. Whenever a voting strategy pro�le σ∗ is rational, it is also sincere.

It is well known that a rational juror is concerned only when her vote is pivotal. In particular for this

model, after observing tj = g juror j ∈ J prefers to acquit if q > Pr(G|piv, tj = g) or convict if the

inequality is reversed. In the same way, after observing tj = i she prefers to acquit if q > Pr(G|piv, tj = i)

or convict if the inequality is reversed. The probability that a defendant is guilty, given that juror j ∈ J
is pivotal and given tj = g can be computed as

Pr(G|piv, tj = g) =
Pr(G|tj = g) Pr(piv|G, tj = g)

Pr(G|tj = g) Pr(piv|G, tj = g) + Pr(I|tj = g) Pr(piv|I, tj = g)

where

Pr(piv|G, tj = g) =
∑

t−j∈T−j

Pr(t−j |G, tj = g) Pr(piv|G, t−j , tj = g)

Pr(piv|I, tj = g) =
∑

t−j∈T−j

Pr(t−j |I, tj = g) Pr(piv|I, t−j , tj = g)

and it depends on the distribution of the signals pro�le and on the strategies adopted by the jurors. The

probabilities Pr(G|piv, tj = i), Pr(I|piv, tj = g) and Pr(I|piv, tj = i) are similarly de�ned.

3 Equilibria

In this paper we will analyze only the symmetric bayesian Nash equilibria in which players do not use

weakly dominated strategies. From now on assume |J | = 3. To avoid trivial cases the parameter q ∈ (0, 1)

must be restricted. In fact, let us assume that a single juror can observe all signals and she observes the

signals pro�le t = (g, g, g). In this case, if she chooses to acquit irrespectively of the observed pro�le, it

means that she is not responsive as if she chooses to convict after observing the signals pro�le t = (i, i, i).

De�nition 3.1. A juror j ∈ J is said to be responsive, if there exist at least two signals pro�les t′, t′′ ∈ T
such that σj(sj |t = t′) 6= σj(sj |t = t′′) for some sj ∈ Sj, where T = {Tj}2m̂+1

j=1 .

This de�nition is similar to the one in Feddersen and Pesendorfer (1998). Before observing the signal,

each juror has a prior probability distribution π ∈ (0, 1) and it represents the common sentiment about

the innocence or the guiltiness of the defendant. It seems natural to study the behavior of equilibrated

jurors who have not a biased opinion.

De�nition 3.2. A juror j ∈ J is said to be unbiased, if π = 1
2 .

The above de�nition characterizes an impartial juror.

Proposition 3.3. For given α ∈ (0, 1), z ∈ ( 1
2 , 1) and |T | = 3, an unbiased juror j ∈ J is responsive, if

and only if

q ∈
(
qmin
α , qmax

α

)
=

(
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
,

α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]

)
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The above proposition gives the boundaries within the parameter q must lie, with a little abuse of notation

it is possible to consider σj(sj |tj = g) as the probability of acquit given the signal tj = g and σj(sj |tj = i)

as the probability of acquit given the signal tj = i. As it will be clear below, the value of q determines the

feasible strategies and the equilibria. The following proposition describes when the informative strategy

is also rational.

Proposition 3.4. Let J be a set of unbiased and responsive jurors with m̂ ∈ N <∞ for given α ∈ (0, 1)

and z ∈ ( 1
2 , 1), if q ∈ (1 − z, z) then the informative voting strategy (pro�le) is rational. That is, for any

q ∈ (1− z, z) the informative voting strategy pro�le σ∗ is a bayesian Nash equilibrium of Γb.

Notice that the above proposition holds for any �nite m̂. When q /∈ (1− z, z) the threshold of reasonable

doubt is shifted toward a behavior more concerned about the risk of make a mistake. In particular, for

q ∈ (qmin
α , 1− z) jurors are more afraid of acquit a guilty, rather than convict an innocent defendant. The

following proposition describes the symmetric bayesian Nash equilibrium played by this type of jurors.

Proposition 3.5. Let J be a set of unbiased and responsive jurors with |J | = 3, for given α ∈ (0, 1),

z ∈ ( 1
2 , 1) and q ∈ (q̂min

α , 1− z) the voting strategy

Pr(a|tj = g) = 0

Pr(a|tj = i) =
q[α+ (1− α)[z2 + (1− z)2]]− (1− α)(1− z)2

q[α+ (1− α)[z3 + (1− z)3]]− (1− α)(1− z)3

where

q̂min
α =

(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
> qmin

α

is rational. That is, for any q ∈ (q̂min
α , 1− z) the above strategy is a bayesian Nash equilibrium of Γb.

Notice that the lower bound in order to have an unbiased, responsive and rational juror is higher than

the one when there is only one decision maker. In a certain sense, it is as if the presence of other jurors

narrows the responsiveness interval. Moreover, jurors choose to �accept� the observed signal only when it

is consistent with their aptitude, and so they truthfully reveal it through the vote. In the other case they

prefer to randomize their vote. When q ∈ (z, qmax
α ) the situation is the opposite, jurors are more afraid of

convict a possible innocent rather than to acquit a guilty defendant.

Proposition 3.6. Let J be a set of unbiased and responsive jurors with |J | = 3, for given α ∈ (0, 1),

z ∈ ( 1
2 , 1) and q ∈ (z, q̂max

α ) the voting strategy

Pr(a|tj = g) =
q(1− α)z(1− z)− (1− α)z2(1− z)

α+ (1− α)z3 − q[α+ (1− α)[z3 + (1− z)3]]

Pr(a|tj = i) = 1

where

q̂max
α =

α+ (1− α)z2

α+ (1− α)[z2 + (1− z)2]
< qmax

α

is rational. That is, for any q ∈ (z, q̂max
α ) the above strategy is a bayesian Nash equilibrium of Γb.

As in the previous proposition, the upper bound changes q̂max
α < qmax

α and jurors �accept� to reveal

truthfully the signal only when it is coherent with their concern, otherwise they choose to randomize.

5



Asymptotic Behavior

The Condorcet's Jury Theorem states that majority are more likely to select the correct alternative with

respect to the single one. Not only, when the number of jurors grows, the probability of making the correct

choice increases. Under the informative strategy a defendant is acquitted if and only if k(t) > m̂, where

k(t) is the number of i signals in the pro�le t ∈ T . The distribution of k(t) conditioned to one of the two

states in Ω1 is

Pr(k(t) = 2m̂+ 1|ω1 = I) = α+ (1− α)z2m̂+1

Pr(k(t) = x|ω1 = I) =

(
2m̂+ 1

x

)
(1− α)zx(1− z)(2m̂+1)−x

for 0 ≤ x < |J | = 2m̂+ 1 and

Pr(k(t) = 0|ω1 = G) = α+ (1− α)z2m̂+1

Pr(k(t) = x|ω1 = G) =

(
2m̂+ 1

x

)
(1− α)z(2m̂+1)−x(1− z)x

for 0 < x ≤ |J | = 2m̂+ 1. So the probability of convict an innocent is

Pr(conv|I) = (1− α)

m̂∑
x=0

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

and the probability of acquit a guilty is

Pr(acq|G) = (1− α)

m̂∑
x=0

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

The following proposition shows that with the informative strategy the Condorcet's Theorem still holds.

Proposition 3.7. Let J be a set of unbiased, rational and responsive jurors with m̂ ∈ N, for given

α ∈ (0, 1), z ∈ ( 1
2 , 1) and q ∈ (1− z, z) the probability of convict an innocent and the probability of acquit

a guilty go to zero as the jury size goes to in�nity.

Single Judge vs. Multiple Jurors

In this part we analyze the situation in which there is only one judge, who must choose to acquit or convict

the defendant. The basic assumption made is that, since a judge can interact with the involved parties

he can get a more clear exposition of the evidences. For this reason we assume that he can extract more

information with respect to a single juror. Another possible justi�cation to this assumption is that judges

usually are more competent, than a single juror drawn from a list of common people. In order to keep

some analogies with the case of three jurors, we assume that the number of observed signals is equal to 3.

We compare the probabilities of making the correct choice for the same value of q. We maintain the same

utility function u, but in this case the aggregation rule f is simply the identity from the judge's decision

to the �nal outcome for the defendant. Obviously, in this case, the probability of being pivotal is one. The

judge's behavior is the same as the single juror. He chooses to acquit if and only if q > Pr(G|t̂), where
t̂ ∈ T is the observed signals pro�le, otherwise he chooses to convict the defendant. Assuming that the

judge is not biased, let us compute the probabilities of being guilty given the di�erent signals pro�les

Pr(G|g, g, g) =
α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]
= θ1 Pr(G|i, g, g) = z = θ2

Pr(G|i, i, g) = 1− z = θ3 Pr(G|i, i, i) =
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
= θ4
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notice that θ2 and θ3 are the same independently of the permutation of the signals. Proposition 3.3 gives

us the interval of responsiveness for a single decision maker, we can see that θ1 = qmax
α and θ4 = qmin

α . Let

Pr(G|conv) be the probability that a guilty is convicted by a judge and let Pr(G|conv) the corresponding

probability when the deliberation is made by a group of jurors. When q ∈ (0, qmin
α ) both judge and jurors

are outside the responsiveness interval, and they always choose to convict the defendant.

Pr(G|conv) =
1

2
= Pr(G|conv)

It is easy to see that in this case, the probability of acquitting an innocent defendant is Pr(I|acq) = 0 =

Pr(I|acq). For q ∈ (qmin
α , q̂min

α ) jurors always choose to convict the defendant, while the single judge will

acquit the defendant if and only if he observers the signal pro�le t = (i, i, i). Hence

Pr(G|conv) =
α+ (1− α)[z3 + 3z(1− z)]

1 + 3(1− α)z(1− z)
>

1

2
= Pr(G|conv)

since α + (1 − α)[z3 − (1 − z)3] > 0 holds for any α > 0 and z ∈
(
1
2 , 1
)
the above inequality is always

satis�ed. The probability of acquitting an innocent defendant, in this case is

Pr(I|acq) =
α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]
> 0 = Pr(I|acq)

when q ∈ (1− z, z) the probabilities of convict a guilty defendant are the same

Pr(G|conv) = α+ (1− α)[z3 + 3z2(1− z)] = Pr(G|conv)

as the probabilities of acquitting an innocent one

Pr(I|acq) = α+ (1− α)[z3 + 3z2(1− z)] = Pr(I|acq)

For q ∈ (q̂max
α , qmax

α ) jury members always choose to acquit a defendant, while a single juror will convict

when he observes the signal pro�le t = (g, g, g). The corresponding probabilities are

Pr(G|conv) =
α+ (1− α)z3

α+ (1− alpha)[z3 + (1− z)3
> 0 = Pr(G|conv)

while for the probabilities of acquitting an innocent defendant the result is similar as the �rst case analyzed

Pr(I|acq) =
α+ (1− α)[z3 + 3z(1− z)]

1 + 3(1− α)z(1− z)
>

1

2
= Pr(I|acq)

For q ∈ (qmax
α , 1) both judge and jurors choose to acquit the defendant, the probabilities of convicting a

guilty defendant are zero and the probabilities of acquitting an innocent one are equal to one half.

4 The Classical Model

In this section we will replicate the analysis as in Section 3 when the classical assumption is used. To do

this, it is enough to change the structure of the signals distribution as

Pr(tj = i|I) = p and Pr(tj = g|G) = p

Pr(tj = g|I) = 1− p and Pr(tj = i|G) = 1− p

with p ∈ ( 1
2 , 1) and we assume the independence of the signals. As in Proposition 3.3 it is possible to

de�ne the interval within a juror is responsive, when she can observe all the signals pro�le

7



Proposition 4.1. For given p ∈ ( 1
2 , 1) and |T | = 3 an unbiased juror j ∈ J is responsive, if and only if

q ∈
(
qmin
0 , qmax

0

)
=

(
(1− p)3

p3 + (1− p)3
,

p3

p3 + (1− p)3

)
Notice that letting p equal to z, this implies that signals have the same quality, the responsiveness interval

in Section 3 is always wider than this one
(
qmin
0 , qmax

0

)
⊂
(
qmin
α , qmax

α

)
. It is su�cient to know that with a

positive probability, no matter of its value, Nature reveals the truth to convince more concerned jurors to

react to the information.

Proposition 4.2. Let J be a set of unbiased and responsive jurors with m̂ ∈ N <∞ for given p ∈ ( 1
2 , 1),

if q ∈ (1− p, p) then the informative voting strategy (pro�le) is rational. That is, for any q ∈ (1− p, p) the
informative voting strategy pro�le σ∗ is a bayesian Nash equilibrium of Γb0.

where Γb0 = 〈J, (Tj , Sj)j∈J , (p, π), v〉 is the modi�ed bayesian game. When q /∈ (1 − p, p) the threshold of

reasonable doubt is shifted and so

Proposition 4.3. Let J be a set of unbiased and responsive jurors with |J | = 3, for given p ∈ ( 1
2 , 1) and

q ∈ (q̂min
0 , 1− p) the voting strategy

Pr(a|tj = g) = 0

Pr(a|tj = i) =
q[p2 + (1− p)2]− (1− p)2

q[p3 + (1− p)3]− (1− p)3

where

q̂min
0 =

(1− p)2

p2 + (1− p)2
> qmin

0

is rational. That is, for any q ∈ (q̂min
0 , 1− p) the above strategy is a bayesian Nash equilibrium of Γb0.

Similarly to the Proposition 3.5 the lower bound q̂min
0 is higher than qmin

0 and the signal tj is �revealed�

only when it is consistent with the aptitude of the jurors.

Proposition 4.4. Let J be a set of unbiased and responsive jurors with |J | = 3, for given p ∈ ( 1
2 , 1) and

q ∈ (p, q̂max
0 ) the voting strategy

Pr(a|tj = g) =
qp(1− p)− p2(1− p)
p3 − q[p3 + (1− p)3]

Pr(a|tj = i) = 1

where

q̂max
0 =

p2

p2 + (1− p)2
< qmax

0

is rational. That is, for any q ∈ (p, q̂max
0 ) the above strategy is a bayesian Nash equilibrium of Γb0.

as Proposition 3.6 the upper bound q̂max
0 is lower than qmax

0 and tj is �revealed� only when tj = i.

5 Benchmark

Denote as α-model the one described in Section 2 and as 0-model the classic one in Section 4. Now

the two models will be compared under the assumption that the ex ante utilities, obtained adopting the

informative strategy pro�le, are the same. To do this it is necessary to �nd the relation, if exists, between

the di�erent parameters of the models. Before observing the signal

EU[v] = −1

2
[Pr(conv|I) q + Pr(acq|G)(1− q)]

8



where the conditioned probabilities of acquit and convict depend also by the voting strategy pro�le

Pr(conv|I) =
∑

(t−i,ti)∈T

Pr(conv|t−i, ti, I) Pr(t−i, ti|I)

Pr(acq|G) =
∑

(t−i,ti)∈T

Pr(acq|t−i, ti,G) Pr(t−i, ti|G)

In both models, under the informative strategy, the ex ante expected utilities does not depend on q

EUα[v] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]

EU0[v] = −1

2
[(1− p)3 + 3p(1− p)2]

In this case EUα[v] is equal to EU0[v] if and only if between α, z and p holds this relation

−1

2
(1− α)[(1− z)3 + 3z(1− z)2] = −1

2
[(1− p)3 + 3p(1− p)2] (?)

derived in the Appendix. When α = 0 both models coincide and p = z as when α = 1 or z = 1, in all

other cases p > z.

Example 5.1. For α = 0.5 and z = 0.65 the ex ante expected utility is EUα[v] = −0.0704 and the

probability p that satis�es equation (?) is 0.7639.

Let q̂min = min{q̂min
0 , q̂min

α } and q̂max = max{q̂max
0 , q̂max

α }. When q < q̂min in both models jurors always

chooses to convict and the ex ante expected utilities are

EUα[v] = EU0[v] = −1

2
q

when q > q̂max in both models jurors always chooses to acquit and the ex ante expected utilities are

EUα[v] = EU0[v] = −1

2
(1− q)

The following proposition determines the intervals of the two models.

Proposition 5.2. For given α ∈ ( 1
2 , 1), z ∈ ( 1

2 , 1) and p ∈ ( 1
2 , 1) such that equation (?) holds,

q̂min = q̂min
α (q̂min = q̂min

0 ) and q̂max = q̂max
α (q̂max = q̂max

0 )

if and only if

α > (<) α̂

with

α̂ =
p2(1− z)2 − (1− p)2z2

(1− p)2 + p2(1− z)2 − (1− p)2z2

Since α ∈ (0, 1) can be viewed as the probability of observing a straightforward evidence that leaves no

doubt, it is natural that higher values of this parameter implies a wider interval of responsiveness of the

jurors. Now it is time to compare the ex ante expected utilities for some values of q.

Proposition 5.3. Let J be a set of unbiased and responsive jurors with |J | = 3, for given α ∈ (0, 1),

z ∈ ( 1
2 , 1) and p ∈ ( 1

2 , 1) such that equation (?) holds,

i) if q ∈ (0, q̂min) in both models jurors always choose to convict and EUα[v] = EU0[v].

ii) if q ∈ (1 − p, 1 − z) in the 0−model the informative strategy is rational, while in the α-model is

rational the strategy described in proposition 3.5 and EUα[v] > EU0[v].

iii) if q ∈ (1− z, z) in both models the informative strategy is rational and EUα[v] = EU0[v].

iv) if q ∈ (z, p) in the 0−model the informative strategy is rational, while in the α-model is rational the

strategy described in proposition 3.6 and EUα[v] > EU0[v].

v) if q ∈ (q̂max, 1) in both models jurors always choose to acquit and EUα[v] = EU0[v].

9



6 Conclusions

The presence of a positive probability with which Nature reveals the true state of the world, makes the

responsiveness interval wider. It is easy to see that when the number of jurors increases the values of qmin
α

and qmin
0 approach to zero and the values of qmax

α and qmax
0 approach to one. The reason is very simple:

the more information a single decision maker can observe and the higher is her inclination to change

her judgment about the defendant. On the other hand, when the number of jury members increases the

probability of being pivotal decreases. This e�ect should narrow the intervals (q̂min
α , 1 − z), (q̂min

0 , 1 − z),
(z, q̂max

α ) and (p, q̂max
0 ). A possible extension of the model described in Section 2 is the introduction of

a public observable signal with state dependent distribution. It can be interpreted as the role played by

�opinion leaders� or by the media, i.e. television, newspapers, Internet forums, etc. In this case, it seems

reasonable that the quality of the signal should be lower with respect to the signals produced during the

trial. Another possible extension is the introduction of di�erent thresholds of reasonable doubt (as in

Gerardi, 2000). In this framework does a heterogeneous jury performs better than a homogeneous one?

7 Appendix

Probabilistic Structure

Let N = |J |, the distribution of the signals pro�les t = (t1, . . . , tN ) ∈ {i, g}N is de�ned as

f(t) = 10(t) · p(0, N) + 1k(t) · p(k,N) + 1N (t) · p(N,N)

where 10(t) is the indicator function of the zero vector,

1k(t) =

{
1 if

∑N
j=1 tj = k ∈ {1, 2, . . . , N − 1}

0 otherwise

and 1N (t) is the indicator function of the vector with all components equal to 1. The corresponding

probabilities are

p(0, N) = (1− π)α+ (1− α)[π(1− z)N + (1− π)zN ]

p(k,N) = (1− α)[πzk(1− z)N−k + (1− π)zN−k(1− z)k]

p(N,N) = απ + (1− α)[πzN + (1− π)(1− z)N ]

and the sum of the signals for k ∈ {1, 2, . . . , N − 1} is distribuited as

g(k) =

(
N

j

)N−1
j=k

π(1− α)zj(1− z)N−j + (1− π)(1− α)zN−j(1− z)j

for k = 0

g(0) = π(1− α)(1− z)N + (1− π)[α+ (1− α)zN ]

and for k = N

g(N) = π[α+ (1− α)zN ] + (1− π)(1− α)(1− z)N

Explicitation of Condition (?)

Conditions (?) holds if and only if between α ∈ (0, 1), z ∈ ( 1
2 , 1) and p ∈ ( 1

2 , 1) holds this relation

p =
1

2
− sin

(
arcsin(2(1− α)[(1− z)3 + 3z(1− z)2]− 1)

3

)
∈
(

1

2
, 1

)
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where

arcsin(·) : [−1, 1]→
[
−π

2
,
π

2

]
is the inverse function of the sin(·). This is the only admissible solution of the third degree equation

derived by condition (?). Table 1 reports some values of p for given α and z.

α

0.000 0.100 0.300 0.500 0.700 0.900 1.000

z

0.550 0.550 0.579 0.638 0.703 0.776 0.876 1.000

0.600 0.600 0.625 0.676 0.733 0.798 0.887 1.000

0.650 0.650 0.671 0.715 0.764 0.821 0.900 1.000

0.700 0.700 0.717 0.755 0.796 0.845 0.913 1.000

0.750 0.750 0.764 0.794 0.829 0.869 0.926 1.000

0.800 0.800 0.811 0.835 0.862 0.894 0.940 1.000

0.850 0.850 0.858 0.876 0.896 0.920 0.954 1.000

0.900 0.900 0.905 0.917 0.930 0.946 0.969 1.000

0.950 0.950 0.953 0.958 0.965 0.973 0.984 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Values of p for �xed z and α.

Proofs

Proof of Corollary 2.5

Trivial.

Proof of Proposition 3.3

(if part) Fix α ∈ (0, 1), z ∈ ( 1
2 , 1) and take an unbiased juror with q ∈ (qmin

α , qmax
α ). Without loss of

generality take the signals pro�les t1 = (g, g, g) and t2 = (i, i, i). Since she observes all the signals the

probability of being pivotal is one and so she compares her q with these two probabilities

Pr(G| t1 = (g, g, g)) =
α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]

Pr(G| t2 = (i, i, i)) =
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]

it results that Pr(G| t2) < q < Pr(G| t1) and so she chooses to convict the defendant after observing t1

and acquit him after observing t2. If there exist a signal pro�le t̂ ∈ T such that Pr(G|t̂) = q then the juror

chooses to randomize her choice.

(only if) Let's assume that q < qmin
α and suppose that the juror is responsive. It is easy to see that for any

signals pro�les t ∈ T the parameter q is smaller than Pr(G|t) and so the juror always chooses to convict the

defendant, independently by the signals pro�le and so she is not responsive. For q > qmax
α the reasoning

is similar.

Proof of Proposition 3.4

Under the assumptions of the proposition and after making simple calculations it results that

Pr(G|piv, tj = g) = z and Pr(G|piv, tj = i) = 1− z
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for any m̂ <∞. This means that for q ∈ (1− z, z)

Pr(G|piv, tj = g) = z > q > 1− z = Pr(G|piv, tj = i)

and so for any q ∈ (1− z, z) the informative strategy is a symmetric bayesian Nash equilibrium.

Proof of Proposition 3.5

The proof is by construction, for each j ∈ J let's consider the symmetric strategy{
if tj = g then c

if tj = i then σj ∈ ∆(Sj)
(1)

where σj = Pr(a|tj = i). After observing tj = i the juror chooses to randomize if and only if she is

indi�erent, that is, if Pr(G|piv, tj = i) = q. So if

Pr(G|piv, tj = g) > q = Pr(G|piv, tj = i)

this strategy is an equilibrium. Under the strategy described in (1)

Pr(G|piv, tj = g) =
1− σj(1− z)

2− σj

and

Pr(G|piv, tj = i) =
(1− α)(1− z)2 − σj(1− α)(1− z)3

α+ (1− α)[z2 + (1− z)2]− σj [α+ (1− α)[z3 + (1− z)3]]

since σj ∈ (0, 1), it results that

Pr(G|piv, tj = g) ∈
(

1

2
, z

)
(2)

Moreover it must be

Pr(G|piv, ti = i) =
(1− α)(1− z)2 − σj(1− α)(1− z)3

α+ (1− α)[z2 + (1− z)2]− σj [α+ (1− α)[z3 + (1− z)3]]
= q

Now consider the equality

σj =
(1− α)(1− z)2 − q[α+ (1− α)[z2 + (1− z)2]]

(1− α)(1− z)3 − q[α+ (1− α)[z3 + (1− z)3]]
(3)

since σj is positive, it could be{
(1− α)(1− z)2 − q[α+ (1− α)[z2 + (1− z)2]] > 0

(1− α)(1− z)3 − q[α+ (1− α)[z3 + (1− z)3]] > 0
(A)

or {
(1− α)(1− z)2 − q[α+ (1− α)[z2 + (1− z)2]] < 0

(1− α)(1− z)3 − q[α+ (1− α)[z3 + (1− z)3]] < 0
(B)

Case A

Let's consider case (A), it means that q must satisfy both these inequalities

q <
(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]

q <
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
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but since for any α ∈ (0, 1)

1 >
(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
>

(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
> 0

we can restrict our attention to

q <
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
(4)

moreover it must be

σj =
(1− α)(1− z)2 − q[α+ (1− α)[z2 + (1− z)2]]

(1− α)(1− z)3 − q[α+ (1− α)[z3 + (1− z)3]]
< 1

and this inequality is satis�ed for

q > (1− z) (5)

So q must satisfy both (4) and (5) in order to have σj ∈ (0, 1)

(1− z) < q <
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
(6)

and this is possibile if and only if

α+ (1− α)z(2z − 1) < 0

but α ∈ (0, 1) and (2z − 1) > 0 so case (A) must be discarded.

Case B

Let's consider case (B), it means that q must satisfy both these inequalities

q >
(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]

q >
(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]

but since for any α ∈ (0, 1)

1 >
(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
>

(1− α)(1− z)3

α+ (1− α)[z3 + (1− z)3]
> 0

we can restrict out attention to

q >
(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
(7)

moreover it must be

σj =
q[α+ (1− α)[z2 + (1− z)2]]− (1− α)(1− z)2

q[α+ (1− α)[z3 + (1− z)3]]− (1− α)(1− z)3
< 1

and this inequality is satis�ed for

q < (1− z) (8)

So q must satisfy both (7) and (8) in order to have σj ∈ (0, 1)

(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
< q < (1− z) (9)

and this is possibile if and only if

α+ (1− α)z(2z − 1) > 0

since α ∈ (0, 1) and (2z − 1) > 0, it is always true. From (2) and (8) the strategy (1) is feasible for any

q ∈
(

(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
, 1− z

)
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and for any q in the interval

Pr(G|piv, tj = g) > q

and

Pr(G|piv, tj = i) = q

Proof of Proposition 3.6

The proof is by construction, for each j ∈ J let's consider the symmetric strategy{
if tj = g then σj ∈ ∆(Sj)

if tj = i then a
(10)

where σj = Pr(a|tj = g). After observing tj = g the juror chooses to randomize if and only if she is

indi�erent, that is, Pr(G|piv, tj = g) = q. So if

Pr(G|piv, tj = g) = q > Pr(G|piv, tj = i)

the strategy is an equilibrium. Under the strategy described in (10)

Pr(G|piv, tj = g) =
(1− α)z2(1− z) + σj [α+ (1− α)z3]

(1− α)z(1− z) + σj [α+ (1− α)[z3 + (1− z)3]]

and

Pr(G|piv, tj = i) =
(1− z) + σjz

1 + σj

since σj ∈ (0, 1), it results that

Pr(G|piv, tj = i) ∈
(

1− z, 1

2

)
(11)

Moreover it must be

Pr(G|piv, tj = g) =
(1− α)z2(1− z) + σj [α+ (1− α)z3]

(1− α)z(1− z) + σj [α+ (1− α)[z3 + (1− z)3]]
= q

Now consider the equality

σj =
(1− α)z2(1− z)− q(1− α)z(1− z)

q[α+ (1− α)[z3 + (1− z)3]]− [α+ (1− α)z3]
(12)

since σj is positive, it could be{
(1− α)z2(1− z)− q(1− α)z(1− z) > 0

q[α+ (1− α)[z3 + (1− z)3]]− [α+ (1− α)z3] > 0
(A)

or {
(1− α)z2(1− z)− q(1− α)z(1− z) < 0

q[α+ (1− α)[z3 + (1− z)3]]− [α+ (1− α)z3] < 0
(B)

Case A

Let's consider case (A), it means that q must satisfy both these inequalities

α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]
< q < z

but since for any α ∈ (0, 1)

z <
α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]

case (A) must be discarded.
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Case B

Let's consider case (B), it means that q must satisfy both these inequalities

z < q <
α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]

and for any value of α ∈ (0, 1)

z <
α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]

moreover it must be

σj =
q(1− α)z(1− z)− (1− α)z2(1− z)2

α+ (1− α)z3 − q[α+ (1− α)[z3 + (1− z)3]]
< 1

and this means that

z < q <
α+ (1− α)z2

α+ (1− α)[z2 + (1− z)2
(13)

for all α ∈ (0, 1) it results

z <
α+ (1− α)z2

α+ (1− α)[z2 + (1− z)2]
<

α+ (1− α)z3

α+ (1− α)[z3 + (1− z)3]

from (11) and (13) the strategy (10) is feasible for any

q ∈
(
z,

α+ (1− α)z2

α+ (1− α)[z2 + (1− z)2]

)
and for any q in the interval

Pr(G|piv, tj = g) = q

and

Pr(G|piv, tj = i) < q

Proof of Proposition 3.7

Under the informative strategy the probability of convict an innocent is

Pr(conv|I) = (1− α)

m̂∑
x=0

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

︸ ︷︷ ︸
the minority of signals are i

(14)

and the probability of acquit a guilty is

Pr(acq|G) = (1− α)

m̂∑
x=0

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

︸ ︷︷ ︸
the minority of signals are g

(15)

Notice that

m̂∑
x=0

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x = 1−

2m̂+1∑
x=m̂+1

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

so

Pr(conv|I) = (1− α)

[
1−

2m̂+1∑
x=m̂+1

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

]
(16)
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and

Pr(acq|G) = (1− α)

[
1−

2m̂+1∑
x=m̂+1

(
2m̂+ 1

x

)
zx(1− z)(2m̂+1)−x

]
(17)

from Theorem 1 in Boland (1989) it results that

lim
|J|→∞

Pr(conv|I) = 0 and lim
|J|→∞

Pr(acq|G) = 0

Proof of Proposition 4.1

(if part) Fix p ∈ ( 1
2 , 1) and take an unbiased juror with q ∈ (qmin

0 , qmax
0 ). Without loss of generality take

the signals pro�les t1 = (g, g, g) and t2 = (i, i, i). Since she observes all the signals the probability of being

pivotal is one and so she compares her q with these two probabilities

Pr(G| t1 = (g, g, g)) =
p3

p3 + (1− p)3

Pr(G| t2 = (i, i, i)) =
(1− p)3

p3 + (1− p)3

it results that Pr(G| t2) < q < Pr(G| t1) and so she chooses to convict the defendant after observing t1

and acquit him after observing t2. If there exist a signal pro�le t̂ ∈ T such that Pr(G|t̂) = q then the juror

chooses to randomize her choice.

(only if) Let's assume that q < qmin
0 and suppose that the juror is responsive. It is easy to see that for any

signals pro�les t ∈ T the parameter q is smaller than Pr(G|t) and so the juror always chooses to convict the

defendant, independently by the signals pro�le and so she is not responsive. For q > qmax
0 the reasoning

is similar.

Proof of Proposition 4.2

Under the assumptions of the proposition and making simple calculations it results that

Pr(G|piv, tj = g) = p and Pr(G|piv, tj = i) = 1− p

for any m̂ <∞. This means that for q ∈ (1− p, p)

Pr(G|piv, tj = g) = p > q > 1− p = Pr(G|piv, tj = i)

so for any q ∈ (1− p, p) the informative strategy is a symmetric bayesian Nash equilibrium.

Proof of Proposition 4.3

The proof is by construction, for each j ∈ J let's consider the strategy{
if tj = g then c

if tj = i then σj ∈ ∆(Sj)
(18)

where σj = Pr(a|tj = i). After observing tj = i the juror chooses to randomize if and only if she is

indi�erent, that is, Pr(G|piv, tj = i) = q. So if

Pr(G|piv, tj = g) > q = Pr(G|piv, tj = i)

this strategy is an equilibrium. Under the strategy described in (18)

Pr(G|piv, tj = g) =
1− (1− p)σj

2− σj
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and

Pr(G|piv, tj = i) =
(1− p)2 − σj(1− p)3

[p2 + (1− p)2]− σj [p3 + (1− p)3]

since σj ∈ (0, 1), it results that

Pr(G|piv, tj = g) ∈
(

1

2
, p

)
(19)

Moreover it must be

Pr(G|piv, tj = i) =
(1− p)2 − σj(1− p)3

[p2 + (1− p)2]− σj [p3 + (1− p)3]
= q

Now consider the equality

σj =
(1− p)2 − q[p2 + (1− p)2]

(1− p)3 − q[p3 + (1− p)3]
(20)

since σj is positive, it could be {
(1− p)2 − q[p2 + (1− p)2] > 0

(1− p)3 − q[p3 + (1− p)3] > 0
(A)

or {
(1− p)2 − q[p2 + (1− p)2] < 0

(1− p)3 − q[p3 + (1− p)3] < 0
(B)

Case A

Let's consider case (A), it means that q must satisfy both these inequalities

q <
(1− p)3

p3 + (1− p)3

q <
(1− p)2

p2 + (1− p)2

but since for any p ∈ ( 1
2 , 1)

1 >
(1− p)2

p2 + (1− p)2
>

(1− p)3

p3 + (1− p)3
> 0

we can restrict our attention to

q <
(1− p)3

p3 + (1− p)3
(21)

moreover it must be

σj =
(1− p)2 − q[p2 + (1− p)2]

(1− p)3 − q[p3 + (1− p)3]
< 1

and this inequality is satis�ed for

q > (1− p) (22)

So q must satisfy both (21) and (22) in order to have σj ∈ (0, 1) and this is possibile if and only if

p(1− 2p) > 0

but (1− 2p) < 0 so case (A) must be discarded.
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Case B

Let's consider case (B), it means that q must satisfy both these inequalities

q >
(1− p)3

p3 + (1− p)3

q >
(1− p)2

p2 + (1− p)2

but since for any p ∈ ( 1
2 , 1)

1 >
(1− p)2

p2 + (1− p)2
>

(1− p)3

p3 + (1− p)3
> 0

we can restrict our attention to

q >
(1− p)2

p2 + (1− p)2
(23)

moreover it must be

σj =
q[p2 + (1− p)2]− (1− p)2

q[p3 + (1− p)3]− (1− p)3
< 1

and this inequality is satis�ed for

q < (1− p) (24)

So q must satisfy both (23) and (24) in order to have σj ∈ (0, 1)

(1− p)2

p2 + (1− p)2
< q < (1− p) (25)

and this is possible if and only if

p(2p− 1) > 0

since (2p− 1) > 0, it is always true. From (19) and (24) the strategy (18) is feasible for any

q ∈
(

(1− p)2

p2 + (1− p)2
, 1− p

)
and for any q in the interval

Pr(G|piv, tj = g) > q

and

Pr(G|piv, tj = i) = q

Proof of Proposition 4.4

The proof is by construction, for each j ∈ J let's consider the symmetric strategy{
if tj = g then σj ∈ ∆(Sj)

if tj = i then a
(26)

where σj = Pr(a|tj = g). After observing tj = g the juror chooses to randomize if and only if she is

indi�erent, that is, Pr(G|piv, tj = g) = q. So if

Pr(G|piv, tj = g) = q > Pr(G|piv, tj = i)

the strategy is an equilibrium. Under the strategy described in (26)

Pr(G|piv, tj = g) =
σjp

3 + p2(1− p)
σj [p3 + (1− p)3] + p(1− p)
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and

Pr(G|piv, tj = i) =
(1− p) + σjp

1 + σj

since σj ∈ (0, 1), it results that

Pr(G|piv, tj = i) ∈
(

1− p, 1

2

)
(27)

Moreover it must be

Pr(G|piv, tj = g) =
σjp

3 + p2(1− p)
σj [p3 + (1− p)3] + p(1− p)

= q

Now consider the equality

σj =
p2(1− p)− qp(1− p)
q[p3 + (1− p)3]− p3

(28)

since σj is positive, it could be {
p2(1− p)− qp(1− p) > 0

q[p3 + (1− p)3]− p3 > 0
(A)

or {
p2(1− p)− qp(1− p) < 0

q[p3 + (1− p)3]− p3 < 0
(B)

Case A

Let's consider case (A), it means that q must satisfy both these inequalities

p3

p3 + (1− p)3
< q < p

but since for any p ∈ ( 1
2 , 1)

p <
p3

p3 + (1− p)3

case (A) must be discarded.

Case B

Let's consider case (B), it means that q must satisfy both these inequalities

p < q <
p3

p3 + (1− p)3
(29)

and for any value of p ∈ ( 1
2 , 1)

p <
p3

p3 + (1− p)3

moreover it must be

σj =
qp(1− p)− p2(1− p)
p3 − q[p3 + (1− p)3]

< 1

and this means that

p < q <
p2

p2 + (1− p)2
(30)

for all p ∈ ( 1
2 , 1) it results

p <
p2

p2 + (1− p)2
<

p3

p3 + (1− p)3

from (27) and (30) the strategy (26) is feasible for any

q ∈
(
p,

p2

p2 + (1− p)2

)
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and for any q in the interval

Pr(G|piv, tj = g) = q

and

Pr(G|piv, tj = i) < q

Proof of Proposition 5.2

Take in consideration this system of inequalities{
q̂min
α < q̂min

0

q̂max
α > q̂max

0

that is
(1− α)(1− z)2

α+ (1− α)[z2 + (1− z)2]
<

(1− p)2

p2 + (1− p)2
(31)

and
α+ (1− α)z2

α+ (1− α)[z2 + (1− z)2]
>

p2

p2 + (1− p)2
(32)

notice that

(1− p)2z2 < (1− z)2z2 < (1− z)2p2

and so for

α̂ >
p2(1− z)2 − (1− p)2z2

(1− p)2 + p2(1− z)2 − (1− p)2z2

both (31) and (32) hold.

Proof of Proposition 5.3

Consider the following intervals

0 q̂min 1− z z1− p q̂maxp 1

i) for q ∈ (0, q̂min), trivial.

ii) for q ∈ (1 − p, 1 − z), in the α-model jurors use the equilibrium stategy described in proposition 3.5

with

σ∗α = Pr(a|tj = i) =
q[α+ (1− α)[z2 + (1− z)2]]− (1− α)(1− z)2

q[α+ (1− α)[z3 + (1− z)3]]− (1− α)(1− z)3
< 1

while in the 0-model the informative strategy is still an equilibrium. So

EUα[v] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]

−1

2
[(1− σ∗α)3 + 3σ∗α(1− σ∗α)2][q[α+ (1− α)[z3 + (1− z)3]]− (1− α)(1− z)3]

+
3

2
[(1− σ∗α)2 + 2σ∗α(1− σ∗α)](1− α)[(1− z)− q]z(1− z)

EU0[v] = −1

2
[(1− p)3 + 3p(1− p)2] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]
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notice that

(1− σ∗α) =
(1− α)[(1− z)− q]z(1− z)

q[α+ (1− α)[z3 + (1− z)3]]− (1− α)(1− z)3

let's call

θ2 = (1− α)[(1− z)− q]z(1− z) > 0

θ1 = q[α+ (1− α)[z3 + (1− z)3]]− (1− α)(1− z)3 > 0

then

(1− σ∗α) =
θ2
θ1

and θ2 = (1− σ∗α) θ1

EUα[v] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]

−1

2
[(1− σ∗α)3 + 3σ∗α(1− σ∗α)2] θ1

+
3

2
[(1− σ∗α)2 + 2σ∗α(1− σ∗α)](1− σ∗α) θ1

and so

EUα[v] = −1

2
(1− α)

[
(1− z)3 + 3z(1− z)2

]
+

[
(1− σ∗α)3 +

3

2
σ∗α(1− σ∗α)2

]
θ1

since condition (?) holds, it results

EUα[v] = −1

2
(1− α)

[
(1− z)3 + 3z(1− z)2

]
+

[
(1− σ∗α)3 +

3

2
σ∗α(1− σ∗α)2

]
θ1

= −1

2
[(1− p)3 + 3p(1− p)2] +

[
(1− σ∗α)3 +

3

2
σ∗α(1− σ∗α)2

]
θ1

= EU0[v] +

[
(1− σ∗α)3 +

3

2
σ∗α(1− σ∗α)2

]
θ1

and then EUα[v] > EUα[0].

iii) for q ∈ (1 − z, z), since 1 − p < 1 − z < q < z < p in both models the informative strategy is an

equilibrium, since condition (?) holds, this equality also holds

EUα[v] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2] = −1

2
[(1− p)3 + 3p(1− p)2] = EU0[v]

iv) for q ∈ (z, p), in the α-model jurors use the equilibrium strategy described in proposition 3.6 with

σ∗α = Pr(a|tj = g) =
(1− α)(q − z)z(1− z)

α+ (1− α)z3 − q[α+ (1− α)[z3 + (1− z)3]]
< 1

while in the 0-model the informative strategy is still an equilibrium. So

EUα[v] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]

−1

2
[(1− σ∗α)3 + 3σ∗α(1− σ∗α)2][α+ (1− α)z3 − q[α+ (1− α)[z3 + (1− z)3]]

+
3

2
[σ∗2α + 2σ∗α(1− σ∗α)](1− α)(q − z)z(1− z)

EU0[v] = −1

2
[(1− p)3 + 3p(1− p)2] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]

let's call

θ4 = (1− α)(q − z)z(1− z) > 0

θ3 = α+ (1− α)z3 − q[α+ (1− α)[z3 + (1− z)3]] > 0
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then

σ∗α =
θ4
θ3

and θ4 = σ∗α θ3

EUα[v] = −1

2
(1− α)[(1− z)3 + 3z(1− z)2]

−1

2
[(1− σ∗α)3 + 3σ∗α(1− σ∗α)2] θ3

+
3

2
[σ∗2α + 2σ∗α(1− σ∗α)]σ∗α θ3

and so

EUα[v] = −1

2
(1− α)

[
(1− z)3 + 3z(1− z)2

]
+

[
σ∗3α +

3

2
σ∗2α (1− σ∗α)

]
θ3

since condition (?) holds, it results

EUα[v] = −1

2
(1− α)

[
(1− z)3 + 3z(1− z)2

]
+

[
σ∗3α +

3

2
σ∗2α (1− σ∗α)

]
θ3

= −1

2

[
(1− p)3 + 3p(1− p)2

]
+

[
σ∗3α +

3

2
σ∗2α (1− σ∗α)

]
θ3

= EU0[v] +

[
σ∗3α +

3

2
σ∗2α (1− σ∗α)

]
θ3

v) for q ∈ (q̂max, 1), trivial.
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