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Abstract

This paper explores the effects of disability insurance (DI) benefits on the labor market de-

cision of existing DI beneficiaries using data from the Swiss Household Panel. We use a fuzzy

regression discontinuity (RD) design to identify the effect of DI benefits on the decision of working

full-time, part-time or staying out of the labor force by exploiting a discontinuity in the DI benefit

award rate. Overall, our results suggest that the Swiss DI system creates substantial lock-in effects

which heavily influence the working decision of existing beneficiaries: the benefit receipt increases

the probability of working part-time by about 41%-points, decreases the probability of working

full-time by about 42%-points but has little or no effects on the probability of staying out of the

labor force for the average beneficiary. Therefore, DI benefits induce a shift in the labor supply

of existing beneficiaries in the sense that they reduce their work intensity from working full-time

to part-time adding a possible explanation for the low DI outflow across the OECD.
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1 Introduction

In most industrialized countries the costs of disability insurance (DI) programs are substantial in

size and therefore place a serious fiscal burden on countries’ finances. Many workers leave the labor

market permanently due to health issues driving both the inflow and stock of DI beneficiaries. In

fact, the number of DI benefit recipients as a share of the working age population (the disability

recipiency rate) has risen rapidly over the past few decades across the OECD: from 1970 to 2013 the

average annual growth rate in disability recipiency was at a level of 3.10% in the United States; 2.08%

in Great Britain; 2.98% in Australia and 2.69% in Sweden (Burkhauser et al., 2013). Growth can also

be seen in Switzerland where the number of beneficiaries has risen from 199’000 in 2000 to 230’000

in 2013 (average annual growth rate of 1.1%). Of course, these growing trends in DI beneficiaries

are also reflected in the national DI expenditure levels. For instance, the DI cash transfer payments

totaled in the United States $25 billion in 1990, rising to a level of $140 billion in 2013 (Social

Security Administration, 2015). Likewise, the expenditure figures in Switzerland show a similar but

less dramatic pattern, jumping from 4.1 billion Swiss Francs in 1990 to 9.3 billion Swiss Francs in

2013 (Federal Social Insurance Office, 2015).

As a response to the unsustainable growth in program costs and the exploding number of ben-

eficiaries, policy makers have introduced various reforms addressing the incentive structure of the

DI programs. However, recent DI policy has mostly been focused on reducing the inflow of new DI

beneficiaries by offering employment creating measures such as job placement and career advice for

people applying for DI benefits. At the same time, most OECD countries have tightened the access

to benefits and reduced compensation generosity over the past two decades. Despite these political

efforts, very little has been done to address the stock of existing beneficiaries, which is surprising

given the fact that the DI outflow for reasons other than death is as low as 1% across the OECD

(OECD, 2010). What this low outflow suggests is that most DI programs create substantial lock-in

effects given that beneficiaries rarely leave the DI system once they receive benefits, even though

some of them might have a significant remaining work-capacity. Economic theory suggests here a

classical moral hazard issue: individuals who receive high disutility from working remain out of the

labor force permanently since the DI system redistributes resources to them so that there is no need

to continue working (Bound & Burkhauser, 1999).

In light of the above, it is important to learn more about the mechanisms and determinants

contributing to the low DI outflow. In this paper, we analyze how existing beneficiaries adapt their

labor force participation (LFP) decision as a response to the financial incentives embodied in the

Swiss DI system. Understanding the underlying incentive structure of the DI system is key in order

to eliminate poor incentives, reduce DI spending and shape the system future reforms.
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From an econometrician’s point of view, an important issue when estimating working decisions is

to address the endogeneity in the DI benefit status. Endogeneity is a problem in this context because

participation in DI programs is the outcome of an individual decision to apply for the benefits.

Furthermore, benefit applicants have to undergo an eligibility determination process that is based

on a list of predefined medical and vocational criteria. As a consequence, comparing the working

decision of beneficiaries and non-beneficiaries will be confounded by the differences in observable

and unobservable characteristics which exist between the groups. In this paper, we address the

endogeneity issue in the DI benefit status by using a fuzzy regression discontinuity (RD) design

exploiting a discontinuity in the benefit award rate. The discontinuity in the benefit award rate

arises due to the common practice of DI offices using the age of an applicant as a key factor when

deciding the DI benefits (Chen & van der Klaauw, 2008). Individuals above the age of 55 are much

more likely to receive DI benefits than people below. Given that applicants cannot manipulate their

age, the discontinuity in the benefit award rate qualifies as a valid exogenous instrument for the DI

benefits. Specifically, we use discrete endogenous switching (ES) models (Miranda & Rabe-Hesketh,

2006; Roodman, 2011) to estimate the benefit effects on the labor market decision regarding working

part-time, full-time or staying out of the labor force for existing beneficiaries. A special feature of the

discrete ES models is that, under the assumption of jointly normal errors, they allow one to estimate

unconditional average treatment effects (ATE), as well as average treatment effects on the treated

(ATT). In sharp contrast to that, 2SLS and therefore the classical fuzzy RD design only produce

local average effects (Angrist & Pischke, 2009).

One practical issue with discrete ES models is that they result in rather complicated likelihood

functions which have to be maximized using maximum simulated likelihood1 (MSL). The fact that

these methods are not part of the toolkit of standard econometrics and the corresponding estimators

are usually not implemented in statistical software packages might explain why this type of model is

rarely used in applied econometrics. To the best of our knowledge, this paper is the first to look at

the effects of DI benefits on labor supply through the lense of discrete ES models.

Another contribution of this paper is to analyze the discrete labor market participation decision

of working part-time, full-time or staying out of the labor force instead of focusing on the binary

decision of working versus not working. The existing literature entirely focuses on the latter (e.g.

Parsons (1980), Bound (1989), Gruber (2000), Chen & van der Klaauw (2008)) neglecting the fact

that many people are part-time employees, which is especially true in the population of people with

a disability (OECD, 2010). Therefore, modeling the more complex discrete working decision has the

potential to reveal interesting new facets of the incentive effects embodied in DI benefits.

1The focus will be on the Geweke, Hajivassiliou and Keane (GHK) algorithm that allows estimating higher-order

dimensional cumulative normal distributions (Roodman, 2011).
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Overall, the results of this analysis show that the financial incentives in the Swiss DI system

create substantial lock-in effects that heavily influence the working decision of existing beneficiaries.

In fact, the discrete ES model shows an interesting new aspect which could not be captured when

focusing on simple binary working decisions: the individual benefit receipt significantly increases

the probability of working in a part-time job (ATT: 41%-points), reduces the probability of working

full-time (ATT: –42%-points) but has little or no effect on the probability of staying out of the labor

force (ATT: 3%-points). This allows for the interpretation that the incentives inherent in DI benefits

do not force the beneficiaries out of the labor force but instead induces a shift in their LFP decision

from working full-time to part-time.

The paper proceeds as follows. In the next section 2, we give an overview on the different

identification strategies that have been used in the literature. Then, we discuss the structure of the

Swiss DI system and give information on the eligibility determination process which is relevant for

the identification strategy used in this paper. Section 4 describes the data set and variables that are

used for the analysis and sheds light on the population of beneficiaries. The identification strategy,

validity checks, the discrete ES model and estimation procedure is then outlined in Section 5. Section

6 provides an in-depth overview of the main results and robustness checks. Final conclusions are

drawn in Section 7.

2 Literature Review

Different identification strategies have been used in the past to model the behavioral response to DI

programs. Most of the earlier empirical studies ignored the endogeneity issue as outlined above and

concentrated on estimating LFP equations using standard regression techniques.

Parsons (1980a, 1980b) uses cross-sectional data from the National Longitudinal Survey of Older

Men to estimate the non-labor-force-participation as a function of the SSDI2 replacement rate and

demographic and health characteristics such as age, gender, education and health status. He obtains

an elasticity of labor force non-participation with respect to benefit levels3 for prime-aged men (age

45-59) of between 0.49 (1980a) and 0.93 (1980b) using a classical logit specification to estimate his

LFP equations. One major drawback of the two studies is that the replacement rate, i.e., the Social

Security benefits relative to the market wage is based on imputed wage histories which determine an

individual’s Social Security benefit level in the US.

2The social security disability insurance (SSDI) program is one of the two main federal programs to provide cash

assistance to the disabled in the US. The other program is the supplemental security income (SSI) program that was

introduced in 1972 to provide a minimum level of income to impaired individuals (Social Security Administration,

2014).
3The elasticity of non-participation with respect to benefits is defined as the ratio of the change in the labor supply

relative to the change in potential benefits (Gruber, 2000).
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Slade (1984) reproduces Parsons’ (1980a, 1980b) findings but uses instead data from the Retire-

ment History Survey (RHS) in which individual responses were matched to actual Social Security

earnings records. He estimates an elasticity of non-participation of 0.81, implying a drop in the labor

market participation of 0.81% for every 1% increase in the SSDI replacement rate.

These early studies encounter at least three econometric problems: (i) Endogeneity in the DI

receipt is not addressed which leads to inconsistent and biased coefficient estimates on the replacement

rate variable (Bound, 1989); (ii) By grouping the disability pension and wages into one single measure

(the replacement rate), the separate impact of each is confounded by the other; (iii) In the US,

the actual amount of disability benefits depends on a person’s earnings history, thus generating a

correlation between the level of benefits and past earnings, leading to additional omitted variable

bias on the replacement rate (Chen and van der Klaauw, 2008).

One of the earliest attempts to deal with the endogeneity issue can be found in the study by

Haveman and Wolfe (1984) who use a two stage least-squares approach. They calculate elasticities of

participation with respect to expected invalidity benefits of between -0.0003 and -0.0005. In addition,

they report predicted LFP rates at the mean of all explanatory variables, that suggest that a 20%

increase in benefits decreases participation from 91.37% to 90.73%. While the studies by Parsons

(1980a, 1980b) and Slade (1984) suggest a virtually one-for-one drop in participation rates, the IV

estimates of Haveman and Wolfe (1984) suggest not much of an impact at all. The major problem

with the latter study is that the authors fail to provide a convincing justification for their exclusion

restrictions required in order to generate plausible instruments (Bound, 1989).

Other studies propose a fairly different and yet simpler approach to capture the effects of dis-

ability insurance benefits on LFP by comparing participation rates of disability payment recipients

to appropriate comparison groups. Gastwirth (1972) uses the 1966 Survey of the Disabled to obtain

an estimate of how many of those on SSDI might work if they were not receiving benefits. For that

purpose, he compares the beneficiaries to the group of men with work impairments who received no

income transfers. His empirical work suggests that about 87% of men in the latter group were in the

labor force which he argues to be an upper bound for the proportion of recipients who would work

in the absence of SSDI.

However, Swisher (1973) argues that the findings by Gastwirth (1972) clearly exaggerate the

potential work disincentive effects of SSDI. She emphasizes the fact that in the 1966 Survey of the

Disabled, only 27.3% of the men who reported to be disabled were severely disabled, 28.5% were

occupationally disabled and the remaining 44.2% reported secondary work limitations. At the same

time, the vast majority of men on SSDI claim to be severely disabled. From that she concludes that

Gastwirth (1972) should have only included the severely disabled men who were not on the payroll

as a credible control group for the SSDI recipients. Her findings show that only 44% of the control
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group participated in the labor market and only a small fraction of them worked full-time the whole

year (10.4%) (Bound and Burkhauser, 1999).

To summarize the magnitude of the potential work disincentives of the SSDI program crucially

depends on the selected comparison group. If the comparison group contains all men who are to

a certain extent impaired but do not receive any income transfer, then we would conclude that DI

benefits heavily influence the individual labor force and work decision. On the other hand, if the

relevant comparison group only includes the severely disabled who are not receiving benefits, the

labor supply effects seem to be much less pronounced.

One of the most influential papers to this day is the study by Bound (1989) on ”The Health and

Earnings of Rejected Disability Insurance Applicants”. Bound suggests that SSDI applicants who

fail to pass the medical screening necessary to qualify for the program form a natural control group

for the beneficiaries. As a rationale, he argues that the rejected SSDI applicants and beneficiaries

should be quite similar with respect to observed and unobserved characteristics, thus making them

comparable in their LFP decision. Using data from the 1972 Survey of Disabled and Non-Disabled

Adults (SDNA) and the 1978 Survey of Disability and Work (SDW), his analysis shows that less than

one-third of the rejected applicants were working at the time of the survey and less than 50% worked

at some point the previous year. In addition, he finds that the earnings of those who do return

to work are roughly 30% below pre-disability levels and more than 50% below their ablebodied

counterparts. Bound argues that the rejected applicants are healthier and more capable of work

than those who receive an income transfer. Therefore, their LFP rate forms an upper bound for the

work participation behavior of the beneficiaries in the absence of the invalidity payments.

More recent studies use natural experiments to shed light on the labor force participation effects

of DI benefits. For example, Gruber (2000) exploits a huge policy change in the Canadian DI system

in the late 1980s. DI in Canada operates basically the same way as it does in the US but with the key

difference that there are two distinct DI programs: the Quebec Pension Plan (QPP), which covers

only the region of Quebec and the Canada Pension Plan (CPP), which covers the remaining regions

of Canada. Until 1986, the QPP was substantially more generous in terms of benefits than the CPP.

Then, in 1987, the CPP raised its benefits by 36% to the level of the QPP to equalize the generosity

levels of the two systems. Gruber uses this exogenous policy change in disability benefits to estimate

its labor supply effects using a difference-in-differences (DID) approach. The comparison in the

change in the labor force participation of prime-aged men in Quebec to those in the rest of Canada

over the period from 1985 to 1989 implies an elasticity of non-participation with respect to benefit

levels of between 0.28 and 0.36. He concludes that the policy change and therefore the increase in

benefit levels did not simply distort labor supply decisions but also induced positive welfare effects

for those now qualified for the more generous disability transfers since replacement rates in Canada

were historically much lower than in the US.
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Campolieti (2004) follows the path by Gruber to examine a $50 increase in monthly disability

benefits on labor supply for the QPP program in 1973, which did not occur in the CPP program.

She uses the same empirical strategy as Gruber, but unlike Gruber her estimates mostly suggest that

disability benefits are not associated with higher non-participation rates of older men. Campolieti

argues that the differences in estimates to Gruber (2000) can be mostly explained by the changes in

the screening stringency regimes between the 1970s and 1980s.

Chen and van der Klaauw (2008) use a fuzzy regression discontinuity (RD) approach to exploit

a special feature of the eligibility determination process in the US DI program: both the SSDI and

SSI program base their disability determination decision for some individuals not solely on medical

grounds but also on vocational factors (age, education and work experience) as well. They use the

fact that the award rate (the probability of receiving benefits) is a function of the age of an applicant

which is discontinuous at known age levels. The rationale is that individuals just below the cutoff age

can be expected to be fairly similar to individuals just above the cutoff age in terms of observed and

unobserved characteristics. Therefore, comparing the two groups around the cutoff age with respect

to their LFP reveals the causal effect of the DI benefit receipt. Overall, they find relatively small

distorting effects: the LFP rate of beneficiaries would have been at most 20%-points higher had they

not received benefits.

Another strand of the literature examines the effects of stricter screening of applicants and tighter

eligibility rules on LFP. The idea here is that policy changes affecting either screening stringency

or eligibility rules that apply only for a subset of the population can be used to quantify potential

participation effects of DI benefits for that group. The study by Staubli (2011) analyzes the impact

of a tightening in disability eligibility rules on the labor supply of older workers in Austria. He uses

the policy change introduced by the Structural Adjustment Act in 1996 which most importantly

lead to stricter disability eligibility criteria for men at the age of 55 to 57 to examine (i) how tighter

criteria for benefits affect enrollment and employment and (ii) whether a tightening in eligibility rules

leads to spillover effects into other programs. Relying on a DID approach, he finds that the share of

beneficiaries in the affected age group significantly decreased by 6 to 7.2%-points after the reform was

implemented. In addition, his estimates indicate an increase in employment by 1.7 to 3.4%-points

after the policy change. At the same time, his results suggest a raise in the share of individuals

receiving unemployment or sickness insurance benefits indicating substantial spillover effects.

Similarly, Karlström et al. (2008) exploit a policy change that tightened eligibility rules for older

workers in Sweden. Unlike Staubli (2011), they find only small declines in the DI enrollment and no

effects on employment. The main reason for such differences can be found in the difference of the

marginal applicant in Sweden versus Austria. Studies concerning the effects of screening stringency

on LFP have been done for the case of the US by Gruber and Kubik (1997) and Autor and Duggan
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(2003). The US studies are conclusive since they both find that stricter screening leads to significant

increases in labor supply among older males.

Finally, the study by De Jong et al. (2010) is a rare and therefore special example of an empirical

study in the field of economics where they use a field-experiment to investigate the effects of intensified

screening of DI benefit applications on the working decision in the Netherlands. The experiment was

designed such that in two of the 26 Dutch regions, case workers of the National Social Insurance

Institute (NSII) were instructed to screen DI benefit applications more intensely. They find that

intensified screening leads to a significant decrease in both 13 weeks sickness absence reports and

DI applications. Moreover, their experiment does not show any spillover effects to the inflow into

unemployment insurance. Using a crude cost-benefit analysis, they conclude that the benefits of the

intensified screening clearly exceed its costs.

3 Institutional Background

The Swiss DI is a nationwide, compulsory social insurance that provides rehabilitation measures and

cash benefits for Swiss citizens who are disabled. As the social security disability insurance (SSDI)

program in the United States, it is mainly financed by social insurance contributions of the working

population and public funding. In 2012, the Swiss DI accounts for about 6.5% of the total social

security expenditures in Switzerland and is therefore the fourth biggest branch in the Swiss social

security system, after sickness insurance (16.5%), old-age insurance (27.2%) and occupational pension

plans (33.3%) (FSIO, 2014). Swiss citizens are eligible for benefits if there is a causal connection

between the impairment to health4 and the corresponding earnings loss. Furthermore, residence of

Switzerland are only entitled to DI payments if the working incapacity has lasted for at least a year

and is likely to persist and the rehabilitation option has been entirely exhausted.

To this day, the DI remains a prominent topic in the political discourse which can be seen by

the periodical reforms to the system: the 4th revision of the Swiss DI Act (2004) most importantly

introduced regional medical screening institutions, abolished additional pensions for spouses and

introduced the three-quarter pension. The more recent reforms are mostly focused on employment

and reintegration measures: starting with the 5th revision in 2008, the leading principle of the

Swiss DI was changed to ”rehabilitation before a pension”, which broadly extended the range of

possibilities to offer disabled individuals the proper incentives and support to stay in the labor market

instead of depending entirely on DI benefits. Rehabilitation measures include medical measures to

treat congenital disabilities, supply of appliances (wheel chairs, hearing aid devices, implants, etc.),

occupational measures (career advice, re-training, vocational training, job placement, capital grants,

4Any physical or psychological health impairment, irrespective whether it is congenital, illness-related or accident-

related entitles claimants to DI benefits (FSIO, 2014).
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etc.) and daily cash benefits as ancillary benefits (FSIO, 2013). However, the 5th revision was

primarily focused on measures to reduce the inflow of DI beneficiaries. Measures to reduce the stock

of existing beneficiaries were only introduced with the most recent DI revision in 2012 (revision

6a). The DI outflow is aimed to be increased by reassessing and possibly terminating existing cases

with pathogenesis-etiologically unclear syndromes such as somatoform pain disorders, whiplash and

hypersomnia among others (FSIO, 2015).

Even though the Swiss DI emphasizes the importance of reintegration measures, examining the DI

statistics presents a slightly different picture: the 2013 statistics show that of the total expenditures

of approximately 9.3 billion CHF, only 23% were spent on rehabilitation measures. The lion’s share

or 60.1% were used on DI pensions or helplessness allowances. A significant difference between the

Swiss system and the SSDI program lies in the method to calculate the amount of the DI benefits: in

Switzerland, the degree of disability determines the type of pension a claimant receives. The degree

of disability is defined as the percentage of the loss of earnings due to disability (”Erwerbseinbusse”)

to the potential earnings of a claimant in the absence of the impairment (”Valideneinkommen”).

Table (1) gives an overview of the types of pensions and minimum and maximum amounts that are

associated with different degrees of disability. For example, claimants with a degree of disability less

than 40% are not entitled to any pension at all, whereas claimants with a degree of disability higher

than 70% are entitled to a full pension. Overall, the Swiss DI system is very generous in terms of

benefits, ranking on a top spot alongside the Scandinavian countries. In comparison to that, many

Anglo-Saxon countries are found on the other end of the compensation rank (OECD, 2009).

In 2013, a total of 402’000 Swiss residence received DI services including rehabilitation measures,

benefits or helplessness allowances. Out of the 402’000 individuals, 230’000 received cash benefits

and another 192’000 participated in reintegration measures. It is Important to know that about 75%

of the pensions were full pensions. In our data, the share of beneficiaries receiving a full pension is

at 72%. Furthermore, as in most Western societies, the probability of receiving disability pensions

drastically increases for the group of prime-aged men and women in Switzerland. In numbers, about

60% of all recipients are aged between 40-64 and overall, about 16% (13%) of men (women) aged

60-65 are recipients of DI benefits. From an economic point of view, these numbers raise the question

whether DI is used as means of early retirement or if it simply reflects the fact that the occurrence of

illnesses increases as a part of the process of aging. At the same time, only 15% of recipients can be

found among individuals aged 20-39. This age category primarily uses of job re-integration measures

offered by local DI offices. Finally, the insured in the age group below 20 years account for about

25% of all recipients. In this age segment, congenital disorders are the main cause for the benefit

receipt (FSIO, 2014).
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3.1 Eligibility Determination Process

A person seeking benefits applies at the cantonal DI office. In a first step, the applicant submits

the medical documentation of his condition, as well as his previous earnings records. Caseworkers

at the local DI office in collaboration with an interdisciplinary team of medical doctors, specialists

and vocational consultants then decide whether a person qualifies for benefits. Whether or not an

applicant is eligible for benefits is based on a predefined set of medical and vocational factors such

as education and age to assess a persons’ capability to work. Before the 4th revision of the Swiss DI

in 2004, the health assessment of the applicant was entirely based on the medical certificates issued

by the applicant’s chosen doctor. To standardize and improve the quality of screening, the reform

in 2004 introduced several supra-regional medical audit institutions that are authorized to conduct

appraisals of benefit claims and to carry out medical examinations. In addition to the medical

assessment, a team of vocational consultants evaluates the personal and vocational situation of the

applicant. The team has to check for possible reintegration and rehabilitation measures reflecting

the guiding principle ”rehabilitation before a pension”. After all the relevant information is gathered,

the caseworkers have to decide on each case within 12 months. If the decision is not accepted by the

applicant, appeals can be submitted to the cantonal insurance court within 30 days. Further levels

of appeal are conducted in Federal Supreme Courts (FSIO, 2013).

4 Data

We use data from the Swiss Household Panel (SHP) for the year 2012. The SHP is especially

suitable to analyze the financial incentives inherent in DI benefits on the working decision of existing

beneficiaries because it offers two desirable features: first, it provides data on a stock of actual DI

beneficiaries. Figure (1) gives an overview of the dynamics of the shares of DI beneficiaries in the

whole sample as well as in different age groups since the year 2002. Overall, the share of beneficiaries

is fairly stable at around 3.5% on average. However, figure (1) shows that there exist remarkable

differences in the pool of recipients between age groups. The data set resembles what we observe

in most OECD countries: prime-aged men and women are clearly over-represented amongst the

beneficiaries. On average about 7.1% of individuals between the age of 55 and 65 collect DI pensions.

In the subpopulation of individuals aged 20-54 on the other hand, only about 2.5% are entitled to

benefits.

Second, the SHP contains rich information on numerous background characteristics which allow

to isolate the effect of DI benefits on the labor supply decision of beneficiaries. The data set includes

information on demographic, socio-economic and various health related indicators. The demographic

and socio-economic status variables include the age of the respondent at the time of the interview, an
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indicator for gender, dummies for region of residence5, indicators for type of community6, the weight

of a person in kilograms, the height of a person in centimeters, the number of kids living in the

household between the age of 0 and 17, an indicator for Non-Swiss citizens, marital status, logarith-

mized gross household income in Swiss Francs, years of schooling and an indicator for life satisfaction.

The health indicators that we focus on in our analysis are: the number of doctor consultations and

the number of ill-days in the past 12 months, a physical activity indicator, an indicator for health

impediments in everyday activities, an indicator for medication needed in everyday functioning, a

dummy for self-assessed well-being and indicator variables for depression, anxiety and blues, back

problems, weakness and weariness, sleeping problems and headaches7.

Throughout the entire analysis the sample is restricted to individuals between the age of 18 and

65, since there are no DI benefit recipients below and above these cutoff values. Moreover, the

data cleaning procedure excludes all observations without accurate information such as filter errors,

inapplicability, no answer or does not know. The final estimation sample contains 3’531 observations.

4.1 DI Beneficiaries vs. Non-Beneficiaries

Before turning to the identification strategy, it makes sense at this point to shed some light on the

endogeneity issue concerning the benefit status by characterizing the subpopulation of DI benefi-

ciaries. Table (2) reports the mean values and differences in means for a selection of variables for

the DI beneficiaries and non-beneficiaries. The comparison of demographic characteristics reveals

that the beneficiaries are on average significantly older, heavier in body weight, smaller in body size

and live in households with less children than the non-beneficiaries. The difference in demographic

characteristics brings home an important point: when comparing the working decision of recipients

and non-recipients, one has to keep in mind that these groups differ along many dimensions besides

their benefit status. In this context for example, we see that non-beneficiaries are much younger on

average. At the same time, we know that younger individuals are more likely to be employed since

they are usually more productive and typically earn less than their older counterparts. As a result,

the difference in working behavior not only reflects the benefit effects but also the age differences8.

Furthermore, the comparison of socio-economic characteristics suggests that the non-recipients are

more educated than the recipients, as they attend school for about one and a half additional years

on average. In addition to that, non-beneficiary households earn about 44’500 Swiss Francs more

a year and the proportion of individuals who report to be satisfied with their life exceeds that of

5Central Switzerland (Lucerne, Uri, Schwyz, Obwalden, Nidwalden and Zug) is used as the base category.
6Rural communes are chosen to be the base category.
7See Appendix A for a detailed description of the variable construction.
8Controlling for such age effects bears no econometric problem since the age of a respondent can be simply included

in the analysis as a confounder. The more serious issue arises since there are many unobservable factors that differ

between the two groups.
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the beneficiaries by about 26%-points. Next, the comparison of the health indicators shows sub-

stantial differences between the groups: the beneficiaries visit the doctor about 3 times as often as

the non-beneficiaries and the amount of ill-days is more than seven times as large as in the group

of the non-beneficiaries. Moreover, the DI benefit recipients are significantly less involved in sports

activities and the share of individuals reporting a ”very well” or ”well” health status is about 38%-

points lower for the beneficiaries. In addition to that, more than 70% of beneficiaries claim to have

health impediments that severely affect their everyday life and about 66% of them depend on med-

ication to complete everyday tasks. As for the medical conditions, depression, anxiety and blues,

back problems, weakness and weariness, sleeping problems and headaches, we find a significantly

higher prevalence of such diseases in the group of beneficiaries. Overall, the data on the health

indicators draws a consistent picture that suggests that the majority of those on DI benefits suffer

from substantial health limitations.

The bottom line from this mean-comparison is that the population of beneficiaries differs substan-

tially from the population of non-beneficiaries in many observable and unobservable9 factors. Any

attempt to compare the groups with respect to their working decision is therefore doomed to fail,

since we are not comparing apples and apples but rather apples and oranges. Revealing the isolated

effect of DI benefits therefore at least involves controlling for these observable characteristics.

5 Identification Strategy

The main purpose of this paper is to identify the effect of DI benefits on the labor market decision of

existing DI beneficiaries. We apply a fuzzy regression discontinuity (RD) design exploiting a discon-

tinuous jump in the benefit award rate at the age of 56 as an instrument for the individual benefit

status. Specifically, we estimate the benefit effects on the individual decision to work part-time,

full-time or stay out of the labor force using discrete endogenous switching (ES) models (Miranda &

Rabe-Hesketh, 2006; Roodman, 2011).

5.1 Discontinuity in the Benefit Award Rate

The benefit award rate is the probability of receiving DI benefits in relation to a person’s age and is

depicted in figure (2). The dots represent the mean share of beneficiaries over bins of half-years of

age. The scatter plot is overlaid with a linear fit and a corresponding 95%-confidence interval. The

dashed red vertical line indicates the age of 56. The graph shows that for the individuals below the

age of 56, the benefit award rate is roughly stable at a level of about 4-5%. Above the age of 55, the

probability of receiving DI benefits is well above the 5%-mark indicating a discontinuous jump in the

9Plausible candidates that are likely to differ between groups are factors such as risk preferences, genetic endowments,

innate abilities, etc.
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benefit award rate at the age of 56. This means that individuals just below that age cutoff have a

significantly lower probability of receiving DI benefits than people just above the discontinuity. The

discontinuity is also confirmed when running classical first stage regressions using the benefit status

as the dependent variable. Table (3) shows the first stage effects for two different model specifications.

In both cases, the discontinuity is estimated to be approximately 4%-points which coincides with the

graphical evidence in figure (2). The Cragg-Donald Wald F -statistics are above the usual critical

values rejecting the null of a weak instrument and therefore indicating instrument relevance (Stock

& Yogo, 2005).

Why do we observe a discontinuity in benefit awards? As in most OECD countries10, the eligibility

determination process in Switzerland is explicitly based on both medical and vocational factors

including the social situation and the age of an applicant (FSIO, 2013). The fact that local DI offices

take into account such background characteristics when deciding the DI benefits leads to differences in

the likelihood of receiving DI benefits for different subgroups of applicants. For example, individuals

losing their job around the age of 55 have much bigger problems re-entering the job market than

younger individuals. This is particularly true for unskilled workers where job reintegration measures

are usually no valid option. In such cases, DI is often used as a substitute for early retirement which

in turn explains the sharp increase in the share of beneficiaries above the age of 5511.

5.2 RD Validity Checks

The key identifying assumption in any RD framework is based on the inability of individuals to

precisely control the assignment variable near the threshold. Since applicants cannot manipulate

their age, they have no control on whether they are to the left or the right of the cutoff at the age of

56 and thus those below form a natural control group for those above (”local randomization”). As a

consequence, observable as well as unobservable characteristics are balanced around the cutoff and

treatment is ”as good as randomized” (Lee & Lemieux, 2009).

To assess the validity of the RD design we check for discontinuities in the forcing variable and

baseline covariates. Both a discontinuity in the assignment variable and predetermined variables

would cast doubt on the validity of the RD design and thus our identification strategy. A common

check for local random assignment is given by investigating the density of the forcing variable around

the threshold. To this end, we conduct the two-step procedure proposed by McCrary (2008) and

the resulting density graph can be found in figure (3). The graph does not provide evidence for a

10For example, Chen & van der Klaauw (2008) clearly show that the age of an applicant is a key factor in the benefit

determination screening process in the United States.
11We talked to several heads of DI departments and they confirmed this common practice of DI being used as a

substitute for early retirement.
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discontinuity at the age of 56 as the confidence intervals clearly overlap reinforcing local random

assignment.

As an additional validity check, we compare observable characteristics to see whether they are

locally balanced around the cutoff. In fact, local random assignment implies that both observable

and unobservable factors should not systematically differ between people below and above the cutoff.

In table (4), we report differences in means for a selection of baseline covariates for individuals below

and above the age threshold. If the full sample is considered, we see that those below the cutoff differ

substantially from those above regarding their health, demographic and socio-economic background.

This should not be a surprise since those below the cutoff are much younger and thus healthier than

those above. However, as we compare people within a small range around the cutoff (± 1 year), these

differences in observables tend to vanish. Of course, the difference in the benefit award rate remains

significant which is key for our identification of the benefit effects. Other than that, individuals below

and above the cutoff are on average very similar to each other with respect to their health status,

demographic and socio-economic characteristics. It is also interesting to see that the difference in

annual benefit levels disappears which indicates that the beneficiaries below the cutoff are in fact

comparable to those above.

Overall, the inspection of the density of the forcing variable and the baseline covariates supports

the validity of the RD design and therefore reinforces our identification strategy.

5.3 The Discrete ES Model

Before going into detail about the structure of the discrete ES model, it is worth while mentioning

some estimation issues at this stage since estimation of the model parameters is not trivial. The

estimation of discrete ES models involves some complications since the likelihood function of the

model cannot be expressed in closed-form. As a consequence, the model parameters have to estimated

by maximum simulated likelihood (MSL). To simulate the labor market choice probabilities, we use

the famous Geweke, Hajivassiliou and Keane (GHK) algorithm (Geweke, 1991; Hajivassiliou and

McFadden, 1998; Keane, 1990 & 1994a) which has been proven to be the most accurate method

to simulate normal probabilities in many studies (Hajivassiliou, McFadden & Ruud, 1994). As for

the statistical properties of the MSL estimator, Gouriéroux & Monfort (1991) show that the MSL

estimator is asymptotically equivalent to the maximum likelihood (ML) estimator and thus consistent

under the condition that both the number of draws and the sample size approach infinity.

The discrete ES model is used to quantify the incentive effects of DI benefits on the discrete

working decision of existing beneficiaries. The theoretical model is derived using the framework of

additive random utility models (ARUM) providing a natural connection to economic choice the-

ory (Marschak, 1960). It is assumed that each decision maker i faces three working choices: yi
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ε {working part-time (j = 1), full-time (j = 2) or staying out of the labor force (j = 3)}. Further-

more, agents are assumed to be rationale in the sense that they choose the alternative that is

associated with the highest utility for them. Utility is known by the decision maker but not by

the researcher. The researcher only observes some attributes of the agent and the final working de-

cision the individual makes (Train, 2009). In this model, utility for individual i from working option

j is specified as:

Uij = x′iβj +Diγj + εij ∀ j = 1, 2, 3; n = 1, ..., N (1)

where xi is a vector of observable characteristics including the health indicators, demographic and

socio-economic factors described in section 4; Di ε {0, 1} is the binary treatment indicator for the DI

benefits; θj ≡ {βj , γj} is the vector of model parameters and εij includes all unobserved factors that

have an effect on utility but are not included in xi. A binary threshold crossing model is introduced

to address the endogeneity in the benefit status:

D∗i = w′iδ + vi (i = 1, ..., N) (2)

Di =

 1 if D∗i > 0

0 if D∗i ≤ 0

where D∗i is a continuous, latent random variable reflecting the net utility from the DI benefit receipt;

wi is the vector of exogenous variables which are the same as in xi but in addition to that, wi includes

the age cutoff as instrumental variable for the benefit status; δ is the vector of parameters and vi a

classical error term.

The vector ψi is composed of all error terms from equation (1) and (2) and is assumed to be

multivariate normal distributed with a mean vector of zero and covariance matrix Ω:

ψi =


εi1

εi2

εi3

vi

 ∼MVN (0,Ω) Ω =


σ21 σ12 σ13 σ1v

· σ22 σ23 σ2v

· · σ23 σ3v

· · · σ2v

 (3)

where e.g. σ12 is the covariance between εi1 and εi2. To ensure parameter identification of the

model, one needs to account for the fact that the level and scale of utility are irrelevant. The

absolute level of utility is irrelevant because adding any constant k to the utility of each working

option does not change the ordering of utilities and therefore has no effect on the final labor supply

choice of a beneficiary. The level of utility is normalized by choosing a base category12 and setting

the corresponding parameter vector to zero, e.g., θ1 = {β1 = 0, γ1 = 0}. Similarly, the scale of utility

is irrelevant because each utility can be multiplied by a positive constant k without changing which

12We use working part-time as the base category throughout the whole analysis.
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working alternative has the highest utility (Train, 2009). Scale of utility is normalized by imposing

constraints on Ω: as demonstrated by Bunch (1991), in case of J alternatives, one needs to impose

J constraints to account for symmetry of Ω and one more constraint to normalize scale.

5.4 Simulation of Choice Probabilities

Using the structural form of the model, probabilistic statements about the individual working deci-

sions can be made. To give an example, the probability of working full-time given DI benefits are

received is of the form:

P (yi = 2|Di = 1, xi) =
P (Ui2 > Ui1, Ui2 > Ui3, D

∗
i > 0)

P (D∗i > 0)
(4)

=

∫ x′iβ2+Diγ2

−∞

∫ x′i(β2−β3)+Di(γ2−γ3)

−∞
φ2(ε̃12, ε̃32)dε̃12dε̃32

−
∫ x′iβ2
−∞

∫ x′i(β2−β3)
−∞

∫ −wiδ
−∞ φ3(ε̃12, ε̃32, vi)dε̃12dε̃32dvi

Φ(−wiδ)

= Φ2(x
′
iβ2 +Diγ2, x

′
i(β2 − β3) +Di(γ2 − γ3);V1)

− Φ3(x
′
iβ2, x

′
i(β2 − β3),−wiδ;V )

Φ(−wiδ)

where φ2(·) and φ3(·) are the bi- and trivariate normal densities; Φ2(·) and Φ3(·) the corresponding

bi- and trivariate normal cdf’s with the covariance matrix of differenced errors V ; V1 ≡ ρε̃12,ε̃23 is

the correlation in differenced errors of part-time to full-time and full-time to out of the labor force.

Equation (4) demonstrates that the choice probabilities in the discrete ES model are multivariate

integrals over subsets of the Euclidean space. The problem is that these choice probabilities cannot

be expressed in closed-form. Instead, one has to use simulation methods to evaluate the integrals

numerically. In this study, the GHK-algorithm is used to simulate the working choice probabilities.

The GHK-algorithm is based on the observation that the choice probabilities as in (4) can be re-

expressed as a sequence of conditional probabilities which can be simulated recursively. The basic

principle of the algorithm is to take a predefined number of draws from the unit interval for each

observation and to generate the simulated probability at each iteration step13. In this paper, we use

the GHK-based Conditional Mixed Process Estimator14 programmed by David Roodman (2011) to

estimate the latent model parameters by maximum simulated likelihood (MSL). The corresponding

simulated log-likelihood function can be found in appendix A.2.

5.5 Treatment Effects

As in most maximum likelihood framework, we estimate latent parameters which have no useful

direct interpretation. To illustrate the DI benefit effects, we use the estimated coefficients to derive

13For an excellent treatment of the GHK-simulator see Geweke, Keane and Runkle (1994) or Train (2009).
14The routine is programmed in Stata and can be installed using the command: ssc install cmp.
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the treatment effect on treated for each labor market outcome. To give an example, the treatment

effect on treated (TOT) for the outcome of working full-time is of the form15:

TOTfull = P (yi1 = 2|Di = 1, xi)− P (yi0 = 2|Di = 1, xi) (5)

= Φ2(x
′
iβ2 +Diγ2, x

′
i(β2 − β3) +Di(γ2 − γ3);V1)− Φ2(x

′
iβ2, x

′
i(β2 − β3);V1)

The TOT reflects the difference between the probability of working full-time given that beneficiary

i received DI benefits and the probability of working full-time given that the exact same beneficiary

did not receive benefits. A negative TOT therefore indicates that the DI benefit receipt decreases

the probability of working full-time and vice versa for a positive TOT.

6 Results

The results section starts with an overview of the coefficient estimates of the discrete ES model. The

estimates are shown for three different model specifications using the age cutoff as instrument for the

benefit status. We discuss the question of the incentive effects of DI benefits on the working decision

of existing beneficiaries using evidence from the distributions of the treatment effects for each labor

market outcome. For the results discussed, 1’000 random draws per observation are used to simulate

the working choice probabilities. To be more precise, antithetic Halton draws are used meaning that

each draw is mirrored through the origin to maximize uniformity of coverage of the unit interval and

therefore to achieve greater accuracy than pseudo-random draws (Train, 2009). Subsection 6.2 is

then devoted to additional robustness checks: we present the coefficient estimates as the number of

simulations is varied.

6.1 Main Results

Table (5) shows the estimated coefficients of the discrete ES model for three different model specifi-

cations. The coefficients on the benefit status are reported for the labor market outcomes of working

full-time (γ̂full) and staying out of the labor force (γ̂oolf ). In all models, the discontinuity in the

benefit award rate above the age of 55 is used as the instrument for the benefit status and working

part-time is used as the baseline category. In a first step, we include demographic background char-

acteristics16 into the model resulting in a highly significant and negative coefficient on the benefit

status on the decision of working full-time. At the same time, there is no statistically significant

effect of the DI benefits on the decision of staying out of the labor force. In a second step, we add

socio-economic status indicators17 which slightly reduces (in absolute terms) the coefficient on the

15The TOT for the labor market outcomes of working part-time and out of the labor force are computed similarly.
16age, gender, weight (kg), height (cm), number of kids, foreigner, region dummies (base: Central Switzerland), type

of community dummies (base: rural)
17marital status, years of schooling, logarithmized household income, life satisfaction
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benefits for the decision of working full-time but does not affect the statistical significance. On the

other hand, the coefficient on the benefits for the outcome of not working is increased but still far

from significant. To condition on the health status of a person, we add various health indicators18 in a

final step to the labor supply equations. Although the standard error of the coefficient on the benefit

status for the decision of working full-time more than doubles, it is still statistically significant at

the 5% level. As for the coefficient on the decision of staying out of the labor force, it turns negative

and remains insignificant. Note here that the coefficient estimates in this last final specification are

basically unchanged if further control variables are added to the equation reinforcing the robustness

of the presented findings19.

The fact that the coefficient on the benefit status for the labor market outcome of working full-

time is negative and significant in all specifications suggests, at first glance, that the DI benefits

provide strong work disincentives for the existing beneficiaries. However, to appropriately address

the question on the benefit effects on the labor market decision of beneficiaries, one needs to consider

the treatment effects as outlined in the previous section. The treatment effects on treated (TOT)

provide the relevant information on the behavioral change in the labor supply decision by comparing

the working decision of a beneficiary to the working decision of the same person in the absence of the

DI benefits (the counterfactual). To provide a complete picture on the labor supply responses, figures

(4) to (6) present the whole distributions of the TOT for each labor market outcome separately. In

addition to that, table (6) gives the relevant summary statistics for each distribution. Starting with

the discussion on the benefit effects for the decision of working part-time, figure (4) shows that the

TOT for all beneficiaries in the sample is positive which means that the DI benefits in general increase

the probability of working in a part-time employment. From table (6) we see that the treatment

effects range from about 3%-points to a maximum of about 81%-points. For beneficiaries in the

upper tail of the distribution, the results suggests that the lion’s share of their working decision

is determined by the benefit status. Moreover, we see that on average the probability of working

part-time is increased by about 41%-points. In other words, the probability of working part-time for

the average beneficiary would have been about 41%-points lower in the absence of the DI benefits.

Therefore, conditional on the health status, the demographic and socio-economic background of a

beneficiary, the results provide strong evidence that the decision of working part-time is mainly

determined by the benefit status.

18number of doctor visits, number of ill-days, physical activity, health impediments, medication needed, indication

for self-assessed health and dummies for depression, back problems, weariness, headaches and sleeping problems
19Even when controlling for additional health indicators (number of hospital days, the number of specialist visits,

etc.) and parental education as a proxy for genetic endowment, the coefficient estimates are unchanged and remain

stable.
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As for the discussion of the treatment effects for the labor market outcome of working full-time,

figure (5) shows the exact opposite picture to what we just observed: here the treatment effects are

negative for all beneficiaries indicating that in general the probability of working in a full-time job

is decreased by the DI benefits. To be more specific, table (6) shows that the benefit receipt on

average decreases the probability of working full-time by about 42%-points. Hence the probability

of working full-time would have been about 42%-points higher for the average beneficiary if she/he

was not entitled to DI benefits. Furthermore, we see that the treatment effects range from about

0%-points to roughly –86%-points. In fact, for about 25% of beneficiaries the probability of working

full-time is decreased by at least 75%-points meaning that their labor supply decision is basically

entirely determined by the benefits. If we combine the results so far, then this leads to the conclusion

that the DI benefits induce the beneficiaries to reduce their working intensity from working in a

full-time job to working part-time. Following that line of thinking, the financial incentives provided

by the Swiss DI system create substantial lock-in effects which at least in part might explain the low

DI outflow of existing beneficiaries as observed in most developed economies (OECD, 2010).

What remains is the discussion of the benefit effects for the labor market outcome of staying out

of the labor force. Figure (6) shows that the treatment effects take on both positive and negative

values with a large probability mass at zero. In addition, we see from table (6) that the probability of

staying out of the labor force is only weakly increased by about 3%-points for the average beneficiary.

This allows for the conclusion that the decision of not participating in the labor market is hardly

influenced by the benefit status. To put it differently, the decision of staying out of the labor force

can be explained by many background characteristics of a beneficiary, the benefit status on the other

hand is not a very valuable predictor.

Summing up, the analysis of this more complex labor market decision reveals aspects which have

not been captured by the existing literature which has entirely focused on simple binary working

decisions (e.g. Parsons (1980), Bound (1989), Gruber (2000), Chen and van der Klaauw (2008)).

Our results suggest that the working decision of existing beneficiaries is to a large part determined

by their benefit status. Moreover, the findings provide evidence that DI benefits create strong lock-

in effects as the beneficiaries are induced to shift their working intensity from working full-time to

part-time.

6.2 Robustness Checks

In this robustness section, we present the estimated model coefficients as the number of pseudo-

random draws (S) increases. Table (7) shows the discrete ES estimates for 1, 10, 100 and 1000 draws

per observation, the number of iterations needed to reach convergence, the value of the pseudo log-
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likelihood at the coefficient vector and the computation time in seconds20. Recall that for the main

results discussed above, 1000 draws per observation were used to estimate the model coefficients so

that column 4 in table (7) is identical to the results presented in table (5). For small numbers of

draws, we know from asymptotic theory that the MSL estimator is not equivalent to the ML estimator

and is inconsistent (Gouriéroux & Monfort, 1991). This is likely to be the case for the estimates

corresponding to S = 1 and S = 10 draws per observation. For such small S, the significantly reduced

computation time comes at the cost of inconsistent estimates. However, as the number of draws is

increased to S = 100, the MSL estimates stabilize and remain basically unchanged with the only

exception of model specification (1) for the outcome of staying out of the labor force. Other than

that, table (7) suggests that estimates with as few as 100 random draws per observation produce

reliable coefficient estimates that are very close to those when using S = 1000. This is also relevant

to know from a practical point of view since the differences in computation time are considerable:

for the full specification used to produce the results discussed in the last section, the computation

time is roughly 2 minutes for S = 100 but already 17 minutes for S = 1000. If the number of draws

is further increased above S = 100021, the coefficient estimates hardly change but again come at the

cost of a much higher computational time.

7 Conclusion

Over the course of the past few decades, the number of beneficiaries and the costs of DI programs

have literally exploded in most OECD countries. At the same time only a tiny fraction of those who

are entitled to DI benefits ever leave the DI system and very little is known about the mechanisms

related to the DI outflow. Policy makers who want to effectively improve the incentive structure of

the DI system therefore need to ask the question of how the working decision of existing beneficiaries

is affected by the DI benefits. This paper investigates exactly that question by analyzing the potential

lock-in effects that are created by the financial incentives embodied in the Swiss DI system. We use a

fuzzy RD design exploiting a discontinuity in the DI benefit award rate to instrument the individual

benefit status. Specifically, we estimate discrete endogenous switching (ES) models (Miranda &

Rabe-Hesketh, 2006; Roodman, 2011) to identify the benefit effects on the labor market decision of

working part-time, full-time or staying out of the labor force for existing beneficiaries. Unlike the

existing literature (e.g. Parsons (1980), Bound (1989), Gruber (2000), Chen and van der Klaauw

(2008)), we analyze the discrete working decision of working part-time, full-time or staying out of

the labor force instead of focusing only on the binary choice of working versus not working. Our

results reveal interesting new aspects of the labor supply decision of existing beneficiaries and show

20The simulations were ran on an Intel(R) Core(TM) i7-4500 CPU @ 2.39 GHz with 8GB RAM on Windows 8.1 pro.
21The specifications were also estimated for S = 2000 and S = 5000 and the results are available upon request.
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that their individual working decision is considerably influenced by the DI benefits. For the average

beneficiary, the DI benefits conditional on the demographic and socio-economic background and the

health status increase the probability of working in a part-time employment by about 41%-points,

decrease the probability of working full-time by about 42%-points and have little or no effect on

the decision of staying out of the labor force. It follows that the DI benefits induce a change in

the work supply of beneficiaries from working full-time to working part-time instead of forcing them

completely out of the labor market. A positive interpretation of these findings would be that the DI

system works in the sense that people who receive the benefits remain in the working process. A

more critical interpretation on the other hand would be that the financial incentives provided by the

DI system triggers beneficiaries to lower their working intensity and therefore keeps them dependent

on the income transfers, which in turn adds a possible explanation for the low DI outflow as observed

in many OECD countries. Overall, the results have proven to be robust against the inclusion of

further control variables and variations in the number of simulation draws when estimating the

model coefficients by maximum simulated likelihood.
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Appendix A.1

Variable Construction

The indicator for DI benefits is constructed from the annual amount of DI pensions a person receives

and equals one for individuals in the sample who receive DI benefits and zero for those who do not

receive any income transfers from the Swiss DI. The discrete labor force participation variable is one

for individuals who work part-time, two for those who work full-time and three for those who are

unemployed or not in the labor force. The dummy variable ”happy” is created from a life satisfaction

variable that is scaled from ”not satisfied” (0) to ”completely satisfied” (10) and is coded such that

it is one for individuals with a satisfaction score of at least seven and zero else. General health status

ranges from ”very well” (1) to ”not well at all” (5) and is recoded as a dummy variable good health

that takes the value one for individuals with a ”very well” or ”well” health status and zero, else.

Physical activity is a binary variable indicating whether a person exercises for at least half an hour a

week (one) or if that person remains inactive (zero). Health impediments in everyday activities and

medication needed in everyday functioning are measured on a 11-point scale from ”not at all” (0)

to ”a great deal” (10). For both of these variables I generate an indicator that is one for individuals

with a value of at least 5 in terms of severity of the health impediments and medication needed for

everyday functioning and zero, for all others. Depression, anxiety and blues is measured on a scale

of ”never” (0) to ”always” (10). I construct from that information the indicator depression which

equals to zero for all observations below 3 and one for the rest. The cutoff value of 3 is chosen

here as the 75%-quantile in the distribution of the original depression variable. Finally, indicators

for back problems, weakness and weariness, sleeping problems and headaches are dummy variables

which were created in the way that they are one for observations that report that they are suffering

”very much” and zero for those who are suffering ”not at all” or ”somewhat” from these illnesses.

Appendix A.2

Simulated Log-Likelihood

The vector of model parameters θj ≡ {βj , γj} and Ω are estimated by maximizing a simulated

log-likelihood function of the form,

SLL(θ,Ω;x, y) =
3∑
j=1

N∑
n=1

dijDilog(P̃ (yi = j|Di = 1))

+

3∑
j=1

N∑
n=1

dij(1−Di)log(P̃ (yi = j|Di = 0)) (6)

where dij is an indicator for the choice taken by individual i, Di is the indicator for the DI benefits

and P̃ (·) is the simulated (conditional) choice probability.
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Tables and Figures

Table 1: Degree of Disability and Pensions

Degree of disability Type of pension Minimum Maximum

Less than 40% No pension - -

40-49% quarter pension 277 CHF 553 CHF

50-59% half pension 553 CHF 1105 CHF

60-69% three quarter pension 829 CHF 1658 CHF

More than 70% full pension 1105 CHF 2210 CHF

Note: Source: Federal Social Insurance Office (2014). The minimum and maximum pensions

are monthly benefits adjusted for inflation in Swiss Francs of 2007.
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Table 2: Descriptive Statistics:

Beneficiaries versus Non-Beneficiaries

Difference in means t-tests

Full sample

Beneficiaries Non-Beneficiaries Difference

Age 49.64 43.35 6.29***

Female 0.54 0.55 -0.01

Weight (kg) 76.07 71.70 4.37***

Height (cm) 169.84 171.33 -1.49**

Number of kids 0.41 0.63 -0.22***

Foreigner 0.12 0.10 0.02

Married 0.47 0.56 -0.08**

Education 11.99 13.44 -1.45***

Household Income (CHF) 104’538 149’016 -44’479***

Happy 0.64 0.90 -0.26***

Number of doctor visits 14.73 4.79 9.94***

Number of ill-days 86.82 8.43 78.39***

Physical activity 0.54 0.80 -0.26***

Impediments 0.73 0.16 0.56***

Medication needed 0.66 0.16 0.51***

Good health 0.48 0.86 -0.38***

Depressed 0.49 0.20 0.29***

Back problems 0.29 0.09 0.20***

Weariness 0.29 0.09 0.21***

Insomnia 0.22 0.08 0.14***

Headache 0.11 0.07 0.04**

Notes: The first and second columns show the average value for a selection of demographic,

socio-economic and health related indicators. Column three displays the t-test for the null

of no difference in means: *** p < 0.01 ** p < 0.05 * p < 0.1.
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Table 3: First Stage Regression Results

First Stage Effects

Dependent Variable: DI Benefits

I(age > 55) 0.044*** 0.042**

(0.016) (0.019)

Control Variables No Yes

Number of Observations 3’873 3’873

R2 0.05 0.166

Cragg-Donald Wald F-stats 10.60 6.87

Notes: First stage regression results using the indicator for DI benefits as

dependent variable. The set of exogenous controls variables includes all the

demographic, socio-economic and health related variables as described in the

data section 4. The instrumental variable is the indicator for the discontinuity

in the benefit award rate above the age of 55. Age is centered at 56. Standard

errors clustered at the household level: *** p < 0.01 ** p < 0.05 * p < 0.1.
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Table 4: Validity checks:

Differences in Baseline Covariates

Difference in Means t-tests

Full sample Window: ± 1 years

Below Above Difference Below Above Difference

Benefit Receipt 0.03 0.07 -0.04*** 0.04 0.09 -0.04**

Annual Benefits (CHF) 20’857.00 22’507.80 -1650.80** 24’320 20’012.50 4307.50

Number of Doctor Visits 5.07 5.74 -0.67* 5.12 6.25 -1.13

Number of Ill-Days 9.72 15.55 -5.83*** 12.28 13.79 -1.51

Physical Activity 0.80 0.77 0.03** 0.78 0.77 0.01

Depression 0.20 0.24 -0.04*** 0.27 0.29 -0.01

Back Problems 0.09 0.13 -0.04*** 0.12 0.16 -0.04

Weariness 0.10 0.10 0.00 0.09 0.12 -0.03

Insomnia 0.08 0.11 -0.03*** 0.12 0.15 -0.03

Headaches 0.08 0.06 0.02* 0.06 0.10 -0.03

Female 0.52 0.52 0.01 0.49 0.51 -0.02

Weight (kg) 71.60 72.81 -1.21*** 74.12 73.21 0.91

Height (cm) 171.84 169.56 2.28*** 171.43 169.70 1.73*

Number of Kids 0.76 0.07 0.69*** 0.22 0.16 0.06

Share of Foreigners 0.12 0.10 0.03*** 0.15 0.12 0.03

Married 0.50 0.74 -0.24*** 0.75 0.73 0.01

Years of Schooling 13.19 13.05 0.14 13.27 13.12 0.14

Life Satisfaction 0.89 0.88 0.01 0.88 0.86 0.03

Notes: t-tests for the null of no difference in means below and above the age cutoff at 56 for a selection of baseline

covariates: *** p < 0.01 ** p < 0.05 * p < 0.1..
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Table 5: Discrete Endogenous Switching Model Coefficient Estimates

DI Benefit Effects

Dependent Variable: Working Status (1) (2) (3)

γ̂full -3.08*** -2.96*** -2.61**

(0.42) (0.54) (1.30)

γ̂oolf 0.17 0.67 -0.23

(0.95) (1.03) (1.63)

Background 1: Demographics Yes Yes Yes

Background 2: Socio-Economic Status No Yes Yes

Background 3: Health No No Yes

Number of Observations 3’531 3’531 3’531

Number of Iterations 9 7 8

Pseudo Log-likelihood -2’515.17 -2’363.16 -1’781.40

Computation time (sec) 1’266.41 1’003.55 1’021.41

Notes: Discrete ES coefficient estimates on the DI benefit status for the labor market out-

comes working full-time and out of the labor force (base category: working part-time) based

on 1’000 GHK draws. Coefficients on all background variables are not shown. Standard

errors clustered at the household level: *** p < 0.01 ** p < 0.05 * p < 0.1.

Background 1: Age, gender, weight (kg), height (cm), number of kids, foreigner, region dum-

mies (base: Central Switzerland), type of community dummies (base: rural);

Background 2: Marital status, years of schooling, logarithmized household income, life sat-

isfaction

Background 3: Number of doctor visits, number of ill-days, physical activity, health imped-

iments, medication needed, indication for self-assessed health and dummies for depression,

back problems, weariness, headaches and sleeping problems.
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Table 6: Summary Statistics:

Average Treatment Effects on Treated (ATT)

Labor Market Outcome Mean S.D. Minimum Maximum

Working part-time 0.412 0.260 0.031 0.807

Working full-time -0.416 0.315 -0.862 -0.000

Out of the labor force 0.032 0.068 -0.056 0.444

Notes: Summary statistics of the treatment effects on treated for the labor market out-

comes working part-time, full-time and out of the labor force. The TOTs’ are based on the

coefficient estimates from the discrete ES model as outlined in specification (3) in table (4).
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Table 7: Robustness Checks:

Varying the Number of Simulation Draws

Number of Draws S = 1 S = 10 S = 100 S = 1000

γ̂full -2.87*** -2.68*** -1.78** -2.99*** -2.84*** -2.64*** -3.06*** -2.92*** -2.60** -3.08*** -2.96*** -2.61**

(0.33) (0.39) (0.79) (0.33) (0.38) (0.72) (0.46) (0.49) (1.28) (0.42) (0.54) (1.30)

γ̂oolf 1.00 0.63 -0.31 0.82 0.70 0.37 0.60 0.70 -0.24 0.17 0.67 -0.23

(0.30) (0.42) (1.58) (0.82) (0.79) (1.60) (1.49) (0.79) (1.63) (0.95) (1.03) (1.63)

Background 1: Demographics Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Background 2: Socio-Economic Status No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Background 3: Health No No Yes No No Yes No No Yes No No Yes

Number of Iterations 5 6 5 6 7 8 8 7 8 9 7 8

Pseudo Log-likelihood -2’519.01 -2’365.04 -1’781.10 -2’515.00 -2’362.32 -1’780.70 -2’515.67 -2’363.34 -1’781.43 -2515.17 -2363.16 -1781.40

Computation time (sec) 4.90 5.75 4.78 9.36 10.66 11.31 304’58 126.85 141.06 1’266.41 1’003.55 1’021.41

Notes: Discrete ES coefficient estimates using different numbers of simulation draws (S). The simulations were ran on an Intel(R) Core(TM) i7-4500 CPU @ 2.39 GHz with 8GB RAM on Windows 8.1 pro.

See notes from table (4) for a description of the background characteristics used in each specification. Standard errors clustered at the household level: *** p < 0.01 ** p < 0.05 * p < 0.1.
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Figure 1: Share of DI Beneficiaries
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Notes: The panels show the share of beneficiaries from 2002-2012. The top left panel shows the overall

share of beneficiaries which is at a level of about 3.5% within this timeframe. The top right panel shows

the share of beneficiaries for the middle-aged (ages 20-54) subpopulation (average: 2.5%). The bottom left

panel finally shows the percentage of DI beneficiaries between the ages of 55-65 with an average share of

about 7.1%.
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Figure 2: Discontinuity in the Benefit Award Rate
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Notes: Figure 2 displays the discontinuity in the benefit award rate overlaid with

the fitted line from a local polynomial regression along with the corresponding 95%

confidence band (bins of half-years of age).
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Figure 3: Density of the Forcing Variable:

McCrary Test
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Notes: Figure 3 shows the density estimate based on the two-step procedure proposed by McCrary(2008).

The graph shows no evidence for a discontinuity at the age cutoff reinforcing local random assignment.
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Figure 4: Distribution of the Treatment Effects on Treated (TOT)

Average TOT: 41%-points
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Notes: Figure 4 shows the distribution of the treatment effect on treated (TOT) for the labor market

outcome of working part-time overlaid with a kernel density estimate. A positive (negative) sign on the

TOT indicates an increase (decrease) in the probability of working part-time.
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Figure 5: Distribution of the Treatment Effects on Treated (TOT)

Average TOT: -42%-points
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Notes: Figure 5 displays the distribution of the treatment effect on treated (TOT) for the labor market

outcome of working full-time overlaid with a kernel density estimate. A positive (negative) sign on the

TOT indicates an increase (decrease) in the probability of working full-time.
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Figure 6: Distribution of the Treatment Effects on Treated (TOT)

Average TOT: 3%-points
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Notes: Figure 6 displays the histogram of the treatment effect on treated (TOT) for the labor market

outcome of staying out of the labor force overlaid with a kernel density estimate. A positive (negative)

sign on the TOT indicates an increase (decrease) in the probability to stay away from the labor market.
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