MPRA
 Munich Personal RePEc Archive

Blanchard and Kahn's (1980) solution for a linear rational expectations model with one state variable and one control variable: the correct formula
Robert Kollmann and Stefan Zeugner
Université Libre de Bruxelles, European Commission

2016

Online at https://mpra.ub.uni-muenchen.de/70338/
MPRA Paper No. 70338, posted 29 March 2016 18:02 UTC

Blanchard and Kahn's (1980) solution for a linear rational expectations model with one state variable and one control variable: the correct formula

Robert Kollmann ${ }^{1}$
ECARES, Université Libre de Bruxelles and CEPR,
Stefan Zeugner
DG-ECFIN, European Commission
March 27, 2016

Abstract

This note corrects Blanchard and Kahn's (1980) solution for a linear dynamic rational expectations model with one state variable and one control variable.

1. Introduction

Blanchard and Kahn (1980) [BK] derived the solution for an important class of dynamic linear rational expectations models. The BK algorithm has become a standard tool for economic modelers. ${ }^{2}$ In general, the model solution is analytically intractable. However, as pointed out by BK, models with one predetermined and one non-predetermined endogenous variable can be handled analytically (which may facilitate an intuitive understanding of the model solution). That special case is important as it includes, e.g., the basic Real Business Cycle model with fixed labor (King and Rebelo (1999)). In this note, we show that the formula provided by BK, for this key special case, is incorrect; we also provide the correct formula.

2. A linear rational expectations model with one state and one control

Consider the following model (the notation follows BK):

[^0]\[

\left[$$
\begin{array}{c}
x_{t+1} \tag{1}\\
E_{t} p_{t}
\end{array}
$$\right]=A\left[$$
\begin{array}{l}
x_{t} \\
p_{t}
\end{array}
$$\right]+\left[$$
\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}
$$\right] Z_{t},
\]

where x_{t} is a predetermined variable ('state'), and p_{t} is a non-predetermined variable ('control'). Z_{t} is a (kx1) vector of exogenous variables. $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is a (2x2) matrix, and γ_{1}, γ_{2} are (1xk) vectors. Let λ_{1}, λ_{2} be the eigenvalues of A, and let $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ be the matrix of eigenvectors of A, i.e. $A B=B J$, with $J=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$. Finally, let $C \equiv B^{-1}, C=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]$. Note that $A=B J C$.

Proposition 1 of BK (p.1308) shows that model (1) has a unique (non-exploding) solution if and only if one eigenvalue of A is outside the unit circle, while the other eigenvalue is inside (or on) the unit circle. Assume that this condition holds, and let $\left|\lambda_{1}\right| \leq 1,\left|\lambda_{2}\right|>1$. BK (p.1309) state that then the solution of (1) is:

$$
\begin{align*}
x_{t}= & \lambda_{1} x_{t-1}+\gamma_{1} Z_{t-1}+\mu \sum_{i=0}^{\infty} \lambda_{2}^{-i-1} E_{t-1} Z_{t+i-1}, \tag{2}\\
p_{t}= & a_{12}^{-1}\left[\left(\lambda_{1}-a_{11}\right) x_{t}+\mu \sum_{i=0}^{\infty} \lambda_{2}^{-i-1} E_{t} Z_{t+i}\right], \tag{3}\\
& \text { with } \mu \equiv\left(\lambda_{1}-a_{11}\right) \lambda_{1}-a_{12} \lambda_{2} . \tag{4}
\end{align*}
$$

Comment: When μ is defined by (4), then $\mu \sum_{i=0}^{\infty} \lambda_{2}^{-i-1} E_{t} Z_{t+i-1}$ is a (kx1) vector. This implies that (2) and (3) cannot hold for $\mathrm{k}>1$ when quantity μ is given by (4) (as x_{t} and p_{t} are scalars). This suggests that the formula for μ is incorrect.

We now derive the correct formula for μ.

Equations (2) and (3) are special cases of the solution for general linear difference models (with arbitrary numbers of states and controls) given in Proposition 1 of BK (p.1308). For convenience, the general case is shown in the Appendix. The general solution for predetermined variable x_{t} indicates that the correct expression for the vector μ in equation (2) above is

$$
\mu=-\left(b_{11} \lambda_{1} c_{12}+b_{12} \lambda_{2} c_{22}\right) c_{22}^{-1}\left(c_{21} \gamma_{1}+c_{22} \gamma_{2}\right) .
$$

Write this as $\mu=\phi_{1} \gamma_{1}+\phi_{2} \gamma_{2}$, with $\phi_{1} \equiv-\left(b_{11} \lambda_{1} c_{12} c_{22}^{-1} c_{21}+b_{12} \lambda_{2} c_{21}\right)$ and $\phi_{2}=-\left(b_{11} \lambda_{1} c_{12}+b_{12} \lambda_{2} c_{22}\right) . A=B J C$ implies that $a_{11}=b_{11} \lambda_{1} c_{11}+b_{12} \lambda_{2} c_{21}$ and $a_{12}=b_{11} \lambda_{1} c_{12}+b_{12} \lambda_{2} c_{22}$. We thus see that $\phi_{2}=-a_{12}$ holds. Substituting $b_{12} \lambda_{2} c_{21}=a_{11}-b_{11} \lambda_{1} c_{11}$ into the definition of ϕ_{1} gives $\phi_{1}=-\left(b_{11} \lambda_{1} c_{12} c_{22}^{-1} c_{21}+a_{11}-b_{11} \lambda_{1} c_{11}\right)$ $\Leftrightarrow \phi_{1} \equiv-\left(a_{11}+b_{11} \lambda_{1}\left[c_{12} c_{22}^{-1} c_{21}-c_{11}\right]\right) . \quad B=C^{-1}$ implies $b_{11}=c_{22} /\left(c_{11} c_{22}-c_{12} c_{21}\right)$ and $c_{12} c_{22}^{-1} c_{21}-c_{11}=-b_{11}^{-1}$. Thus $\phi_{1}=\lambda_{1}-a_{11}$. In summary, the correct formula for μ is:

$$
\begin{equation*}
\mu \equiv\left(\lambda_{1}-a_{11}\right) \gamma_{1}-a_{12} \gamma_{2} . \tag{5}
\end{equation*}
$$

It can readily be verified from the general solution for the non-predetermined variable p_{t} (see Appendix) that equation (3) above holds when the quantity μ is defined by (5).

References

Blanchard, O. and C. Kahn, 1980. The Solution of Linear Difference Models Under Rational Expectations. Econometrica 48, 1305-1311.

King, R. and S. Rebelo, S., 1999. Resuscitating Real Business Cycles, in: Handbook of Macroeconomics (J. Taylor and M. Woodford, eds.), Elsevier, Vol. 1B, pp. 927-1007.

Appendix

Blanchard and Kahn (1980): the general model

Consider the model

$$
\left[\begin{array}{l}
X_{t+1} \tag{A1}\\
E_{t} P_{t}
\end{array}\right]=A\left[\begin{array}{c}
X_{t} \\
P_{t}
\end{array}\right]+\gamma Z_{t},
$$

where X_{t} is an $n \times 1$ vector of predetermined variable, and p_{t} is an $m \times 1$ vector of nonpredetermined variables; Z_{t} is a ($k x 1$) vector of exogenous variables. A is an $(n+m) \mathrm{x}(n+m)$ matrix, and γ is an $(n+m) \mathrm{x} k$ matrix. Consider the Jordan canonical form $A=C^{-1} J C$, where C and J are $(n+m) \mathrm{x}(n+m)$ matrices. Let the diagonal elements of J (i.e. the eigenvalues of A) be ordered by increasing absolute value. Let $\bar{n}(\bar{m})$ denote the number of eigenvalues of A that are on or inside the unit circle (outside the unit circle). Partition J as $J=\left[\begin{array}{cc}J_{1} & 0 \\ 0 & J_{2}\end{array}\right]$, where J_{1} and J_{2} are matrices of dimensions $(\bar{n} \times \bar{n})$ and $(\bar{m} \times \bar{m})$, respectively. Decompose $C, B \equiv C^{-1}$ and γ as $C=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right], \quad B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$ and $\gamma=\left[\begin{array}{l}\gamma_{1} \\ \gamma_{2}\end{array}\right]$, where $C_{11}, C_{12}, C_{21}, C_{22}$ are matrices of dimensions ($\bar{n} \times n$), $(\bar{n} \times m),(\bar{m} \times n)$ and ($\bar{m} \times m)$, respectively; $B_{11}, B_{12}, B_{21}, B_{22}$ have dimensions $(n \times \bar{n}),(n \times \bar{m}),(m \times \bar{n})$ and $(m \times \bar{m})$, respectively, while γ_{1} and γ_{2} have dimensions ($\left.\bar{n} \times k\right)$ and ($\bar{m} \times k$), respectively. Proposition 1 in Blanchard and Kahn (1980) states that the model (A1) has a unique (non-explosive) solution if and only if the number of non-predetermined variables equals the number of eigenvalues of A outside the unit circle: $m=\bar{m}$. If that condition is met, then the solution is:

$$
\begin{gathered}
X_{t}=B_{11} J_{1} B_{11}^{-1} X_{t-1}+\gamma_{1} Z_{t-1}-\left(B_{11} J_{1} C_{12}+B_{12} J_{2} C_{22}\right) C_{22}^{-1} \sum_{i=0}^{\infty} J_{2}^{-i-1}\left(C_{21} \gamma_{1}+C_{22} \gamma_{2}\right) E_{t-1} Z_{t+i-1}, \\
P_{t}=-C_{22}^{-1} C_{21} X_{t}+C_{22}^{-1} \sum_{i=0}^{\infty} J_{2}^{-i-1}\left(C_{21} \gamma_{1}+C_{22} \gamma_{2}\right) E_{t} Z_{t+i} .
\end{gathered}
$$

[^0]: ${ }^{1}$ Corresponding author. We thank Victor Tin-Yau Hung for useful discussions. Thanks are also due to Xavier Gabaix for encouraging us to circulate this note. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 612796, Project MACFINROBODS ('Integrated Macro-Financial Modelling for Robust Policy Design'). Authors' addresses: R. Kollmann, European Centre for Advanced Research in Economics and Statistics, CP 114, Université Libre de Bruxelles, Av. F. Roosevelt 50, 1050 Brussels, Belgium; robert_kollmann@yahoo.com
 S. Zeugner, Directorate General for Economic and Financial Affairs, European Commission, Rue de la Loi 170, 1049 Brussels, Belgium; stefan.zeugner@ec.europa.eu
 ${ }^{2}$ The BK algorithm is e.g. often used to solve linearized dynamic general equilibrium models, the workhorses of modern macroeconomics (King and Rebelo (1999)). Google Scholar records 2342 cites ($03 / 2016$) for the BK paper.

