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Abstract  

This note corrects Blanchard and Kahn’s (1980) solution for a linear dynamic rational 

expectations model with one state variable and one control variable.      

 

1. Introduction 

Blanchard and Kahn (1980) [BK] derived the solution for an important class of dynamic linear 

rational expectations models. The BK algorithm has become a standard tool for economic 

modelers.
2
 In general, the model solution is analytically intractable. However, as pointed out by 

BK, models with one predetermined and one non-predetermined endogenous variable can be 

handled analytically (which may facilitate an intuitive understanding of the model solution). That 

special case is important as it includes, e.g., the basic Real Business Cycle model with fixed 

labor (King and Rebelo (1999)). In this note, we show that the formula provided by BK, for this 

key special case, is incorrect; we also provide the correct formula. 

 

2. A linear rational expectations model with one state and one control 

Consider the following model (the notation follows BK):  
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modern macroeconomics (King and Rebelo (1999)). Google Scholar records 2342 cites (03/2016) for the BK paper. 
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where tx  is a predetermined variable (‘state’), and tp  is a non-predetermined variable (‘control’). 

tZ  is a (kx1) vector of exogenous variables. 
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 is a (2x2) matrix, and 
1 2,   are (1xk) 

vectors. Let 
1 2,   be the eigenvalues of A, and let 
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 Note that .A BJC   

Proposition 1 of BK (p.1308) shows that model (1) has a unique (non-exploding) solution if and 

only if one eigenvalue of A is outside the unit circle, while the other eigenvalue is inside (or on) 

the unit circle. Assume that this condition holds, and let 
1 2| | 1, | | 1.    BK (p.1309) state that 

then the solution of (1) is:   
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                                                     with  1 11 1 12 2( ) .a a                                                              (4) 

 

Comment:  When   is defined by (4), then 1

2 10

i

t t ii
E Z 

  

   is a (kx1) vector. This implies 

that (2) and (3) cannot hold for k>1 when quantity   is given by (4) (as tx  and tp  are scalars). 

This suggests that the formula for  is incorrect.  

 

We now derive the correct formula for .   

 

Equations (2) and (3) are special cases of the solution for general linear difference models (with 

arbitrary numbers of states and controls) given in Proposition 1 of BK (p.1308). For 

convenience, the general case is shown in the Appendix. The general solution for predetermined 

variable tx  indicates that the correct expression for the vector   in equation (2) above is                        

                                      
1
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Write this as
1 1 2 2,     with 

1

1 11 1 12 22 21 12 2 21( )b c c c b c     and
2 11 1 12 12 2 22( ).b c b c    A BJC  

implies that 
11 11 1 11 12 2 21a b c b c    and 

12 11 1 12 12 2 22.a b c b c    We thus see that 
2 12a   holds. 

Substituting 
12 2 21 11 11 1 11b c a b c    into the definition of 

1
  gives 

1

1 11 1 12 22 21 11 11 1 11( )b c c c a b c      

 
1

1 11 11 1 12 22 21 11( [ ]).a b c c c c      
1B C  implies 

11 22 11 22 12 21/( )b c c c c c   and  
1 1

12 22 21 11 11 .c c c c b    

Thus 1 1 11.a    In summary, the correct formula for   is:  

                                                               
1 11 1 12 2( ) .a a                                                             (5) 

It can readily be verified from the general solution for the non-predetermined variable tp (see 

Appendix) that equation (3) above holds when the quantity   is defined by (5).  

 

 

References 

Blanchard, O. and C. Kahn, 1980. The Solution of Linear Difference Models Under Rational 

Expectations. Econometrica 48, 1305-1311.  

King, R. and S. Rebelo, S., 1999. Resuscitating Real Business Cycles, in: Handbook of 

Macroeconomics  (J. Taylor and M. Woodford, eds.), Elsevier, Vol. 1B, pp. 927-1007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Appendix  
 

Blanchard and Kahn (1980): the general model 

Consider the model  
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,                                                   (A1) 

where tX  is an nx1 vector of predetermined variable, and tp  is an mx1 vector of non-

predetermined variables; tZ  is a (kx1) vector of exogenous variables. A is an (n+m)x(n+m) 

matrix, and   is an (n+m)xk matrix. Consider the Jordan canonical form 
1 ,A C JC  where  C 

and J are (n+m)x(n+m) matrices. Let the diagonal elements of  J  (i.e. the eigenvalues of A) be 

ordered by increasing absolute value. Let n  ( m ) denote the number of eigenvalues of A that are 

on or inside the unit circle (outside the unit circle).  Partition  J as 
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, where 
1J  and 

2J  are matrices of dimensions  ( x )n n   and ( x )m m , respectively. Decompose C, 
1B C  and   

as  
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 where 11 12 21 22, , ,C C C C  are matrices of 

dimensions ( x ),n n ( x ),n m ( x )m n  and ( x ),m m respectively; 11 12 21 22, , ,B B B B  have dimensions 

( x ),n n ( x ),n m ( x )m n  and ( x ),m m respectively, while 1  and 2  have dimensions ( x )n k  and 

( x ),m k respectively. Proposition 1 in Blanchard and Kahn (1980) states that the model (A1) has 

a unique (non-explosive) solution if and only if the number of non-predetermined variables 

equals the number of eigenvalues of A outside the unit circle: .m m   If that condition is met, 

then the solution is:  
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