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Abstract

This paper considers forecast combination in a predictive regression. We con-

struct the point forecast by combining predictions from all possible linear regression

models given a set of potentially relevant predictors. We derive the asymptotic risk

of least squares averaging estimators in a local asymptotic framework. We then de-

velop a frequentist model averaging criterion, an asymptotically unbiased estimator

of the asymptotic risk, to select forecast weights. Monte Carlo simulations show

that our averaging estimator compares favorably with alternative methods such as

weighted AIC, weighted BIC, Mallows model averaging, and jackknife model aver-

aging. The proposed method is applied to stock return predictions.
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1 Introduction

The challenge of empirical studies on forecasting practice is that one does not know

exactly what predictors should be included in the true model. In order to address the

model uncertainty, forecast combination has been widely used in economics and statistics;

see Granger (1989), Clemen (1989), Timmermann (2006), and Stock and Watson (2006)

for literature reviews. Although there is plenty of empirical evidence to support the

success of forecast combination, there is no unified view on selecting the forecast weights

in a general framework.

The main goal of this paper is to provide a data-driven approach to weight selection

for forecast combination. Building on the idea of the focused information criterion (FIC)

proposed by Claeskens and Hjort (2003), we introduce a frequentist model averaging

criterion to select the weights for candidate models and study its properties. More recently,

FIC has been extended to several models, including the general semiparametric model

(Claeskens and Carroll, 2007), the generalized additive partial linear model (Zhang and

Liang, 2011), the Tobin model with a nonzero threshold (Zhang, Wan, and Zhou, 2012),

the generalized empirical likelihood estimation (Sueishi, 2013), the generalized method

of moments estimation (DiTraglia, 2015), and the propensity score weighted estimation

of the treatment effects (Lu, 2015; Kitagawa and Muris, 2015). Despite the growing

literature on FIC, little work has been done on forecast combination.

Following Hjort and Claeskens (2003), Hansen (2014), and Liu (2015), we examine

the asymptotic risk of least squares averaging estimators in a local asymptotic framework

where the regression coefficients of potentially relevant predictors are in a local T−1/2

neighborhood of zero. This local-to-zero framework ensures the consistency of the av-

eraging estimator while in general presents an asymptotic bias. The local asymptotic

framework has an advantage of yielding the same stochastic order of squared biases and

variances. Thus, the optimal forecast combination is the one that achieves the best trade-

off between bias and variance in this context.

For a given set of potentially relevant predictors, we construct the point forecast by

combining predictions from all possible linear regression models. Under the local-to-

zero assumption, we derive the asymptotic distribution of the averaging estimator for a

predictive regression model. We show that the averaging estimator with fixed weights is

asymptotically normal and then derive a representation for the asymptotic risk of least

squares averaging estimators without the i.i.d. normal assumption. This result allows

us to decompose the asymptotic risk into the bias and variance components. Hence,

the proposed model averaging criterion can be used to address the trade-off between

bias and variance of forecast combination. The proposed model averaging criterion is an
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estimate of the asymptotic risk. Therefore, the data-driven weights that minimize the

model averaging criterion are expected to close to the optimal weights that minimize the

asymptotic risk.

To illustrate the proposed forecast combination approach, we study the predictability

of U.S. stock returns. Following Welch and Goyal (2008) and Rapach, Strauss, and Zhou

(2010), we use U.S. quarterly data to investigate the out-of-sample equity premium. We

find strong evidence that the performance of the proposed approach is better than the

historical average benchmark. In particular, our forecast combination approach achieves

lower cumulative squared prediction error than those produced by other averaging meth-

ods such as weighted AIC, weighted BIC, Mallows model averaging, and jackknife model

averaging. Our results support the findings of Rapach, Strauss, and Zhou (2010) and El-

liott, Gargano, and Timmermann (2013) that forecast combinations consistently achieve

significant gains on out-of-sample predictions.

We now discuss the related literature. There is a large body of literature on forecast

combination, including both Bayesian and frequentist model averaging. Since the seminal

work of Bates and Granger (1969), many forecast combination methods are proposed,

including Granger and Ramanathan (1984), Min and Zellner (1993), Raftery, Madigan,

and Hoeting (1997), Buckland, Burnham, and Augustin (1997), Yang (2004), Zou and

Yang (2004), Hansen (2008), Hansen (2010), Elliott, Gargano, and Timmermann (2013),

and Cheng and Hansen (2015). There are also many alternative approaches to combine

or shrink forecasts, for example, bagging (Breiman, 1996; Inoue and Kilian, 2008), the

LASSO (Tibshirani, 1996), the adaptive LASSO (Zou, 2006), and the model confidence

set (Hansen, Lunde, and Nason, 2011), among others.

Our paper is closely related to Hansen (2008), who proposes to select the forecast

weights by minimizing the Mallows model averaging (MMA) criterion. The MMA crite-

rion approximates the mean squared forecast error (MSFE) by the sum of squared errors

and a penalty term. Hence, the MMA criterion addresses the trade-off between the model

fit and model complexity. Hansen (2008) shows that the MMA criterion is an asymptot-

ically unbiased estimator of the MSFE in a homoskedastic linear regression model. Like

the MMA criterion, our model averaging criterion is also asymptotically unbiased for the

MSFE. We, however, employ a drifting asymptotic framework to approximate the MSFE,

and do not restrict model errors to be homoskedastic. In this paper, we show that the pro-

posed plug-in averaging estimator is a generalized Mallows’ Cp-type averaging estimator

for predictive regression models with heteroskedastic errors. The plug-in averaging esti-

mator is equivalent to the MMA estimator in the homoskedastic framework. Numerical

comparisons show that our estimator achieves lower relative risk than the MMA estimator
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in most simulations.

One popular model averaging approach is the simple equal-weighted average. The

simple equal-weighted average is appropriate to use if all the candidate models have similar

prediction powers. Recently, Elliott, Gargano, and Timmermann (2013) extend the idea

of the simple equal-weighted average to complete subset regressions. They construct the

forecast combination by using equal-weighted combination based on all possible models

that keep the number of predictors fixed. Instead of choosing the weights, the subset

regression combinations have to choose the number of predictors κ, and the data-driven

method for κ still needs further investigation. Monte Carlo shows that the performance

of complete subset regressions is sensitive to the choice of κ, while the performance of our

model averaging criterion is relatively robust in most simulations.

There is a large literature on the asymptotic optimality of model selection. Shibata

(1980) and Ing and Wei (2005) demonstrate that model selection estimators based on

the Akaike information criterion or the final prediction criterion asymptotically achieve

the lowest possible MSFE in homoskedastic autoregressive models. Li (1987) shows the

asymptotic optimality of the Mallows criterion in homoskedastic linear regression models.

Andrews (1991) extends the asymptotic optimality to the heteroskedastic linear regression

models. Shao (1997) provides a general framework to discuss the asymptotic optimality

of various model selection procedures.

The existing literature on the asymptotic optimality of model averaging is compara-

tively small. Hansen (2007) introduces the MMA estimator and demonstrates the asymp-

totic optimality of the MMA estimator for nested and homoskedastic linear regression

models. Wan, Zhang, and Zou (2010) extend the asymptotic optimality of the MMA

estimator for continuous weights and a non-nested setup. Hansen and Racine (2012)

propose the jackknife model averaging estimator and demonstrate the asymptotic op-

timality in heteroskedastic linear regression models. Liu and Okui (2013) propose the

heteroskedasticity-robust Cp estimator and demonstrate its optimality in the linear re-

gression models with heteroskedastic errors. Zhang, Zou, and Liang (2014) propose a

Mallows-type model averaging estimator for the linear mixed-effects models and establish

the asymptotic optimality. These asymptotic theories, however, are limited to the ran-

dom sample and hence are not directly applicable to forecast combination for dependent

data. In a recent paper, Zhang, Wan, and Zou (2013) show the asymptotic optimality

of the jackknife model averaging estimator in the presence of lagged dependent variables.

They assume that the dependent variable follows the stationary AR(∞) process. A more

general theory needs to be developed in a future study.

The outline of the paper is as follows. Section 2 presents the forecasting model and
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describes the averaging estimator. Section 3 presents the asymptotic framework and

the plug-in averaging estimator for forecast combination and discusses the relationship

between the plug-in averaging estimator and the Mallows’ Cp-type averaging estimator.

Section 4 evaluates the finite sample performance of the plug-in averaging estimator and

other averaging estimators in two simulation experiments. Section 5 applies the plug-in

forecast combination to the predictability of U.S. stock returns. Section 6 concludes the

paper. Proofs and figures are included in the Appendix.

2 Model and Estimation

Suppose we have observations (yt,xt, zt) for t = 1, ..., T . The goal is to construct a point

forecast of yT+1 given (xT , zT ) using the one-step-ahead forecasting model

yt+1 = x′
tβ + z′tγ + et+1, (2.1)

E(htet+1) = 0, (2.2)

where yt+1 is a scalar dependent variable, ht = (x′
t, z

′
t)

′, xt (p × 1) and zt (q × 1) are

vectors of predictors, and et is an unobservable error term. Here, xt is a set of “must-

have” predictors, which must be included in the model based on theoretical grounds, while

zt is a set of “potentially relevant” predictors, which may or may not be included in the

model. Note that xt is allowed to be an empty matrix or include only a constant term.

The potentially relevant predictors could be lags of yt, deterministic terms, any nonlinear

transformations of the original predictors, or the interaction terms between the predictors.

The error term is allowed to be heteroskedastic, and there is no further assumption on

the distribution of the error term. We assume throughout that 1 ≤ p + q ≤ T − 1, and

we do not let the number of predictors p and q increase with the sample size T .

We now consider a set of M approximating models indexed by m = 1, ...,M , where

the mth model includes all must-have predictors xt and a subset of potentially relevant

predictors zt. The mth model has p + qm predictors. We do not place any restrictions

on the model space. The set of models could be nested or non-nested. If we consider

a sequence of nested models, then M = q + 1. If we consider all possible subsets of

potentially relevant predictors, then M = 2q.

Let y = (y1, y2, ..., yT )
′, X = (x0,x1, ...,xT−1)

′, Z = (z0, z1, ..., zT−1)
′, and e =

(e1, e2, ..., eT )
′. In matrix notation, the model (2.1) can be written as

y = Xβ + Zγ + e = Hθ + e, (2.3)
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where H = (X,Z) and θ = (β′,γ ′)′.

Let Πm be a qm × q selection matrix that selects the included potentially relevant

predictors in the mth model. Let I denote an identity matrix and 0 a zero matrix. Also,

Sm =

(
Ip 0p×qm

0q×p Π′
m

)

is a selection matrix of dimension (p+ q)× (p+ qm).

The unconstrained least squares estimator of θ in the full model is θ̂ = (H′H)−1H′y,

and the least squares estimator in the mth submodel is θ̂m = (H′
mHm)

−1H′
my, where

Hm = (X,Zm) = (X,ZΠ′
m) = HSm. The predicted value is ŷ(m) = Hmθ̂m = HSmθ̂m.

Thus, the one-step-ahead forecast given information up to period T from this mth model

is

ŷT+1|T (m) = h′
TSmθ̂m. (2.4)

Let w = (w1, ..., wM)′ be a weight vector with wm ≥ 0 and
∑M

m=1
wm = 1. That is,

w ∈ HM where HM =
{
w ∈ [0, 1]M :

∑M
m=1

wm = 1
}
. The one-step-ahead combination

forecast is

ŷT+1|T (w) =
M∑

m=1

wmŷT+1|T (m) =
M∑

m=1

wmh
′
TSmθ̂m = h′

T θ̂(w), (2.5)

where θ̂(w) =
∑M

m=1
wmSmθ̂m is an averaging estimator of θ.

3 Forecast Combinations

In the previous section we defined the one-step-ahead combination forecast with fixed

weights. Our goal is to select the forecast weights to minimize the asymptotic risk over

the set of all possible forecast combinations. In this section, we first present the asymptotic

framework and the connection between the asymptotic risk, in-sample mean squared error

(MSE), and one-step-ahead mean squared forecast error (MSFE). We then characterize

the optimal weights of forecast combinations and present a plug-in method to estimate

the infeasible optimal weights. In the last subsection, we show the equivalence between

the plug-in averaging estimator and the Mallows’ Cp-type averaging estimator.
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3.1 Local Asymptotic Framework

In a constant parameter model, i.e., nonzero and fixed values of γ, the least squares

estimators for all possible models except the full model have omitted variable bias. The

risk of these models tends to infinity with the sample size, and hence the asymptotic

approximations break down. To obtain a useful approximation, we follow Hjort and

Claeskens (2003), Hansen (2014), and Liu (2015), and use a local-to-zero asymptotic

framework to approximate the in-sample MSE. More precisely, the parameters γ are

modeled as being in a local T−1/2 neighborhood of zero. This local-to-zero framework is

similar to that used in weak instrument theory (Staiger and Stock, 1997).

Assumption 1. γ = γT = δ/
√
T , where δ is an unknown vector.

Assumption 2. {yt+1,ht} is a strictly stationary and ergodic time series with finite r > 4

moments and E(et+1|Ft) = 0, where Ft = σ(ht,ht−1, ...; et, et−1, ...).

Assumption 1 assumes that γ is local to zero, and it ensures that the asymptotic mean

squared error of the averaging estimator remains finite. The local asymptotic framework

is a technical device commonly used to analyze the asymptotic and finite sample prop-

erties of the model selection and averaging estimator, for example, Claeskens and Hjort

(2003), Leeb and Pötscher (2005), Pötscher (2006), and Elliott, Gargano, and Timmer-

mann (2013). Note that the O(T−1/2) framework gives squared model biases of the same

order O(T−1) as estimator variances. Hence, in this context the optimal forecast combina-

tion is the one that achieves the best trade-off between bias and variance. Alternatively,

Assumption 1 could be replaced by imposing the i.i.d. normal assumption on the error

term; see Hansen (2014) for a discussion.

Assumption 2 states that data is strictly stationary, and it implies that et+1 is con-

ditionally unpredictable at time t. Assumption 2 is similar to Assumption 1 of Hansen

(2014) and Assumptions R(i)-(ii) of Cheng and Hansen (2015). Assumption 2 is sufficient

to imply that T−1H′H
p−→ Q and T−1/2H′e

d−→ R ∼ N(0,Ω) where Q = E (hth
′
t) > 0

and Ω = E
(
hth

′
te

2
t+1

)
. Note that if the error term is i.i.d. and homoskedastic, then Ω

can be simplified as Ω = σ2Q. Since the selection matrix Sm is nonrandom with elements

either 0 or 1, for the mth model we have T−1H′
mHm

p−→ Qm where Qm = S′
mQSm is non-

singular. The following theorem establishes the asymptotic distribution of the averaging

estimator with fixed weights.
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Theorem 1. Suppose that Assumptions 1–2 hold. As T → ∞, we have

√
T
(
θ̂(w)− θ

)
d−→ N

(
A(w)δ,V(w)

)

A(w) =
M∑

m=1

wm (PmQ− Ip+q)S0

V(w) =
M∑

m=1

w2

mPmΩPm + 2
∑∑

m6=ℓ

wmwℓPmΩPℓ

where Pm = SmQ
−1
m S′

m and S0 = (0q×p, Iq)
′.

Theorem 1 shows the asymptotic normality of the averaging estimator with nonrandom

weights. We use this result to compute the asymptotic risk of the averaging estimator.

If we assign the whole weight to the full model, i.e., all predictors are included in the

model, it is easy to see that we have a conventional asymptotic distribution with mean

zero (zero bias) and sandwich-form variance Q−1ΩQ−1. Note that A(w)δ represents the

asymptotic bias term of the averaging estimator θ̂(w). The magnitude of the asymptotic

bias is determined by the covariance matrix Q and the local parameter δ. The asymptotic

variance of the averaging estimator V(w) has two components. The first component is

the weighted average of the variance of each model, and the second component is the

weighted average of the covariance between any two models.

3.2 MSE and MSFE

We first show that the one-step-ahead MSFE approximately equals the in-sample MSE

when the observations are strictly stationary. Thus, the weight vector that minimizes the

in-sample MSE is expected to minimize the one-step-ahead MSFE.

Let σ2 = E(e2t ) and µt = x′
tβ + z′tγ be the conditional mean. Then, we rewrite

the model (2.1) as yt+1 = µt + et+1. Similarly, for any fixed-weight vector, we write

µ̂t(w) =
∑M

m=1
wmh

′
tSmθ̂m = h′

tθ̂(w).

Following common practice, we consider the quadratic loss function and define the

in-sample MSE as

MSE(w) = E

(
1

T

T∑

t=1

(µt − µ̂t(w))2
)
. (3.1)

The in-sample MSE measures the global fit of the averaging estimator since it is con-

structed using the entire sample. Following a similar argument in Cheng and Hansen
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(2015), we have

MSFE(w) = E
(
yT+1 − ŷT+1|T (w)

)2

= E
(
e2T+1 + (µT − µ̂T (w))2

)

≃ E
(
e2t+1 + (µt − µ̂t(w))2

)

= σ2 +MSE(w), (3.2)

where the second equality holds since eT+1 is uncorrelated with µ̂T (w) by Assumption 2

and the approximation in the third line is valid for stationary (yt,ht).
1

Let the optimal weight vector be the value that minimizes MSE(w) over w ∈ HM .

Since σ2 is a constant and not related to the weight vector w, Equation (3.2) implies

that the optimal weight vector that minimizes the MSE(w) is expected to minimize the

MSFE(w).

We follow Hansen (2014) to define the asymptotic trimmed risk or weighted MSE of

an estimator θ̃ for θ as

R(θ̃, θ) = lim
ζ→∞

lim inf
T→∞

Emin{T (θ̃ − θ)′Q(θ̃ − θ), ζ}. (3.3)

Note that E((θ̃ − θ)′Q(θ̃ − θ)) is the risk of an estimator θ̃ under the weighted squared

error loss function, which may not be finite unless θ̃ has sufficient finite moments. Thus,

we use ζ to bound the expectation when the risk does not exist for finite T . We choose

the covariance matrix Q as a weight matrix, so that the weighted MSE function (3.3)

plus σ2 corresponds to one-step-ahead MSFE.2 Thus, it is natural to use the asymptotic

risk to approximate the MSE. The asymptotic risk is well-defined and straightforward to

calculate when the estimator θ̃ has an asymptotic distribution.

3.3 Weighted Focused Information Criterion

The model selection estimator is a special case of the model averaging estimator. If

we consider the unit weight vector w1,m, where the mth element is one and the others

1Hansen (2008) shows that the MSFE approximately equals the MSE in a homoskedastic linear re-
gression model with stationary time series data. Elliott, Gargano, and Timmermann (2013) also have a
similar argument for complete subset regressions.

2For any estimator, the one-step-ahead MSFE is E(yT+1 − h′
T θ̃)

2 = E(e2T+1 + (h′
T (θ − θ̃))2) ≃

σ2+E((θ̃−θ)hTh
′
T (θ̃−θ)), where the first equality holds by Assumption 2 and the second approximation

is valid for stationary (yt,ht). Thus, we choose Q as a weight matrix, so that R(θ̃, θ) plus σ2 corresponds
to one-step-ahead MSFE. As mentioned by Hansen (2014), the weight matrix Q induces invariance to
parameter scaling and rotation, and the trimming ζ is introduced to avoid the requirement of the uniform
integrability condition.
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are zeros, then the averaging estimator simplifies to a selection estimator. Let θ̂(m) =

Smθ̂m = θ̂(w1,m) be the least squares estimator of θ in the mth submodel.

Theorem 2. Suppose that Assumptions 1–2 hold. We have

R(θ̂(m), θ) = tr (QCmδδ
′C′

m) + tr (QPmΩPm) (3.4)

where Cm = (PmQ− Ip+q)S0.

Theorem 2 presents the asymptotic trimmed risk of the least squares estimators in

the mth model under the local asymptotic framework. We can use (3.4) to select a best

approximating model, and this is the idea of the weighted focused information criterion

(wFIC) proposed by Claeskens and Hjort (2008). Let m̂ be the model that minimizes

(3.4). Combining Theorem 2 with (3.2), we deduce that m̂ is expected to be the model

that minimizes the MSFE.

To use (3.4) for model selection, we need to estimate the unknown parameters Q,

Ω, Cm, Pm, and δ. Let Q̂ = 1

T

∑T
t=1

hth
′
t. Then we have Q̂

p−→ Q under Assumption

2. The covariance matrix Ω can be consistently estimated by the heteroskedasticity-

consistent covariance matrix estimator proposed by White (1980). The estimator is Ω̂ =
1

T

∑T
t=1

hth
′
tê

2
t+1, where êt+1 = yt+1 − h′

tθ̂ is the least squares residual for the full model.

If the error term is i.i.d. and homoskedastic, then Ω can be consistently estimated by
1

T
σ̂2
∑T

t=1
hth

′
t, where σ̂

2 = 1

T

∑T
t=1

ê2t+1. Note that both Ĉm and P̂m are functions of Q

and selection matrices, which can also be consistently estimated by the sample analogue

under Assumption 2.

Unlike other unknown parameters, the consistent estimator for the local parameter δ

is not available due to the local asymptotic framework. We can, however, construct an

asymptotically unbiased estimator of δ by using the estimator from the full model. That

is, δ̂ =
√
T γ̂. Theorem 1 and the delta method show that

δ̂ =
√
T γ̂

d−→ Rδ = δ + S′
0Q

−1R ∼ N(δ,S′
0Q

−1ΩQ−1S0). (3.5)

As shown above, δ̂ is an asymptotically unbiased estimator for δ. Since the mean of RδR
′
δ

is δδ′ + S′
0Q

−1ΩQ−1S0, we construct the asymptotically unbiased estimator of δδ′ as

δ̂δ′ = δ̂ δ̂′ − S′
0Q̂

−1Ω̂Q̂−1S0. (3.6)
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Following Claeskens and Hjort (2008), we define the wFIC of the mth submodel as

wFIC(m) = tr
(
Q̂Ĉm

(
δ̂ δ̂′ − S′

0Q̂
−1Ω̂Q̂−1S0

)
Ĉ′

m

)
+ tr

(
Q̂P̂mΩ̂P̂m

)
, (3.7)

which is an asymptotically unbiased estimator of R(θ̂(m), θ). We then select the model

with the lowest wFIC.

3.4 Plug-In Averaging Estimator

We now extend the idea of the weighted focused information criterion to model averaging.3

The following theorem presents the asymptotic trimmed risk of the averaging estimator

in the local asymptotic framework.

Theorem 3. Suppose that Assumptions 1–2 hold. We have

R(θ̂(w), θ) = w′ψw (3.8)

where ψ is an M ×M matrix with the (m, ℓ)th element

ψm,ℓ = tr (QCmδδ
′C′

ℓ) + tr (QPmΩPℓ) . (3.9)

Note that the mth diagonal element of ψ characterizes the bias and variance of the

mth model while the off-diagonal elements measure the product of biases and covariance

between different models. Theorem 3 is a more general statement than Theorem 2 of

Elliott, Gargano, and Timmermann (2013). First, we do not restrict the setup to i.i.d.

data. Second, we allow any arbitrary combination between models. Third, we do not

restrict the weights to be equal.

From Theorem 3, we define the optimal weight vector as the value that minimizes the

asymptotic risk over w ∈ HM :

wo = argmin
w∈HM

w′ψw. (3.10)

Combining Theorem 3 with (3.2), we deduce that wo is nearly equivalent to the opti-

mal weight vector that minimizes the MSFE. Note that the objection function is linear-

3Claeskens and Hjort (2008) propose a smoothed wFIC averaging estimator, which assigns the weights
of each candidate model by using the exponential wFIC. The simulations show that the performance of
the smoothed wFIC averaging estimator is sensitive to the choice of the nuisance parameter. Furthermore,
there is no data-driven method available for the nuisance parameter.
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quadratic in w, which means the optimal weight vector can be computed numerically via

quadratic programming.

The optimal weights, however, are infeasible, since they depend on the unknown pa-

rameter ψ. Similar to Liu (2015), we propose a plug-in estimator to estimate the optimal

weights for the forecasting model. We first estimate the asymptotic risk by plugging in an

asymptotically unbiased estimator. We then choose the data-driven weights by minimiz-

ing the sample analog of the asymptotic risk and use these estimated weights to construct

the one-step-ahead forecast combination.

Let ψ̂ be a sample analog of ψ with the (m, ℓ)th element

ψ̂m,ℓ = tr
(
Q̂Ĉmδ̂δ′Ĉ

′
ℓ

)
+ tr

(
Q̂P̂mΩ̂P̂ℓ

)
, (3.11)

where δ̂δ′ is defined in (3.6). The data-driven weights based on the plug-in estimator are

defined as

ŵ = argmin
w∈HM

w′ψ̂w, (3.12)

where w′ψ̂w is an asymptotically unbiased estimator of w′ψw.4 Similar to the opti-

mal weight vector, the data-driven weights can also be found numerically via quadratic

programming.5 The plug-in one-step-ahead combination forecast is

ŷT+1|T (ŵ) = h′
T θ̂(ŵ). (3.13)

As mentioned by Hjort and Claeskens (2003), we can also estimate ψ by inserting δ̂

for δ. The alternative estimator of ψm,ℓ is

ψ̃m,ℓ = tr
(
Q̂Ĉmδ̂ δ̂

′Ĉ′
ℓ

)
+ tr

(
Q̂P̂mΩ̂P̂ℓ

)
. (3.14)

Although ψ̃m,ℓ is not an asymptotically unbiased estimator, the simulation shows that the

estimator (3.14) has better finite sample performance than the estimator (3.11) in most

ranges of the parameter space.6

4Claeskens and Hjort (2008) suggest estimating the first term of ψm,ℓ by max
{
0, tr

(
Q̂Ĉmδ̂δ′Ĉ

′
ℓ

)}
to

avoid the negative estimate for the squared bias term. However, our simulations show that this modified
estimator is not a stable estimator for ψm,ℓ. Therefore, we focus on the estimator (3.11) in this paper.

5Note that when M > 2, there is no closed-form solution to (3.12). When M = 2, the closed-

form solution to (3.12) is ŵ1 = w̃ and ŵ2 = 1 − w̃, where w̃ = (ψ̂2,2 − ψ̂1,2)/(ψ̂1,1 + ψ̂2,2 − 2ψ̂1,2) if

ψ̂1,2 < min{ψ̂1,1, ψ̂2,2}, w̃ = 1 if ψ̂1,1 ≤ ψ̂1,2 < ψ̂2,2, or w̃ = 0 if ψ̂2,2 ≤ ψ̂1,2 < ψ̂1,1.
6As pointed out by Hansen (2014), the averaging estimator is the classic James-Stein estimator, which

is a biased estimator. Hansen (2014) shows that the nested least squares averaging estimator has lower
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It is quite easy to model the heteroskedasticity by the plug-in method since the esti-

mated weights depend on the covariance matrix estimator Ω̂. Another advantage of the

plug-in method is that the correlations between different models are taken into account

in the data-driven weights.

The proposed forecast combination method is the prediction counterpart to the plug-in

averaging estimator proposed in Liu (2015). Similar to Liu (2015), we employ a drifting

asymptotic framework and use the asymptotic risk to approximate the finite sample MSE.

We, however, focus attention on the global fit of the model instead of a scalar function

of parameters. Furthermore, we characterize the optimal weights under the weighted

quadratic loss function instead of a pointwise loss function as in Liu (2015).7

Theorem 4. Let ŵ be the plug-in weights defined in (3.11) and (3.12). Assume Ω̂
p−→ Ω.

Suppose that Assumptions 1–2 hold. We have

R(θ̂(ŵ), θ) = E ((A(w∗)δ +P(w∗)R)′Q(A(w∗)δ +P(w∗)R)) , (3.15)

where

A(w∗) =

M∑

m=1

w∗
m (PmQ− Ip+q)S0, (3.16)

P(w∗) =

M∑

m=1

w∗
mPm, (3.17)

w∗ = argmin
w∈HM

w′ψ∗w, (3.18)

and ψ∗ is an M ×M matrix with the (m, ℓ)th element

ψ∗
m,ℓ = tr

(
QCm(RδR

′
δ
− S′

0Q
−1ΩQ−1S0)C

′
ℓ

)
+ tr (QPmΩPℓ) (3.19)

with Rδ = δ + S′
0Q

−1R and R ∼ N(0,Ω).

asymptotic risk than the unrestricted estimator. We might follow Hansen (2014) and apply Stein’s Lemma
to investigate the asymptotic risk of the estimators (3.11) and (3.14). A rigorous demonstration is beyond
the scope of this paper and is left for future research.

7Liu (2015) considers a smooth real-valued function µ(β,γ) as the parameter of interest. Suppose
that we set µ(β,γ) = yT+1|T = x′

Tβ+z′Tγ. Then the plug-in averaging estimator proposed by Liu (2015)

is µ̂(ŵ) =
∑M

m=1
ŵmµ̂m = ŷT+1|T (ŵ), where ŵ = argmin

w∈HM w′Ψ̂w and the (m, ℓ)th element of Ψ̂ is

Ψ̂m,ℓ = h′
T (Ĉmδ̂δ′Ĉ

′
ℓ + P̂mΩ̂P̂ℓ)hT , which is different from the proposed estimator defined in Equation

(3.11). Note that the above estimator depends heavily on the covariate values hT , and simulations show
that the above estimator is not a stable estimate.
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Theorem 4 presents the asymptotic trimmed risk of the plug-in averaging estimator.

Unlike the averaging estimator with fixed weights, the asymptotic trimmed risk of the

plug-in averaging estimator depends on the normal random vector R. Note that the

limiting distribution of the plug-in averaging estimator is a nonlinear function ofR instead

of a normal distribution. For the alternative estimator of ψm,ℓ defined in (3.14), the

asymptotic trimmed risk of the plug-in averaging estimator is the same except (3.19) is

replaced by ψ∗
m,ℓ = tr (QCmRδR

′
δ
C′

ℓ) + tr (QPmΩPℓ).

3.5 Relationship between the Plug-In Averaging Estimator and

the Mallows’ Cp-type Averaging Estimator

In this section we discuss the relationship between the plug-in averaging estimator and

the Mallows’ Cp-type averaging estimator. Suppose that δδ′ is estimated by the asymp-

totically unbiased estimator (3.6). Then, the equation (3.11) can be rewritten as

ψ̂m,ℓ = tr
(
Q̂Ĉm

(
δ̂ δ̂′ − S′

0Q̂
−1Ω̂Q̂−1S0

)
Ĉ′

ℓ

)
+ tr

(
Q̂P̂mΩ̂P̂ℓ

)

= tr
(
Q̂Ĉmδ̂ δ̂

′Ĉ′
ℓ

)
− tr

(
Q̂ĈmS

′
0Q̂

−1Ω̂Q̂−1S0Ĉ
′
ℓ − Q̂P̂mΩ̂P̂ℓ

)

= (ê′mêℓ − ê′ê) + tr(Q̂−1

m Ω̂m + Q̂−1

ℓ Ω̂ℓ − Q̂−1Ω̂), (3.20)

where ê = y−Hθ̂, êm = y−Hmθ̂m, Q̂m = S′
mQ̂Sm, and Ω̂m = S′

mΩ̂Sm; see the appendix

for the derivation of (3.20). Therefore, the criterion function for the plug-in averaging

estimator is

w′ψ̂w = w′ξ̂w− ê′ê− tr(Q̂−1Ω̂) (3.21)

where the (m, ℓ)th element of ξ̂ is

ξ̂m,ℓ = ê′mêℓ + tr(Q̂−1

m Ω̂m) + tr(Q̂−1

ℓ Ω̂ℓ). (3.22)

Since ê′ê and tr(Q̂−1Ω̂) are not related to the weight vector w, minimizing w′ψ̂w over

w = (w1, ..., wM) is equivalent to minimizing w′ξ̂w.

Let ê(w) = y − Hθ̂(w) be the averaging residuals vector. Let k = (k1, ..., kM)′ and

km = p+ qm. If the error term is i.i.d. and homoskedastic, then the covariance matrix Ω

can be consistently estimated by 1

T
σ̂2
∑T

t=1
hth

′
t. In this case, tr(Q̂−1

m Ω̂m) = σ̂2km. Define

Σ as an M ×M matrix whose (m, ℓ)th element is km + kℓ. Then, the criterion function
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for the plug-in averaging estimator is

w′ξ̂w = ê(w)′ê(w) + σ̂2w′Σw = ê(w)′ê(w) + 2σ̂2k′w, (3.23)

which is the Mallows criterion proposed by Hansen (2007). Note that the last equality of

(3.23) holds by the fact that w′Σw = w′(k1′ + 1k′)w = 2k′w, where 1 = (1, ..., 1)′ is an

M × 1 vector. The first term of the Mallows criterion measures the model fit, while the

second term of the criterion measures the effective number of parameters and serves as a

penalty term. Therefore, we can interpret the MMA criterion as a measure of model fit

and model complexity.

If the error term is serially uncorrelated and identically distributed, then Ω can be

consistently estimated by Ω̂ = 1

T

∑T
t=1

hth
′
tê

2
t+1. Let hm,t = S′

mht. In this case,

tr(Q̂−1

m Ω̂m) = tr



(

T∑

t=1

hm,th
′
m,t

)−1( T∑

t=1

hm,th
′
m,tê

2

t+1

)
 ≡ k̃m. (3.24)

Define Σ̃ as an M ×M matrix whose (m, ℓ)th element is k̃m + k̃ℓ. Then, the criterion

function for the plug-in averaging estimator is

w′ξ̂w = ê(w)′ê(w) +w′Σ̃w = ê(w)′ê(w) + 2k̃′w, (3.25)

where k̃ = (k̃1, ..., k̃M)′. Therefore, the criterion function (3.25) is equivalent to the

heteroskedasticity-robust Cp criterion proposed by Liu and Okui (2013).

As shown in (3.23) and (3.25), the proposed plug-in averaging estimator is a generalized

Mallows’ Cp-type averaging estimator. When δδ′ is estimated by the asymptotically

unbiased estimator (3.6), the plug-in averaging estimator is equivalent to the Mallows

model averaging estimator if the covariance matrix estimator Ω̂ = 1

T
σ̂2
∑T

t=1
hth

′
t is used,

and is equivalent to the heteroskedasticity-robust Cp averaging estimator if the covariance

matrix estimator Ω̂ = 1

T

∑T
t=1

hth
′
tê

2
t+1 is used.

4 Finite Sample Investigation

We now evaluate the finite sample performance of the plug-in forecast combination method

in comparison with other forecast combination approaches in two simulation setups. The

first design is the linear regression model, and we consider all possible models. The second

design is a moving average model with exogenous inputs, and we consider a sequence of

nested candidate models.
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4.1 Six Forecast Combination Methods

In the simulations, we consider the following forecast combination approaches: (1) smoothed

Akaike information criterion model averaging estimator (labeled S-AIC), (2) smoothed

Bayesian information criterion model averaging estimator (labeled S-BIC), (3) Mallows

model averaging estimator (labeled MMA), (4) jackknife model averaging estimator (la-

beled JMA), (5) the complete subset regressions approach, (6) the plug-in averaging

estimator based on (3.11) (labeled PIA(1)), and the plug-in averaging estimator based on

(3.14) (labeled PIA(2)). For PIA(1) and PIA(2), the covariance matrix Ω is estimated

by Ω̂ = 1

T

∑T
t=1

hth
′
tê

2
t+1 in all simulations.8 We briefly discuss each method below.

The S-AIC estimator is proposed by Buckland, Burnham, and Augustin (1997), and

suggests assigning the weights of each candidate model by using the exponential Akaike

information criterion. The weight is proportional to the likelihood of the model and is

defined as ŵm = exp(−1

2
AICm)/

∑M
j=1

exp(−1

2
AICj), where AICm = T log(σ̂2

m) + 2(p +

qm), σ̂
2
m = 1

T

∑T
t=1

ê2m,t+1, and êm,t are the least squares residuals from the model m.

The S-BIC estimator is a simplified form of Bayesian model averaging. By assum-

ing diffuse priors, the Bayesian model averaging weights approximately equal ŵm =

exp(−1

2
BICm)/

∑M
j=1

exp(−1

2
BICj), where BICm = T log(σ̂2

m) + log(T )(p+ qm).

Hansen (2007) proposes the MMA estimator for homoskedastic linear regression mod-

els. The MMA estimator selects the weights by minimizing a Mallows criterion defined in

(3.23). The idea behind the Mallows criterion is to approximate the mean squared error

by the sum of squared errors and a penalty term. Hansen (2008) shows that the MMA

criterion is an unbiased estimate of the in-sample mean squared error plus a constant

term for stationary dependent observations.

Hansen and Racine (2012) propose the JMA estimator for non-nested and heteroskedas-

tic linear regression models. The weights of the JMA estimator are chosen by minimizing

a leave-one-out cross-validation criterion CV(w) = w′ẽ′ẽw, where ẽ = (ẽ1, ..., ẽM) is

the T ×M matrix of leave-one-out least squares residuals and ẽm are the residuals of the

modelm obtained by least squares estimation without the tth observation. The MMA and

JMA estimators are asymptotically optimal in the sense of achieving the lowest possible

expected squared error in homoskedastic and heteroskedastic settings, respectively. The

optimality, however, is limited to the random sample and hence is not directly applicable

to forecast combination for time series data.

For the above four averaging estimators and the plug-in averaging estimator, the one-

8The simulation results are quite similar when Ω is estimated by the heteroskedasticity and autocor-
relation consistent covariance matrix estimator.
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step-ahead combination forecast is computed as

ŷT+1|T (ŵ) =

M∑

m=1

ŵmŷT+1|T (m), (4.1)

where ŵm is determined by S-AIC, S-BIC, MMA, JMA, PIA(1), or PIA(2).

Unlike previous methods, the complete subset regression method proposed by Elliott,

Gargano, and Timmermann (2013) assigns equal weights to a set of models. Let k = p+q

be the number predictors used in the full model and κ the number of predictors used in all

subset regressions. For a given set of potential predictors, the complete subset regression

method constructs the forecast combination by using equal-weighted combination based

on all possible models that include κ predictors. Let nκ,k = k!/((k−κ)!κ!) be the number

of models considered based on κ subset regressions. The one-step-ahead combination

forecast based on the complete subset regression method is

ŷT+1|T (κ) =
1

nκ,k

nκ,k∑

m=1

h′
TSmθ̂m s.t. tr(SmS

′
m) = κ. (4.2)

Instead of choosing the weights w, the complete subset regression method has to choose

the number of predictors κ for all models.9

We follow Ng (2013) and compare these estimators based on the relative risk. Let

ŷT+1|T (m) be the prediction based on the model m, where m = 1, ...,M . Let ŷT+1|T (ŵ)

be the prediction based on the S-AIC, S-BIC, MMA, JMA, complete subset regressions,

and plug-in averaging estimators. The relative risk is computed as the ratio of the risk

based on the forecast combination method relative to the lowest risk among the candidate

models:

1

S

∑S
s=1

(
ys,T+1|T − ŷs,T+1|T (ŵ)

)2

min
m∈{1,...,M}

1

S

∑S
s=1

(
ys,T+1|T − ŷs,T+1|T (m)

)2 ,

where S is the number of simulations. We set S = 5000 for all experiments. The lower

relative risk means better performance on predictions. When the relative risk exceeds one,

it indicates that the forecast combination method does not outperform the best possible

prediction among the candidate models.

9One limitation of subset regression combinations is that the approach is not suitable for the nested
models. Suppose that we consider AR models up to order p. The goal is to average different AR models
to minimize the risk function. In this case, we are not able to apply complete subset regressions.
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4.2 Linear Regression Models

The data generation process for the first design is

yt+1 =
k∑

j=1

βjxjt + et+1, (4.3)

xjt = ρxxjt−1 + ujt, for j ≥ 2. (4.4)

We set x1t = 1 to be the intercept and the remaining xjt are AR(1) processes with ρx = 0.5

and 0.9. The predictors xjt are correlated and all are potentially relevant. We generate

(u2t, ..., ukt)
′ from a joint normal distribution N(0,Qu), where the diagonal elements of

Qu are 1, and off-diagonal elements are ρu. We set ρu = 0.25, 0.5, 0.75, and 0.9. The error

term et has mean zero and variance one. For the homoskedastic simulation, the error term

is generated from a standard normal distribution. For the heteroskedastic simulation, we

first generate an AR(1) process ǫt = 0.5ǫt−1 + ηt, where ηt ∼ N(0, 0.75). Then, the error

term is constructed by et = 3−1/2(1− ρ2x)x
2
ktǫt.

The regression coefficients are determined by the rule

β =
c√
T

(
1,
k − 1

k
, ...,

1

k

)′

,

and the local parameters are determined by δj =
√
Tβj = c(k − j + 1)/k for j ≥ 2.

The parameter c is selected to vary the population R2 = β̃′Qxβ̃/(1 + β̃′Qxβ̃), where

β̃ = (β2, ..., βk)
′ and Qx = (1− ρ2x)

−1Qu and R2 varies on a grid between 0.1 and 0.9. We

set the sample size to T = 200 and set k = 5. We consider all possible models, and hence

the number of models is M = 32 for S-AIC, S-BIC, MMA, JMA, PIA(1), and PIA(2).

For the complete subset regression method, the numbers of models are 5, 10, 10, 5, and

1 for κ = 1, 2, 3, 4, and 5, respectively.

Figures 1–4 show the relative risk for the first simulation setup. In each figure, the

relative risk is displayed for ρu = 0.25, 0.5, 0.75, and 0.9, respectively. We first compare

the relative risk when the AR(1) coefficient of the predictor equals 0.5. Figures 1 and 2

show that both plug-in averaging estimators perform well and PIA(2) dominates other

estimators in most ranges of the parameter space. The relative risk of MMA and JMA

estimators is indistinguishable in the homoskedastic simulation, but JMA has lower rela-

tive risk than MMA for ρu = 0.25 and 0.5 in the heteroskedastic simulation. The S-AIC

and MMA estimators have quite similar relative risk for the homoskedastic simulation,

but S-AIC has much larger relative risk than MMA for the heteroskedastic simulation.

The S-BIC estimator has poor performance in both homoskedastic and heteroskedastic
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simulations.

Figure 3 compares the relative risk between the plug-in averaging estimator and the

complete subset regressions in heteroskedastic simulations. The performance of the subset

regression approach is sensitive to the choice of the number of the predictors κ. As R2

increases, the optimal value of κ tends to be larger. Unlike the complete subset regressions,

the performance of the plug-in averaging estimator is quite robust to different values of

R2. In most cases, the plug-in averaging estimator has much lower relative risk than the

complete subset regressions with different κ.

Figure 4 displays the relative risk for the large AR(1) coefficient. The relative perfor-

mance of six estimators depends strongly on R2 and ρu. Overall, the ranking of estimators

is quite similar to that for ρx = 0.5. However, PIA(1) performs slightly better than PIA(2)

for the heteroskedastic simulation when R2 is small.

4.3 Moving Average Model with Exogenous Inputs

The second design is similar to that of Ng (2013). The data generation process is a moving

average model with exogenous inputs

yt = xt + 0.5xt−1 + et + βet−1, (4.5)

xt = 0.5xt−1 + ut. (4.6)

The exogenous regressor xt is an AR(1) process, and ut is generated from a standard

normal distribution. The error term et is generated from a normal distribution N(0, σ2
t ),

where σ2
t = 1 + x2t . The parameter β is varied on a grid from −0.5 to 0.5. The sample

size is varied between T = 100, 200, 500, and 1000.

We consider a sequence of nested models based on regressors:

{1, yt−1, xt, yt−2, xt−1, yt−3, xt−2},

where the constant term is included in all models. The number of models is M = 7 for

S-AIC, S-BIC, MMA, JMA, PIA(1), and PIA(2). For β 6= 0, the true model is infinite

dimensional, and there is no true model among these seven candidate models. For β = 0,

the true model size, or the number of regressors of the data generation process, is two.

However, all seven models are wrong. In this setup, we do not compute the complete

subset regression because it cannot be applied when the candidate models are nested.

In Figure 5, the four panels display the relative risk for T = 100, 200, 500, and 1000,

respectively. In each panel, the relative risk is displayed for β between −0.5 and 0.5. All
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forecast combination approaches, except S-BIC, have similar relative risk in most ranges

of the parameter space, but PIA(2) has lower relative risk than other estimators when T

and |β| are large. S-BIC has much lower relative risk for large T and small |β|. In most

cases, however, S-BIC has quite poor performance relative to other methods. Similar

results for the AIC and BIC model selection estimators are also found in Yang (2007) and

Ng (2013).

Figure 6 compares the average model size of six estimators.10 As we expected, the

average model size of S-BIC is smaller than those of other estimators. S-AIC and PIA(2)

have similar average model sizes, and they tend to select the larger models compared to

MMA, JMA, and PIA(1). An interesting observation is that the average model size is not

symmetric around zero nor monotone in β.

5 Empirical Application

In this section, we apply the forecast combination method to stock return predictions.

The challenge of empirical research on equity premium prediction is that one does not

know exactly what variables are the good predictors of the stock return. Different studies

suggest different economic variables and models for the equity premium prediction; see

Rapach and Zhou (2012) for a literature review. Results from some studies contradict

the findings of others. Welch and Goyal (2008) argue that numerous economic variables

have poor out-of-sample predictions and these forecasting models are unable to provide

forecasting gain relative to the historical average consistently. In order to take into account

the model uncertainty, Rapach, Strauss, and Zhou (2010) and Elliott, Gargano, and

Timmermann (2013) propose an equal-weighted forecast combination approach to the

subset predictive regression. They find that forecast combinations achieve significant

gains on out-of-sample predictions relative to the historical average. We apply the forecast

combination with data-driven weights instead of equal weights to the U.S. stock market.

5.1 Data

We estimate the following predictive regression rt+1 = β + z′tγ + et+1, where rt+1 is the

equity premium, zt are the economic variables, and et+1 is an unobservable disturbance

term. The goal is to select weights to achieve the lowest cumulative squared prediction

error.

10We compute the average model size by computing averages across 5000 simulation draws, that is,
1

S

∑S

s=1

∑M

m=1
ŵs,mkm.
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The quarterly data are taken from Welch and Goyal (2008) and are up to date through

2011.11 The total sample size is 260 over the period 1947–2011. The stock returns are

measured as the difference between the continuously compounded return on the S&P 500

index including dividends and the Treasury bill rate. We consider 10 economic variables

and a total of 1025 possible models, including a null model.12 The 10 economic variables

are as follows: dividend price ratio, dividend yield, earnings price ratio, book-to-market

ratio, net equity expansion, Treasury bill, long-term return, default yield spread, default

return spread, and inflation; see Welch and Goyal (2008) for a detailed description of the

data and their source.

We follow Welch and Goyal (2008) and calculate the out-of-sample forecast of the

equity premium using a recursively expanding estimation window. We first divide the

total sample into an in-sample period (1947:1–1964:4) and an out-of-sample evaluation

period (1965:1–2011:4). The first out-of-sample forecast is for 1965:1, while the last out-of-

sample forecast is for 2011:4. For each out-of-sample forecast, we estimate the predictive

regression based on all available samples up to that point. That is, for the first out-of-

sample forecast, we calculate different combination forecast methods based on the sample

1947:1–1964:4. We then expand the estimation window to the sample 1947:1–1965:1 and

construct the combination forecast for 1965:2 and so on. Note that we re-estimate the

data-driven weights for each scheme.

5.2 Out-Of-Sample Forecasting Results

We follow Welch and Goyal (2008) and use the historical average of the equity premium as

a benchmark. As shown inWelch and Goyal (2008) and Rapach, Strauss, and Zhou (2010),

none of the forecasts based on the individual economics variable consistently outperforms

the forecast based on the historical average.

Figure 7 presents the time series plots of the differences between the cumulative

squared prediction error of the historical average benchmark forecast and the cumulative

squared prediction error of the forecast combinations based on different model averaging

approaches. When the curve in each panel is greater than zero, the forecast combination

method outperforms the historical average.

The upper panel of Figure 7 shows that MMA, JMA, PIA(1), and PIA(2) consistently

beat the historical average in terms of MSFE. S-AIC and S-BIC have a smaller cumula-

11The data are available at http://www.hec.unil.ch/agoyal/.
12Elliott, Gargano, and Timmermann (2013) consider 12 variables, which are slightly different from

the variables used in Rapach, Strauss, and Zhou (2010). We use the variables that are both considered
in two articles. All the models except the null model include the constant term. The null model does not
include any predictor.
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tive squared prediction error than the historical average before 1997, but neither estimator

outperforms the historical average after 1997. It is clear to see that PIA(1) and PIA(2)

perform similarly and both estimators achieve smaller cumulative squared prediction er-

rors as compared to other estimators. Note that JMA performs better than MMA, which

is consistent with the finding in our simulations. One interesting observation is that the

ranking of estimators almost remains the same in the out-of-sample evaluation period.

The two lower panels of Figure 7 compare the cumulative squared prediction error

of PIA(2) to those of the complete subset regressions. As we can see from these two

panels, the complete subset regressions that use κ = 4 or 5 predictors produce the lowest

cumulative squared prediction error. Our finding of the optimal value of κ is slightly larger

than that in Elliott, Gargano, and Timmermann (2013). PIA(2) has similar performance

to the complete subset regressions with κ = 4 or 5, and PIA(2) outperforms the complete

subset regressions when κ < 4 or κ > 5. It is clear to see that the choice of κ has a

great influence on the performance of the complete subset regressions, and in practice the

optimal choice of κ is unknown. Examining these three panels in Figure 7, there is no

one forecast combination method that uniformly dominates the others.

For a formal comparison between the plug-in forecast combination and the historical

average benchmark, we compute the out-of-sample R2 statistics.13 The out-of-sample R2

value of PIA(2) is 2.23% with the associated p-value 0.0253, which means PIA(2) has a

significantly lower MSFE than the historical average benchmark forecast. Therefore, our

results support the findings of Rapach, Strauss, and Zhou (2010) and Elliott, Gargano,

and Timmermann (2013) that forecast combinations provide significant gains on equity

premium predictions relative to the historical average.

6 Conclusion

This paper studies the weight selection for forecast combination in a predictive regression

when the goal is minimizing the asymptotic risk. We derive the asymptotic distribution

and asymptotic risk of the averaging estimator in a local asymptotic framework without

the i.i.d. normal assumption. We then develop a frequentist model averaging criterion,

an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights.

While this paper has focused on the one-step-ahead forecasting model, the proposed

13Let r̄τ+1|τ = 1

τ

∑τ

t=1
rt be the historical average and r̂T+1|T (ŵ) the equity premium fore-

cast based on forecast combination. The out-of-sample R2 value is computed as R2
OOS = 1 −∑T−1

τ=τ0

(
rτ+1 − r̂τ+1|τ (ŵ)

)2
/
∑T−1

τ=τ0

(
rτ+1 − r̄τ+1|τ

)2
. The associated p-value is based on Clark and West

(2007) to test the null hypothesis that R2
OOS ≤ 0.
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plug-in averaging method can be easily extended to the h-step-ahead forecasting model.14

Simulations show that the proposed estimator achieves lower MSFE relative risk than

other existing model averaging methods in most cases.

Appendix

A Proofs

The following Lemma (Lemma 1 in Liu (2015)) shows the asymptotic distributions of the

least squares estimators in the mth model. Let θm = (β′,γ ′
m)

′ = (β′,γ ′Π′
m)

′ = S′
mθ.

Lemma 1. [Liu (2015)] Suppose that Assumptions 1–2 hold. As T → ∞, we have

√
T
(
θ̂m − θm

)
d−→ Amδ +BmR ∼ N

(
Amδ, Q

−1

m ΩmQ
−1

m

)
,

where Am = Q−1
m S′

mQS0 (Iq −Π′
mΠm) and Bm = Q−1

m S′
m.

Proof of Theorem 1: Recall that θ̂(w) =
∑M

m=1
wmSmθ̂m. Let Pm = SmQ

−1
m S′

m.

By Lemma 1, we have

√
TSm

(
θ̂m − θm

)
d−→ Sm

(
Q−1

m S′
mQS0 (Iq −Π′

mΠm) δ +Q−1

m S′
mR
)

= PmQS0 (Iq −Π′
mΠm) δ +PmR.

Also, by Assumption 1, it follows that
√
T (Smθm − θ) = S0(Π

′
mΠm − Iq)δ, where S0 =

(0q×p, Iq)
′. Therefore, by Assumptions 1–2 and the application of Slutsky’s theorem, we

14Consider an h-step-ahead forecasting model: yt+h = x′
tβ + z′tγ + et+h and E(htet+h) = 0. The

h-step-ahead forecast from the mth model is ŷT+h|T (m) = h′
TSmθ̂m where θ̂ = (H′H)−1H′y, and the

h-step-ahead combination forecast is ŷT+h|T (w) = h′
T θ̂(w), where θ̂(w) =

∑M

m=1
wmSmθ̂m. We now

modify Assumption 2 as follows: Assumption 2’. {yt+h,ht} is a strictly stationary and ergodic time
series with finite r > 4 moments and E(et+h|Ft) = 0, where Ft = σ(ht,ht−1, ...; et, et−1, ...). Suppose
that Assumptions 1 and 2’ hold. Then the results in Theorems 1–3 still hold except the definition of
Ω is replaced by Ω = limT→∞

1

T

∑T

s=1

∑T

t=1
E (hsh

′
tes+het+h). Therefore, we can construct the plug-in

combination forecast in the same way as (3.13).
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have

√
T
(
Smθ̂m − θ

)
=

√
TSm

(
θ̂m − θm

)
+
√
T (Smθm − θ)

d−→ PmQS0 (Iq −Π′
mΠm) δ +PmR− S0(Iq −Π′

mΠm)δ

=
(
SmQ

−1

m S′
mQS0 − S0

)
(Iq −Π′

mΠm) δ +PmR

=
(
SmQ

−1

m S′
mQS0 − S0

)
δ +PmR

= (PmQ− Ip+q)S0δ +PmR ≡ Λm, (A.1)

where the third equality holds by the fact that S0Π
′
m = Sm

(
0′
p×qm, Iqm

)′
.

From (A.1), there is joint convergence in distribution of all
√
T
(
Smθ̂m − θ

)
to Λm,

since all of Λm can be expressed in terms of the same normal vector R. Because the

weights are nonrandom, it follows that

√
T
(
θ̂(w)− θ

)
=

M∑

m=1

wm

√
T
(
Smθ̂m − θ

)
d−→

M∑

m=1

wmΛm ≡ Λ. (A.2)

By standard algebra, we can show the mean vector of Λ as

E

(
M∑

m=1

wmΛm

)
=

M∑

m=1

wmE (Λm) =
M∑

m=1

wm (PmQ− Ip+q)S0δ = A(w)δ,

where A(w) =
∑M

m=1
wm (PmQ− Ip+q)S0.

Next we want to show the covariance matrix of Λ. Let Cm = (PmQ− Ip+q)S0. For

any two models, we have

Cov(Λm,Λℓ) = E
(
(Cmδ +PmR− E(Cmδ +PmR)) (Cℓδ +PℓR− E(Cℓδ +PℓR))′

)

= E (PmRR′P′
ℓ) = PmE (RR′)P′

ℓ = PmΩPℓ,

where the second equality holds by the fact that Cm, Pm, and δ are constant vectors and

R ∼ N(0,Ω). Therefore, the covariance matrix of Λ is

V ar

(
M∑

m=1

wmΛm

)
=

M∑

m=1

w2

mV ar(Λm) + 2
∑∑

m6=ℓ

wmwℓCov(Λm,Λℓ)

=
M∑

m=1

w2

mPmΩPm + 2
∑∑

m6=ℓ

wmwℓPmΩPℓ ≡ V(w).

This completes the proof. �
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Proof of Theorem 2: The argument is similar to the proof of Theorem 3 and we

omit it for brevity. �

Proof of Theorem 3: The asymptotic trimmed risk is easy to calculate when the

estimator θ̃ has an asymptotic distribution. Suppose that
√
T (θ̃ − θ) d−→ Z ∼ N(0,V).

Then by Lemma 1 of Hansen (2016), the asymptotic trimmed risk equals E(Z′QZ). We

first rewrite the asymptotic distribution of the averaging estimator in (A.2) as

√
T
(
θ̂(w)− θ

)
d−→

M∑

m=1

wmΛm =
M∑

m=1

wm ((PmQ− Ip+q)S0δ +PmR)

= A(w)δ +P(w)R, (A.3)

whereP(w) =
∑M

m=1
wmPm. Note thatA(w) =

∑M
m=1

wm (PmQ− Ip+q)S0 =
∑M

m=1
wmCm,

where Cm = (PmQ− Ip+q)S0. Thus, the asymptotic trimmed risk of θ̂(w) is

R(θ̂(w), θ) = E ((A(w)δ +P(w)R)′Q(A(w)δ +P(w)R))

= E (δ′A(w)′QA(w)δ) + 2E (R′P(w)′QA(w)δ) + E (R′P(w)′QP(w)R)

= δ′A(w)′QA(w)δ + E(R′P(w)′QP(w)R)

= tr (QA(w)δδ′A(w)′) + tr (QP(w)′ΩP(w))

= w′ψw,

where ψ is an M × M matrix with the (m, ℓ)th element ψm,ℓ = tr (QCmδδ
′C′

ℓ) +

tr (QPmΩPℓ). This completes the proof. �

Proof of Theorem 4: Recall that ψ̂m,ℓ = tr(Q̂Ĉmδ̂δ′Ĉ
′
ℓ) + tr(Q̂P̂mΩ̂P̂ℓ). We first

show that w′ψ̂w
p−→ w′ψ∗w and ŵ

d−→ w∗ = argmin
w∈HM w′ψ∗w. Since Q̂ and Ω̂

are consistent estimators for Q and Ω, we have tr(Q̂P̂mΩ̂P̂ℓ)
p−→ tr(QPmΩPℓ) by the

continuous mapping theorem. Then by (3.5), (3.6), and the application of Slutsky’s

theorem, we have

ψ̂m,ℓ
d−→ tr

(
QCm(RδR

′
δ
− S′

0Q
−1ΩQ−1S0)C

′
ℓ

)
+ tr (QPmΩPℓ) = ψ∗

m,ℓ.

Note that all of ψ∗
m,ℓ can be expressed in terms of the normal random vector R. Therefore,

there is joint convergence in distribution of all ψ̂m,ℓ to ψ∗
m,ℓ. Thus we have w′ψ̂w

p−→
w′ψ∗w. Next observe that w′ψ∗w is a convex minimization problem because w′ψ∗w is

quadratic and ψ∗ is positive definite. Hence, the limiting process w′ψ∗w is continuous in

w and has a unique minimum. Also note that ŵ = Op(1) by the fact that HM is convex.
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Therefore, by Theorem 3.2.2 of Van der Vaart and Wellner (1996) or Theorem 2.7 of Kim

and Pollard (1990), the minimizer ŵ converges in distribution to the minimizer of w′ψ∗w,

which is w∗.

We now derive the asymptotic distribution and asymptotic trimmed risk of the plug-in

averaging estimator. Since both Λm and w∗
m can be expressed in terms of the same normal

random vector R, there is joint convergence in distribution of all θ̂(m) and ŵm. By (A.3)

and ŵ
d−→ w∗, it follows that

√
T
(
θ̂(ŵ)− θ

)
=

M∑

m=1

ŵm

√
T
(
Smθ̂m − θ

)
d−→

M∑

m=1

w∗
mΛm = A(w∗)δ +P(w∗)R,

where A(w∗) =
∑M

m=1
w∗

m (PmQ− Ip+q)S0 and P(w∗) =
∑M

m=1
w∗

mPm. Therefore, the

asymptotic trimmed risk of θ̂(ŵ) is

R(θ̂(ŵ), θ) = E ((A(w∗)δ +P(w∗)R)′Q(A(w∗)δ +P(w∗)R)) .

This completes the proof. �

Derivation of Equation (3.20): We first show the first term of (3.20). Note that

δ̂ =
√
T γ̂ =

√
TS′

0θ̂, Ĉm = (P̂mQ̂− Ip+q)S0, and P̂m = SmQ̂
−1
m S′

m. Thus, we have

tr(Q̂Ĉmδ̂ δ̂
′Ĉ′

ℓ) = tr(T Q̂ĈmS
′
0θ̂ θ̂

′S0Ĉ
′
ℓ)

= tr
(
T Q̂(P̂mQ̂− Ip+q)θ̂ θ̂

′(Q̂P̂ℓ − Ip+q)
)

= tr(T Q̂P̂mQ̂θ̂ θ̂
′Q̂P̂ℓ)− tr(T Q̂P̂mQ̂θ̂ θ̂

′)− tr(T Q̂θ̂ θ̂′Q̂P̂ℓ)

+ tr(T Q̂θ̂ θ̂′), (A.4)

where the second equality holds by the fact that

ĈmS
′
0 = (P̂mQ̂− Ip+q)S0S

′
0 = P̂mQ̂− P̂mQ̂(Ip+q − S0S

′
0)− S0S

′
0

= P̂mQ̂−
(
P̂mQ̂

[
Ip 0p×q

0q×p 0q×q

]
+

[
0p×p 0p×q

0q×p Iq

])

= P̂mQ̂−
(
Sm

(
S′
mQ̂Sm

)−1

S′
mQ̂Sm

[
Ip 0p×q

0qm×p 0qm×q

]
+

[
0p×p 0p×q

0q×p Iq

])

= P̂mQ̂− Ip+q. (A.5)

Recall that θ̂ = (H′H)−1H′y. Thus, we have θ̂ θ̂′ = T−2Q̂−1H′yy′HQ̂−1. Then the
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first term of (A.4) can be rewritten as

tr(T Q̂P̂mQ̂θ̂ θ̂
′Q̂P̂ℓ) = tr(T−1Q̂SmQ̂

−1

m S′
mQ̂Q̂−1H′yy′HQ̂−1Q̂SℓQ̂

−1

ℓ S′
ℓ)

= tr(Hm(H
′
mHm)

−1H′
myy

′Hℓ(H
′
ℓHℓ)

−1H′
ℓ)

= y′PmPℓy,

where Pm = Hm(H
′
mHm)

−1H′
m. Define P = H(H′H)−1H′. Thus, the equation (A.4) can

be rewritten as

tr(Q̂Ĉmδ̂ δ̂
′Ĉ′

ℓ) = y′PmPℓy− y′Pmy − y′Pℓy + y′Py

= y′(I− Pm)(I−Pℓ)y − y′(I−P)y = ê′mêℓ − ê′ê, (A.6)

where ê = y −Hθ̂ and êm = y−Hmθ̂m.

We now show the second term of (3.20). Let Ω̂m = S′
mΩ̂Sm. By some algebra, it

follows that

tr
(
Q̂ĈmS

′
0Q̂

−1Ω̂Q̂−1S0Ĉ
′
ℓ − Q̂P̂mΩ̂P̂ℓ

)

= tr
(
Q̂(P̂mQ̂− Ip+q)Q̂

−1Ω̂Q̂−1(Q̂P̂ℓ − Ip+q)− Q̂P̂mΩ̂P̂ℓ

)

= tr(Q̂P̂mQ̂Q̂−1Ω̂Q̂−1Q̂P̂ℓ − Q̂P̂mQ̂Q̂−1Ω̂Q̂−1

− Q̂Q̂−1Ω̂Q̂−1Q̂P̂ℓ + Q̂Q̂−1Ω̂Q̂−1 − Q̂P̂mΩ̂P̂ℓ)

= tr(Q̂P̂mΩ̂P̂ℓ)− tr(Ω̂P̂m)− tr(Ω̂P̂ℓ) + tr(Q̂−1Ω̂)− tr(Q̂P̂mΩ̂P̂ℓ)

= tr(Q̂−1Ω̂)− tr(Q̂−1

m Ω̂m)− tr(Q̂−1

ℓ Ω̂ℓ), (A.7)

where the second equality holds by (A.5). Combining (A.6) and (A.7), we have (3.20). �
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Figure 1: Relative risk for linear regression models with homoskedastic errors and ρx =
0.5.
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Figure 2: Relative risk for linear regression models with heteroskedastic errors and ρx =
0.5.
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Figure 3: Relative risk for linear regression models with heteroskedastic errors and ρx =
0.5.
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Figure 4: Relative risk for linear regression models with heteroskedastic errors and ρx =
0.9.
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Figure 5: Relative risk for MAX(1, 1) models.
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Figure 6: Average model size for MAX(1, 1) models.
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Figure 7: The differences between the cumulative squared prediction error of the historical average
forecasting model and the cumulative squared prediction error of the forecast combination model for
1965:1–2011:4.
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